

Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante

A. Coglitore, A. Strafella

Report RdS/PAR2015/039

PROVE DI CREEP-RUPTURE SU MATERIALI STRUTTURALI RICOPERTI PER APPLICAZIONI IN SISTEMI REFRIGERATI A METALLO LIQUIDO

A. Coglitore, A. Strafella (ENEA)

Settembre 2016

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA Piano Annuale di Realizzazione 2015 Area: Generazione di Energia Elettrica con Basse Emissioni di Carbonio Progetto: Sviluppo competenze scientifiche nel campo della sicurezza nucleare e collaborazione ai programmi internazionali per il nucleare di IV Generazione. Linea: Collaborazione ai programmi internazionali per il nucleare di IV Generazione Obiettivo: Materiali e fabbricazioni Responsabile del Progetto: Mariano Tarantino, ENEA

L

Titolo

PROVE DI CREEP-RUPTURE SU MATERIALI STRUTTURALI RICOPERTI PER APPLICAZIONI IN SISTEMI REFRIGERATI A METALLO LIQUIDO

Descrittori

Tipologia del documento: Collocazione contrattuale:	Rapporto Tecnico Accordo di programma ENEA-MSE su sicurezza nucleare e reattori di IV generazione
Argomenti trattati:	Caratterizzazione dei materiali Tecnologie dei materiali

In accordo con le attività svolte nel PAR2012 LP2 B1 dell' ADP ENEA-MSE nel PAR2013 LP2 B1 dell' ADP ENEA-MSE e del PAR2014 LP2 B1 dell' ADP ENEA-MSE, che avevano come obiettivo la caratterizzazione termomeccanica a lungo termine "CREEP-RUPTURE" di materiali strutturali convenzionali (acciai austenitici e acciai ferritici/martensitici) ricoperti a base di FeAI, FeCrAI e TiN simulando le condizioni operative tipiche del sistema LFR.

Sono state eseguite delle prove nelle seguenti condizioni del materiale di riferimento individuato nel ADP ENEA-MSE PAR2013 LP2.b1_h, T91:

- 550°C; 281MPa; in aria (test preliminare)
- 550°C; 247MPa; in aria;
- 550°C; 212MPa; in aria;
- 550°C; 212MPa; in Pb.

Aut	tori					
A. C	oglitore, A. Strafella	l				
Сорі	ia n.		In carico	a:		
2			NOME			
_			FIRMA			
1			NOME			
			FIRMA			
0	EMISSIONE	26/09/2016	NOME	A. Coglitore	M. Tarantino	M. Tarantino
•	EINISSIONE	20/03/2010		A. Strafella		
			FIRMA ;	Ander for	Ma Marion Maho	Marion Maho
REV.	DESCRIZIONE	DATA		REDAZIONE	CONVALIDA	APPROVAZIONE

di

19

2

Indice

1. Int	roduzione	
2. Te	st di CREEP-RUPTURE su T91	
2.1	Parametri della prova	5
2.2	Test di creep sul campione [272] PM58112	6
2.3	Test di creep sul campione [273] PM58212	
2.4	Test di creep sul campione [274] PM58312	9
2.5	Test di creep sul campione [275] PM58412	11
3. Ris	sultati	13
3.1	Confronto prove in aria	13
3.2	Confronto prova in aria e prova in piombo a 212MPa	15
3.3	Analisi delle steady-state creep rate (sscr)	
4. Co	nclusioni	17
5. Bib	oliografia	
6. All	egato A	19

1. Introduzione

Nell'ambito del PAR2015, in accordo con i rapporti tecnici dal titolo "Messa a punto di prove meccaniche in piombo liquido stagnante per la caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari" relativo al PAR2012 LP2 B1 dell' ADP ENEA-MSE e "Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante" relativo al PAR2013 LP2 B1 e del PAR2014 LP2 B1 dell' ADP ENEA-MSE, che aveva come obiettivo di caratterizzare con prove termomeccaniche a lungo termine "CREEP-RUPTURE" materiali strutturali convenzionali (acciai austenitici e acciai ferritici/martensitici) ricoperti a base di FeAl, FeCrAl e TiN simulando le condizioni operative tipiche del sistema LFR, ENEA ha eseguito i test in aria ed in metallo liquido per verificare quanto incide la corrosione del piombo sui materiali presi come riferimento

In particolar modo, nell'ambito del PAR2015 è stato individuato come materiale da testare il [T91]. Basandosi sulle ricerche bibliografiche effettuate e su un primo test preliminare nelle condizioni.

• 550°C, 281MPa, in aria,

si è scelto di effettuare le seguenti prove, attualmente ancora in corso:

- 550°C; 247MPa; in aria;
- 550°C; 212MPa; in aria;
- 550°C; 212MPa; in Pb.

Le curve risultanti sono state quindi elaborate e confrontate fra loro.

2. Test di CREEP-RUPTURE su T91

I test di creep sono stati eseguiti con lo strumento MAYER & SON T.C. 20 che ha le seguenti caratteristiche:

- Carico max applicabile: 20kN
- \succ T_{max} \approx 1000 °C

Di seguito alcune foto che illustrano il posizionamento del campione nello strumento in aria (figura 1,2,3 e 4) e <u>in piombo</u> (figura 5 e 6).

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
Ricerca Sistema Elettrico	ADPFISS – LP2 – 128	0	L	4	19

Figure 1, 2, 3 e 4: montaggio campioni in aria

Figure 5 e 6: montaggio campioni in Pb

2.1 Parametri della prova

I parametri principali per il test di creep sono la temperatura ed il carico.

La temperatura scelta è **550**° **C**, in accordo con quanto esposto nel rapporto tecnico ADPFISS – LP2 –066 relativo al PAR2013 dell' ADP ENEA-MSE.

Le prove a trazione sul materiale di riferimento, T91, hanno fornito informazioni utili per l'individuazione di opportuni carichi per il test di Creep. In particolare, si è scelto di adoperare **carichi** minori dello stress di snervamento (σ_{sn} = 360MPa, vedi Allegato A):

- 281MPa
- 247MPa
- 212MPa

È stato condotto anche un test in piombo:

• 212 MPa

I risultati dei test sono riportati di seguito.

2.2 Test di creep sul campione [272] PM58112

Il primo test, preliminare e adoperato come termine di confronto per stabilire i carichi dei test successivi, è stato effettuato nelle seguenti condizioni:

- $T = 550^{\circ}C$ •
- $\sigma = 281 \text{MPa}$
- Nome campione: [272] PM58112
- Ambiente di prova: Aria

Le curve risultanti dalla registrazione dei trasduttori (A e B) e la loro media sono riportate nella figura seguente (figura 7).

Figura 7: curva di creep relativa al campione [272] PM58112

Per il campione in esame si è giunti sino a rottura, avvenuta a 125 h.

È stato quindi calcolato uno dei parametri più importanti del test di creep: la steady state creep rate (sscr), ossia la velocità di deformazione del creep secondario che è l'unica velocità costante nel tempo.

Figura 8: fit lineare e sscr

Come risulta evidente dalla figura 8, il secondario è ben definito e la sscr è stata quindi calcolata con un'elevata attendibilità, utilizzando il metodo del fit lineare nel secondario (tabella 1).

σ[MPa]	Sscr [%/h]	Metodologia calcolo
281	0,014	fit lineare

Avendo avuto una rottura del campione in tempi brevi per un test di creep (125h), si è deciso di diminuire il carico applicato al campione, nei test successivi.

2.3 Test di creep sul campione [273] PM58212

La prova successiva è stata condotta con carico inferiore al fine di avere una durata del test che superasse le 1000h. In particolare:

- $T = 550^{\circ}C$ •
- $\sigma = 212 MPa$
- Nome campione: [273] PM58212
- Ambiente di prova: Aria

La curva risultante è riportata nella figura seguente (figura 9).

Figura 9: curva di creep reale e curva di smoothing relativa al campione [273] PM58212

Anche per questa prova è stata calcolata la sscr, mediante il metodo del fit lineare (figura 10).

		Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENER	Ricerca Sistema Elettrico	ADPFISS – LP2 – 128	0	L	9	19

Figura 10: fit lineare e sscr

σ[MPa]	Sscr [%/h]	Metodologia calcolo
212	7,43*10 ⁻⁵	fit lineare

Tabella 2

Il valore della sscr trovato (tabella 2) è da verificare con il procedere della prova: si può ipotizzare, con elevata probabilità, che sia iniziata la fase del secondario; tale affermazione dovrà essere validata dopo un numero sufficientemente grande di ore o a fine test.

2.4 Test di creep sul campione [274] PM58312

Al fine di simulare il comportamento del materiale in ambiente ostile, è stata effettuata una prova di creep in Pb. Il carico applicato è stato 212MPa, analogo al campione [273] PM

PM58212. Questo ha permesso di valutare la variazione delle proprietà a creep dovuta alla corrosione del Pb.

I parametri utilizzati per il test sono stati:

- $T = 550^{\circ}C$
- $\sigma = 212 MPa$
- Nome campione: [274] PM58312
- Ambiente di prova: Piombo

Le curve risultanti dalla registrazione dei trasduttori (A e B) e la loro media sono riportate nella figura seguente (figura 11).

Figura 11: curve di creep reale relativa al campione [274] PM58312

Anche per questa prova è stata calcolata la sscr, mediante il metodo del fit lineare (figura 12).

σ[MPa]-Pb	Sscr [%/h]	Metodologia calcolo
212	1,73*10 ⁻⁴	fit lineare

Tabella 3

Per il test in esame, la fase di secondario è ben definita; la sscr, quindi, a meno di un errore dell'ordine di 10⁻⁶, risulta attendibile (tabella 3).

2.5 Test di creep sul campione [275] PM58412

Per poter validare la retta sscr- σ in aria del T91 (vedi paragrafo 3.5), si è deciso di effettuare un test ad un valore intermedio di σ rispetto a quelli applicati per i test precedenti. In particolare:

- $T = 550^{\circ}C$
- $\sigma = 247 MPa$
- nome campione: [275] PM58412 .
- Ambiente di prova: Aria

La curva risultante è riportata nella figura seguente (figura 13).

Figura 13: curva di creep reale relativa al campione [275] PM58412

Allo stato attuale, il test in esame ha un tempo di monitoraggio di sole 85h.

Pertanto non è ancora possibile calcolare con un sufficiente grado di certezza la sscr; tuttavia, è stato estrapolato un modello che poi verrà validato dalla curva finale:

• Curva di creep= curva esponenziale + Retta passante per l'origine (figure 14 e 15)

Figure 14 e 15: ipotesi di fit lineare e sscr

Da questa estrapolazione, la sscr risulta essere:

σ[MPa]-Pb	Sscr [%/h]	Metodologia calcolo	
212	1,40*10 ⁻³	Estrapolazione curva e	
		fit lineare	

Tabella 4

Il dato ottenuto (tabella 4), per quanto ipotetico, sembra confermare la retta sscr- σ in aria del T91 (vedi paragrafo 3.2).

3. Risultati

3.1 Confronto prove in aria

La figura 16 illustra tutte le curve ottenute per i test di Creep effettuati in aria.

Figura 16: confronto curve di creep in aria

I risultati sono coerenti con le aspettative. Si può infatti notare come all'aumentare del carico aumentino le velocità di deformazione; conseguentemente si ha che a parità di tempo (es. 100h), aumenti la deformazione (da 0,15% per il [273] a 1,78% per il [272]) e a parità di deformazione (es. 0,50%), il tempo diminuisca (da 1707h per il [273] a 20h per il [272]).

Si è riusciti a portare a rottura in tempi accettabili solo il campione sottoposto a 281MPa.

Gli altri due test, pur non essendo arrivati a rottura in tempi compatibili con il presente rapporto tecnico, hanno fornito importanti informazioni sul secondario.

Il calcolo della steady state creep rate (sscr) è infatti coerente con le aspettative: molto lenta per sollecitazioni basse, aumenta all'aumentare del carico.

Nella tabella 5 sono ripotate le sscr relative alle tre prove in aria.

σ [MPa]	Sscr [%/h]
281	1,40*10 ⁻²
247	1,39*10 ⁻³
212	7,34*10 ⁻⁵

Tabella 5

3.2 Confronto prova in aria e prova in piombo a 212MPa

La figura 17 illustra le curve ottenute per i test di Creep effettuati a 212MPa in ambienti diversi: aria e piombo.

Figura 17: confronto curva di creep in aria e in piombo

Come evidenziato dalla figura 17, i risultati sono coerenti con le aspettative, in quanto per il test in Pb si ha un aumento della sscr quindi un decremento delle proprietà a creep. Nella tabella 6 sono ripotate le sscr relative alla prove in aria e in piombo a 212MPa.

σ [MPa]	Sscr [%/h]		
	Aria	Piombo	
212	7,34*10 ⁻⁵	1,73*10 ⁻⁴	

Tabella 6

La valuzione complessiva dell'effetto corrosivo del piombo sul T91 e la sua reale influenza sulle proprietà a creep verrà fatta a valle della campagna sperimentale, attualmente in corso.

3.3 Analisi delle steady-state creep rate (sscr)

Nel grafico bilogaritmico sscr-stress in figura 18, sono state riportate le sscr determinate per ogni singolo test effettuato, sia in aria che in Piombo.

Mediante fit lineare, per i test in aria, sono stati calcolati i parametri n ed A della legge di Norton che è ad oggi quella più usata per lo stadio secondario del creep. Viene riportata di seguito:

$$\dot{\epsilon}_{ss} = A^* \sigma^r$$

dove $\dot{\epsilon}_{ss}$ è la steady state creep rate, **n** è l'esponente dello sforzo, **A** include i parametri della microstruttura del materiale e σ è lo stress applicato.

Figura 18: grafico bilogaritmico sscr-stress

n	Α			
18,50	5,98*10 ⁻⁴⁸			

Tabella 7

L'attendibilità dei risultati ottenuti (tabella 7) è confermata da quanto trovato in letteratura per gli acciai al 9% Cr^[1].

4. Conclusioni

Nell'ambito del ADP ENEA-MSE PAR2015 LP2.b1 sono state svolte le seguenti attività:

- realizzazione ed ultimizzazione dell'attrezzatura necesaria per la realizzazione della • facilty di prova per poter effettuare i test di creep-rupture in piombo;
- test di CREEP in aria di un acciaio ferritico-martensitico T91 a tre differenti livello di carico (281, 247 e 212MPa);
- test di CREEP in piombo di un acciaio ferritico-martensitico T91 a 212MPa •
- confronto dei risultati ottenuti
- determinazione dei parametri del secondario per i test in aria, in accordo con la legge • di Norton

Le curve ed i dati delle sscr ottenuti risultano in linea con le aspettative.

Dall'analisi dei risultati, è stata, inoltre, ricavata la curva sscr-stress in aria, utile per una futura progettazione con questo materiale.

Il proseguimento della campagna di prove prevede test in Pb, al fine di ottenere una analoga curva sscr-stress in ambiente ostile.

5. Bibliografia

- [1] "Modello CDM impiegato nella previsione del comportamento a creep dell'acciaio ASTM P91" L. Esposito, L. Cipolla, A. Ruggiero -AIAS ANCONA 2006
- [2] New improved steel grades for the future nuclear energy production P.Gimondocongresso Vilnius 17 October 2013
- [3] bomet.fci.unibo.it/pal/Doc_6.PDF
- [4] PAR2013 LP2 B1 ADP ENEA-MSE "Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante" ADPFISS - LP2 - 066
- [5] Atlas of creep and Stress-rupture curves ASTM International-Howard E. Boyer
- [6] ASTM E139-11 Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
- [7] ASTM E8-13a Standard Test Methods for Tension Testing of Metallic Materials

6. Allegato A

Ldb Frows Wescaniche C.R. Bresmane 40032 Camigsano (Bo) Tel 0534-801143-801204	Data: Tipo test: Lotto campioni: Temperatura test: Estensimetro; Macchina: Cella di carico; Variabile di controllo;	3 giugno 2013 Trazione con estensimetro T 91 Tarantino Cristalli 550 °C Est MTS 632.41C-11 MetrocoM 50 kN Corsa				
Materiale:	Caratteristiche del camp	ione				
Т 91	campione vergine					

	Nome del campione	Fs 0,2% [kN]	Ft [kN]	Fmax [kN]	Fu [kN]	O s0,2% [N/mm²]	O t [N/mm²]	O max [N/mm ²]	O u [N/mm²]	E [N/mm²]	Agt [%]
1	[141] PM 44912	10,12	10,86	11,36	3,45	359,27	385,52	403,10	122,49	168782	4,2
2	[142] PM 45012	10,88	11,83	12,71	3,97	384,76	418,23	449,45	140,54	177706	3,7
3	[143] PM 45112	10,82	11,61	11,69	3,51	383,91	411,95	415,00	124,53	181305	2,1
4	[144] PM 45212	10,47	11,33	11,46	3,45	371,46	402,23	406,58	122,31	177681	1,8
5	[145] PM 45312	9,97	10,95	11,06	1,67	353,69	388,40	392,48	59,13	194593	1,8
6	[146] PM 45412	10,22	11,13	11,28	1,70	359,08	391,12	396,33	59,85	173916	2,1
7	[147] PM 45512	10,56	11,30	11,46	1,16	374,68	401,02	406,78	41,24	141057	1,8
8	[148] PM 45612	10,16	10,87	10,94	1,10	360,42	385,58	388,28	39,06	151227	1,8
9	[149] PM 45712	9,88	10,81	10,89	1,10	349,47	382,26	385,04	38,87	197773	2,4
10	[150] PM 45812	9,86	10,52	10,58	1,07	348,55	372,17	374,35	37,89	144793	1,8
11	[151] PM 45912	9 <mark>,</mark> 54	10,19	10,23	1,03	337,55	360,53	361,77	36,29	151135	2,0
	Media	10,23	11,04	11,24	2,11	362,08	390,82	398,11	74,75	169088,0	2,32