

Misura delle prestazioni in campo di una pompa di calore di grande taglia

G. Centi, D. Iatauro, C. Romeo, P. Signoretti, L. Terrinoni

MISURA DELLE PRESTAZIONI IN CAMPO DI UNA POMPA DI CALORE DI GRANDE TAGLIA G. Centi, D. Iatauro, C. Romeo, P. Signoretti, L. Terrinoni (ENEA) Settembre 2017

Area: Efficienza energetica e risparmio di energia negli usi finali elettrici e interazione con altri vettori energetici

locale) mirata a conseguire il raggiungimento della definizione di edifici a energia quasi zero (nZEB)

Obiettivo: Misura delle prestazioni in campo di una pompa di calore di grande taglia

Progetto: Studi sulla riqualificazione energetica del parco esistente di edifici pubblici (scuole, ospedali, uffici della PA centrale e

Report Ricerca di Sistema Elettrico

Responsabile del Progetto: Luciano Terrinoni ENEA

Piano Annuale di Realizzazione 2016

Accordo di Programma Ministero dello Sviluppo Economico – ENEA

Indice

SOMN	//ARIO	4
SUMN	//ARY	4
1 INTR	RODUZIONE	5
1.1	L'AUDIT ENERGETICO DEGLI IMPIANTI NEGLI EDIFICI SOTTOPOSTI A RIQUALIFICAZIONE CON OBIETTIVO NZEB	5
1.2	L'ANALISI DEL RENDIMENTO DEGLI IMPIANTI	6
1.3	OBIETTIVI DEL LAVORO	8
2 DES	CRIZIONE DELL'EDIFICIO IN ESAME: IL COMPLESSO DELL'EX BANCO DI NAPOLI	9
1.4	L'EDIFICIO	9
2.2	GLI IMPIANTI DI CLIMATIZZAZIONE AL SERVIZIO DELL'EDIFICIO	13
1.3	IMPIANTO DI RISCALDAMENTO E ACS	13
1.4		
2 I	L MONITORAGGIO IN SITO DELLA POMPA DI CALORE	16
2.1	GLI STRUMENTI DI MISURA	16
2.2	MISURA DEI DATI CLIMATICI ESTERNI	18
4 ELA	BORAZIONE DEI DATI MISURATI E ANALISI DEI RISULTATI	21
4.1	PROFILI DELLE PRINCIPALI GRANDEZZE MISURATE	22
4.2	DIAGRAMMI DI SINTESI RELATIVI ALL'INTERO PERIODO MONITORATO	31
5 (CONCLUSIONI	36
6 F	RIFERIMENTI BIBLIOGRAFICI	37

Sommario

Il generatore termico a pompa di calore rappresenta una tipologia impiantistica di grande interesse per gli edifici nZEB, in quanto, l'utilizzo di energia elettrica per la climatizzazione degli edifici, integrato alle fonti rinnovabili, consente di raggiungere gli standard di efficienza previsti dalla normativa attuale (DM. 26/6/2015) per gli edifici a energia quasi zero. A tal fine e' stato individuato un edificio pubblico, l' Ex Banco di Napoli, attualmente adibito ad uffici della Camera dei Deputati, nel quale verrà effettuato un monitoraggio del rendimento dell'impianto a pompa di calore durante la stagione di climatizzazione estiva. Il monitoraggio avverrà mediante l'impiego di sensori di misura già installati sulla macchina in uso, (energy meeter per la registrazione della potenza termico frigorifera erogata e la contemporanea acquisizione dei principali dati climatici esterni relativi alla località in esame, Roma.

L'analisi dei primi dati di misura (test case), per questa annualità, relativi alla sola climatizzazione estiva, ha consentito di evidenziare le principali problematiche legate alle misure in sito condotte sugli impianti di climatizzazione. Il mon potrà essere ripetuta durante l'arco della prossima stagione di riscaldamento invernale per avere un quadro generale del comportamento della macchina durante tutto l'arco dell'anno ed evidenziarne l'effettivo rendimento al variare delle condizioni climatiche esterne.

L'obiettivo è quello di valutare l'effettivo rendimento, COP/EER, in condizioni di utilizzo reale, per poterlo in seguito confrontare sia con i dati tecnici forniti dalla casa costruttrice del generatore, sia con i rendimenti stagionali calcolati secondo metodologie di calcolo standardizzate per il calcolo del fabbisogno energetico degli edifici UNI TS 11300

Parole chiave: edifici nZEB, efficienza energetica, Pompe di calore, misure del COP

Summary

The DM 26/6/2015 has defined in Italy the minimum energy performance requirements for new and existing buildings that undergo major renovation, in order to achieve progressively, in the next years, the target of Nearly Zero Building (nZEB), defined as: "buildings that have very high energy performance, and the low amount of energy that these require, comes mostly from renewable sources".

In this contest, the heat pump generator plays a relevant rule to increase the energy efficiency of the buildings, since the use of electric energy for building air conditioning, integrated with the use of renewable sources, allows to meet the standards required for nearly zero energy buildings.

A public office building, (the former Banco di Napoli), has been selected, to be monitored during summer air conditioning season. The monitoring has been carried out using energy meters, installed on the heat pump generator (air to water). Electric and thermal power measurements were taken to check the energy efficiency of the generator, depending on the outdoor temperature of the site.

The analysis of the first test data for this year, focused only on the summer air conditioning, has allowed to to investigate the main efficiency-influencing aspects related to on-site measurements (the correct set-up of sensors, the boundary conditions, load factor of plan, ecc). Furthermore the first field data of EER have been compared with the performance characteristics of the generator supplied by Carrier. The monitoring can be repeated in the winter heating season to have an overall evaluation of the heat pump behavior throughout the year.

The aim of the study is to evaluate the efficiency of the heat pump performance in real-operating conditions, to be compared with the seasonal performance indicex SPF/ESEER, calculated in accordance with standard calculation methodologies for the energy audit of buildings.

Keywords: nZEB, energy efficiency, Heat Pump, COP monitoring

1 Introduzione

1.1 L'audit energetico degli impianti negli edifici sottoposti a riqualificazione con obiettivo nZEB

La direttiva Direttiva 2010/31/UE introduce il concetto di "edifici a energia quasi zero", nZEB (nearly Zero-Energy Buildings), definito come "quell'edificio che ha prestazioni energetiche molto elevate e che richiede quindi un piccolo fabbisogno di energia, la maggior parte della quale deve essere fornita da fonti rinnovabili".

In Italia la legge 90/2013, ed il successivo DM 26/6/2015, fissano i nuovi criteri per l'aggiornamento e la programmazione di standard prestazionali degli edifici (involucro, impianti e fonti rinnovabili), al fine di raggiungere gli obiettivi fissati a livello europeo in materia di edifici a energia quasi zero. I requisiti minimi prestazionali per l'edilizia tengono in debito conto il periodo di condizionamento invernale ed estivo, la zona climatica.

Gli standard nZEB (nearly Zero Energy Buildings) previsti dal DM 26/6/2015, richiedono che le nuove costruzioni, a partire dal 2021 e dal 1 Gennaio 2019 per gli edifici di proprietà pubblica, rispondano a requisiti di elevata prestazione energetica sia per l'involucro edilizio sia per gli impianti di climatizzazione installati. Inoltre la normativa richiede che almeno il 50% del consumo energetico dell'edificio derivi da fonti rinnovabili.

Tali requisiti, daranno nei prossimi anni, maggior impulso alla diffusione di combinazioni impiantistiche per la climatizzazione degli edifici, differenti da quelle tradizionalmente più diffuse.

La valutazione dell'efficienza degli impianti installati, tra l'altro, assume particolare importanza nell'ambito delle riqualificazioni energetiche di edifici pubblici, spesso a carattere storico. In questi casi infatti gli interventi di miglioramento energetico sono in gran parte concentrati sugli impianti, viste le maggiori difficoltà che si riscontrano nell'applicazione di misure sull'involucro edilizio, caratterizzato da numerosi vincoli architettonici.

Tra le diverse tipologie di generatori, sicuramente maggior interesse assumerà l'utilizzo di sistemi a Pompa di calore, che, integrati all'installazione di moduli fotovoltaici, consentiranno un maggior impiego del vettore elettrico nella climatizzazione degli edifici, nel rispetto delle quote di energia rinnovabile obbligatorie per le nuove costruzioni.

E' importante però sottolineare che l'impiego e il rendimento degli impianti di generazione, basati sull'utilizzo di fonti rinnovabili, risultano strettamente legati alle caratteristiche climatiche (temperatura, umidità, radiazione solare) del sito in esame, oltre che alla richiesta energetica dell'edificio. Tale aspetto implica un'accurata valutazione dell'efficienza di una certa tipologia di impianto, in funzione del contesto climatico in cui viene installato.

Nel caso delle pompe di calore ad aria (aria-acqua, aria-aria) le variazioni delle variabili climatiche nel corso della stagione di climatizzazione possono influenzare in maniera sostanziale il rendimento della macchina, che, in alcuni casi può ridursi drasticamente fino a raggiungere condizioni tali da comprometterne la convenienza energetica, e quindi l'applicabilità.

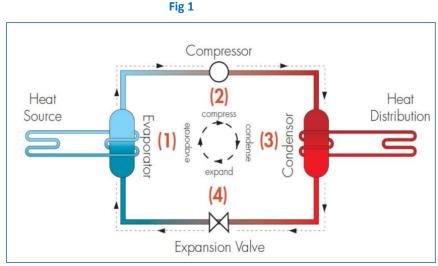
Diventa quindi interessante monitorare in opera, la potenza erogata e l'efficienza effettiva (COP, EER) di una pompa di calore al servizio di un edificio pubblico, ad uso ufficio, in cui è richiesta climatizzazione sia invernale che estiva. L'analisi del rendimento della macchina, al variare delle condizioni climatiche stagionali, consentirà di confrontare il rendimento effettivo, con quello nominale fornito dalla casa costruttrice e valutato in condizioni standard.

In seguito sarà possibile estendere il confronto anche ai valori di rendimento medio stagionale della macchina (SCOP/SPF, ESEER) calcolati con i diversi metodi di calcolo del fabbisogno energetico disponibili: quello semistazionario, implementato nelle UNI TS 11300 e richiamato dalle attuali normative ai fini della

certificazione energetica e della verifica degli standard nZEB, quello dinamico, più oneroso e complesso dal punto di vista del calcolo, ma più efficace per una descrizione maggiormente realistica degli scambi termici, soprattutto nel caso estivo.

Tale aspetto risulta particolarmente interessante soprattutto al fine di migliorare i modelli di calcolo utilizzati nelle diagnosi energetiche degli edifici, in particolare quelli del terziario, per i quali una più accurata valutazione del rendimento stagionale dei generatori installati, al variare delle condizioni climatiche del sito in esame, risulta essenziale per un corretto dimensionamento dell'impianto e per una corretta analisi economica (costi-benefici) degli interventi di riqualificazione individuati.

1.2 L'analisi del rendimento degli impianti


Richiami teorici

Il monitoraggio in opera, di un impianto di climatizzazione, è necessario, come detto in precedenza, per poter valutare il comportamento del sistema di generazione, in funzione del carico termico richiesto dall'edificio e delle differenti condizioni climatiche. Per impianti a Pompa di calore, aria-acqua/aria-aria, che utilizzano come fonte termica di scambio l'aria esterna, sarà quindi interessante monitorare la potenza termica erogata in funzione della temperatura esterna, per poter conseguentemente valutare il rendimento della macchina.

L'efficienza di una Pompa di calore, comunemente definita come, COP (*Coefficient of Performance*) per la climatizzazione invernale ed EER (*Energy Efficiency Ratio*) per quella estiva, rappresenta il rapporto tra la potenza termica erogata (kW) e la potenza elettrica assorbita (kW), dovuta al lavoro dei compressori elettrici sul fluido refrigerante.

Per una macchina a compressione di vapore, tipologia maggiormente diffusa, il ciclo frigorifero compiuto può essere schematizzato in 4 fasi principali, come riportato in Fig 1:

- 1. compressione: in cui il fluido allo stato vapore viene compresso e si riscalda assorbendo calore (alta pressione)
- 2. condensazione: il fluido refrigerante, proveniente dal compressore, passa dallo stato di vapore surriscaldato allo stato liquido cedendo calore all'ambiente;
- 3. espansione: passando attraverso la valvola di laminazione il fluido, allo stato liquido, si trasforma parzialmente in vapore raffreddandosi;
- 4. evaporazione: il fluido refrigerante assorbe calore dall'ambiente ed evapora completamente (bassa pressione)

Fonte: CORDIS

In un ciclo ideale (ciclo di carnot) il rendimento sarebbe influenzato esclusivamente dalle temperature delle sorgenti termiche T1 (aria) e T2 con le quali la macchina scambia calore:

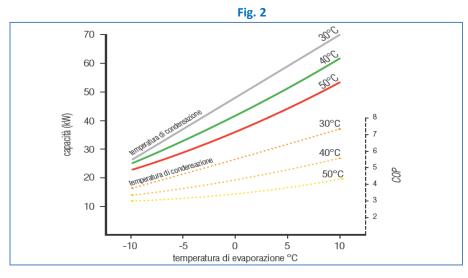
In particolare per il caso invernale:

$$COP_h = rac{Q_f}{L_{el}} = rac{T_2}{T_2 - T_1} = rac{T_{condens}}{\Delta T}$$

T2 > T1 dove Q_r è l'energia termica fornita all'ambiente climatizzato

e nel caso estivo:

$$EER_h = \frac{Q_s}{L_{el}} = \frac{T_1}{T_2 - T_1} = \frac{T_{evapor}}{\Delta T}$$


dove L_{el} è il lavoro elettrico fornito alla macchina

T1> T2 dove Q_s è l'energia termica fornita all'ambiente climatizzato

Si può notare facilmente che l'efficienza della macchina è inversamente proporzionale alle differenze di temperatura in cui avvengono gli scambi termici, cioè tra la T di condensazione e la T di evaporazione. Ciò implica che nel caso di climatizzazione invernale (T2>T1):

- Il COP si riduce al diminuire della T esterna della sorgente così come nel caso di climatizzazione estiva (T2<T1) :
 - l'EER si riduce all'aumentare della T esterna dell'aria

In entrambi i casi infatti all'aumentare delle differenze di temperatura di scambio aumenta il lavoro di compressione che il fluido frigorigeno richiede. Inoltre, la potenza erogata dal compressore dipende dalla massa di fluido compresso e dalla differenza di entalpia delle sorgenti di scambio: al diminuire della T di evaporazione, diminuisce la densità del fluido vapore, e quindi anche la potenza erogata. E' importante quindi verificare al variare delle temperature esterne, che la potenza termica fornita sia sufficiente a compensare i carichi richiesti dall'edificio, oltre al rendimento con cui la macchina è in grado di fornire l'energia richiesta. Parametri influenti sul COP della macchina risultano le temperature dell'acqua/aria in uscita, legate al tipo di impianto installato ed ai terminali di emissione presenti negli ambienti da climatizzare. Quanto detto risulta ben evidente dalla Fig. 2 riportata di seguito

Fonte: Ferroli

Riguardo le condizioni dell'aria esterna, influisce sulla potenza e sull'efficienza di una pompa di calore oltre alla temperatura anche l'umidità relativa, soprattutto in condizioni invernali. Al diminuire di questa infatti, è richiesta una temperatura di evaporazione minore, con conseguente riduzione del rendimento della macchina. Quando la temperatura è prossima allo zero, possono raggiungersi condizioni che portano alla formazione di brina, con conseguente interruzione del funzionamento (Defrosting).

Nei cicli reali, che avvengono nelle comuni applicazioni nell'ambito della climatizzazione degli edifici, il rendimento dei vari componenti della macchina causa delle perdite energetiche nelle varie trasformazioni termodinamiche che il fluido subisce.

I fattori che influenzano il rendimento di una pompa di calore, oltre alle condizioni climatiche del sito in esame, sono quindi molteplici: tipologia del compressore, fluido refrigerante utilizzato, il rapporto di compressione, il carico termico richiesto dall'edificio, le caratteristiche dei componenti costruttivi (inverter, valvole di espansione, ecc)

L'analisi di tali aspetti, relativi alle caratteristiche costruttive della macchina o alle modalità di funzionamento, prescinde dagli obiettivi di questo lavoro: stante le caratteristiche dalla pompa di calore installata (Poma Aria-acqua al servizo di impianto idronico), ritenuta tipica per applicazioni in edifici del terziario, il monitoraggio sperimentale avviato, è finalizzato ad evidenziare l'effettivo grado di efficienza del generatore, nei diversi periodi di climatizzazione, ai fine di valutarne l'influenza sul fabbisogno energetico dell'edificio e consentire un confronto con i valori di rendimento implementati nei modelli di calcolo utilizzati comunemente per le diagnosi energetiche.

1.3 Obiettivi del lavoro

L'obiettivo di questo studio, come detto in precedenza, è quello di monitorare il rendimento in opera di una pompa di calore al servizio di un edificio ad uso uffici. Le misure previste dovranno infatti monitorare il comportamento del generatore durante l'utilizzo effettivo dettato dalla richiesta termica dell'edificio e dalle esigenze dell'utenza. Non è stata prevista quindi alcuna limitazione agli orari di accensione, né alla regolazione delle temperature nei diversi locali climatizzati.

Per misurare l'efficienza della macchina, sia in condizioni estive che invernali (COP/EER), è necessario misurare simultaneamente sia la potenza termica erogata, utile alla refrigerazione o al riscaldamento dell'acqua circolante nell'impianto, sia quella elettrica assorbita dalla macchina, richiesta dal funzionamento dei compressori. Il rapporto di tali grandezze, sarà indicativo del rendimento della pompa di calore.

L'edificio individuato, l'ex Banco di Napoli , è attualmente adibito ad uso uffici, ed in seguito ad interventi di riqualificazione sugli impianti termici, era già stato dotato di Energy meters per il monitoraggio dei consumi energetici. La pompa di calore è utilizzata per la climatizzazione estiva, in modalità monovalente. Per la climatizzazione invernale invece, un sistema di controllo, in funzione delle condizioni climatiche, ne gestisce l'impiego alternandolo a quello di una caldaia tradizionale (modalità bivalente).

Diverse sono le problematiche da considerare ai fini di un corretto monitoraggio: il corretto posizionamento dei sensori, il settaggio iniziale dei parametri di misura, la verifica dei sistemi di controllo della macchina, la scala temporale delle misure, l'analisi dei transitori, ecc.

In particolare, le misure della potenza termica erogata, sono basate sulla misurazione delle portate nel circuito di distribuzione e della differenza di temperatura dell'acqua sui collettori di mandata e di ritorno dell'impianto. Tali misure richiedono particolare attenzione, in quanto i sensori ad ultrasuoni (o meccanici) utilizzati per rilevare le portate transitanti, possono essere alterate dalla presenza di bolle d'aria nel circuito, o zone di turbolenza. Per questo, nelle fasi preliminari, e' stata necessaria la verifica del posizionamento dei sensori su tratti adeguati dei collettori, nonché la riattivazione del contatore a impulsi

Altro aspetto rilevante è stato quello dell'analisi dei transitori temporali, quali le fasi di avvio o spegnimento della macchina, o di rapide variazioni delle portate in transito dovute alla contemporanea chiusura di molti terminali di emissione. In queste fasi infatti, gli effetti di inerzia del sistema che influiscono sulle misure

rilevate dagli strumenti, possono dar luogo a incongruenze. Effetti analoghi possono esserci altresì nelle fase di interruzione del servizio, in cui valori minimi di potenza termica ed elettrica possono essere comunque registrate dagli strumenti di misura.

Partendo da misure effettuate su intervalli di breve durata (15 min) i dati rilevati sono stati elaborati a diversa scala temporale per minimizzare gli effetti dei transitori, ed evidenziare le variazioni di potenza erogata, al variare delle temperature esterne.

La verifica di tali aspetti ha richiesto quindi diverse prove sperimentali, necessarie per la revisione ed il corretto settaggio degli strumenti installati. La fase iniziale dell'attività svolta è stata quindi rivolta alla verifica e messa a punto del sistema di misura.

Successivamente, I primi risultati, analizzati nel corso di questa annualità, relativi a misure effettuate da Giugno a Settembre, hanno fornito indicazioni sul funzionamento estivo consentendo un primo confronto con i valori nominali del COP forniti dalla casa costruttrice.

Gli strumenti installati, consentiranno un più ampio monitoraggio nella prossima annualità, nella quale i dati di misura saranno elaborati e valutati su base annuale, al fine di verificare le prestazioni stagionali della pompa di calore sia nel periodo estivo che in quello invernale.

2 Descrizione dell'edificio in esame: il complesso dell'Ex Banco di Napoli

1.4 L'edificio

Il palazzo situato tra via del Parlamento e via del Corso, è attualmente sede degli uffici amministrativi della Camera dei Deputati, pur ospitando, tutt'ora, nell'atrio centrale del piano terra, una agenzia bancaria. Il complesso del Banco Napoli si inserisce all'interno del centro storico della città, e presenta ben conservate le caratteristiche architettoniche originali, riscontrabili nell'impostazione planimetrica e nelle tessiture murarie dell'edificio.

Figg 3-4

Fonte: www.camera.it

La struttura portate è costituita da muratura in pietra. Le chiusure opache verticali sono rivestite tutte da intonaco senza isolamento e le chiusure trasparenti, di geometria varia, sono tutte composte da telaio in legno con taglio termico con vetrocamera. Le coperture, in parte pavimentate e accessibili, non sono isolate termicamente. Il paramento esterno risulta invece costituito da pannelli prefabbricati in calcestruzzo, che sono in un ottimo stato di manutenzione

Per quanto riguarda le caratteristiche termofisiche, vista la complessità architettonica dell'edificio e dei vari elementi strutturali, sono state individuate delle strutture tipo rappresentative dell'involucro ed è stata valutata per ciascuna di esse, la trasmittanza termica media:

- Parete verticale, in muratura piena non isolata con intercapedine, con spessore totale di circa 40 cm. della struttura è pari a 1.15 W/m²K.
- Solaio inferiore, la cui la trasmittanza è pari a 1.34 W/m²K e si estende per una superficie totale pari a circa 1007 m².
- Solaio di copertura non isolato è costituito da pavimentazione in marmette di cemento. La trasmittanza termica è di 1.51 W/m²K
- I serramenti presenti sono costituiti da doppio vetro 4 12 4 con telaio in legno con taglio termico, e la trasmittanza media della finestra tipo risulta di 3.74 W/m²K. Tutte le superfici finestrate classiche hanno schermature solari costituite da persiane. La superficie totale degli elementi vetrati è di 450 m²

L'edificio dotato di interni di grande pregio Figg 5-6 , è stato oggetto di interventi di riqualificazione energetica, che visti i vincoli di conservazione imposti dalle normative vigenti per l'involucro edilizio, si sono concentrati essenzialmente sugli impianti di climatizzazione.

Figg 5-6

Nelle Tabelle riportate di seguito, vengono definite le zone termiche, individuate nel corso della analisi energetica svolta, ciascuna caratterizzata per superficie e volume in relazione ai piani all'interno degli edifici.

Zona Atrio ed ingresso					
Zona Banca					
Zona Uffici palazzo A					
Zona Polizia					
Zona Uffici palazzo B – C –D					

Tab. 1: Definizione delle zone termiche

Superficie in pianta netta dei piani	4673 m ²
Superficie in pianta lorda dei piani	6676 m ²
Volume netto	17636 m ³
Volume lordo	25195 m ³

Tab. 2: Volumi e Superfici

Gli spazi climatizzati interni, diversi per geometria e destinazione d'uso, sono invece riportati nelle planimetrie esposte di seguito, in cui i sono visibili i vari locali, suddivisi per piano e con le rispettive superfici.

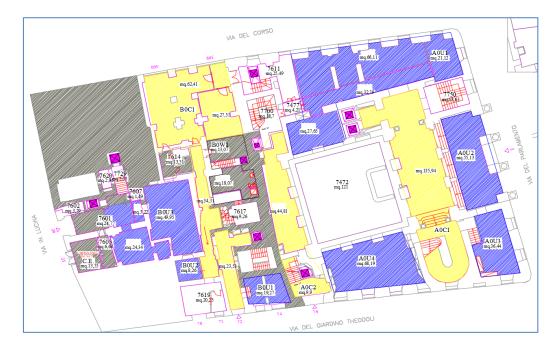


Fig. 7 Planimetria Piano Terra



Fig. 8 Planimetria Piano 1

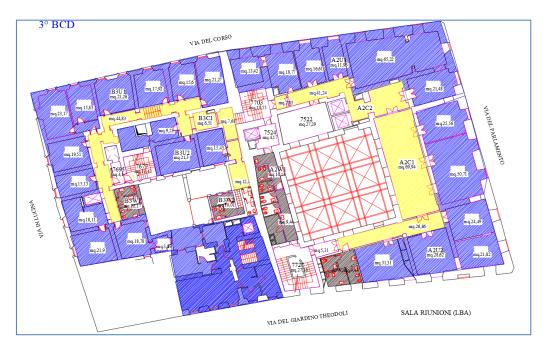


Fig.10 Planimetria Piano 3

2.2 Gli impianti di climatizzazione al servizio dell'edificio

L'impianto termico, al servizio dell'intero complesso Banco di Napoli, è prevalentemente di tipo idronico, con trattamento mediante UTA dell'aria primaria. L'acqua, riscaldata nella stagione invernale e refrigerata nella stagione estiva, è distribuita quindi allo stesso tipo di terminali, i fancoils (o radiatori in alcuni locali) nei vari ambienti climatizzati. Sono inoltre presenti delle unità ad espansione diretta al servizio di specifici ambienti. Le varie unità costituenti l'impianto sono schematicamente descritte di seguito.

1.3 Impianto di riscaldamento e ACS

L'impianto è realizzato mediante caldaie tradizionali a gas poste sul piano di copertura dell'edificio, dove sono posizionati pure i gruppi frigoriferi e le 4 Unità di Trattamento Aria a servizio della Banca e degli uffici del Palazzo.

Le Caldaie tradizionali alimentate a Gas sono del tipo BONGIOVANNI tipo BONGAS 2/14 con potenzialità di 263.3 kW ciascuna.

La contemporanea alimentazione di terminali scaldanti di tipologia differente, fancoils e radiatori, comporta spesso una temperatura dell'acqua di mandata troppo elevata negli uffici, con conseguente surriscaldamento degli ambienti

La centrale termica è sempre in funzione, in quanto deve garantire la copertura del fabbisogno per la produzione di ACS. Il riscaldamento degli ambienti avviene secondo gli orari riportati in tabella a pagina seguente.

Tah.	3. Or:	ari di	funzioname	ento des	ıli imi	nianti	di di	imatizza	zione
ıav.	J. O.	arr ur	Iunzionani	ciito ace		Dialiti	uı cı	IIII a tizza	LIUITE

Stagione invernale	Condizionamento			Risca	aldame	nto
	Lun-Ven	Sab.	Dom.	Lun-Ven	Sab.	Dom.
EDIFICIO A	7-19	Spento	Spento	7-13 16-19	7-13	Spento
EDIFICIO B-C-D				7-13 16-22	7-13 16-22	7-13 16-22

I terminali sono costituiti da unità ventilconvettori (fan-coils) installati soprattutto negli uffici e radiatori nelle zone di transito ed alcuni altri locali.

Fig. 11-12

Nei fancoils l'aria prelevata dal locale, dopo essere stata filtrata, è inviata alla batteria di scambio (aria-acqua), nella quale, a seconda della stagione, assorbe o cede calore; successivamente, mediante il ventilatore elettrico viene diffusa nell'ambiente alla temperatura di set-point regolata (generalmente 20°C riscaldamento, 26°C climatizzazione estiva).

La regolazione del singoli ventilconvettori è gestita dagli utenti, che possono regolare sia l'intensità del flusso, sia qualitativamente, la temperatura. I radiatori, disposti principalmente nelle aree di transito (atri e scale corridoi, ecc) non sono regolati da valvole termostatiche.

La produzione di acqua calda sanitaria mediante caldaia, è integrata con l'utilizzo di pannelli solari termici che garantiscono buona parte del fabbisogno nel periodo estivo.

1.4 Condizionamento estivo

Due pompe di calore (modello Carrier 30RQ 0402-0129), posizionate sul lastrico solare dell'edificio, costituiscono la centrale frigorifera, con una potenza frigorifera di 342 kW (Figura 10-11).

Fig. 14

L'aria di rinnovo è inoltre trattata mediante unità UTA situate anch'esse in copertura. La tabella seguente ne riporta le caratteristiche in termini di portata:

Tab. 4: Dati caratteristici UTA

Uta Banca e Atrio A	Marca: Atisa
	17.500 m³/h
Uta Uffici lato A	Marca: Atisa
Ota Offici lato A	6.000 m ³ /h
Like Liffied Late D. C. D.	Marca: Atisa
Uta Uffici lato B- C - D	12.500 m ³ /h
Lita Cattaurana	Marca: Atisa
Uta Sotterraneo	6.000 m ³ /h

Le pompe di calore sono chiaramente predisposte anche per l'utilizzo nel periodo riscaldamento invernale: è in fase di attivazione un sistema di controllo evoluto, che monitorando le condizioni climatiche locali, seleziona automaticamente il generatore da utilizzare per il riscaldamento dell'edificio

Fig. 15

2 Il monitoraggio in sito della Pompa di Calore

2.1 Gli strumenti di misura

Per la misura del COP in opera, come detto in precedenza, è necessaria la misura contemporanea della potenza elettrica e termica associata alla pompa di calore .

Per quanto riguarda la parte termica lo strumentazione di misura è costituita da:

- Un flussimetro di tipo meccanico per la misura della portata
- Un contatore a impulsi
- Due sensori Pt 100 per la misura della differenza di temperatura tra mandata e ritorno dell'acqua

La Potenza frigorifera erogata è infatti ricavata dalla relazione : $Q_{OUT} = \dot{m} C_p \Delta T$

in cui Cp rappresenta il calore specifico del fluido termovettore, cioè l'acqua.

Per la parte elettrica:

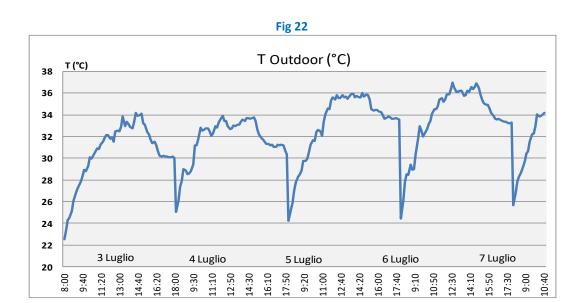
• Contatore di energia elettrica trifase da quadro con trasformatori

Il contatore è chiaramente installato sulla linea elettrica dedicata alla PdC, in modo da registrarne la potenza elettrica assorbita.

Maggiori dettagli sulle caratteristiche dei vari sensori di misura installati sono riportate in appendice.

Vengono di seguito riportate alcune immagini degli strumenti di misura installati

Figg. 16-17-18


Il contatore è in grado di misurare le principale grandezze elettriche (intensità, tensione e potenza) mediante l'utilizzo di trasformatori installati sulle linee di collegamento al quadro secondo lo scherma riportato in figura 21.

Fuse: T 250 mA (3x)

I dati relativi alla potenza termica ed elettrica associate alla macchina sono inviati mediante interfaccia M-BUS ad un data-logger che ne memorizza le misure.

2.2 Misura dei dati climatici esterni

In parallelo al monitoraggio dei principali parametri relativi all'impianto di generazione, sono state misurate le principali grandezze climatiche esterne: la temperatura dell'aria e l'umidità relativa. Ciò consente di poter verificare il differente comportamento della macchina in esame al variare delle condizioni climatiche del luogo. Si riportano di seguito i grafici relativi agli andamenti della temperatura eseterna e dell'umidità relativa, nelle tre settimane di luglio esaminate ai fini del monitoraggio

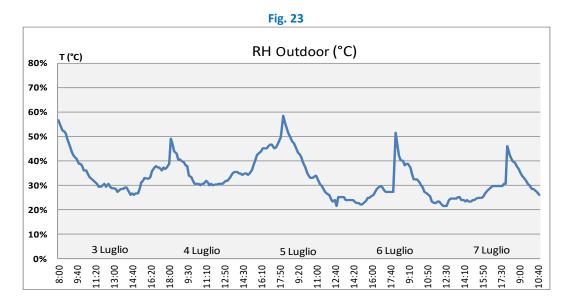


Fig. 24

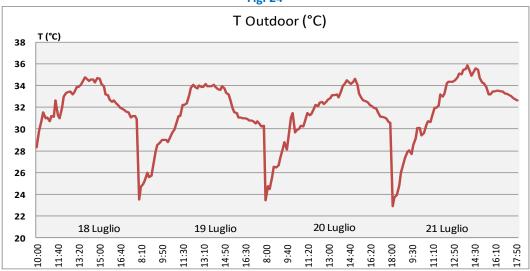


Fig. 25

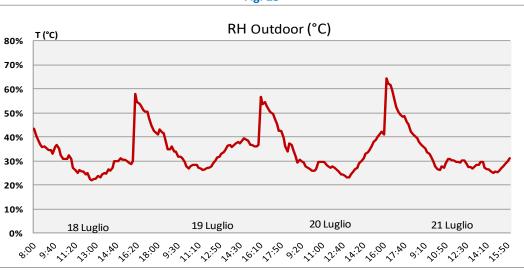
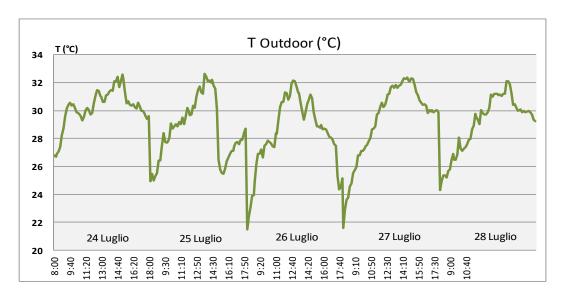
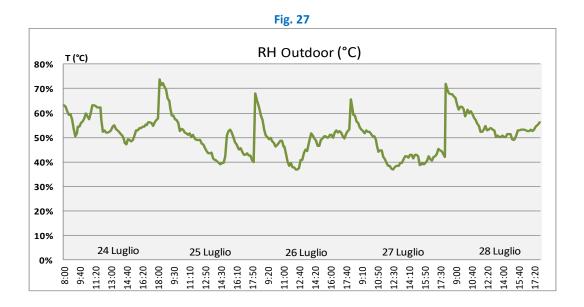




Fig. 26

Importante sottolineare, che ai fini della climatizzazione estiva, assumono grande rilevanza anche la radiazione solare incidente sull'edificio, e gli apporti interni dovuti alla presenza di personale o macchinari, che contribuiscono ad innalzare i carichi termici all'interno dei locali climatizzati.

Tali apporti, incidono tuttavia in maniera indiretta sulla potenza e sul rendimento della pompa di calore, rispetto alle grandezze monitorate (T, RH), che influiscono invece direttamente sull'entalpia specifica scambiata dalla macchina.

I dati climatici indoor

Per verificare il corretto funzionamento dell'impianto di climatizzazione estiva, durante il periodo di monitoraggio, sono state predisposte, in parallelo a quanto fatto per le grandezze climatiche esterne, anche delle misure delle principali grandezze microclimatiche indoor. A tal fine sono stati installati dei sensori termoigrometrici per rilevare la temperatura e l'umidità relativa dell'aria, all'interno di diversi locali, selezionati sulle diverse esposizioni dell'edificio.

Tralasciando i valori di umidità relativa, risultati comunque nella norma (valori compresi tra 45% - 50%) è stata analizzata la temperatura dell'aria nei vari uffici esaminati.

Si riportano di seguito, i valori delle temperature interne, misurati per vari uffici in due giornate tipo di Luglio.

I grafici riportati si riferiscono a due giornate nella prima e nella 3-4 settimana di Luglio

Fig. 28

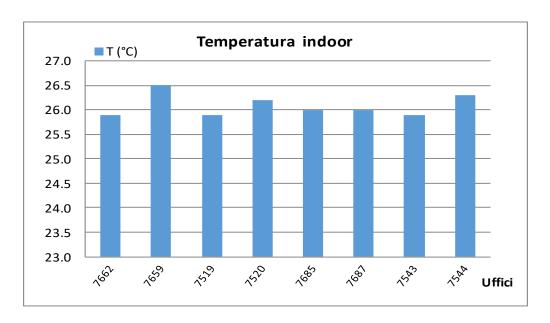
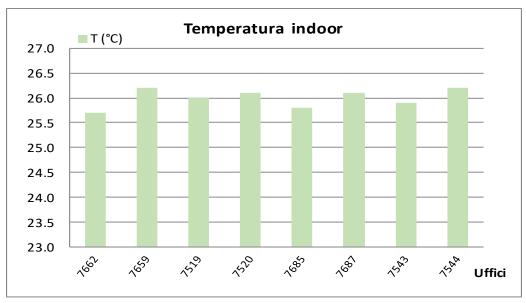



Fig. 29

Le temperature medie interne riscontrate, sempre comprese nell'intervallo 25,5 -26,5 °C confermano il corretto funzionamento dell'impianto negli uffici considerati.

4 Elaborazione dei dati misurati e analisi dei risultati

4.1 Profili delle principali grandezze misurate

Il monitoraggio strumentale dell'impianto a Pompa di calore è stato effettuato dal 23 Maggio al 30 Settembre, al fine di avere dati di misura relativi all'intera stagione di climatizzazione estiva.

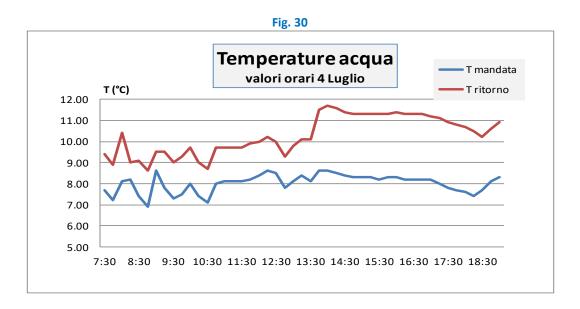
Tuttavia, come già evidenziato in precedenza, non tutti i dati raccolti sono risultati utili per le elaborazioni: le misure relative al mese di Giugno, ed in parte quelle relative alle prime settimane di Luglio e Settembre, mostravano delle incongruenze dovute al non corretto funzionamento di alcuni strumenti installati. Le anomalie individuate hanno consentito di reinstallare i sensori di misura della portata, probabilmente posizionati in vicinanza di punti in cui i fenomeni di turbolenza dell'acqua, alteravano le misurazioni.

Per questo le analisi effettuate si sono concentrate su 3 settimane del mese di Luglio, in cui le misurazioni apparivano significative per poter elaborare dei primi confronti tra le prestazioni della macchina monitorate e i valori nominali forniti dalla casa costruttrice.

I dati, misurati con passo temporale di 15 min, sono stati sono stati preliminarmente filtrati, nell'operating time dell'impianto 7,00-19,00 e successivamente aggregati a livello orario. L'analisi condotta su scala oraria è stata infatti necessaria per evidenziare ed eliminare valori outliers dovuti ad errate misurazioni, soprattutto nelle fasi transitorie quali l'avviamento della macchina o momenti di rapida variazione delle portate.

Successivamente sono stati invece analizzati gli andamenti a diversa scala temporale (giornaliera, settimanale, su tutto il periodo di calcolo) dei diversi parametri misurati per evidenziarne il comportamento al variare delle condizioni climatiche.

Nella tabella sotto riportata sono esposti i valori medi* giornalieri, nel periodo esaminato, delle principali grandezze monitorate; di seguito, i diagrammi a diversa scala temporale.



Tab. 5

	•			1 Settimana					
Data	Tm	Tr	Portata	Energia termica (kWh)	Energia elettrica (kWh)	COP			
03-lug	7.9	10.5	74.6	2857.2	1112.7	2.6			
04-lug	8.0	10.2	71.0	2296.4	879.9	2.6			
05-lug	9.1	11.8	74.6	2858.3	1222.0	2.3			
06-lug	9.8	12.6	75.6	2924.9	1297.4	2.3			
07-lug	7.9	10.2	72.4	2588.6	979.8	2.6			
	•			3 Settimana					
Data	Tm	Tr	Portata	Energia termica (kWh)	Energia elettrica (kWh)	COP			
18-lug	8.6	10.1	67.8	1400	519.5	2.7			
19-lug	8.9	10.1	68.4	1318	487.3	2.7			
20-lug	8.7	10.1	68.8	1434	490.1	2.9			
21-lug	8.9	10.3	69.3	1494	519.9	2.9			
				4 Settimana					
Data	Tm	Tr	Portata	Energia termica (kWh)	Energia elettrica (kWh)	COP			
24-lug	8.9	10.5	70.3	1942.3	745.3	2.6			
25-lug	8.9	10.2	68.7	1540.4	514.1	3.0			
26-lug	8.9	10.0	68.7	1235.4	439.3	2.8			
27-lug	8.9	10.0	68.2	1209.5	465.2	2.6			
28-lug	8.9	10.5	67.8	1436.9	579.3	2.5			

^{*} dati medi giornalieri calcolati a partire dai dati disaggregati (misure 15 min) nell'arco 7-19

Andamenti orari delle principali grandezze monitorate, in due giorni "tipo", il 4 Luglio ed il 20 Luglio

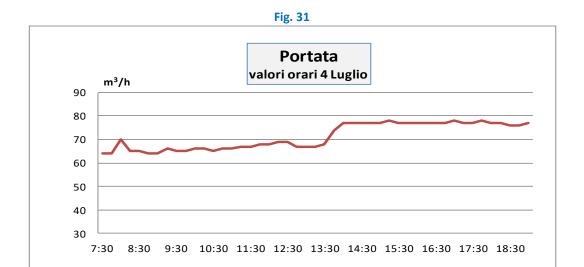


Fig. 32

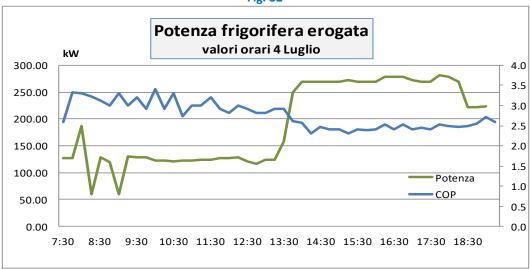


Fig. 33

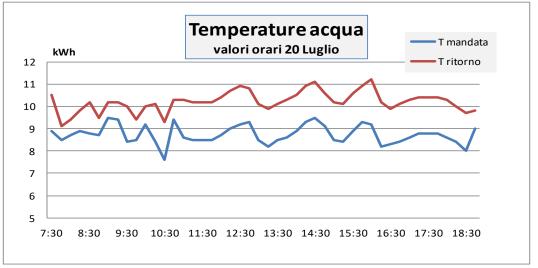


Fig. 34

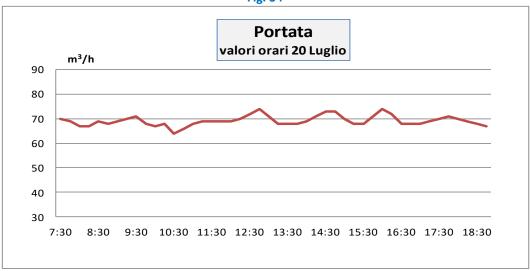
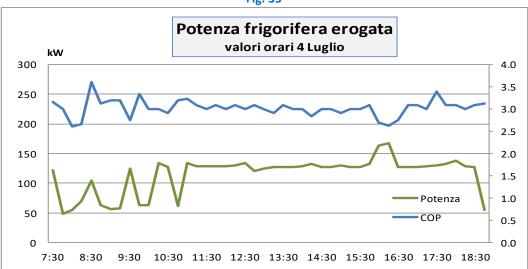
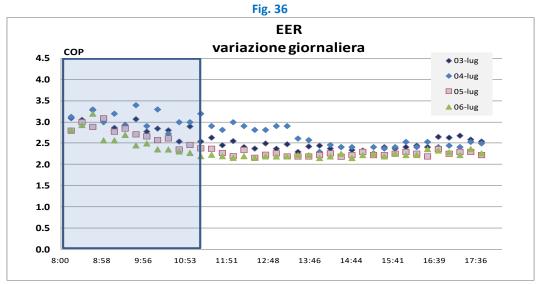
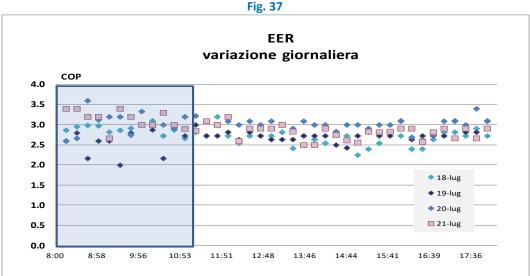





Fig. 35

Confronto valori orari dell' EER nei diversi giorni considerati

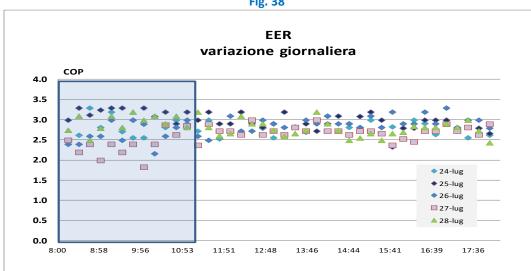


Fig. 38

Le temperature di mandata e ritorno dell'acqua si attestano tra i 7 e gli 11 °C con un delta T medio di circa 2 °C. Tale valore risulta mediamente più basso dei valori di riferimento nominali riportati nelle specifiche tecniche della macchina.

La portata media giornaliera in circolo, risulta essere circa 70 m³/h, pari a circa 20 l/s.

Ad eccezione di un paio di giorni (es. 27 Luglio) l'EER giornaliero risulta leggermente più alto nelle prime ore della giornata, a causa delle temperature esterne generalmente più basse in questo arco orario.

Andamenti medi giornalieri nelle 3 settimane in esame:

Settimana 3-7 Luglio:

Fig. 39

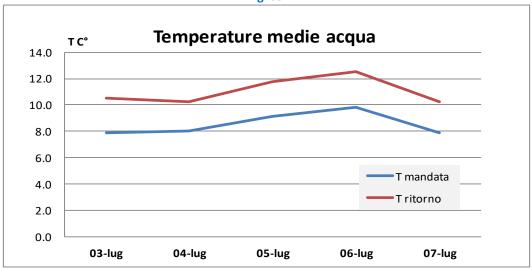
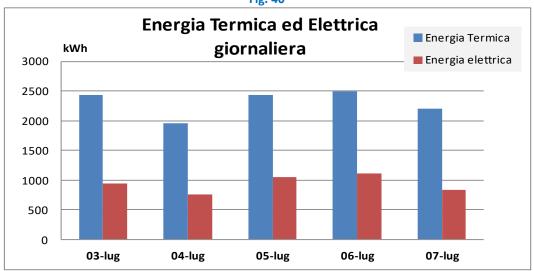
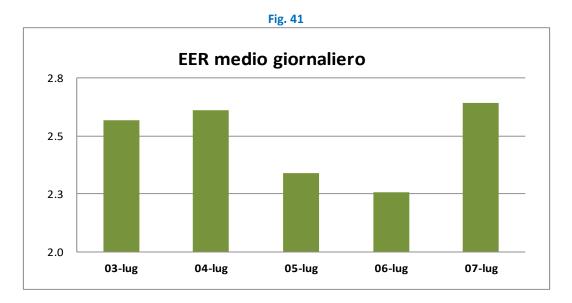




Fig. 40

Settimana 18-21 Luglio

Fig. 42

Fig. 43

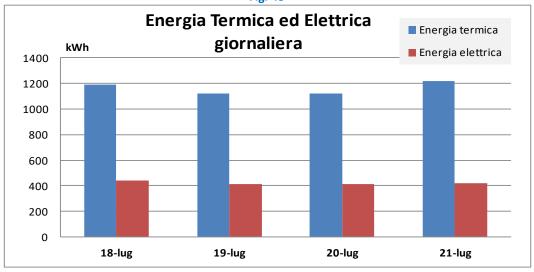
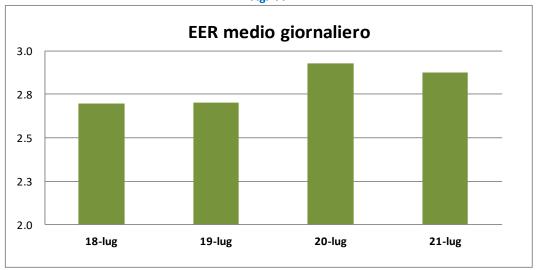



Fig. 44

Settimana 24-28 Luglio

Fig. 45

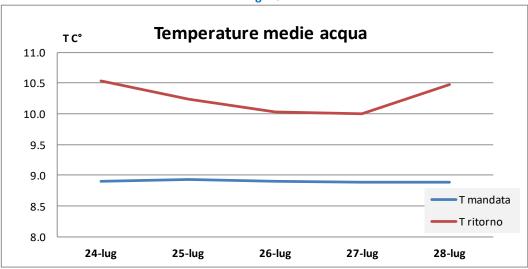
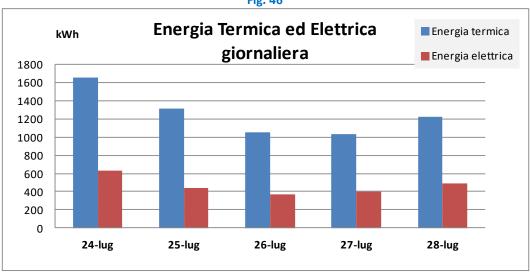




Fig. 46

Per meglio evidenziare la dipendenza dell'efficienza media EER dal fattore di carico, nei diagrammi seguenti le due grandezze sono riportati contemporaneamente, per le tre settimane esaminate:

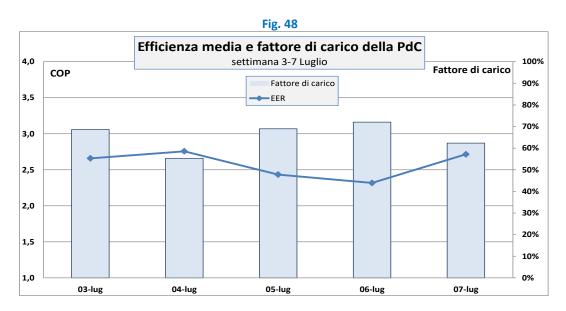


Fig. 49

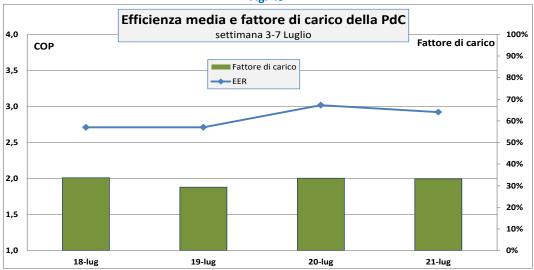


Fig. 50

Il fattore di carico medio, giornaliero Fc, varia tra il 60% ed il 70% nella prima settimana, ed il 30% e il 40% nelle due successive. L'efficienza media, l'EER, risulta compreso tra i valori medi di 2,4 e 3 con valori più elevati in corrispondenza del 30% del Fc.

4.2 Diagrammi di sintesi relativi all'intero periodo monitorato

I diagrammi riportati di seguito, ottenuti su base oraria, mostrano le grandezze principali, EER e Potenza termica, che caratterizzano il generatore a pompa di calore, in funzione delle temperature esterne. Di seguito, in Tab sono invece riportati i valori medi giornalieri misurati e le variabili climatiche T (°C) ed RH (%)

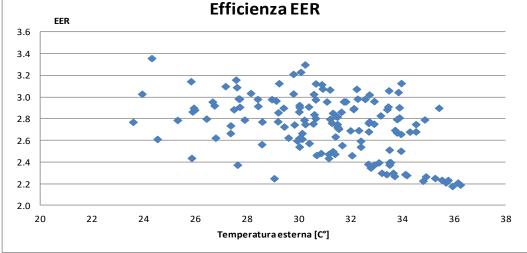
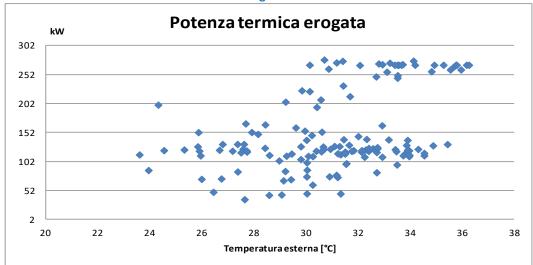



Fig. 52

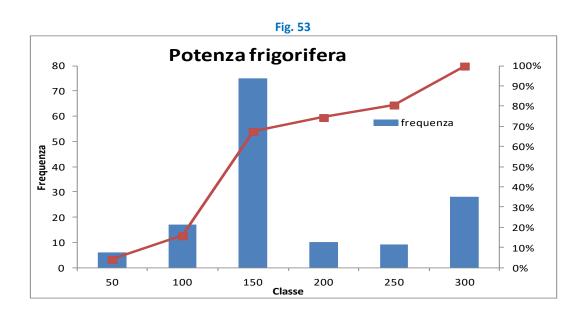
L'efficienza del generatore, come prevedibile, decresce tendenzialmente all'aumentare della temperatura esterna passando da valori superiori a 3 in corrispondenza di temperatura esterna minori di 26 °C a valori intorno ai 2.2 nelle ore più calde con T esterne superiori ai 35 °C.

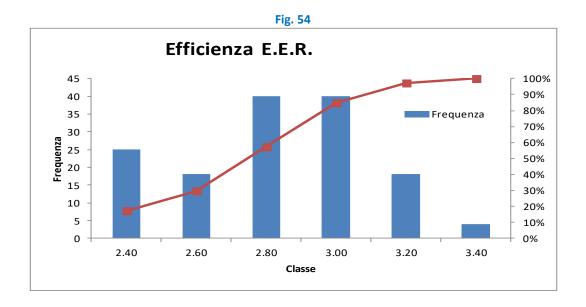
Più articolata la distribuzione oraria delle potenze frigorifere erogate: i valori sembrano attestarsi prevalentemente su due diverse fasce : quella compresa tra i 100-150 kW, e un'altra tra i 200-260 kW. Ciò è dovuto all'effetto del fattore di carico richiesto alla macchina, che essendo multistadio, a parità di condizioni esterne, può funzionare attivando uno o più compressori, in base alle esigenze dell'utenza.

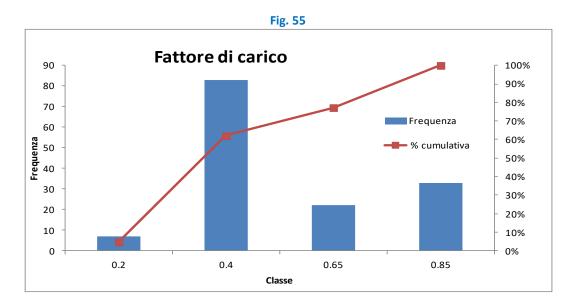
Tale aspetto risulta più evidente osservando i valori medi giornalieri riportati in tabella 6, in cui si nota che i valori maggiori di potenza erogata sono concentrati nella prima settimana (3-7 luglio), in cui la macchina ha lavorato mediamente con un carico di circa il 70%.

Valori medi giornalieri* misurati nel periodo di monitoraggio (Pompa di calore Carrier 30RQ0342)

Tab. 6


	RH (%)	T (°C)	EER	Fc	P [kW]
3-lug	0.35	30.53	2.64	0.70	240
4-lug	0.38	31.61	2.73	0.57	194
5-lug	0.31	33.17	2.41	0.70	238
6-lug	0.29	33.72	2.36	0.73	249
7-lug	0.32	31.85	2.61	0.65	223
18-lug	0.30	32.41	2.71	0.34	115
19-lug	0.33	31.32	2.74	0.30	102
20-lug	0.36	30.88	3.02	0.34	116
21-lug	0.35	31.03	2.92	0.33	114
24-lug	0.35	32.40	2.80	0.38	131
25-lug	0.57	29.83	2.98	0.32	110
26-lug	0.48	28.37	2.84	0.28	95
27-lug	0.49	28.04	2.63	0.29	98
28-lug	0.47	29.54	2.76	0.39	133


^{*} dati medi giornalieri ricalcolati nell'intervallo 8-18 per minimizzare l'effetto dei transitori


Sintesi dei valori medi nel periodo monitorato:

	RH	Т	EER	Fc	Potenza
Valori Medi	0.38	31.05	2.73	0.45	154.14

Gli istogrammi di Figg. 51-52-53 mostrano la distribuzione in frequenza, relativa e cumulata, dei valori orari assunti dai principali parametri di funzionamento della pompa di calore: Potenza erogata, Efficienza media (EER), Fattore di carico:

Infine è stato effettuato un confronto tra le efficienze medie giornaliere misurate e quelle dichiarate dalla casa costruttrice (Carrier) nella scheda tecnica del generatore.

I dati nominali (fig 57) dedotti dalla documentazione tecnica della casa costruttrice della Pompa di calore, la Carrier, forniscono i valori medi dell'efficienza della macchina al variare della temperatura esterna. I dati chiaramente si riferiscono a condizioni standard di prova, quali: temp. di ingresso/uscita acqua dall'evaporatore 12/7°C, aria entrante nel condensatore a 35°C e ad un fattore di sporcamento dell'evaporatore pari a 0 m² K/W.

Fig. 56

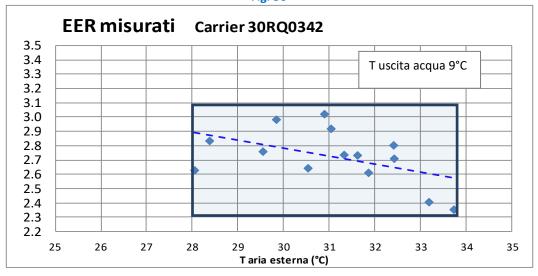
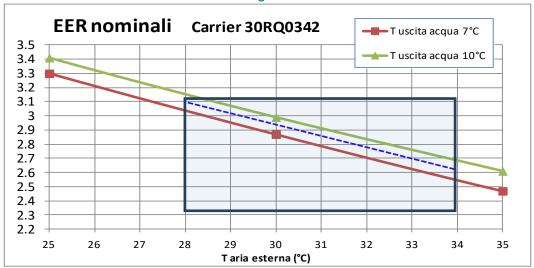



Fig. 57

I diagrammi consentono di confrontare l'efficienza media misurata con quella dichiarata, seppur in termini puramente indicativi, in quanto, come mostrato in precedenza nel funzionamento reale altri parametri, quali portata, differenza di temperatura dell'acqua, fattore di carico, ecc, possono assumere valori differenti da quelli assunti nelle condizioni standard di prova. I diversi valori giornalieri chiaramente risentono delle differenti condizioni di funzionamento reale rispetto a quelle di test.

In termini di EER medio sul periodo monitorato (2.73), emerge una differenza di circa il 7-8% rispetto al dato medio nominale (linea blu tratteggiata in fig.55 corrispondente ad una T di circa 9 °C) considerando una temperatura media giornaliera di 31 °C. Tale risultato, non può però essere chiaramente considerato rappresentativo del rendimento globale medio stagionale, che andrebbe calcolato nell'arco dell'intera stagione di climatizzazione. Tale parametro, importante al fine delle valutazioni energetiche dell'edificio, sarà oggetto della prossima annualità, in cui si cercherà di valutare il rendimento stagionale della Pompa di calore, sia per la parte estiva che per quella invernale.

5 Conclusioni

L'attività di monitoraggio svolta, è stata finalizzata ad esaminare il comportamento reale di una pompa di calore aria-acqua, installata per la climatizzazione del complesso dell'ex Banco di Napoli, situato nel centro di Roma e attualmente adibito ad uffici della Camera dei deputati.

Il monitoraggio in questa prima annualità è stato focalizzato sulla stagione estiva, prendendo in esame il periodo da Maggio a Settembre. Mediante la contemporanea acquisizione della potenza elettrica, e di quella termica associate al generatore si è potuto valutare l'efficienza della macchina EER, (Energy Efficiency Ratio) al variare delle condizioni climatiche esterne.

La prima fase del monitoraggio, è stata dedicata al completo set-up degli strumenti installati, in quanto i dati raccolti nelle prime settimane evidenziavano incongruenze nelle misurazioni dovute al posizionamento dei sensori. Le prime misure, condotte a scopo di test, hanno consentito infatti di reinstallare alcuni sensori, in particolare sulla linea idraulica, per la misura delle portate d'acqua nelle condotte di distribuzione.

L'analisi dei dati è stata quindi concentrata esclusivamente sulle settimane di Luglio in cui le misure risultavano sufficientemente stabili. In questo periodo sono state monitorate le principali grandezze associate al funzionamento della macchina quali: temperature di mandata/ritorno acqua, portata, potenza termica erogata, potenza elettrica assorbita, fattore di carico. Contemporaneamente sono state registrate le principali grandezze climatiche del sito: la temperatura dell'aria esterna e l'umidità relativa. Le grandezze sono state poi esaminate a diversa scala temporale (oraria, giornaliera, settimanale, ecc.) per minimizzare l'effetto dei fenomeni transitori e meglio evidenziarne le variazioni in funzione del clima esterno.

L'efficienza della pompa di calore è risultata nel periodo in esame mediamente uguale a 2.7 calcolata su base giornaliera, mentre la potenza termica erogata è stata di 154 kW, con fattore di carico medio del 45%. Tali valori, a scopo indicativo sono stati confrontati con i dati nominali forniti dalla casa costruttrice della macchina, che risultano essere riferiti a condizioni standard differenti da quelle riscontrate nel funzionamento reale.

Il proseguo dell'attività di monitoraggio, nella prossima annualità, potrà consentire l'analisi di dati di misure relativi all'intero periodo di climatizzazione, sia invernale che estivo. La valutazione dell'efficienza media su base stagionale sarà utile al confronto con i valori di rendimento calcolati secondo le principali norme tecniche utilizzate nella valutazione del fabbisogno energetico degli edifici, UNI TS 11300-4.

6 Riferimenti bibliografici

- [1] A European Directive on Energy Performance of Buildings 2010/31/EU
- [2] UNI TS 11300 Energy performance of buildings: Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione estiva
- [3] UNI TS 11300 Utilizzo di energie rinnovabili e di altri metodi di generazione per la climatizzazione invernale e per la produzione di acqua calda sanitaria
- [4] UNI EN 14825:2016 Condizionatori d'aria, refrigeratori di liquido e pompe di calore, con compressore elettrico, per il riscaldamento e il raffrescamento degli ambienti Metodi di prova e valutazione a carico parziale e calcolo del rendimento stagionale
- [5] D.M. Requisiti Minimi 26 /6/2015 Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici
- [6] Heat-pump-cycle CORDIS Community Research and Development Information Service EU
- [7] Analysis and evaluation of Heat Pump efficiency in a Real-life conditions Fraunhofer ISE, 2011
- [8] Energy Monitoring, monitoraggio e gestione dell'energia ABB, 2016
- [9] POMPE di CALORE Parte teorica, parte applicativa, di Renato Lazzarin, FERROLI

Appendice

Per maggiori dettagli relativi alle caratteristiche tecniche della pompa di calore esaminata e degli strumenti di misura utilizzati, si riportano in appendice alcune dati specifici, tratti dalle schede tecniche delle case costruttrici:

Pompe di Calore Aria-Acqua con Modulo Idronico Incorporato

Quality and Environmen

Il modello illustrato è dotato opzione per esecuzione per alta silenziosità

30RQ 182-522

Potenzialità frigorifera nominale 175-470 kW Potenzialità di riscaldamento nominale 184-554 kW

La gamma delle pompe di calore Aquasnap si avvale delle più recenti innovazioni tecnologiche come per esempio il refrigerante R-410A, i compressori scroll, i ventilatori ad elevata silenziosità costruiti in materiali compositi ed il sistema di controllo autoadattante a micro-processore.

Queste unità possono venire dotati di un modulo idronico incorporato (opzione) che riduce drasticamente il lavoro di installazione a poche operazioni come i collegamenti alle tubazioni di andata e ritorno del circuito dell'acqua refrigerata ed alla linea elettrica di alimentazione.

Caratteristiche costruttive

Funzionamento silenzioso

- Compressori
 - Compressori scroll ad alta silenziosità, caratterizzati da
 - un livello di vibrazioni molto contenuto L'assieme del compressore è installato su un telaio indipendente ed è sostenuto da una serie di supporti antivibranti flessibili
 - Le linee di aspirazione e di mandata sono dotate di supporti dinamici che riducono al minimo la trasmissione delle vibrazioni (brevetto Carrier)
 - Copertura afonica del compressore che riduce l'irraggiamento sonoro (opzione) Scambiatore refrigerante-aria
- - Scambiatore refrigerante-aria con elementi disposti a V ad angolo aperto per consentire un passaggio d'aria più silenzioso tra un elemento e l'altro

- Ventilatori ad elevata silenziosità Flying Bird di IV generazione, costruiti in materiale composito (brevetto Carrier), che ora sono ancor più silenziosi e che non provocano rumori di bassa frequenza difficilmente smorzabili
- Installazione rigida del ventilatore che previene la rumorosità in fase di avviamento (brevetto Carrier)

Installazione facile e veloce

- Modulo idronico incorporato (optional)
 - Pompa centrifuga a bassa o ad alta prévalenza a richiesta per sopperire alle perdite di carico del circuito idronico
 - Pompa singola o doppia (a richiesta) con bilanciamento dei tempi di funzionamento ed attivazione automatica della pompa in stand by in caso di guasto di quella in
 - Filtro acqua per la protezione della pompa dai detriti posti in circolo dall'acqua Vaso d'espansione chiuso a membrana, di elevata
 - capacità, per garantire l'indispensabile pressurizzazione del circuito acqua
 - Isolamento termico e protezione antigelo fino a -20°C, realizzata tramite una resistenza elettrica di riscaldamento (vedere la tabella degli optional)
 - Manometro per il monitoraggio del grado di intasamento del filtro e per la misura della portata d'acqua in circolo (optional)
 - Valvola di taratura della portata (optional)

- Collegamenti elettrici semplificati
 - Un solo punto di collegamento dell'alimentazione senza neutro
 - Sezionatore generale ad elevata capacità di disconnessione (vedere la tabella degli optional)
 - Circuito di controllo a bassa tensione (24 V) alimentato da un trasformatore incorporato, per evitare rischi di folgorazione
- Rapidità del commissioning
 - Esecuzione in fabbrica di prove sistematiche di funzionamento, eseguite prima della spedizione
 - Funzione Quick-test che consente una verifica passo a passo della funzionalità degli strumenti, dei componenti elettrici e dei motori di cui è dotato l'apparecchio

Funzionamento economico

- Aumento dell'efficienza energetica durante il funzionamento con carichi parziali
 - Il circuito frigorifero è dotato di diversi compressori collegati in parallelo. Durante il funzionamento con carichi parziali, vale a dire per il 99% del tempo di funzionamento totale dell'apparecchio, vengono fatti funzionare solo i compressori che sono strettamente necessari per la neutralizzazione del carico. In tali condizioni l'efficienza dei compressori che stanno funzionando risulta esaltata in quanto essi hanno a disposizione l'intera superficie sia dello scambiatore refrigerante-aria che dello scambiatore refrigerante-acqua
 - Il dispositivo elettronico di espansione del refrigerante (EXV) consente il funzionamento dell'apparecchio anche con pressioni di condensazione particolarmente ridotte (ottimizzazione dell'EER/COP)
 - Gestione dinamica del surriscaldamento per ottenere un migliore utilizzo della superficie di scambio dello scambiatore refrigerante-acqua e l'ottimizzazione della protezione del compressore
- Riduzione dei costi di manutenzione
 - Compressori scroll senza alcuna necessità di manutenzione
 - Diagnosi rapida e memorizzazione degli eventuali inconvenienti grazie al sistema di controllo Pro-Dialog Plus
 - Maggior facilità d'uso del refrigerante R-410A rispetto agli altri refrigeranti a più componenti

Rispetto per l'ambiente

- Refrigerante R-410A senza impatto sullo strato d'ozono
 - E' un refrigerante privo di cloro ed appartenendo alla famiglia degli HFC non ha alcun effetto negativo sullo strato atmosferico di ozono
 - Le sue caratteristiche termodinamiche consentono di ottenere elevati coefficiente di prestazione (EER/COP)
- Circuito frigorifero ermetico
 - Attacchi frigoriferi saldobrasati per aumentare la tenuta dei giunti
 - Riduzione delle fughe di refrigerante grazie all'uso di strumentazione priva di capillari e dotata di attacchi a cartella
 - Verifica funzionale dei trasduttori di pressione e dei sensori di temperatura senza alcuna necessità di trasferimento della carica di refrigerante
 - Valvola di intercettazione sulla mandata che consentendo il confinamento della carica di refrigerante nello scambiatore refrigerante-aria semplifica le operazioni di manutenzione

Eccezionale affidabilità

- Concezione che ben rappresenta lo Stato dell'Arte
 - Cooperazione con laboratori specialistici ed uso di sofisticati algoritmi i simulazione (calcolo per elementi finiti) per la progettazione degli elementi critici, come per esempio i supporti del motore e le linee di aspirazione e di mandata
 - Installazione del quadro di controllo del compressore in corrispondenza del lato freddo del compressore stesso (brevetto Carrier)
- Circuiti frigoriferi
 - Due circuiti frigoriferi indipendenti
 - Filtro disidratatore/serbatoio di accumulo del refrigerante (brevetto Carrier) per l'ottimizzazione del funzionamento nelle modalità di raffreddamento e di riscaldamento per mezzo del controllo della carica di refrigerante
- Sistema di controllo autoadattante
 - Gli algoritmi utilizzati dal sistema di controllo impediscono che i cicli di marcia-arresto possano avvenire con frequenza eccessiva e consentono il funzionamento della macchina anche in circuiti idronici con contenuti d'acqua limitati (brevetto Carrier)
 - Scarico automatico del compressore in caso di aumenti anomali della pressione di condensazione. Nei casi in cui si verifichi un'anomalia (come per esempio l'intasamento dello scambiatore refrigerante-aria, l'avaria di un ventilatore, etc.) il sistema di controllo fa in modo che la pompa di calore possa continuare a funzionare, seppur a potenzialità ridotta
- Severe prove di durata
 - Prove di resistenza all'esposizione alla nebbia salina, eseguita in laboratorio
 - Prova di invecchiamento accelerato eseguita sui componenti soggetti a funzionamento continuo, come per esempio i supporti del ventilatore e le tubazioni di collegamento dei compressori
 - Prova di simulazione di trasporto eseguita in laboratorio su una tavola oscillante. Tale prova, che è basata su normative militari, sottopone l'apparecchio a delle sollecitazioni che sono equivalenti a quelle a cui sarebbe sottoposto durante un trasporto di 4000 km su un autocarro

Interfaccia con l'operatore del sistema di controllo Pro-Dialog Plus

Caratteristiche fisiche

30RQ 182-262 "B" unità standard

30RQ		182	202	232	262
Utilizzo per climatizzazione - come per norma EN1451	1-3:2011	•			
Potenzialità frigorifera nominale	kW	177	198	217	250
EER	kW/kW	2,93	2,70	2,84	2,62
Classe Eurovent in raffreddamento		В	С	С	D
ESEER	kW/kW	3,97	3,68	4,18	3,67
Utilizzo per climatizzazione**					
Potenzialità frigorifera nominale	kW	178	199	217	251
EER	kW/kW	2,98	2,75	2,89	2.66
ESEER	kW/kW	4,16	3,83	4,38	3,84
Utilizzo per riscaldamento - come per norma EN14511		.,	-,	.,	-,
Potenzialità di riscaldamento nominale	kW	184	205	221	268
COP	kW/kW	2.85	2.83	2.98	2.85
Classe Eurovent in riscaldamento	KVV/KVV	C C	C	C	C
Utilizzo per riscaldamento**		C	C	C	C
•	LAM	104	005	001	007
Potenzialità di riscaldamento nominale	kW	184	205	221	267
COP	kW/kW	2,88	2,85	3,00	2,87
Pesi in funzione***					
Unità standard con opzione 15 e modulo idronico con	kg	1934	2036	2099	2299
doppia pompa ad alta prevalenza optional		1750	4000	1015	0.1.5
Unità standard con opzione 15	kg	1758	1860	1915	2115
Unità priva di ogni optional****	kg	1683	1785	1820	2020
Livello di potenza sonora					
Unita con opzione 15LS per altissima silenziosità					
Livello di potenza sonora 10 ⁻¹² W†	dB(A)	89	89	89	89
Livello di pressione sonora a 10 m‡	dB(A)	57	57	57	57
Unità base, senza opzione 15 e senza modulo idronico					
Livello di potenza sonora 10 ⁻¹² W†	dB(A)	91	91	91	91
Livello di pressione sonora a 10 m‡	dB(A)	59	59	59	59
Dimensioni	. ,				
Lunghezza x profundità x altezza	mm	2457 x 2253 x 2297	2457 x 2253 x 2297	2457 x 2253 x 2297	2457 x 2253 x 22
Compressori		Scroll ermetico, 48,3		E 107 X EE00 X EE07	Z 107 X ZZGG X ZZ
Circuito A		1	1	2	2
Circuito B		2	2	2	2
Q.tà dei gradino di potenzialità		3	3	4	4
Refrigerante		R-410A	3	4	7
•			05.0	00.0	00.0
Circuito A		25,8	25,8	26,3	26,3
Circuito B		27,7	27,7	26,3	26,3
Sistema di controllo		Pro-Dialog Plus			
Potenzialità minima	%	28	33	25	25
Scambiatori refrigerante/aria			i ed alette di alluminio		
Ventilatori			d 4 con convogliatore rota	inte	
Quantità		4	4	4	4
Portata d'aria totale	l/s	18056	18056	18056	18056
· · · · · · · · · · · · · · · · · · ·					
	g/s	15,7	15,7	15,7	15,7
Velocità di rotazione Scambiatore refrigerante/acqua		15,7			15,7
Velocità di rotazione		15,7	15,7		15,7 21,20
Velocità di rotazione Scambiatore refrigerante/acqua	g/s	15,7 Scambiatore di calore	15,7 e a piastre a due circuiti	15,7	
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua	g/s I	15,7 Scambiatore di calore 10,76	15,7 e a piastre a due circuiti 12,64	15,7 16,69	21,20
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza	g/s I	15,7 Scambiatore di calore 10,76 1000	15,7 e a piastre a due circuiti 12,64	15,7 16,69 1000	21,20 1000
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico	g/s I	15,7 Scambiatore di calore 10,76 1000 Pompa, filtro a rete Vi	15,7 e a piastre a due circuiti 12,64 1000	15,7 16,69 1000 za, vaso d'espansione, n	21,20 1000
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional	g/s I	15,7 Scambiatore di calore 10,76 1000 Pompa, filtro a rete V spurgo (acqua ed aria	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez a) e valvole di taratura del	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua	21,20 1000 nanometro, valvole d
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional	g/s I	15,7 Scambiatore di calore 10,76 1000 Pompa, filtro a rete V spurgo (acqua ed aria	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez a) e valvole di taratura del a monocellulare, 48,3 g/s,	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua	21,20 1000 nanometro, valvole d
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua	g/s I	15,7 Scambiatore di calori 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed ari Con pompa centrifug	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez a) e valvole di taratura del a monocellulare, 48,3 g/s,	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua	21,20 1000 nanometro, valvole d
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità	g/s I	15,7 Scambiatore di calori 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed aric Con pompa centrifug singola o doppia gem 1	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez a) e valvole di taratura del a monocellulare, 48,3 g/s, tellare 1	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale	21,20 1000 nanometro, valvole d enza (secondo richie
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione	g/s I kPa	15,7 Scambiatore di calori 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed ari. Con pompa centrifug singola o doppia gem 1 50	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez. a) e valvole di taratura del a monocellulare, 48,3 g/s, tellare 1 50	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale 1 50	21,20 1000 nanometro, valvole d enza (secondo richie 1 50
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità	g/s I kPa	15,7 Scambiatore di calori 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed aric Con pompa centrifug singola o doppia gem 1	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez a) e valvole di taratura del a monocellulare, 48,3 g/s, tellare 1	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale	21,20 1000 nanometro, valvole d enza (secondo richie
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico	g/s I kPa	15,7 Scambiatore di calore 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed ari Con pompa centrifug singola o doppia gem 1 50 400	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez. a) e valvole di taratura del a monocellulare, 48,3 g/s, tellare 1 50	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale 1 50	21,20 1000 nanometro, valvole d enza (secondo richie 1 50
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico	g/s I kPa I kPa	15,7 Scambiatore di calori 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed ari. Con pompa centrifug singola o doppia gem 1 50 400 Victaulic	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez. a) e valvole di taratura del a monocellulare, 48,3 g/s, lellare 1 50 400	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale 1 50 400	21,20 1000 nanometro, valvole d enza (secondo richie 1 50 400
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico Diametro	g/s I kPa I kPa	15,7 Scambiatore di calori 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed aric Con pompa centrifug singola o doppia gem 1 50 400 Victaulic 2 1/2	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez a) e valvole di taratura del a monocellulare, 48,3 g/s, ellare 1 50 400	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale 1 50 400	21,20 1000 nanometro, valvole d enza (secondo richie 1 50 400
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico Diametro Diametro esterno della tubazione	g/s I kPa I kPa	15,7 Scambiatore di calon 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed aric Con pompa centrifug singola o doppia gem 1 50 400 Victaulic 2 1/2 76,1	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez. a) e valvole di taratura del a monocellulare, 48,3 g/s, lellare 1 50 400	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale 1 50 400	21,20 1000 nanometro, valvole d enza (secondo richie 1 50 400
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico Diametro Diametro esterno della tubazione Attacchi acqua delle unità dotate di modulo idronico	g/s I kPa I kPa poll. mm	15,7 Scambiatore di calori 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed ari Con pompa centrifug singola o doppia gen 1 50 400 Victaulic 2 1/2 76,1 Victaulic	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez a) e valvole di taratura del a monocellulare, 48,3 g/s, tellare 1 50 400 2 1/2 76,1	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale 1 50 400 2 1/2 76,1	21,20 1000 nanometro, valvole denza (secondo richie 1 50 400 2 1/2 76,1
Velocità di rotazione Scambiatore refrigerante/acqua Contenuto d'acqua Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico Diametro Diametro esterno della tubazione	g/s I kPa I kPa	15,7 Scambiatore di calon 10,76 1000 Pompa, filtro a rete Vi spurgo (acqua ed aric Con pompa centrifug singola o doppia gem 1 50 400 Victaulic 2 1/2 76,1	15,7 e a piastre a due circuiti 12,64 1000 ctaulic, valvola di sicurez a) e valvole di taratura del a monocellulare, 48,3 g/s, ellare 1 50 400	15,7 16,69 1000 za, vaso d'espansione, n la portata acqua a bassa o ad alta prevale 1 50 400	21,20 1000 nanometro, valvole d enza (secondo richie 1 50 400

Codice cromatico: RAL7035

* Calcolata per le condizioni standard (come da norma EN14511-3: 2011) e certificata da Eurovent.
Condizioni in modalità di raffreddamento: temp. di ingresso/uscita acqua dall'evaporatore 12/7°C, aria entrante nel condensatore a 35°C e ad un fattore di sporcamento dell'evaporatore pari a 0 m² K/W
Condizioni in modalità di riscaldamento: temp. di ingresso/uscita acqua dall'evaporatore 12/7°C, aria entrante nel condensatore a 35°C e ad un fattore di sporcamento dello scambiatore refrigerante-aria pari a 0 m² K/W
Prestazioni lorde non secondo la norma EN14511-3:2011. Esse non tengono infatti contro delle correzioni dovute alla potenza termica sviluppata e la potenza assorbita dalla pompa per vincere le
perdite di carcio lato acqua dello scambiatore di calore.
Condizioni in modalità di raffreddamento: temp. di ingresso/uscita acqua dall'evaporatore 12/7°C, aria entrante nel condensatore a 35°C e ad un fattore di sporcamento dell'evaporatore pari a 0 m² K/W
Condizioni in modalità di riscaldamento: temp. di ingresso/uscita acqua dallo scambiatore refrigerante-acqua a 40°C/45°C, con aria entrante nello scambiatore refrigerante-aria pari a 0 m² K/W
I pesi indicati hanno solo carattere indicativo. Lentata della carica di refrigerante è riportata sulla targhetta di identificazione apposta sull'apparecchio.

Unità in versione standard: Unità base priva di Opzione Euro Pack e di modulo idronico.

† In conformità alla norma ISO 9614-1 e con certificazione Eurovent.

£ Livello medio di pressione sonora con unità in campo libero appoggiata su un superficie riverberante.

Caratteristiche fisiche

30RQ 182-262 "B" unità con opzione 280 ed unità 30RQ 302-522

	11 2 001	182	202	232	262	302	342	372	402	432	462	522
Utilizzo per climatizzazione - come per norma EN145			400	000	055	070	000	000	000	000	405	470
Potenzialità frigorifera nominale	kW	175	190	220	255	279	309	333	368	392	435	470
EER	kW/kW	2,88	2,62	2,86	2,54	2,63	2,46	2,63	2,49	2,59	2,59	2,40
Classe Eurovent in raffreddamento		С	D	С	D	D	E	D	E	D	D	Е
ESEER	kW/kW	3,95	3,61	4,24	3,86	4,03	3,75	3,50	3,54	3,61	3,43	3,2
Utilizzo per climatizzazione**												
Potenzialità frigorifera nominale	kW	176	190	221	256	280	310	334	370	394	437	472
EER	kW/kW	2,90	2,65	2,89	2,56	2,67	2,49	2,65	2,52	2,62	2,63	2,4
ESEER	kW/kW	4,05	3,69	4,39	4,00	4,20	3,87	3,60	3,66	3,75	3,58	3,4
Utilizzo per riscaldamento - come per norma EN145	11-3:2011	*										
Potenzialità di riscaldamento nominale	kW	190	214	231	285	303	336	367	408	446	507	554
COP	kW/kW	3,00	2,86	2,97	2,94	2,73	2,79	2,84	2,74	2,79	2,79	2,7
Classe Eurovent in riscaldamento		В	С	С	С	D	D	С	D	D	D	D
Utilizzo per riscaldamento**												
Potenzialità di riscaldamento nominale	kW	190	213	230	284	302	335	366	407	445	505	551
COP	kW/kW	3,01	2,87	2,99	2,96	2,75	2,81	2,86	2,75	2,81	2,81	2,7
Pesi in funzione***												
Unità standard con opzione 15 e modulo idronico con	kg	2276	2367	2406	2588	3221	3408	3535	3689	4142	4449	466
doppia pompa ad alta prevalenza optional	5											
Unità standard con opzione 15	kg	2160	2191	2222	2404	2919	3103	3213	3367	3820	4077	425
Unità priva di ogni optional****	kg	2025	2116	2127	2309	2799	2986	3079	3233	3669	3909	408
Livello di potenza sonora												
Unita con opzione 15LS per altissima silenziosità												
Livello di potenza sonora 10 ⁻¹² W†	dB(A)	89	89	89	89	90	90	91	91	92	92	92
Livello di pressione sonora a 10 m‡	dB(A)	57	57	57	57	58	58	59	59	60	60	60
Unità base, senza opzione 15 e senza modulo idronico	GD(A)	31	31	31	JI	50	50	Jo	30	50	50	00
·	dD/A)	91	91	91	91	92	92	93	93	94	94	94
Livello di potenza sonora 10 ⁻¹² W†	dB(A)											
Livello di pressione sonora a 10 m‡	dB(A)	59	59	59	59	60	60	61	61	62	62	52
Dimensioni										.=		
Lunghezza x profundità x altezza	mm		2253 x 22			3604 x	2253 x 22	297		4/98 x	2253 x 22	297
Compressori			rmetico,									
Circuito A		1	1	2	2	3	3	4	4	4	4	4
Circuito B		2	2	2	2	2	2	2	2	3	4	4
Q.tà dei gradino di potenzialità		3	3	4	4	5	5	6	6	7	8	8
Refrigerante		R-410A										
Circuito A	kg	27	27	27	27	41	41	53	54	54	53	54
Circuito B	kg	27	27	27	27	27	27	32	32	47	53	53
Sistema di controllo		Pro-Dia	log Plus									
Potenzialità minima	%	28	33	25	25	18	20	15	17	13	11	13
Scambiatori refrigerante/aria		Tubi di r	ame sca	nalati ed	alette di a	lluminio						
Ventilatori		Assiali t	ipo Flyino	Bird 4 c	on convo	gliatore re	otante					
Quantità		4	4	4	4	5	5	6	6	7	8	8
Portata d'aria totale	l/s	18056	18056	18056	18056	22569	22569	27083	27083	31597	36111	361
Velocità di rotazione	g/s	15,7	15,7	15,7	15,7	15,7	15,7	15,7	15,7	15,7	15,7	15,
Scambiatore refrigerante/acqua	3,0					etta a due		,	,,	10,1	,	, 5,
• •		110	110	110	110	110	125	113	113	113	113	113
	ı kРа	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	100
Contenuto d'acqua		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	100
Massima pressione di funzonamento lato acqua senza	KI CL									anomoto	o valuala	de
Massima pressione di funzonamento lato acqua senza modulo idronico	KI G	Pompo	filtro a ro	te Victori	lic valuel	a di eicur	2772 V20	n d'een a			o, vaivoie	ue
Massima pressione di funzonamento lato acqua senza	N d					a di sicur						
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional	KI G	spurgo	(acqua e	d aria) e v	alvole di	taratura d	della port	ata acqua	a		anda rich	ipeta
Massima pressione di funzonamento lato acqua senza modulo idronico	Ki d	spurgo Con po	(acqua e mpa cent	d aria) e v rifuga mo	alvole di nocellula		della port	ata acqua	a		ondo rich	niesta
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua	Ki d	spurgo Con poi singola	(acqua e mpa cent o doppia	d aria) e v rifuga mo gemellar	/alvole di nocellula e	taratura o re, 48,3 g	della port /s, a bass	ata acqua sa o ad al	a ta prevale	enza (sec		
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità		spurgo Con poi singola 1	(acqua e mpa cent o doppia 1	d aria) e v rifuga mo gemellar 1	valvole di nocellula e 1	taratura o re, 48,3 g	della port /s, a bass 1	ata acqua sa o ad al	a ta prevale	enza (sec	1	1
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione	1	spurgo Con poi singola 1 50	(acqua e mpa cent o doppia 1 50	d aria) e v rifuga mo gemellar 1 50	valvole di nocellula e 1 50	taratura o re, 48,3 g 1 80	della port /s, a bass 1 80	ata acqua sa o ad al 1 80	a ta prevale 1 80	enza (sec 1 80	1	1 80
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con		spurgo Con poi singola 1	(acqua e mpa cent o doppia 1	d aria) e v rifuga mo gemellar 1	valvole di nocellula e 1	taratura o re, 48,3 g	della port /s, a bass 1	ata acqua sa o ad al	a ta prevale	enza (sec	1	1 80
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico	1	spurgo Con poi singola 1 50 400	(acqua e mpa cent o doppia 1 50 400	d aria) e v rifuga mo gemellar 1 50	valvole di nocellula e 1 50	taratura o re, 48,3 g 1 80	della port /s, a bass 1 80	ata acqua sa o ad al 1 80	a ta prevale 1 80	enza (sec 1 80	1	1 80
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico	l kPa	spurgo Con poi singola 1 50 400 Victauli	(acqua e mpa cent o doppia 1 50 400	d aria) e v rifuga mo gemellar 1 50 400	valvole di nocellula re 1 50 400	taratura d re, 48,3 g 1 80 400	della port /s, a bass 1 80 400	ata acqua sa o ad al 1 80 400	a ta prevale 1 80 400	enza (sec 1 80 400	1 80 400	1 80 400
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico Diametro	I kPa poll.	spurgo Con por singola 1 50 400 Victaulii 3	(acqua empa cent o doppia 1 50 400	d aria) e v rifuga mo gemellar 1 50 400	valvole di nocellula re 1 50 400	taratura o re, 48,3 g 1 80 400	della port /s, a bass 1 80 400	ata acquasa o ad al 1 80 400	ta prevale 1 80 400	enza (sec 1 80 400	1 80 400	1 80 400
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico Diametro Diametro esterno della tubazione	l kPa poll. mm	spurgo Con por singola 1 50 400 Victauli 3 88,9	(acqua e mpa cent o doppia 1 50 400 c 3 88,9	d aria) e v rifuga mo gemellar 1 50 400	valvole di nocellula re 1 50 400	taratura d re, 48,3 g 1 80 400	della port /s, a bass 1 80 400	ata acqua sa o ad al 1 80 400	a ta prevale 1 80 400	enza (sec 1 80 400	1 80 400	1 80 400
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico Diametro Diametro esterno della tubazione Attacchi acqua delle unità dotate di modulo idronico	l kPa poll. mm	spurgo Con poi singola 1 50 400 Victauli 3 88,9 Victauli	(acqua empa cent o doppia 1 50 400	d aria) e v rifuga mo gemellar 1 50 400	valvole di nocellula e 1 50 400 3 88,9	taratura d re, 48,3 g 1 80 400 4 114,3	della porti /s, a bass 1 80 400 4	ata acquasa o ad al 1 80 400 6 168,3	1 80 400 6 168,3	enza (sec 1 80 400 6 168,3	1 80 400 6 168,3	1 80 400 6 168
Massima pressione di funzonamento lato acqua senza modulo idronico Modulo idronico optional Pompa di circolazione acqua Quantità Volume del vaso d'espansione Massima pressione di funzionamento lato acqua con modulo idronico Attacchi acqua delle unità senza modulo idronico Diametro Diametro esterno della tubazione	l kPa poll. mm	spurgo Con por singola 1 50 400 Victauli 3 88,9	(acqua e mpa cent o doppia 1 50 400 c 3 88,9	d aria) e v rifuga mo gemellar 1 50 400	valvole di nocellula re 1 50 400	taratura o re, 48,3 g 1 80 400	della port /s, a bass 1 80 400	ata acquasa o ad al 1 80 400	ta prevale 1 80 400	enza (sec 1 80 400	1 80 400	1 80 400

Vernice del telaio Codice cromatico: RAL7035

* Calcolata per le condizioni standard (come da norma EN14511-3:2011) e certificata da Eurovent.
Condizioni in modalità di riaffreddamento: temp, di ingresso/uscita acqua dall'evaporatore 12/7°C, aria entrante nel condensatore a 35°C e ad un fattore di sporcamento dell'evaporatore pari a 0 m² K/W
Condizioni in modalità di riscaldamento: temp, di ingresso/uscita acqua dallo scambiatore refrigerante-acqua a 40°C/45°C, con aria entrante nello scambiatore refrigerante-aria pari a 0 (m² K/W
Condizioni in modalità di riscaldamento: temp, di ingresso/uscita acqua dallo scambiatore refrigerante-aria pari a 0 (m² K/W
Prestazioni lorde non secondo la norma EN14511-3:2011. Esse non tengono infatti contro delle correzioni dovute alla potenza termica sviluppata e la potenza assorbita dalla pompa per vincere le perdite di carico lato acqua dello scambiatore di calore.
Condizioni in modalità di riaffreddamento: temp, di ingresso/uscita acqua dall'evaporatore 12/7°C, aria entrante nel condensatore a 35°C e ad un fattore di sporcamento dell'evaporatore pari a 0 m² K/W
Condizioni in modalità di riarfeddamento: temp, di ingresso/uscita acqua dallo scambiatore refrigerante-acqua a 40°C/45°C, con aria entrante nello scambiatore refrigerante-aria pari a 0 (m² K/W
... et al condizioni in modalità di riscaldamento: temp. di ingresso/uscita acqua dallo scambiatore refrigerante-acqua a 40°C/45°C, con aria entrante nello scambiatore refrigerante-aria pari a 0 (m² K/W
... et al condizioni in modalità di riscaldamento: temp. di ingresso/uscita acqua dallo scambiatore refrigerante-acqua a 40°C/45°C, con aria entrante nello scambiatore refrigerante-aria pari a 0 (m² K/W
... et al condizioni in modalità di riscaldamento: temp. di ingresso/uscita acqua dallo scambiatore refrigerante-acqua a 40°C/45°C, con aria entrante nello scambiatore refrigerante-aria a 7°C, 87% u.r. e ad un fattore di sporcamento dello scambiatore refrigerante-acqua a 40°C/45°C, con aria entrante nello scambiatore refrigerante-

Caratteristiche elettriche

30RQ 182-262 "B" unità standard ed unità con opzione 280, ed unità 30RQ 302-522

30RQ		182	202	232	262	302	342	372	402	432	462	522
Circuito di alimentazione												
Tensione nominale di alimentazione	V-F-Hz	400-3	-50									
Campo di variazione della tensione	360-4	40										
Alimentazione del circuito di controllo		A 24 \	/, tramite	trasforn	natore in	terno						
Corrente nominale assorbita dall'unità*												
Circuiti A + B (alimentazione singola)	Α	113	129	135	167	185	209	219	251	269	302	334
Massima potenza assorbibile dall'unità**												
Circuiti A + B (alimentazione singola)	kW	85	98	102	127	140	159	166	191	204	229	255
Fattore di potenza dell'unità a potenzialità massima**		0,84	0,84	0,84	0,84	0,84	0,84	0,84	0,84	0,84	0,84	0,84
Massima corrente assorbible dall'unità (Un-10%)***												
Circuiti A + B (alimentazione singola)	Α	159	183	191	239	263	299	311	359	383	430	478
Massima corrente assorbibile dall'unità (Un)****												
Circuiti A + B (alimentazione singola)	Α	146	168	175	219	241	274	285	329	351	394	438
Corrente max. di avviamento per unità standard (Un)†												
Circuiti A + B†	Α	353	375	348	426	448	481	492	536	558	601	645
Corrente max. di avviamento per unità con soft starter (Un)	+											
Circuiti A + B†	Α	283	305	323	356	378	411	433	466	489	521	575

Caratteristiche elettriche dei motori dei ventilatori indicate qui di seguito. Unità alle condizioni di riferimento Eurovent e temperatura dell'aria di 50°C ai motori alimentati a 400 V: 3,8 A, corrente di spunto pari a 20 A e potenza assorbita a 1,75 kW. Questi valori sono quelli riportati sulle targhette di identificazione applicate sui motori.

Corrente di stabilità di cortocircuiti (Metodo TN)*

			`	,								
30RQ		182	202	232	262	302	342	372	402	432	462	522
Unità senza sezionator	e generale	(eccetto	i modelli 3	0RQ da 182 a	a 262 che ha	nno il sezio	natore ins	tallato con	ne standar	d)		
Con fusibili a monte - v	alori mass	imi asseg	ınati ai fus	ibili (gL/gG)								
Circuiti A e B	Α	-	-	-	-	500	500	500	500	630/500	630/500	630/50
Con fusibili a monte - v	alore di co	rrente eff	ettiva amn	nissibile (gL/	gG)							
Circuiti A e B	kA	-	-	-	-	70	70	70	70	60/70	60/70	60/70
Unità con sezionatore g	enerale op	tional sen	za fusibili	(di installazio	ne standard	per i modelli	30RQ da	182 a 262 e	d optional	per i model	li 30RQ da	302 a 52
Valore rms di picco di I	lcw** della	corrente	per period	i brevi (1s)/va	alore di picc	o lpk***						
Circuiti A e B	kA/kA	9/26	9/26	9/26	9/26	13/26	13/26	13/26	13/26	15/30	15/30	15/30
Con fusibili a monte - v	alori mass	imi asseg	nati ai fus	ibili (gL/gG)								
Circuiti A e B	Α	200	200	200/250	250/315	250/315	400	400	400	500	630	630
Con fusibili a monte - v	alore della	corrente	lcc/lcf† di	cortocircuit	condiziona	ıle						
Circuiti A e B	kA	50	50	50	50	50	50	50	50	50	50	50
Unità con sezionatore	generale o	otional co	n fusibili (non disponit	ile per i mo	delli 30RQ d	a 182 a 26	2 ed optio	nal per i m	odelli 30R0	da 302 a	522)
Stabilità di corrente di	corto circu	ito lcc/lcf	† increme	ntata dai fusi	bili - valori r	nassimi ass	egnati ai f	usibili (gL/	gG)			
Circuiti A e B	kA	-	-	-	-	315	315	400	400	400	630	630
Stabilità di corrente di	corto circu	ito lcc/lcf	† increme	ntata dai fusi	bili - valore	di corrente e	effettiva ar	nmissibile	(gL/gG)			
Circuiti A e B	kA	-	-	-	-	50	50	50	50	50	50	50

Metodo IT: I valori di correnti in corto circuito dati per reti TN sono validi anche per reti IT per le unità 30RQ 302-522. Per le unità 30RQ 162-262 si devono effettuare delle modifiche

Condizioni Normalizzate di riferimento Eurovent: temperatura di ingresso/uscita acqua dallo scambiatore refrigerante/acqua 12/7°C con temperatura di ingresso aria nello scambiatore refrigerante/acqua 12/7°C con temperatura di ingresso aria nello scambiatore refrigerante/acqua 12/7°C con temperatura di ingresso aria nello scambiatore refrigerante/acqua 12/7°C con temperatura satura di condensazione equivalente a 65°C) con tensione nominale di alimentazione di 400 V (dati riportati sulla targhetta di identificazione dell'unità).

***Massima corrente assorbita con potenza massima assorbibile in funzionamento con tensione di alimentazione pari a 360 V.

***Massima corrente assorbita con potenza massima assorbibile in funzionamento con tensione di alimentazione nominale di 400 V (valori riportati sulla tabella di identificazione dell'unità).

† Massima corrente assorbita con potenza massima condizioni di funzionamento con tensione di alimentazione nominale di 400 V (valori riportati sulla tabella di identificazione dell'unità).

† Massima corrente assorbita con potenza massima condizioni di funzionamento limite (massima corrente assorbita dal compressore(i) di grandezza minore, più corrente assorbita dai ventilatori, più corrente di spunto del compressore di grandezza superiore).

<sup>Metodo di collegamento a terra
Mew: corrente assegnata per periodi brevi
pk: picco ammissibile della corrente assegnata
Collet: corrente assegnata in cortocircuito condizionale</sup>

Prestazioni a carico parziale

Il rapido aumento dei costi dell'energia e la crescente preoccupazione per l'impatto sull'ambiente derivante dalla produzione di energia elettrica ha reso i consumi elettrici dei dispositivi di climatizzazione un soggetto la cui importanza sta diventando di giorno in giorno sempre maggiore. L'efficienza energetica di un'unità a pieno carico di solito rispecchia ben poco le effettive prestazioni dell'apparecchio in quanto esso opera a pieno carico in media meno del 5% del suo tempo totale di funzionamento.

IPLV (secondo la norma AHRI 550/590)

L'IPLV (acronimo dell'espressione anglosassone Integrated Part Load Value) consente la valutazione dell'efficienza media di un'unità in funzione di quattro condizioni operative definite dalla AHRI (Air Conditioning, Heating and Refrigeration Institute). L'IPLV rappresenta in altre parole la media pesata in funzione del tempo delle efficienze energetiche (EER) che caratterizzano ciascuna di tali quattro condizioni di riferimento.

IPLV (Integrated Part Load Value)

Temp. d'ingresso al condensatore, °C	Efficienza energetica	Tempo di funzionamento, %
35	EER,	1
26,7	EER,	42
18,3	EER3	45
12,8	EER4	12
	condensatore, °C 35 26,7 18,3	condensatore, °C energetica 35 EER, 26,7 EER, 18,3 EER,

Il carico termico di un edificio dipende da svariati fattori come per esempio la temperatura dell'aria esterna, la sua esposizione al sole e le sue modalità di affollamento.

E' di conseguenza preferibile utilizzare l'efficienza energetica stagionale che è calcolata su più punti che rappresentano l'uso che viene fatto dell'unità.

ESEER (EUROVENT)

L'ESEER (acronimo dell'espressione anglosassone European Seasonal Energy Efficiency Ratio) consente la valutazione dell'efficienza media di un'unità in funzione di quattro condizioni operative definite dalla Eurovent. L'ESEER rappresenta in altre parole la media pesata in funzione del tempo delle efficienze energetiche (EER) che caratterizzano ciascuna di tali quattro condizioni di riferimento.

ESEER (acronimo dell'espressione anglosassone European Seasonal Energy Efficiency Ratio)

Carico (%)	Temp. aria esterna, °C	Efficienza energetica	Tempo di funzionamento, %
100	35	EER,	3
75	30	EER,	33
50	25	EER ₃	41
25	20	EER	23

Nota: Il tutto mantenendo costante a 7,0°C la temperatura di uscita dell'acqua refrigerata.

Prestazioni a carico parziale

30RQ 182-262 "B" unità standard									
30RQ		182	202	232	262				
IPLV	kW/kW	4,60	4,22	4,86	4,20				
ESEER	kW/kW	3.97	3.68	4.18	3.67				

30RQ 182	2-262 "B" uni	tà con opz	ione 280 ed	unità 30RQ	302-522							
30RQ		182	202	232	262	302	342	372	402	432	462	522
IPLV	kW/kW	4,48	4,06	4,86	4,40	4,77	4,33	4,12	4,11	4,21	4,09	3,85
ESEER	kW/kW	3,95	3,61	4,24	3,86	4,03	3,75	3,50	3,54	3,61	3,43	3,25

ESEER Calcolata per le condizioni standard (come da norma EN14511-3 : 2011) e certificata da Eurovent. IPLV Calcolata per le condizioni standard (come da norma AHRI 550-590).

Spettro sonoro

30RQ	30RQ 182-262 "B" unità standard								
		Livello di							
		125	250	500	1k	2k	4k	potenza se	onora
182	dB	92	90	89	86	81	75	dB(A) 9	1
202	dB	92	90	89	86	81	75	dB(A) 9	1
232	dB	93	90	90	86	82	75	dB(A) 9	1
262	dB	93	90	90	86	82	75	dB(A) 9	1

30RQ	30RQ 182-262 "B" unità con opzione 280 ed unità 30RQ 302-522										
		Centr	Livello	di							
		125	250	500	1k	2k	4k	potenz	a sonora		
182	dB	92	90	89	86	81	75	dB(A)	91		
202	dB	92	90	89	86	81	75	dB(A)	91		
232	dB	93	90	90	86	82	75	dB(A)	91		
262	dB	93	90	90	86	82	75	dB(A)	91		
302	dB	94	91	91	87	83	76	dB(A)	92		
342	dB	94	91	91	87	83	76	dB(A)	92		
372	dB	94	92	92	88	83	77	dB(A)	93		
402	dB	94	92	92	88	83	77	dB(A)	93		
432	dB	95	92	93	88	84	78	dB(A)	94		
462	dB	96	93	93	89	85	78	dB(A)	94		
522	dB	96	93	93	89	85	78	dB(A)	94		

Limiti di funzionamento

Portata d'acqua dello scambiatore refrigerante-acqua

30RQ 182-262 "B" unità standard

3	30RQ	Portata d'acqua minima, l/s	Portata d'acqua massima, I/s*
1	182	2,8	13,0
2	202	2,8	14,3
2	232	3,0	16,3
2	262	3,5	18,0

30RQ 182-262 "B" unità con opzione 280 ed unità 30RQ 302-522

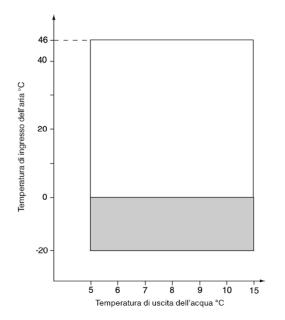
30RQ	Portata d'acqua minima, l/s	Portata d'acqua massima, I/s
182	2,8	26,7
202	2,8	26,7
232	3,0	26,7
262	3,5	26,7
302	3,9	26,7
342	4,4	29,4
372	4,9	31,1
402	5,2	31,1
432	5,8	31,1
462	6,1	31,1
522	6,9	31,1

^{*} La portata massima corrisponde ad una perdita di carico di 100 kPa (unità senza modulo idronico).

Temperature di funzionamento minime e massime

Modalità di raffreddamento

Scambiatore refrigerante/acqua (evaporatore)		Minimo	Massimo
Temperatura acqua entrante all'avviamento	°C	6,8*	30
Temperatura dell'acqua uscente in funzionamento	°C	5	15
Temperatura acqua entrante durante l'arresto	°C	-	60
Scambiatore refrigerante/aria (condensatore)*	*		
Temperatura aria entrante	°C	0	46
Prevalenza utile			
Unità standard (installazione all'esterno)	Pa	0	0
Unit con opzione 12 (installazione all'interno)	Pa	0***	200

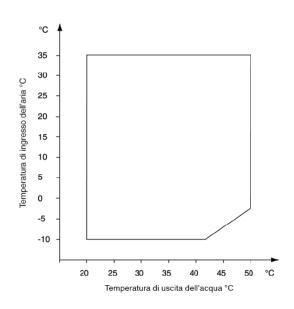

Modalità di riscaldamento

Scambiatore refrigerante/acqua (condensatore	-)	Minimo	Massimo
Temperatura acqua entrante all'avviamento	°C	8	45
Temperatura dell'acqua uscente in funzionamento	°C	20	50
Temperatura acqua entrante durante l'arresto	°C	3	60
Scambiatore refrigerante/aria (evaporatore)			
Temperatura aria entrante**	°C	-10	35
Prevalenza utile			
Unità standard (installazione all'esterno)	Pa	0	0
Unit con opzione 12 (installazione all'interno)	Pa	0***	200

- * Per la scelta degli apparecchi da prevedere in applicazioni nelle quali fossero necessarie temperature inferiori ai 6,8°C, contattare gli Uffici della Carrier.
 * Se dotate dell'optional 28 "Adattamento per il funzionamento invernale", queste unità possono funzionare con temperature esterne fino a -20°C. In questo caso l'apparecchio deve essere inoltre dotato dell'opzione per la protezione dello scambiatore refrigerante/acqua dal gelo oppure nell'acqua in circolo deve essere aggiunto dell'antigelo in quantità

Note: Le temperature massime di funzionamento indicate non devono mai essere superate.

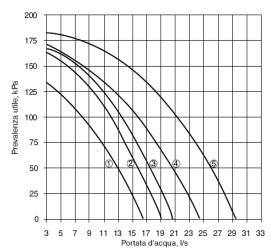
Campo di funzionamento - raffreddamento



Nota: Salto termico attraverso lo scambiatore refrigerante-aria e lo scambiatore refrigerante-acqua = 5 K

Campo di funzionamento per le unità in esecuzione standard

Campo di funzionamento per le unità con optional 28 (funzionamento invernale).
L'apparecchio deve inoltre essere dotato dell'optional per lo la protezione dal gelo dello scambiatore refrigerante-acqua e del modulo idronico (se utilizzato) oppure l'installatore deve utilizzare una soluzione antigleo per garantire che il contenuto del circuito idronico risulti protetto dai rischi di congelamento.


Campo di funzionamento - riscaldamento

Prevalenza utile per l'impianto

Pompa a bassa prevalenza (modulo idronico optional)

Legenda 1 30RQ 182-262 2 30RQ 302 3 30RQ 342 4 30RQ 372-432

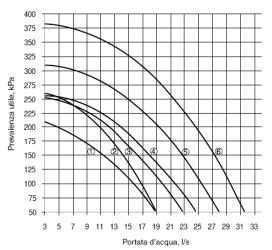
Contenuto d'acqua del circuito idraulico

Contenuto minimo

In caso di uso per climatizzazione il contenuto minimo d'acqua del circuito idronico può essere calcolato per mezzo della seguente formula: Contenuto Minimo (l) = CAP (kW) x 2.5.

Contenuto = Contenuto minimo di acqua con le valvole di controllo acqua chiuse

CAP = Potenzialità frigorifera dell'apparecchio alle condizioni in cui è stato selezionato


Contenuto massimo del circuito idraulico

Le unità dotate di modulo idronico sono dotate di un vaso di espansione. Tale vaso d'espansione è dimensionato per i contenuti d'acqua massimi qui di seguito indicati.

Contenuto max. d'acqua del circuito, l

Contenuto max. u acqua	del circ	Juito, i				
30RQ	182-26	52		302-52	22	
Battente idrostatico (bar)	1	2	2,5	1	2	2,5
Acqua pura	2400	1600	1200	3960	2640	1980
10% di glicole etilenico	1800	1200	900	2940	1960	1470
20% di glicole etilenico	1320	880	660	2100	1400	1050
30% di glicole etilenico	1080	720	540	1740	1160	870
40% di glicole etilenico	900	600	450	1500	1000	750

Pompa ad alta prevalenza (modulo idronico optional)

Lege	enda
1	30RQ 182-202
2	30RQ 232-262
3	30RQ 302
4	30RQ 342
5	30RQ 372-432
6	30RO 462-522

Capacità di riscaldamento istantanee

Capacità di riscaldamento a basse temperature esterne

Le capacità di riscaldamento pubblicate sono quelle istantanee e quindi non tengono conto della penalizzazione dovuta all'accumularsi della brina sulla batteria esterna ed agli effetti dello sbrinamento. Le capacità di riscaldamento integrate, che dipendono dalla temperatura dell'aria esterna e dalla sua umidità relativa (u.r.), tengono conto di tali fenomeni.

Fattori di correzione per l'ottenimento della capacità di riscaldamento integrate:

Umidit	à relativa: 9	90%			
LWT	Tempera	tura dell'aria	°C		
°C	-10	-5	0	5	7
25	0,87	0,88	0,9	0,92	1
35	0,84	0,86	0,88	0,9	1
40	0,83	0,84	0,86	0,88	1
45	0,80	0,82	84	0,86	1
50	0.79	0.8	0.82	0.84	1

LWT Temperatura di acqua uscente

Nota: Il programma Carrier per la scelta computerizzata permette anche di calcolare le capacità di riscaldamento integrate in funzione dell'umidità relativa effettiva nel sito di installazione. Contattare la Carrier nel caso si desideri una scelta personalizzata della pompa di calore.

Potenzialità frigorifere secondo EN14511-3:2011

30RC	182-2																								
		Tem	eratu	ra di i	ngress	_	l'aria n	el cor	ndens		°C														
		20				25				30				35				40				46			
	LWT	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр
	°C	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa
182	5	192	4,15	9,0	57	183	3,66	8,6	52	174	3,20	8,1	47	164	2,77	7,7	43	153	2,37	7,1	38	138	1,93	6,5	32
202		215	3,83	9,7	55	205	3,38	9,3	50	194	2,95	8,8	46	183	2,55	8,3	41	170	2,18	7,7	36	154	1,78	7,0	30
232		237	4,10	11,3	55	226	3,60	10,8	51	215	3,14	10,2	46	202	2,71	9,6	42	188	2,32	9,0	37	170	1,88	8,1	31
262		273	3,75	12,6	58	260	3,30	12,0	53	247	2,88	11,4	48	231	2,49	10,7	43	215	2,13	9,9	38	195	1,75	9,0	32
182	7	207	4,37	9,7	64	197	3,85	9,2	58	187	3,36	8,7	53	176	2,91	8,2	48	164	2,50	7,7	42	148	2,04	6,9	35
202		230	4,00	10,5	61	219	3,52	10,0	56	208	3,08	9,4	51	196	2,69	8,9	46	183	2,31	8,3	41	166	1,88	7,5	34
232		252	4,26	12,0	61	240	3,74	11,5	56	228	3,27	10,9	51	214	2,82	10,2	46	199	2,40	9,5	40	179	1,95	8,6	34
262		291	3,89	13,4	64	278	3,43	12,9	59	265	3,00	12,2	54	248	2,60	11,5	48	231	2,23	10,7	43	210	1,83	9,7	36
182	10	228	4,66	10,7	74	218	4,12	10,2	68	207	3,62	9,7	62	195	3,14	9,1	56	181	2,69	8,5	50	164	2,20	7,7	41
202		255	4,27	11,6	72	243	3,78	11,1	66	231	3,31	10,5	60	217	2,87	9,9	54	202	2,46	9,2	48	183	2,02	8,3	40
232		277	4,50	13,3	71	265	3,97	12,7	65	251	3,47	12,0	59	236	3,00	11,3	53	219	2,57	10,5	47	198	2,09	9,5	39
262		316	4,04	14,6	73	301	3,57	13,9	67	286	3,13	13,2	61	269	2,73	12,4	55	252	2,35	11,6	49	178	2,11	8,2	27

Ja Temperatura di uscita dell'acqua, °C Potenzialità frigorifera, kW Coefficiente di efficienza energetica, kW/kW Portata d'acqua dell'evaporatore, l's Perdita di carico dell'evaporatore, kPa

Dati dell'applicazione: Unità standard, refrigerante: R-410A Salto termico dell'acqua attraverso l'evaporatore: 5 K Pluido in circolo nell'evaporatore: acqua refrigerata Fattore di sporcamento: 0.18 x 10 ⁴ (m² k)/W

Prestazioni secondo la norma EN 14511-3:2011.

Potenzialità frigorifere

		Temp	eratu	ra di i	ngress	so del	'aria r	el cor	idensa	atore,	°C														
		20				25				30				35				40				46			
	LWT	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр
	°С	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa
182	5	193	4,26	9,0	57	184	3,74	8,6	52	175	3,26	8,1	47	165	2,82	7,7	43	153	2,40	7,1	38	139	1,95	6,5	32
202		216	3,91	9,7	55	206	3,45	9,3	50	195	3,00	8,8	46	184	2,59	8,3	41	171	2,21	7,7	36	155	1,80	7,0	30
232		238	4,20	11,3	55	227	3,68	10,8	51	216	3,20	10,2	46	203	2,75	9,6	42	189	2,35	9,0	37	171	1,90	8,1	31
262		274	3,84	12,6	58	261	3,37	12,0	53	248	2,93	11,4	48	232	2,53	10,7	43	216	2,16	9,9	38	196	1,76	9,0	32
182	7	208	4,50	9,7	64	198	3,95	9,2	58	187	3,44	8,7	53	176	2,97	8,2	48	165	2,54	7,7	42	149	2,07	6,9	35
202		231	4,10	10,5	61	220	3,60	10,0	56	209	3,14	9,4	51	197	2,74	8,9	46	184	2,34	8,3	41	166	1,90	7,5	34
232		253	4,37	12,0	61	242	3,83	11,5	56	229	3,33	10,9	51	215	2,87	10,2	46	200	2,44	9,5	40	180	1,97	8,6	34
262		293	3,99	13,4	64	280	3,51	12,9	59	266	3,06	12,2	54	249	2,64	11,5	48	232	2,26	10,7	43	211	1,85	9,7	36
182	10	229	4,82	10,7	74	219	4,24	10,2	68	208	3,71	9,7	62	196	3,21	9,1	56	182	2,74	8,5	50	165	2,23	7,7	41
202		256	4,40	11,6	72	244	3,87	11,1	66	232	3,38	10,5	60	218	2,92	9,9	54	202	2,50	9,2	48	183	2,05	8,3	40
232		279	4,64	13,3	71	266	4,08	12,7	65	253	3,55	12,0	59	237	3,06	11,3	53	220	2,61	10,5	47	199	2,11	9,5	39
262		318	4,16	14,6	73	303	3,66	13,9	67	287	3,19	13,2	61	271	2,77	12,4	55	253	2,39	11,6	49	179	2,13	8,2	27

Legenda
LWT Temperatura di uscita dell'acqua, °C
Qc Potenzialità frigorifera, kW
EER Coefficiente di efficienza energetica, kW/kW
q Portata d'acqua dell'evaporatore, l/s
Ap Perdita di carico dell'evaporatore, kPa

Dati dell'applicazione: Unità standard, refrigerante: R-410A Salto termico dell'acqua attraverso l'evaporatore: 5 K Fluido in circolo nell'evaporatore: acqua refrigerata Fattore di sporcamento: 0.18 x 10⁻⁴ (m² K)/W

Prestazioni lorde non secondo la norma EN14511-3:2011. Esse non tengono infatti contro delle correzioni dovute alla potenza termica sviluppata e la potenza assorbita dalla pompa per vincere le perdite di carico lato acqua dello scambiatore di calore.

Potenzialità frigorifere secondo EN14511-3:2011

		Temp	eratu	ra di i	ngress	o del	l'aria n	el cor	ndensa	itore,	°C														
		20				25				30				35				40				46			
	LWT	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр
	°С	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa
182	5	190	4,10	9,0	20	181	3,60	8,6	19	172	3,14	8,1	17	162	2,72	7,7	15	151	2,32	7,1	13	137	1,89	6,5	11
02		206	3,72	9,7	23	197	3,28	9,3	22	186	2,86	8,8	20	175	2,47	8,3	17	163	2,11	7,7	15	148	1,72	7,0	13
232		241	4,13	11,3	32	230	3,63	10,8	30	219	3,16	10,2	28	206	2,73	9,6	26	191	2,33	9,0	23	173	1,89	8,1	20
62		279	3,65	13,0	39	266	3,21	12,4	37	252	2,80	11,8	34	236	2,42	11,0	31	220	2,07	10,3	28	200	1,70	9,3	25
02		305	3,80	14,4	46	292	3,35	13,8	43	278	2,93	13,1	40	262	2,54	12,4	37	244	2,17	11,6	33	222	1,77	10,5	29
42		341	3,58	16,1	39	325	3,14	15,4	36	308	2,73	14,6	33	289	2,36	13,7	29	268	2,01	12,7	26	243	1,64	11,5	22
72		361	3,79	17,0	35	345	3,32	16,2	32	328	2,89	15,4	29	310	2,49	14,6	26	289	2,13	13,6	23	216	1,87	10,2	13
02		407	3,62	19,3	44	389	3,18	18,4	40	369	2,78	17,5	37	348	2,41	16,4	33	325	2,07	15,4	29	298	1,71	14,1	25
32		433	3,76	20,5	49	414	3,31	19,6	45	393	2,89	18,6	41	370	2,50	17,5	37	344	2,14	16,3	32	311	1,73	14,7	27
62		486	3,80	23,0	61	462	3,33	21,8	56	437	2,89	20,6	50	409	2,49	19,3	44	379	2,11	17,9	38	340	1,70	16,0	31
22		522	3,50	24,7	70	496	3,07	23,5	64	470	2,68	22,3	58	441	2,32	20,9	51	409	1,98	19,4	45	369	1,61	17,4	
82	7	205	4,32	9,7	23	195	3,79	9,2	21	185	3,31	8,7	19	174	2,86	8,2	17	162	2,45	7,7	15	147	2,00	6,9	12
02		221	3,89	10,5	26	211	3,42	10,0	24	200	2,99	9,4	22	188	2,61	8,9	20	176	2,23	8,3	17	159	1,82	7,5	14
32		256	,	12,0	35	245	,	11,5	33	232		10,9	30	218	,	10,2	28	203	2,42	9,5	25	183	1,96	8,6	22
62		296	3,77	13,8	42	283	3,32	13,2	40	268	2,90	12,5	37	253	2,52	11,8	34	235	2,16	11,0	31	214	1,77	10,0	27
02		323	3,88	15,3	49	308	3,44	14,6	46	293	3,01	13,9	43	277	2,62	13,1	39	259	2,25	12,3	36	236	1,85	11,2	
42		361	3,70	17,1	42	344	3,25	16,3	39	326	2,84	15,5	35	306	2,45	14,5	32	285	2,09	13,5	28	257	1,71	12,2	24
72		383	3,95	18,0	39	367	3,47	17,3	36	350	3,02	16,5	33	330	2,61	15,6	29	308	2,23	14,5	26	231	1,97	10,9	15
02		424	3,70	20,1	47	407	,	, -	44	387	2,85	18,3	40	365	2,48	17,3	36	341	,		31	312	1,76	,-	27
32		448	3,84	21,2	52	429	3,38	20,3	48	410	2,96	19,4	44	388	2,57	18,4	40	363	2,21	17,2	35	332		15,7	
62		495	,	23,4	63	474	3,38	22,4	58	452	2,95	21,4	53	428	2,56	20,2	48	400	2,20	18,9	42	365	1,80	17,2	35
522		535	3,56	25,4	73	513	3,13	24,3	67	490	2,74	23,2	62	463	2,38	21,9	55	434	2,05	20,6	49	398	1,69	18,8	42
82	10	226	4,61	10,7		215		,	25	205	-,	9,7	23	193	3,09	9,1	20	180	2,64		18	162	2,15	7,7	15
202		245	,	11,6		233	3,68	,	29	221	,	10,5	26	208	2,79	9,9	23	193	2,39	-	20	175	,	8,3	17
232		283	,	13,3	39	270	4,01	12,7	37	256	,	12,0	34	240		11,3	31	223		10,5	28	202	2,10	9,5	24
262		323	,	15,1	47	308	, .	14,4	44	292	,	, -	41	274	-,-	, ,	37	256	-	11,9	34	138	,	6,4	14
102		353	.,	16,8	55	337	,	16,0	51	320		,-	48	301	,	14,3		279	,	13,3	39	255	,	12,1	34
342		393		18,6	48	374	,	, .	44	356		, .	40	334		15,9	36	311	,	14,7	32	233	,	11,1	20
372		419	4,17	,	45	403	,	19,0	42	384		18,1	38	363	,	17,1	34	339	,	16,0	30	254		,	18
102		458	3,85	21,8	54	440	3,40	20,9	50	419	2,98	19,9	45	396	2,59	18,8	41	371	2,24	17,6	36	286	1,93	13,6	22
132		486	-	23,1	60	467			55	446			51	422	2,71		46	395	,	18,7		360		17,1	
162		542	4,09	25,7	73	522	,	24,7	68	499	3,16	23,6	63	472	2,74	22,4	56	441	2,35	20,9	50	402	1,92	19,0	
522		583	3,75	27,7	84	560	3,30	26,6	78	533	2,89	25,4	71	503	2,50	23,9	64	470	2,15	22,3	56	430	1,77	20,4	48

Legenda
LWT Temperatura di uscita dell'acqua, °C
Cc Potenzialità frigorifera, kW
EER Coefficiente di efficienza energetica, kW/kW
α Portata d'acqua dell'evaporatore, k's
Αp Perdita di carico dell'evaporatore, kPa

Dati dell'applicazione: Unità standard, refrigerante: R-410A Salto termico dell'acqua attraverso l'evaporatore: 5 K Fluido in circolo nell'evaporatore: acqua refrigerata Fattore di sporcamento: 0.18 x 10⁻⁴ (m² K)/W

Prestazioni secondo la norma EN 14511-3:2011.

Potenzialità frigorifere

		Tem	peratu	ra di i	ngres	so del	l'aria r	el cor	ndensa	atore,	°C														
		20				25				30				35				40				46			
	LWT	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр	Qc	EER	q	Δр
	°C	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa	kW	kW/ kW	l/s	kPa
82	5	191	4,15	9,0	20	182	3,64	8,6	19	172	3,17	8,1	17	163	2,74	7,7	15	151	2,34	7,1	13	137	1,90	6,5	11
02		207	3,77	9,7	23	197	3,32	9,3	22	187	2,89	8,8	20	176	2,49	8,3	17	164	2,13	7,7	15	148	1,73	7,0	13
232		242	4,20	11,3	32	231	3,68	10,8	30	219	3,20	10,2	28	206	2,76	9,6	26	192	2,35	9,0	23	173	1,90	8,1	20
262		280	3,71	13,0	39	267	3,26	12,4	37	253	2,83	11,8	34	237	2,45	11,0	31	221	2,09	10,3	28	200	1,71	9,3	25
302		306	3,87	14,4	46	293	3,41	13,8	43	279	2,97	13,1	40	263	2,57	12,4	37	245	2,20	11,6	33	222	1,79	10,5	29
342		342	3,63	16,1	39	326	3,18	15,4	36	309	2,76	14,6	33	290	2,38	13,7	29	269	2,03	12,7	26	244	1,65	11,5	22
372		362	3,84	17,0	35	346	3,36	16,2	32	329	2,92	15,4	29	311	2,52	14,6	26	290	2,14	13,6	23	217	1,88	10,2	13
02		409	3,68	19,3	44	390	3,23	18,4	40	370	2,81	17,5	37	349	2,44	16,4	33	326	2,09	15,4	29	298	1,72	14,1	25
32		434	3,83	20,5	49	415	3,36	19,6	45	395	2,93	18,6	41	371	2,53	17,5	37	345	2,16	16,3	32	312	1,75	14,7	27
62		488	3,89	23,0	61	464	3,39	21,8	56	439	2,94	20,6	50	411	2,52	19,3	44	380	2,13	17,9	38	341	1,71	16,0	31
22		524	3,58	24,7	70	499	3,14	23,5	64	472	2,72	22,3	58	442	2,35	20,9	51	410	2,00	19,4	45	370	1,62	17,4	37
82	7	205	4,38	9,7	23	195	3,84	9,2	21	185	3,34	8,7	19	174	2,89	8,2	17	163	2,47	7,7	15	147	2,01	6,9	12
02		222	3,95	10,5	26	211	3,47	10,0	24	200	3,02	9,4	22	189	2,64	8,9	20	176	2,25	8,3	17	159	1,83	7,5	14
32		257	4,38	12,0	35	246	3,84	11,5	33	233	3,33	10,9	30	219	2,87	10,2	28	203	2,44	9,5	25	183	1,98	8,6	22
262		297	3,83	13,8	42	283	3,37	13,2	40	269	2,94	12,5	37	254	2,55	11,8	34	236	2,18	11,0	31	214	1,79	10,0	27
302		325	3,96	15,3	49	310	3,50	14,6	46	294	3,06	13,9	43	278	2,65	13,1	39	260	2,28	12,3	36	237	1,87	11,2	31
342		362	3,76	17,1	42	345	3,30	16,3	39	327	2,87	15,5	35	307	2,47	14,5	32	285	2,11	13,5	28	258	1,72	12,2	24
372		384	4,01	18,0	39	369	3,52	17,3	36	351	3,06	16,5	33	331	2,64	15,6	29	309	2,25	14,5	26	232	1,98	10,9	15
102		426	3,77	20,1	47	408	3,32	19,3	44	388	2,88	18,3	40	366	2,50	17,3	36	342	2,15	16,2	31	313	1,77	14,8	27
132		450	3,92	21,2	52	431	3,44	20,3	48	411	3,00	19,4	44	389	2,60	18,4	40	365	2,23	17,2	35	333	1,83	15,7	30
162		498	3,94	23,4	63	476	3,45	22,4	58	454	3,00	21,4	53	430	2,60	20,2	48	402	2,22	18,9	42	366	1,81	17,2	35
522		538	3,64	25,4	73	516	3,20	24,3	67	492	2,79	23,2	62	465	2,42	21,9	55	436	2,07	20,6	49	399	1,71	18,8	42
82	10	226	4,69	10,7	27	216	4,13	10,2	25	205	3,61	9,7	23	193	3,12	9,1	20	180	2,66	8,5	18	163	2,17	7,7	15
202		246	,	,	31	234	,	11,1	29	222	,	10,5	26	209	2,82	,	23	194	2,41	,	20	176	1,97	,	17
232		284	,	13,3		271	,	12,7		257	,	12,0		241	,	11,3	31	224	,	, -	28	202	2,11	,	24
262		324	,	15,1		309	,	14,4		293	,	13,6		275	,	,-	37	256	,	, -	34	138	2,57	,	14
302		355	.,	16,8	55	339	-1-	, -	51	321	,	15,2	48	302	-,	14,3		280	-,	13,3		255	.,	12,1	
342		394	,	18,6	48	376	,	,-	44	357	,	, -	40	335		, -	36	312		14,7		234	.,	11,1	20
372		421	,	20	45	404	,	,	42	385	3,26	,	38	364	2,82		34	340	2,41		30	255	2,13		18
102		460	3,93		54	441		20,9	50	421	,	19,9	45	397	2,63	18,8		372		17,6	36	287	1,95	13,6	
132		488	4,13		60	469		22,2	55	448	,	21,2		423	2,75	20,0		396	,	18,7		361	,	17,1	
162		545	4,20	25,7	73	524	,	24,7		501	3,22	23,6	63	474	2,78	22,4	56	443	,	20,9	50	403	1,94	19,0	42
522		587	3,85	27,7	84	563	3,38	26,6	78	536	2,95	25,4	71	506	2,55	23,9	64	472	2,18	22,3	56	431	1,79	20,4	48

Legenda
LWT Temperatura di uscita dell'acqua, °C
Cc Potenzialità frigorifera, kW
EER Coefficiente di efficienza energetica, kW/kW
q Portata d'acqua dell'evaporatore, l/s
Perdita di carico dell'evaporatore, kPa

Dati dell'applicazione: Unità standard, refrigerante: R-410A Salto termico dell'acqua attraverso l'evaporatore: 5 K Fluido in circolo nell'evaporatore: acqua refrigerata Fattore di sporcamento: 0.18 x 10⁴ (m² K)/W

Prestazioni lorde non secondo la norma EN14511-3:2011. Esse non tengono infatti contro delle correzioni dovute alla potenza termica sviluppata e la potenza assorbita dalla pompa per vincere le perdite di carico lato acqua dello scambiatore di calore.

Potenzialità di riscaldamento secondo EN14511-3:2011

		Temp	eratu	ra di ir	ngress	o dell	l'aria n	ello s	cambi	atore	refrige	rante	-aria, °	C, bs	(bu), °	С									
		-15 (-16)			-10 (-11)			-7 (-8	3)			2 (1)				7 (6)				12 (1			
	LWT °C	Qh kW	COP kW/	q I/s	Δp kPa	Qh kW	COP kW/		∆p kPa	Qh kW	COP kW/	-	Δp kPa	Qh kW	COP kW/		Δp kPa	Qh kW	COP kW/	•	Δp kPa	Qh kW	COP kW/	q I/s	Δŗ
			kW				kW				kW				kW				kW				kW		
82	30	100	2,05	5,3	10	112	2,31	6,0	12	121	2,50	6,5	13	155	3,27	8,2	18	195	4,04	9,3	22	224	4,54	10,7	20
202		112	1,98	5,9	8	125	2,23	6,7	10	135	2,40	7,3	12	173	3,09	9,1	18	217	3,79	10,4	23	248	4,27	11,9	3
232		123	2,22	6,5	13	137	2,45	7,3	15	148	2,62	7,9	17	190		10,0		240		11,5	29	276	4,64	13,2	
262		147		7,7	16	165	2,41	8,8	19	178	2,56	9,6	22	232	3,20	12,2	31	290	3,93	13,9	37	333	4,46	15,9	
302		159	2,11	8,4	19	177	2,31		22	192	2,46	10,3	25	247		13,0	35	308		14,7	41	352	4,22	16,8	
342 372		174 190	2,07	9,2 10,1	13 12	196 214	2,29	10,5	16	213	2,41	11,5	19	272	2,99	14,4	28	339 372	3,72	16,3	34 33	387 425	4,15 4,25	18,5	4
102		212	,	11,2	14	239	2,36	11,5 12,8	15 18	258	2,52	12,5 13,9	17 21	296 329		15,7 17,4	26 32	410	3,81 3,61	19,6	40	469	4,23	20,4 22,5	
432		233		12,3	17	263		14,1	21	284	2,50	15,3	25	358	3,03	18,9	37	447	3,67	21,4	47	511	4,16	24,5	
462		266			21	299		16,0		323		17,4		410		21,6	48	512		24,5	60	586		28,0	
522		287	2,09	15.2	25	324	2,30	17.4	32	352	2,45	18.9	37	444	2,95	23,4	55	553	3.55	26.4	69	633	4.06	30.2	
182	35	100	1,84	5,3	10	111	2,07	6,0	11	119	2,23	6,5	13	153	2,94	8,0	38	193	3,66	9,3	21	220	4,10	10,6	
202		111	1,80	6,0	8	124	2,01	6,7	10	134	2,16	7,3	12	172	2,80	8,9	37	215		-	22	245		11,7	
232		122	2,01	6,5	13	135	2,20		15	145	2,35	7,9	17	187	2,94	9,7	34	236		11,3	28	271	4,15	13,0	
262		146	1,99	7,8	16	163	2,17	8,8	19	176	2,31	9,6	21	229	2,88	11,5	41	288	3,57	13,8	36	328	4,02	15,7	4
302		158	1,92	8,4	18	175	2,08	9,5	22	189	2,21	10,3	24	245	2,71	8,2	18	306	3,32	14,7	40	347	3,81	16,6	4
342		173	1,89	9,3	13	195	2,07	10,6	16	212	2,16	11,5	19	270	2,70	9,2	18	337	3,37	16,2	33	382	3,75	18,3	4
372		189	1,94	10,1	11	212	2,12	11,5	14	228	2,26	12,5	17	294	2,81	10,0	23	368	3,43	17,6	32	419	3,82	20,1	4
102		211	1,90	11,3	14	237	2,08	12,8	18	255	2,21	13,9	21	327	2,70	12,2	30	407	3,27	19,5	38	463	3,71	22,2	4
132		232	1,93	12,4	17	260	2,12	14,1	21	281	2,25	15,3	25	357	2,75	13,1	34	443	3,32	21,2	45	504	3,75	24,1	Ę
462		264		14,1	21	296	,	16,1	27	320	2,26	17,5	31	407	2,76	14,4		507	,	24,3	58	577	3,77	27,6	
522		286		15,3	24	322	2,08	17,5	31	348	2,21	19,0	36	444	2,68	15,7		549		26,3	67	625	3,67	29,9	_
182	40	38	1,65	2,1	2	108	1,83	6,0	11	116	1,97	6,5	12	149	2,57	17,5	31	192	3,32	9,2	20	217	3,70	10,4	2
202		38	1,63	2,1	1	122	1,79	6,8	10	131	1,92	7,3	11	167	2,47	19,1	37	216		10,4	22	242	3,50	11,6	
232		119		6,5	12	132			15	141	2,07	,	16	181	2,59	21,8	47	234		11,2	27	265	3,71	12,7	
262		77	1,79	4,2	6	159	1,94	8,9	19	171	2,05	9,5	21	222	2,55	23,7	55	288	3,24	13,8	35	323	3,62	15,5	
302		129	1,73	7,1	14 9	172	1,86	9,5	21	185 207	1,96	10,3	24	239	2,40	7,9	36	305	3,00	14,6	39	343	3,42	16,4	
342 372		139	1,71	7,6	9	191 207	1,85 1,89	10,6 11,5	16 14	223	1,91 2,01	11,6 12,4	18 16	264 288	2,40 2,50	8,8 9,5	36 33	368	3,07 3,12	17,7	32 31	378 412	3,39 3,43	18,2 19,8	
402						232			17	249		13,9	20	321	2,30	11.4	39	408		19,6	38	456		21,9	
132		_				254	1,89	14,1	21	274	2,00	15,3	24	353	2.47	8,2	17	443		21,3	44	496	3,37	23,8	
162		227	1,75	12,4	16	290	1,89	16,1	26	312		17,4	31	402	,	9.2	17	506	3,04		56	568	3,39	27,2	
522		216		11,8	15	315	1,86	17,5	31	340		19,0	36	439	2,41	9,9	22	550		26,4	66	616	3,31	29,5	
182	45	-	-	-	-	41	1,65	2,4	3	113	1,74	6,5	12	144	2,24	12,1	29	190	2,98	9,2	20	214	3,32	10,3	-
202		-	-	_	-	42	1,63	2,4	1	88	1,69	5,1	6	162	2,17	13,1	33	213		10,3	21	240	3,17	11,6	-
232		61	1,55	3,4	5	129	1,72	7,3	14	137	1,82	7,8	16	173	2,26	14,4	27	231	2,95	11,1	26	260	3,31	12,5	3
262		-	-	-	-	84	1,77	4,8	8	166	1,82	9,5	20	214	2,25	15,8	25	284	2,92	13,7	34	320	3,27	15,4	4
302		66	1,47	3,7	5	105	1,70	6,0	11	180	1,74	10,3	23	231	2,12	17,6	31	303	2,71	14,6	38	338	3,07	16,3	4
342		72	1,48	4,0	3	117	1,68	6,7	7	162	1,76	9,3	12	256	2,12	19,3	37	336	2,78	16,2	32	374	3,06	18,0	;
372		-	-	-	-	172	1,69	9,8	10	217	1,77	12,4	16	279	2,19	22,0	47	367	2,83	17,7	31	407	3,09	19,6	3
402		-	-	-	-	-	-	-	-	243	1,75	13,9	20	311	2,13	24,0	55	408	2,72	19,6	37	451	3,02	21,7	4
432		-	-	-	-	183	1,71	10,4	11	267	1,78	15,3	23	343	2,18	7,7	34	447	2,77	21,5	44	490	3,04	23,5	
462		97	1,45	5,5	3	247	1,70	14,1	20	266	1,80	15,2	23	391	2,18	8,6	34	507	2,78	24,4	56	558	3,04	26,8	
522		-	-	-	-	236	1,69	13,4	18	332	1,75	19,0	35	426	2,13	9,4	31	554	2,70	26,6	65	609	2,99	29,2	
	50	-	-	-	-	-	-	-	-	43	1,57	2,5	3	138	1,95	11,3	37	187	2,65	9,0	19	211	2,99	10,2	
202		-	-	-	-	-	-	-	-	43	1,55		2	157	1,91	8,1	16	210		10,1	20	238	2,86	11,4	
232		-	-			66	1,52	3,9	6	70	1,62		6	1	1,96		17		2,62				2,95		
262		[-	-	-	70	1 40	4.0	-	100	1,67		8	207	1,98		21		2,62			l	2,94		
302 342			-			72 78	1,46		6	109	1,60		12	225		12,0		300		14,5		335		16,1	
342 372			-			/0	1,47	+,0	4	110	1,56 1,58		4 5	249 270	1,86	13,0		333 365	2,49 2,52			372 406	2,76	17,9	
372 402		[-	-	-	[-	-	-		1,58		5 6	302	1,89			405	2,52			449		21,6	
432		_	_	_	_	_	_	_	_	-	-	- ,3	-	333	1,92				2,51			490	2,74		
462		_	_	_	_	105	1,44	6.2	4	187	1,60		12	380	1,92			508	2,52			556	2,75		
522		_	_	_	_	-	-,		-	- 57	-		-	1	1,89				2,45			608		29,2	

 Legenda
 Legenda

 LWT
 Temperatura di uscita dell'acqua, °C

 Oh
 Potenzialità di riscaldamento, kW

 COP
 Coefficiente di prestazione energetica, kW/kW

 q
 Portata d'acqua dello scambiatore refrigerante-acqua, l/s

 Perdita di canco dello scambiatore refrigerante-acqua, kPa

Dati dell'applicazione:
Unità standard, refrigerante: R-410A
Salto termico dell'acqua attraverso lo scambiatore refrigerante-acqua: 5 K per LWT <50°C
Fluido in circolo attraverso lo scambiatore refrigerante-acqua: acqua
Fattore di sporcamento: 0,18 x 10⁴ (m² K)/W

Prestazioni secondo la norma EN 14511-3:2011.

Potenzialità di riscaldamento

30R0	Q 182-	_	B" unit													_									
		Tem -15 (peratui	ra di i	ngress	-10 (ello s	cambi	atore -7 (-8		rante	-aria, °	C, bs 2 (1)	(bu), °	C		7 (6)				12 (1	11)		
	LWT	Qh	'	a	Δр	Qh	COP	~	Δр	-/ (-c	COP	~	Δр	2 (1) Qh	COP	~	Δр	7 (6) Qh	СОР	_	Δр	Qh	COP	~	Δр
	°C	kW	kW/	ч l/s	kPa	kW		ч l/s	kPa	kW	kW/	•	kPa	kW	kW/	•	kPa	kW	kW/	•	kPa	kW		ч l/s	kPa
			kW				kW				kW				kW				kW				kW		
182	30	110	2,26	5,3	10	125	2,59	6,0	12	135	2,81	6,5	13	171	3,62	8,2	18	195	4,07	9,3	22	223	4,59	10,7	26
202		123	2,19	5,9	8	140	2,50	6,7	10	151	2,71	7,3	12	190	3,42	9,1	18	216	3,82		23	247	4,31	11,9	30
232 262		135 161	2,46	6,5	13 16	153 184	2,75 2.70	7,3 8.8	15 19	165 199	2,95 2.89	7,9 9.6	17 22	209 254	3,65	10,0	24	239 289	4,12	11,5	29 37	275 332	4,69 4.52	13,2 15,9	35 45
			-,	7,7			_,-	- , -	19 22	215	_,	- , -	22 25	271	3,35	12,2		307		13,9		350			
302 342		174 191	2,34	8,4 9,2	19 13	197 219	2,59 2,57	9,5 10,5	16	239	2,78 2,72	10,3 11,5	19	299	3,32	13,0 14,4	35 28	338	3,71 3,75	14,7 16,3	41 34	385	4,27 4,19	16,8 18,5	50 43
372		209	2,36	10,1	12	239	2,64	11,5	15	259	2,84	12,5	17	326	3,45	15,7	26	371	3,84	17,8	33	424	4,30	20,4	43
402		233	2,31	11,2	14	266	2,58	12,8	18	289	2,76	13,9	21	361	3,30	17,4	32	409	3,64	19,6	40	467		22,5	51
432		256		12.3	17	293	,	14.1	21	318		15.3	25	393		18,9	37	445	3.71		47	509	4,22		60
462		292	,	14.0	21	334	2,64	16.0	27	362	2,83	17,4	32	450	,	21.6	48	509	,	24.5	60	582	4.25		77
522		315	2,31	15,2	25	362	2,58	17,4	32	394	2,76	18,9	37	487	3,28	23,4	55	550	3,60	26,4	69	629	4,14	30,2	89
182	35	111	2.06	5.3	10	125	2.34	6.0	11	135	2.55	6.5	13	170	3.30	8.2	18	193	3.68	9.3	21	219	4.14	10.6	25
202		124	2,00	6,0	8	140	2,28	6,7	10	151	2,46	7,3	12	191	3,13	9,2	18	215	3,46	10,3	22	244	3,90	11,7	28
232		135		6,5	13	152	2,49	7,3	15	164	2,67	7,9	17	207	3,29	10.0		235	3,69		28	270		13,0	34
262		162	2,22	7,8	16	184	2,47	8,8	19	199	2,63	9,6	21	254	3,23	12,2	30	287	3,60	13,8	36	327	4,07	15,7	43
302		176	2,14	8,4	18	198	2,36	9,5	22	214	2,52	10,3	24	272	3,04	13,1	34	305	3,34	14,7	40	346	3,85	16,6	48
342		192	2,10	9,3	13	220	2,35	10,6	16	240	2,46	11,5	19	300	3,03	14,4	27	336	3,40	16,2	33	381	3,79	18,3	41
372		211	2,16	10,1	11	239	2,41	11,5	14	259	2,58	12,5	17	327	3,14	15,7	26	367	3,46	17,6	32	417	3,86	20,1	41
402		234	2,12	11,3	14	267	2,35	12,8	18	289	2,52	13,9	21	363	3,02	17,5	31	406	3,29	19,5	38	461	3,75	22,2	49
432		257	2,16	12,4	17	293	2,40	14,1	21	318	2,57	15,3	25	396	3,08	19,1	37	441	3,35	21,2	45	502	3,80	24,1	57
462		294	2,16	14,1	21	334	2,40	16,1	27	363	2,57	17,5	31	452	3,10	21,8	47	504	3,38	24,3	58	574	3,82	27,6	73
522		318	2,12	15,3	24	363	2,36	17,5	31	394	2,52	19,0	36	492	3,01	23,7	55	546	3,26	26,3	67	621	3,73	29,9	85
182	40	43	1,88	2,1	2	125	2,12	6,0	11	135	2,30	6,5	12	170	2,94	8,2	17	191	3,33	9,2	20	216	3,72	10,4	24
202		43		2,1	1	141	2,07	6,8	10	151	,	7,3	11	190	2,82		17	215	3,16		22	241		11,6	27
232		136		6,5	12	152	2,26	7,3	15	164	2,41	7,9	16	205	2,96	9,9	22	233	3,32	11,2	27	265	3,74	12,7	32
262		87	-,	4,2	6	184	2,25	8,9	19	198	2,39	9,5	21	252		12,1	29	287	3,26	13,8	35	322	3,65	15,5	41
302		147	1,97	7,1	14	198	2,15	9,5	21	214	2,29	10,3	24	271	2,76	13,1	33	304	3,02	14,6	39	341	3,45	16,4	46
342		159	1,95	7,6	9	220	2,14	10,6	16	240	2,23	11,6	18	300	2,74	14,4	27	336	3,09	16,2	32	377	3,42	18,2	39
372		-	-	-	-	239		11,5	14	258	2,34	12,4	16	328		15,8	25	367	3,14		31	410		19,8	38
402		-	-	-	-	267		12,9	17	289	2,29	13,9	20	365	2,76	17,6	31	406	3,00	19,6	38	454		21,9	47
432		-	-	-	-	293	2,19	14,1	21	318	2,33	15,3	24	401	2,83	19,3		442		21,3	44	494		23,8	54
462 522		258 246		12,4	16	334 363	2,19	16,1	26 31	362 394	2,34	17,4	31 36	456 498	2,84	22,0	47 55	503 548	3,07 2.97		56 66	565 612		27,2	70 81
182	45	240	1,97	11,8	15	49	2,16 1,95	17,5 2,4	3	134	2,07	19,0 6,5	12	167	2,62	24,0 8,1	55 16	190	3,00	26,4 9,2	20	213	3,35	29,5 10,3	23
202	40					49	1,93	2,4	1	105	2,02	5,1	6	188	2,54	9,1	17	213	2,86	10,3	21	239	3,19	11,6	26
232		71	1,81	3.4	5	152	2.04	7.3	14	163	2.17	7,8	16	202	2.64	9.7	21	230	2.97	11,1	26	260	3,33	12.5	31
262		- '	-	-	-	99	2,10	4.8	8	197	2.18	9.5	20	249	2.63	12,0	28	284	2.94	13,7	34	319	3.29	15.4	40
302		77	1.72	3.7	5	124	2.02	6.0	11	213	2.07	10.3	23	269	2.48	13.0	32	302	2.73	14.6	38	337	3.09	16.3	44
342		84	,	4,0	3	138	1,99	6,7	7	192	2.10	9,3	12	298	2.48	14,4	26	335	2,79	16,2	32	373	3,08	18,0	38
372		-	-	-		203	2,01	9.8	10	258	2,12	12,4	16	324	2.56	15.7	24	366	2,84	17,7	31	406	3,11	19.6	37
402		-	-	_	-	-	-	-	-	289	2,09	13,9	20	362	2,50	17,5	30	407	2,74	19,6	37	449	,	21,7	45
432		-	-	_	-	216	2.03	10,4	11	317	2,12		23	398		19,2	36	445		21,5	44	488		23,5	52
462		113	1,70	5,5	3	292	2,01	14,1	20	315	2,15	15,2	23	454	2,56	21,9	46	505	2,80	24,4	56	556	3,07	26,8	66
522		-	-	-	-	279	2,01	13,4	18	394	2,09	19,0	35	494	2,50	23,8	53	552	2,72	26,6	65	605	3,02	29,2	78
182	50	-	-	-	-	-	-	-	-	52	1,91	2,5	3	165	2,33	8,0	16	186	2,66	9,0	19	210	3,00	10,2	22
202		-	-	-	-	-	-	-	-	53	1,89	2,6	2	187	2,28	9,0	16	210	2,56	10,1	20	237	2,87	11,4	25
232		-	-	-	-	80	1,84	3,9	6	86	1,97	4,1	6	198	2,35	9,6	20	225	2,64	10,9	25	256	2,97	12,4	29
262		-	-	-	-	-	-	-	-	105	2,04	5,1	8	246	2,37	11,9	27	279	2,64	13,5	32	315	2,96	15,2	38
302		-	-	-	-	87	1,77	4,2	6	132	1,95	6,4	12	267	2,23	12,9	31	299	2,45	14,5	37	334	2,77	16,1	43
342		-	-	-	-	95	1,78	4,6	4	102	1,91	4,9	4	297	2,23	14,3	25	332	2,50	16,1	31	370	2,78	17,9	37
372		-	-	-	-	-	-	-	-	134	1,93	6,5	5	322	2,30	15,6	24	364	2,53	17,6	30	404	2,79	19,5	36
402		-	-	-	-	-	-	-	-	151	1,94	7,3	6	360	2,26	17,4	29	404	2,47	19,5	36	448	2,75	21,6	44
432		-	-	-	-	-	-	-	-	-	-	-	-	396	2,30	19,1		444	2,52		43	489			51
462		-	-	-	-	128	1,74	6,2	4	227	1,95	11,0	12	451		21,8	44	505	2,54		55	553		26,8	65
522		-	-	-	-	-	-	-	-	-	-	-	-	493	2,26	23,8	52	550	2,47	26,6	64	605	2,75	29,2	76

 Legenda

 LWT
 Temperatura di uscita dell'acqua, °C

 Oh
 Potenzialità di riscaldamento, kW

 COP
 Coefficiente di prestazione energetica, kW/kW

 Q
 Portata d'acqua dello scambiatore refrigerante-acqua, l/s

 Ap
 Perdita di canco dello scambiatore refrigerante-acqua, kPa

Dati dell'applicazione:
Unità standard, refrigerante: R-410A
Salto termico dell'acqua attraverso lo scambiatore refrigerante-acqua: 5 K per LWT <50°C
Fluido in circolo attraverso lo scambiatore refrigerante-acqua: acqua
Fattore di sporcamento: 0,18 x 10⁻⁴ (m² K)/W

Prestazioni lorde non secondo la norma EN14511-3:2011. Esse non tengono infatti contro delle correzioni dovute alla potenza termica sviluppata e la potenza assorbita dalla pompa per vincere le perdite di carico lato acqua dello scambiatore di calore.

Honeywell

Electrical Energy Meter with integrated M-Bus interface EEM400C-D-M

Electrical energy meter with integrated M-Bus interface enable the reading of all relevant data such as energy, current, voltage and power (active and reactive).

Main Features:

- 3-phase energy meter, 3 × 230/400 VAC 50 Hz
- Measurement through a current transformer up to 1500 A
- Display of active power, voltage and current for every phase
- Display of active power for all phases
- M-Bus Interface to retrieve the data
- Reactive power per phase or total, available via M-Bus Interface
- Up to 250 meters can be addressed trough primary addresses
- 7-digit display
- Can be sealed with sealing cap (optional)
- Accuracy class B according to EN50470-3, accuracy class 1 according to IEC62053-21

Order number:

Standard Version: EEM 400C-D-M MID Version: EEM400C-D-M-MID

EEM 400-SEALCAP (Bulk with 20 units) Sealing caps:

Technical data

Precision class	B according to EN50470-3, 1 according to IEC62053-21
Operating voltage	3 × 230 / 400 VAC, 50 Hz
	Tolerance –20%/+15%
Power consumption	Active 0.4 W per phase
Counting range	000'000.0999'999.9 1'000'0009'999'999
Display	LCD backlit, digits 6 mm high
Display without	Capacitor based LCD
mains power	max. 2 times over 10 days

Compressed

м			

Mounting	On 35 mm rail, according to EN60715TH35
Terminal connections main circuit	Conductor cross-section 1.5 – 16 mm², screwdriver pozidrive no. 1, slot no.2, torque 1.5–2 Nm
Terminal connections control circuit	Conductor cross-section max. 2.5 mm², screwdriver pozidrive no. 0, slot no. 2, torque 0.8 Nm
Insulation characteristics	4 kV / 50 Hz test according to VDE0435 for energy meter part
	6 kV 1.2/50 μs surge voltage according to IEC 255-4
	2 kV/50Hz test according to VDE0435 for interface
	Device protection class II
Ambient temperature	-25°+55°C
Storage temperature	−30°+85° C
Relative humidity	95% at 25°+40 ℃, without condensation
BMC/interference immunity	Surge voltage according to IEC61000-4-5: on main circuit, 4 kV on the M-Bus, 1 kV
	Burst voltage according to IEC61000-4-4: on main circuit 4 kV on the M-Bus 1 kV
	ESD according to IEC 61000-4-2: contact 8 kV, air 15 kV

CT measurement		51	500 A				
Reference/max. current	l _{ref} = 5 A, l _{reac} = 6 A						
Starting/minimum current		I _{st} = 10 mA, I _{mb} = 0.05 A					
Converter ratio	5:5	50:5	100:5	150:5			
	200:5	250:5	300:5	400:5			
	500:5	600:5	750:5	1000:5			
	1250:5	1500:5					
Pulses per kWh LED	10 lmp/kWh						

Honeywell

EW457 Series Mechanical Flowmeters

VOLUME MEASURING COMPONENT

PRODUCT DATA

Design

EW457 Series flowmeters consist of:

- · Housing with flanges
- · Woltman type mechanical flow measuring unit
- Rotatable counter
- · Replaceable reed switch

Materials

- · Valve housing made of cast iron, painted red
- Counter insert and flow measuring unit made of steel and plastic

Application

Honeywell EW457 Series mechanical flowmeters are used for flow measurement of heating water in hydronic heating

They are typically used with an EW545 Series energy calculator. The combination of flowmeter and energy calculator has the same functionality as a heatmeter. EW457 Series flowmeters are equipped with a reed switch for pulse output to a calculator.

Features

- · Installation in any position
- Very low pressure loss
- · Rugged design for longterm accuracy
- . Completely dry running design

Specifications

Medium
Medium temperature

Ambient temperature Storage temperature Operating pressure

Protection class
Measuring process

Display Units

Metrological class

Water, quality to VDI2035

0...120°C (32...248°F)

0...70°C (32...158°F)

-20...70°C (-4...158°F)

max. 16bar (232psi)

IP65

Woltman type mechanical volume

measurement

Mechanical counter

т³

C (EN1434 approval) A•H/V (National approval)

See chapter 'Approvals' below