

Raccolta delle Lecture del Workshop Tematico "LFR-Gen IV: Stato attuale della tecnologia e prospettive di sviluppo"

Mariano Tarantino

Report RdS/PAR2015/051

RACCOLTA DELLE LECTURE DEL WORKSHOP TEMATICO "LFR GENERATION IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO"

Mariano Tarantino (ENEA)

Settembre 2016

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA Piano Annuale di Realizzazione 2015 Area: Generazione di Energia Elettrica con Basse Emissioni di Carbonio Progetto: Sviluppo competenze scientifiche nel campo della sicurezza nucleare e collaborazione ai programmi internazionali per il nucleare di IV Generazione. Linea: Collaborazione ai programmi internazionali per il nucleare di IV Generazione Obiettivo: Comunicazione e diffusione dei risultati Responsabile del Progetto: Mariano Tarantino, ENEA

ENEN Ricerca Sistema Elettrico

Titolo

RACCOLTA DELLE LECTURE DEL WORKSHOP TEMATICO "LFR GENERATION IV STATO ATTUALE DELLA TECNOLOGIA E **PROSPETTIVE DI SVILUPPO**"

Descrittori

Tipologia del documento:	Rapporto Tecnico
Collocazione contrattuale:	Accordo di programma ENEA-MSE su sicurezza nucleare e
	reattori di IV generazione
Argomenti trattati:	Generation IV reactors

Sommario

Presso il CR ENEA Brasimone dal 19 al 20 novembre 2015 si è svolto il Workshop tematico dal titolo "LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO", organizzato da ENEA in collaborazione con le principali università italiane che svolgono attività di ricerca in campo nucleare. Il Workshop, promosso nell'ambito delle attività inerenti la Linea Progettuale 2 "Collaborazione internazionale per il nucleare di IV generazione" dell'AdP MSE-ENEA, assume il duplice obiettivo di condividere lo stato dell'arte dei sistemi LFR tra gli stakeholder italiani definendo al contempo, in maniera condivisa e sinergica con il contesto Europeo, le linee di intervento future in ambito LFR

Note

Autori: M. Tarantino

Copia n.

In carico a:

2			NOME			
2		FIRMA				
1			NOME			
-			FIRMA			
0		26/00/16	NOME	M. Tarantino	A. Del Nevo	M. Tarantino
Ŭ	EMISSIONE	20/03/10	FIRMA	Marion Inthes	Albo KIM	Marian Inthes
REV.	DESCRIZIONE	DATA		REDAZIONE	CONVALIDA	APPROVAZIONE

di

5

Sommario

1	LFR-GEN IV Stato attuale della tecnologia e prospettive di sviluppo	3
2	ALLEGATI	5

1 LFR-GEN IV Stato attuale della tecnologia e prospettive di sviluppo

Dal 19 al 20 novembre 2015, presso il CR ENEA Brasimone, si è tenuto il Workshop tematico dal titolo "LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO", organizzato da ENEA in collaborazione con le principali università italiane che svolgono attività di ricerca in campo nucleare.

Il Workshop, promosso nell'ambito delle attività inerenti la Linea Progettuale 2 "Collaborazione internazionale per il nucleare di IV generazione" dell'AdP MSE-ENEA, è stato finalizzato ad:

- Analizzare lo stato progettuale della tecnologia dei sistemi LFR partendo dal lavoro svolto in ambito ADP;
- la programmazione delle attività future, definendo le priorità di intervento in ambito italiano in maniera che siano sinergiche al contesto europeo ed internazionale (l'entrata della Cina nel settore);
- armonizzazione le strategie di sviluppo mediante l'incontro di tutti gli stakeholder italiani.

Fig. 1: Ingresso al CR ENEA Bologna

L'Italia, grazie all'ENEA, ANSALDO NUCLEARE e con il contributo fondamentale del CIRTEN, continua a conservare la leadership internazionale sulla progettazione e sullo sviluppo tecnologico dei sistemi LFR, nonostante il sempre più ampio interesse (accompagnato da ingenti investimenti economici) di altri Paesi quali ad esempio la Cina.

Ciò è stato possibile grazie ai continui sforzi fatti da ENEA (che ha sfruttato efficacemente i fondi dell'ADP), sia per accrescere e migliorare le proprie infrastrutture di ricerca (Brasimone e Casaccia), sia per rafforzare le proprie capacità e competenze sulla progettazione dei sistemi nucleari innovativi. (es. gruppo core design di Bologna).

Facenti parte del comitato organizzatore troviamo M. Tarantino, responsabile della divisione di Ingegneria sperimentale del dipartimento di fusione e tecnologie per la sicurezza industriale (FSN-ING), A. Del Nevo responsabile del laboratorio di

ENEN Ricerca Sistema Elettrico

progettazione e analisi nucleari (FSN-ING-PAN), I. Di Piazza responsabile del laboratorio di termoidraulica sperimentale (FSN-ING-TESP) ed infine A. Masinara, amministrativa gestionale presso l'ente di ricerca ENEA Brasimone.

I 65 rappresentanti (Allegato 1) di cui 35 rappresentanti delle più prestigiose università italiane (Bologna, Firenze, Milano, Pisa, Torino, Treviso), 20 rappresentanti dell'Agenzia Italiana per le Nuove Tecnologie l'Energia e lo Sviluppo Economico Sostenibile e 10 rappresentanti delle eccellenze industriali presenti sul territorio nazionale (Istituto Italiano di Tecnologia, Ansaldo Nucleare, CSM s.p.a. Hydromine Inc.), sono stati accolti presso la sala conferenze del Centro Informazione ENEA (Figura 2) ubicato sulle rive del lago Brasimone.

Fig. 2: Centro informazioni ENEA

L'agenda del Workshop (Allegato 2) è stata suddivisa in 6 sessioni. All'interno della sessione di apertura sono state presentate le strategie e prospettive nazionali sui reattori di quarta generazione refrigerati a piombo liquido (P. Agostini). Inoltre, è stata fornita un'ampia panoramica sullo stato attuale e sulle problematiche ancora aperte relative alla progettazione del reattore dimostratore ALFRED (Advanced Lead Fast Reactor Demonstrator). A seguire le sessioni Progettazione di Sistema e Analisi di Sicurezza, Materiali strutturali e Controllo della Chimica. Il giorno seguente, sono state trattate le tematiche inerenti alla Termoidraulica del refrigerante e lo sviluppo e applicazione di codici di calcolo per sistemi LFR.

2 ALLEGATI

- 1. LISTA DEI PARTECIPANTI AL CONGRESSO
- 2. AGENDA
- 3. CONTRIBUTI PRESENTATI NELLE VARIE SESSIONI

ALLEGATO 1

Lista dei partecipanti

Allegato 1

NOME	COGNOME	ISTITUTO
Mariano	Tarantino	ENEA
Francesca	Lamastra	UNITV
Massimiliano	Polidori	ENEA
Francisco	Garcia Ferrè	IIT
		Hydromine
Luciano	Cinotti	Inc.
Mario	Bragaglia	UNITV
Daniele	Martelli	UNIPI
Stefano	Lorenzi	POLIMI
Mario	Carta	ENEA
Augusto	Gandini	UNIROMA-1
Francesca	Nanni	UNITV
Valentina	Fabrizio	ENEA
Ranieri	Marinari	UNIPI
Marica	Eboli	UNIPI
Massimo	Angiolini	ENEA
Patrizio	Console Camprini	ENEA
Alessandro	Venturini	UNIPI
Alessandra	Bellucci	CSM
Stefano	Lionetti	CSM
Emanuela	Martelli	UNIROMA-1
Francesco	Lodi	UNIBO
Gioacchino	Micichè	ENEA
Andrea	Giovinazzi	UNIPI
Fabio	Di Fonzo	ΙΙΤ
Matteo	Vanazzi	IIT
		Hydromine
Giuseppe	De Antoni	Inc.
Saverio	Nitti	ENEA
Antonio	Cervone	ENEA
Simone	Mannori	ENEA
Davide	Rozzia	UNIPI
Gianfranco	Caruso	UNIROMA-1
Francesco	Edemetti	UNIROMA-1
Vincenzo	Narcisi	UNIROMA-1
Alessandro	Tassone	UNIROMA-1
Paolo	Balestra	UNIROMA-1
Antonio	Naviglio	UNIROMA-1
Carlo	Cristalli	ENEA
Paola	Parente	ENEA
Carlo	Cerminara	UNIFI
Roberto	Da Via	UNIBO
Filippo	Menghini	UNIBO
Daniele	Cerroni	UNIBO
Sandro	Manservisi	UNIBO
Marco	Beghi	POLIMI

Edoardo	Besozzi	POLIMI
Laura	Savoldi	POLITO
Roberto	Zanino	POLITO
Alessandro	Del Nevo	ENEA
lvan	Di Piazza	ENEA
Pietro	Agostini	ENEA
Elena	Macerta	POLIMI
Mario	Mariani	POLIMI
Stefano	Cervino	POLIMI
Mauro	Cappelli	ENEA
Morena	Angelucci	UNIPI
Luigi	Lepore	UNIROMA-1
Dominic	Caron	POLITO
Fabio	Moretti	UNIPI
Paride	Meloni	ENEA
Felice	De Rosa	ENEA
Marco	Utili	ENEA
Dario	Diamanti	ENEA
		Hydromine
Giovanni	Corsini	Inc.
Piero	Gaggini	
		Hydromine
Leonardo	Presciuttini	Inc.

ALLEGATO 2

Agenda

WORKSHOP TEMATICO

LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

ADP ENEA-MSE (PAR2014-LP2)

Brasimone, 19-20 Novembre, 2015

Centro Ricerche ENEA Brasimone

Presso il CR ENEA Brasimone si terrà, dal 19 al 20 Novembre 2015, un Workshop tematico dal titolo "LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO", organizzato da ENEA in collaborazione con le principali università italiane che svolgono attività di ricerca in campo nucleare.

Il Workshop, promosso nell'ambito delle attività inerenti la Linea Progettuale 2 "Collaborazione internazionale per il nucleare di IV generazione" dell' AdP MSE-ENEA, è finalizzato a :

- > analizzare lo stato attuale della tecnologia dei sistemi LFR partendo dal lavoro svolto in ambito ADP;
- *supportare la programmazione delle attività future, definendo le priorità di intervento in ambito italiano ed europeo;*
- > armonizzazione le strategie di sviluppo mediante l'incontro di tutti gli stakeholder italiani.

Il Workshop assume quindi il duplice obiettivo di condividere lo stato dell'arte dei sistemi LFR tra gli stakeholder italiani definendo al contempo, in maniera condivisa e sinergica con il contesto Europeo, le linee di intervento future in ambito LFR.

Comitato Organizzatore

M. Tarantino A. Del Nevo I. Di Piazza D. Martelli A. Masinara mariano.tarantino@enea.it alessandro.delnevo@enea.it ivan.dipiazza@enea.it daniele.martelli@ing.unipi.it annamaria.masinara@enea.it

GIOVEDÌ 19 NOVEMBRE, 2015

	Ora	TITOLO	SPEAKER
А	9,00	Sessione di Apertura	Chair: M. Tarantino
A-1	30'	Sviluppo dei Sistemi LFR: strategie e prospettive	P. Agostini
A-2	30'	DEMO-LFR ALFRED: Technical Overview M. lamele	
1	10,00	Progettazione di Sistema e Analisi di Sicurezza	Chair: A. Del Nevo
1-1	20'	TAPIRO Fast Reactor. Feasibility study of minor actinides irradiation campaign	M. Carta
1-2	20'	Il codice ERANOS per le analisi perturbative e di sensitività in supporto allo sviluppo dei reattori veloci	A. Gandini
1-3	20'	Characterization of the ALFRED core configuration and on the viability of In-Vessel Storage	F. Lodi
	11,00-11,30	Coffe Break	
1-4	20′	Supporto alla progettazione del combustibile nucleare per il reattore LFR.	S. Lorenzi
1-5	20'	Influenza della conducibilità nella simulazione del fuel MOX con il codice TRANSURANUS	D. Rozzia
1-6	20'	Sviluppo e validazione di un approccio e di modelli per l'analisi di sicurezza di reattori veloci di IV generazione	E. Martelli
1-7	20'	Verifica di fattibilità di sonde commerciali per la misura dei flussi neutronici. Proposta di studio teorico-sperimentale di SPND innovativi ottimizzati per reattori LFR.	L. Lepore
1-8	20'	Studio delle interazioni tra combustibile, prodotti di fissione e refrigerante in sistemi LFR	E. Macerata
1-9	20'	Valutazione degli effetti dinamico-strutturali indotti dal fenomeno del "core compaction"	R. Lo Frano
	13,30-15,00	Pranzo	
2	15,00	Materiali Strutturali e Controllo della Chimica	Chair: M. Angiolini
2-1	20'	Qualifica coating e materiali strutturali per sistemi LFR	M. Angiolini
2-2	20′	Sviluppo di ricoperture a base di FeCrAl per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo	A. Bellucci
2-3	20'	Sviluppo di ricoperture per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo mediante tecniche di ablazione laser	F. Di Fonzo
2-4	20'	Report sulla caratterizzazione di rivestimenti mediante prove di irraggiamento con ioni pesanti	F. Garcia Ferrè
2-5	20'	Report sulla caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari	F. Lamastra
	16,40-17,00	Coffee Break	
2-6	20'	Prove di corrosione in piombo stagnante e fluente e controllo dell'ossigeno in impianti a piombo	S. Bassini
2-7	20′	Characterization of mechanical properties and corrosion behavior in lead of DS4 steel	C. Cristalli
2-8	20'	Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante	A. Coglitore
	18,00	Fine dei Lavori	

Cena (ore 20,00)

VENERDÌ 20 NOVEMBRE, 2015

	Ora	TITOLO	SPEAKER
3	9,00	TERMOIDRAULICA DEL REFRIGERANTE	CHAIR: M. TARANTINO
3-1	20'	ALFRED-SGTR. HERO Test Section on CIRCE facility.	D. Rozzia
3-2	20'	Leak before break in HLM steam generator	A. Del Nevo
3-3	20'	Flow Blockage experimental studies in HLM systems	R. Marinari
3-4	20'	Experimental tests on the HLM facility NACIE-UP	M. Angelucci
	10,20-10,50	Coffee Break	
3-5	20′	Mixing and Stratification in HLM large pool	M. Tarantino
3-6	20'	Preliminary analysis of CIRCE by CFD codes	D. Martelli
3-7	20'	Pre-test CFD analysis of the rod bundle experiment in the HLM facility NACIE-UP	R. Marinari
3-8	20'	Pre-test Analysis of SGTR event on large scale experimental facility by SIMMER-IV code	A. Pesetti
4	12,10	SVILUPPO E APPLICAZIONE DI CODICI DI CALCOLO PER I SISTEMI LFR	CHAIR: P. MELONI
4-1	20'	Advances in the development of the code FRENETIC for the coupled dynamics of lead-cooled reactors	D. Caron
4-2	20'	System codes applications to HLM nuclear systems	G. Caruso
	13,20-14,30	Pranzo	
4-3	20'	Verifica e validazione preliminare sull'accoppiamento del codice di calcolo RELAP5-3D e il codice CFD CFX	F. Moretti
4-4	20'	Verifica e validazione preliminare sull'accoppiamento del codice di calcolo RELAP5/Mod.3.3 e il codice CFD Fluent	D. Martelli
4-5	20'	FEMLCORE-CATHARE coupling on SALOME platform	S. Manservisi
4-6	20'	Revisione della validazione del codice T/HCATHARE2 attraverso il benchmark LACANES	M. Polidori
		CONCLUSIONI E SVILUPPI FUTURI	Chair: P. Agostini
	16,30	Fine del Workshop	

ALLEGATO 3

Contributi presentati nelle varie sessioni

Sviluppo dei sistemi LFR: strategie e prospettive

P.Agostini Brasimone, 20 Novembre 2015

Strategia per ALFRED

European frame: ALFRED in ESNII

Presented by N.Camarcat on 29 september

THE FALCON CONSORTIUM

Fostering ALfred CONstruction

- 30 months
- Unincorporated consortium

FALCO

- In-kind contributions
- Optimize the cooperation
- Areas: <u>strategic</u>, <u>management</u> <u>governance</u>, <u>financial</u> and <u>technical aspects</u>
- Detailed agreement
- <u>R&D needs management</u>
- Engineering design
- Licensing, and
- Commit the construction

Signature ceremony Dec 18th 2013

THE FALCON CONSORTIUM IS EXTENDED TO JUNE 2016

ENER AGENZIA NAZIONALI

Richiesta che ALFRED venga classificato come Major Project (oltre 50Meuro)

- Il 29 Ottobre, G.Villabruna di Ansaldo ha incontrato il ministro rumeno dell'Energia e la D.G. Elena Popescu
- Nella riunione G.V. ha sollecitato l'inserimento di ALFRED tra i "Major Projects" ricevendo un feedback positivo
- Il 4 Novembre, a causa delle dimissioni del primo ministro, il Memorandum, già firmato dal ministro dell'Energia e da quello dell'Educazione/Ricerca, si è arrestato presso il ministero dei fondi europei.
- Il 13 Novembre il Memorandum firmato dai tre Ministri e' stato portato alla riunione del Consiglio dei Ministri, ma, su indicazione del Ministero della Giustizia, non e' stato discusso in quanto essendoci un Governo ad interim non poteva essere approvato.
- Attendiamo la formazione del nuovo governo in Romania

- Il piccolo reattore svedese (ELECTRA) era già presente nella roadmap LFR.
- Nel 2013 il finanziamento fu cancellato dal governo svedese
- Il 20 Ottobre ENEA è stato contattato da Janne Wallenius, CEO della Lead Cool inc. per collaborare allo sviluppo del progetto SEASON: Small, Efficient And Safe Options for Nuclear
- Viene proposto di applicare ad NFRP 4 della recente call EURATOM

Prossime azioni nel Consorzio FALCON

- Sussistono ancora incertezze sulle modalità di accesso ai fondi strutturali europei ed incertezza sull'entità richiedibile. Saranno intensificati i contatti con le autorità Rumene
- Sono stati accumulati ritardi sull'avviamento delle attività tecniche incluse negli agreement of collaboration. E' urgente definire e pianificare le attività in kind da affidare ai sottoscrittori
- Sono in preparazione le proposte per i progetti di R&D della call EURATOM Fissione. E' necessario armonizzare in essa i contenuti degli agreement of collaboration
- Si prevede partecipazione significativa a progetti su:
 - sicurezza, gen IV
 - materiali,
 - SMR.

Stato delle collaborazioni in corso

Participazione a GIF -GEN IV Forum-

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

l paesi con interesse LFR in GIF sono: Europa, Russia, USA, Giappone, Corea

Collaborazione con USA

Fiscal Year 2016 Request: \$908M

- Reactor Concepts (\$108M)—Expands light water reactor sustainability efforts to maintain carbon free generation of the current fleet and supports development of non-water cooled reactor systems.
- **Small Modular Reactors** (\$63M)—Continues technical support for licensing SMRs.
- STEP R&D (\$5M) Initiates multi-program effort to accelerate commercialization of sCO2 Brayton cycle energy conversion technologies with a 10MW demonstration project.
- Fuel Cycle R&D (\$218M)—Expands effort to develop commercial used nuclear fuel disposal solutions; maintain schedule for 2016 selection of accident tolerant fuel candidates for further development and testing.
- Nuclear Energy Enabling Technologies (\$86M)—Continues Energy Innovation Hub for Modeling and Simulation for second 5-year period; advanced modeling and simulation for NE R&D programs.
- Idaho National Laboratory (\$338M) Modernization of facilities and security capabilities.

- Nell'ambito dei bandi DOE 2016, WESTINGHOUSE ha applicato per una proposta LFR.
 - L'unico partner non USA invitato a collaborare è stato ENEA
- ENEA partecipa alla proposta con una quota dell'8.5%
- Gli ambiti di partecipazione ENEA sono la progettazione del nocciolo e la tecnologia dei materiali
- Il consortium agreement tra ENEA e Westinghouse è attualmente in revisione presso ENEA

Collaborazione con la Russia

BREST-OD-300 SCHEDULE:

Design completed	2014
License approval	2015
Start of construction	2016
Commissioning	2020-2022

Seminar on thermal-hydraulics of lead-cooled reactors Ansaldo Nucleare HQs – December 2-3, 2015

- Safety Approach for LFR.
- CFD modeling of mixing of heavy metal model flows
- 3D simulation of turbulent heat transfer in a swirling flow
- Study of partial blocking the flow cross section at the coolant inlet

Collaborazione con la Cina

- ENEA Brasimone fornirà all' Accademia Cinese delle Scienze nel 2016 l'impianto CLEAR-S per la qualificazione sperimentale del prototipo di trasmutatore CLEAR I.
- La fornitura ha un valore di circa 6 Meuro
- L'accordo comprende anche assistenza nella fase di commissioning e sperimentazione nonché nella definizione della strategia di sperimentazione

Prospettive tecnologiche

Termoidraulica

- Dal 2008 ad oggi sono state risolte molte incertezze grazie agli impianti del Brasimone.
- In particolare sono state fatte misure del numero di Nusselt ed è stata dimostrata l'efficacia di raffreddamento della convezione naturale in condizioni di emergenza.
- Sono stati validati i codici di calcolo termofluidodinamico rendendo credibile l'impiego di tali strumenti
- Le prospettive future riguardano argomenti mirati a dimostrare la sicurezza del LFR :
- La dimostrazione dei dispositivi di emergenza (isolation condenser e DHX)
- L'approfondimento delle conseguenze del freezing e misure correttive
- L'approfondimento del flow blockage

Materiali

- Sono state condotte numerose ricerche, soprattutto nel progetto MATTER ed in AdP.
- Le ricerche hanno evidenziato quali acciai escludere dal LFR anziché identificare i materiali atti a fornire tutte le garanzie necessarie.
- La scelta dei materiali costituisce tuttora la maggiore incertezza di un reattore LFR.
- L'assenza di efficaci facility di irraggiamento rende arduo questo compito.
- La protezione delle camicie dalla corrosione è effettuata tramite un rivestimento superficiale

PROSPETTIVE

- L'acciaio dei fuel cladding è il 15-15 Ti, in quanto qualificato, ma si tende ad un austenitico a basso swelling.
- L'acciaio dei componenti (GV) è il 316 ma si tende ad un AFA.
- Ancora R&D da condurre e necessità di facility di irraggiamento.

DEMO-LFR ALFRED: Technical Overview

WORKSHOP LFR-GEN IV - STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO Brasimone, 19-20 Novembre, 2015 - Centro Ricerche ENEA Brasimone

Michele lamele

Michele.iamele@ann.ansaldo.it

CONTENTS

- Introduction and Design Guidelines
- Overview of Main Primary System Components
 - Reactor Assembly Configuration
 - Reactor Vessel
 - Inner Vessel and Upper/Lower Core Support Plates
 - Steam Generator
 - Primary Pump
 - Decay Heat Removal Systems
 - Reactor Building
- Conclusions & Open issues

Main Design Guidelines Top-level Technical Requirements

- ALFRED will be connected to the electrical grid (Reactor Power ~130 MWe)
- ALFRED design should be based on available technology as much as possible, in order to speed up the construction time
- ALFRED shall use structural materials compatible with the corrosive Lead used as coolant (Selected material AISI 316LN, T91, 15-15/Ti)
- ALFRED design shall limit coolant flow velocity to values compatible with the erosive Lead used as coolant
- ALFRED design solutions shall allow components to be removed from the Reactor Vessel to facilitate inspection, maintenance, replacement
- ALFRED design solutions (especially for Safety and Decay Heat Removal function) should be characterized by very robust and reliable choices to smooth the licensing process
- ALFRED Decay Heat Removal Systems shall be based on passive technology to reach the expected high Safety level

ALFRED – Advanced Lead Fast Reactor Europea

- Pool type primary system
- Relatively Low Power: 300 MWth (130 Mwe)
- Compact Design based on:
 - simple and removable components
 - proven technologies and materials
- The primary coolant is molten lead, which is characterized by good Nuclear and chemical properties
- The hot pool is enclosed by the Inner Vessel that feeds the suction pipes of the Primary Pumps and Steam Generators integrated into a single vertical unit.
- The Reactor assembly presents a simple flow path of the primary coolant, the position of the heat source (the Core) and the heat sink (the Steam Generators) are studied to allow an efficient natural circulation of the coolant.

UPPER AND LOWER CORE SUPPORT PLATES

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Lower core support plate

Box structure with two horizontal perforated plates connected by vertical plates. Plates holes are the housing of FAs foots. The plates distance assures the verticality of FAs

Upper core support plate

Box structure as lower grid but more stiff

- It has the function to push down the FAs during the reactor operation
- A series of preloaded disk springs presses each FA on its lower housing

SG GEOMETRY AND PERFORMANCES

Chaoma Concentration Co				
Steam Generator Geometry				
Number of coaxial tubes	4			
Slave tube O.D	9.52 mm			
Slave tube thickness	1.07 mm			
Inner tube O.D	19.05 mm			
Inner tube thickness	1.88 mm			
Outer tube O.D	25.4 mm			
Outer tube thickness	1.88 mm			
Outermost tube O.D	31.73 mm			
Outermost tube thickness	2.11 mm			
Length of exchange	6 m			
Number of tubes	510			

Steam Generator Performance				
Removed Power [MW]	37.5			
Core outlet Lead Temperature [°C]	480.0			
Core inlet Lead Temperature [°C]	401.5			
Feedwater Temperature [°C]	335.0			
Immersed bayonet steam outlet T [°C]	451.5			
Steam Plenum Temperature [°C]	450.1			
SG steam/water side global ∆p [bar]	3.3			

Primary pump is an axial mechanical pump, always running at constant speed, with blade profile designed to achieve the best efficiency

ł	1		
	fl		,7
	F	4	,7
F			1

Parameters	Value
Flow rate	3247.5 kg/s
Head	1.5 m
Outside impeller diameter	0.59 m
Hub diameter	0.39 m
Impeller speed	315 rpm
Number of vanes	5
Vane profile	NACA 23012
Suction pipe velocity	1.12 m/s
Vanes tip velocity	9.8 m/s
Meridian (at impeller entrance and exit) velocity	2.0 m/s

PRIMARY PUNIP

AGENZIA NAZIONALE

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

PER LE NUOVE TECNOLOGIE, L'ENERGIA

E LO SVILUPPO ECONOMICO SOSTENIBILI

DHR Systems

One non safety-grade system, the secondary system, used for normal decay heat removal

Two independent, high reliable passive and redundant safety-related DHR systems:

- in case of unavailability of the secondary system, the DHR1 is called to operate and
- in the unlike event of unavailability of the first two systems, the DHR2 is called to operate

DHR-1:

Isolation Condenser system connected to 4 out of 8 SGs

DHR-2:

Isolation Condenser system connected to the other 4 SGs

Considering that, each SG is continuously **monitored**, ALFRED is a **demonstrator** and a redundancy of **266%** is maintained, the Diversity concept could be relaxed

DHR Systems features:

- Independence: two different systems with nothing in common
- Redundancy: three out of four loops (of each system) sufficient to fulfil the DHR safety function even if a single failure occurs
- Passivity: using gravity to operate the system (no need of AC power)

Parameter	Value
Upper and lower spherical header diameter	560 mm
Tube diameter	38.1 mm
Number of tubes	16
Average tube length	2 m
Material Inconel	600

ISOLATION CONDENSER

ALFRED Technical Review...

Open issues that need to be carefully addressed before defining the reference conceptual design:

Upper part of the "cold plenum" could result stagnant

Stratification

Smaller fluid volume partecipatig to the natural circulation phase

Oxigen/Chemical Control Issue

SG design: by pass flow & mechanical issues.

Need of two diverse DHR systems

The LEADER Project was able to give a reference configuration but much work has yet to be done before a final configuration is available.

TAPIRO Fast Reactor. Feasibility study of minor actinides irradiation campaign

M. Carta*, P. Console Camprini, V. Fabrizio, A. Grossi, V. Peluso (ENEA) P. Blaise, B. Geslot, A. Gruel (CEA) F. Boccia (Università di Roma "La Sapienza") C. Bethaz (Politecnico di Torino)

*<u>mario.carta@enea.it</u>

- > The reduction of the nuclear waste is one of the most important nuclear issues.
- The high radiotoxicity of the spent fuel is due to plutonium and some minor actinides (MAs) such as neptunium, americium and curium, above all.
- To allow the MAs destruction an important effort have been done on the nuclear data due to the poor knowledge in this field.
- To improve MAs nuclear data, in the framework of the second NEA Expert Group on Integral Experiments for Minor Actinide Management an analysis of the feasibility of MAs irradiation campaign in the TAPIRO fast research reactor is in progress. The work is performed in close collaboration with CEA.
- Some preliminary results have been obtained by calculations modelling the irradiation, in different TAPIRO irradiation channels, of some CEA samples coming from the French experimental campaign OSMOSE.
- On the basis of neutron transport calculation results, obtained by both deterministic *ERANOS* and Monte Carlo *Serpent* calculation tools, an estimate of the irradiated samples counting levels has been obtained.
- > The experimental campaign is named **AOSTA** (Activation of **OSMOSE** Samples in **TAPIRO**).

Background

Time integrated flux

$$\overline{\phi} T \sim \left[\frac{N_{Nd8}(T)}{N_{U5}(T)}\right]_m \frac{1}{\gamma_{Nd8}\overline{\sigma}_{U5}^f} \longrightarrow \text{At TAPIRO core center this value} \\ \text{is 1.265 \pm 3.5\% (barns).}$$

MA capture x-section

irradiation times?

$$\overline{\sigma}_{A+1}^{c} \sim 2 \frac{\left[R_{A+2}(T)\right]_{m}}{\left[R_{A+1}(T)\right]_{m} \left[\overline{\phi} T\right]_{m}}$$

$$\overline{\sigma}_{A+2}^{c} \sim 3 \frac{\left[R_{A+3}(T)\right]_{m}}{\left[R_{A+2}(T)\right]_{m} \left[\overline{\phi} T\right]_{m}}$$

The TAPIRO reactor ERANOS RZ model

TAPIRO is a simple system to model in view of benchmarking among calculation tools and data libraries (IRPhE)

TAPIRO channels and OSMOSE samples The OSMOSE programme

The OSMOSE programme in MINERVE

- Sample oscillation programme in MINERVE (2005 2010)
- In collaboration with DOE (INERI collaboration)
- Objectives :
- Pu recycling in LWR
- MA transmutation
- Waste disposal and storage

Two MINERVE configurations:

- R1-UO2 (REP-UO2 spectrum)
- R1-MOX (REP-MOX spectrum)
- An over-moderated spectrum was foressen but abandonned

 Main benefit: uncertainty reduction on nuclear cross sections of ²³⁷Np, ²³⁸Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am et ²⁴⁵Cm

- Sample Manufacturing (CEA Marcoule):
 - UO₂ or U₃O₈ pills (sintered or compacted)
 - Reprocessed uranium
 - Pure ThO2

TAPIRO channels and OSMOSE samples OSMOSE samples

Dimensions

- Internal sheath (Zy4): 9,56 mm
- External sheath (Zy4): 10,6 mm
- o Length : 103.5 mm

Precise Material certificate are available

Actinide	Sample n°1 (g)	Sample n°2 (g)	Matrix
Unat	48	1	1
Np237	0.1	0.6	UO2 nat
Pu242	0.5	1	UO2 nat
U236	0.6	2	UO2 nat
Am241	0.06	0.2	UO2 nat
Am243	0.1	0.5	UO2 nat
U234	0.3	1	UO2 nat
Pu238	0.4	1	UO2 nat
Pu240	0.15	1	UO2 nat
Pu239	0.6	1	UO2 nat
U233	0.5	1	UO2 nat
Th232	2	1	UO2 nat
Th232	48	1	1
Pu241	0.1	0.5	UO2 nat

TAPIRO channels and OSMOSE samples Compatibility

Name	Position	Penetration	Useful diameter
Diametral channel (D.C.)	Piercing. Horizontal. Diametral in the core.	Inner and outer fixed reflector. Core.	10 mm in core
Tangential channel	Piercing. Horizontal. 50 mm above core mid- plane. Parallel to D.C. 106 mm from core axis.	Inner and outer fixed reflector.	30 mm in reflector
Radial channel 1 (R.C.1)	Radial. Horizontal on core mid-plane, at 90° with respect to D.C.	Inner and outer fixed reflector, up to 93 mm from core axis.	56 mm in reflector
Radial channel 2	Radial. Horizontal on core mid-plane, at 50° with respect to R.C.1.	Outer fixed reflector, up to 228 mm from core axis.	80 mm in reflector
Grand Horizontal Channel (G.H.C.)	Radial. Concentric with R.C.1.	Up to reflector outer surface	400 mm near reflector
Grand Vertical Channel (G.V.C.)	Above core, on the same axis.	Outer fixed reflector, up to 100 mm from upper core base.	800÷900 mm in reflector
Thermal column	Horizontal.	Shield, up to outer reflector	110x116x160 cm ³
Irradiation cavity	On safety plug upper base.	7.4 mm	33 mm

Dimensions

- Internal sheath (Zy4): 9,56 mm
- External sheath (Zy4): 10,6 mm
- Length : 103.5 mm

TAPIRO neutronic field analyses ERANOS vs. Serpent

CORE CENTER ERANOS/SERPENT COMPARISON

TAPIRO neutronic field analyses ERANOS vs. Serpent/MCNP

Per i risultati MCNP si ringrazia il CRESCO team, nelle persone dei colleghi Guido Guarnieri e Agostino Funel, che sono stati di grande supporto nella preparazione e ottimizzazione dell'ambiente di calcolo CRESCO per MCNP.

Isotopes considered: Np²³⁷, Pu²⁴², Am²⁴¹, Am²⁴³

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

TAPIRO neutronic field analyses Average capture cross sections (JEFF 3.1)

TAPIRO neutronic field analyses Average capture cross sections (JEFF 3.1)

Results Irradiation scheme for activities (@ 5kW)

1 week irradiation scheme

	Position	r = 12.07 cm	r = 24.58 cm	r = 45.5 cm
OSMOSE Samples	$\phi (n \cdot cm^{-2} \cdot s^{-1})$	6.94E+11	1.74E+11	8.79E+09
Nn237	$\sigma_{c,Np237}$ (barn)	1.04	1.73	19.57
Np237	A (Bq)	2.04E+08	8.49E+07	4.85E+07
$\mathbf{D}_{11}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}$	$\sigma_{c,Pu242}$ (barn)	0.34	0.62	22.48
F U242	A (Bq)	1.15E+08	5.30E+07	9.68E+07
Am2/11	$\sigma_{c,Am241}$ (barn)	1.32	2.06	32.61
AIII241	A (Bq)	1.15E+08	4.50E+07	3.61E+07
Δm2/13	$\sigma_{c,Am243}$ (barn)	1.13	1.83	33.40
AII1243	A (Bq)	2.10E+07	8.10E+06	7.14E+06

Results

Detection efficiency - MCNP evaluation

HPGe efficiency

$CPS(counts/s) \approx Activity(Bq) \times$

$\gamma \div X$ Intensity (line appearance/disintegration) × $\epsilon (\gamma \div X \text{ detected} / \gamma \div X \text{ emitted})$

Results

Counts estimate

	Position	r = 12.07 cm	r = 24 .58 cm	r = 45.5 cm
OSMOSE Samples	φ (n·cm ⁻² ·s ⁻¹)	6.94E+11	1.74E+11	8.79E+09
N=227/2	Np238Εγ (keV)	984.45	984.45	984.45
	γ Intensity (%)	25.19	25.19	25.19
Νρ237/2	ε Detection (%)	0.186	0.186	0.186
	C (cps)	95487	39779	22738
	Pu243 Εγ (keV)	84	84	84
Du 2/12	γ Intensity (%)	23.10	23.10	23.10
T UZ+Z	ε Detection (%)	0.530	0.530	0.530
	C (cps)	140305	64912	118561
	Am 242 Ε Χ _{κα1} (keV)	103.374	103.374	103.374
Am241/1	$X_{\kappa \alpha 1}$ Intensity (%)	5.70	5.70	5.70
,	ε Detection (%)	0.107	0.107	0.107
	C (cps)	2104	823	661
	Am 242 Ε Χ _{κα1} (keV)	103.374	103.374	103.374
$\Delta m 241/2$	X _{κα1} Intensity (%)	5.70	5.70	5.70
A11241/2	ε Detection (%)	0.107	0.107	0.107
	C (cps)	7014	2745	2204
	Am244 Ε γ (keV)	743.971	743.971	743.971
Δm243	γ Intensity (%)	66.00	66.00	66.00
7111 27 3	ε Detection (%)	0.213	0.213	0.213
	C (cps)	29466	11391	10032

Not overlapping lines with UO2 lines

54

NEA framework actions chronology since April 2015

- **EGIEMAM-II-02 (29-30 Apr. 2015).** List of Actions connected to AOSTA program:
- ✓ All to provide information of the FCs to NEA Secretariat [as soon as possible].
- ✓ NEA Secretariat to send the list of FCs to M. Carta [by the end of May 2015].
- ✓ M. Carta, P. Blaise, B. Geslot, and G. Imel to consider detailed experimental programs at TAPIRO using the FCs and OSMOSE samples
- > What has happened since then:
- ✓ 22 June. NEA sends list of SCK●CEN FCs available for the measurements in TAPIRO (contribution by Anatoly Kochetkov).
- ✓ 6 July. NEA sends material concerning CEA FCs available for the measurements in TAPIRO + papers about FCs manufacturing, spectral indexes measurements and calibration issues (contribution by Benoit Geslot).
- ✓ 6 July. NEA sends material concerning JAEA FCs available for the measurements in TAPIRO (contribution by Kazufumi Tsujimoto).
- ✓ May ÷ September. ENEA checks some aspects regarding FCs and measurement chains available in house. Checks are made also with the Italian National Institute for Environmental Protection and Research (ISPRA) about eventual constraints under the safety point of view. ENEA prepares a first scheduling of a preparatory program to the AOSTA campaign. Collaboration with CEA continues (Serpent TAPIRO input sent from ENEA to CEA).

- First of all thanks to all the contributors!
- > ENEA checks some aspects regarding FCs and measurement chains available at home.
- ✓ Available FCs: #3 U235 (different caracteristics) ; #5 U238 (different caracteristics); #1 Np237;
 #1 Pu239. All chambers (except one) have to be checked. <u>Calibration???</u>
- ✓ Measurement chains exist and are complete.
- Checks are made also with the Italian National Institute for Environmental Protection and Research (ISPRA) about eventual constraints under the safety point of view:
- ✓ Only reactivity margins, regardless the kind of material, have to be taken into account.
- ENEA prepares a first scheduling of a preparatory program to the AOSTA campaign:
- ✓ TAPIRO will come back to its original configuration within this year.
- ✓ A measurement campaign with some detectors in different positions (in collaboration with CEA, but of course all the volunteers are very welcomed!) has to be performed before AOSTA.
 Detectors calibration issues must be solved to obtain spectral indexes of interest.
- \checkmark A calculation benchmark has to go along with this experimental phase (\rightarrow IRPhE).
- ✓ During this preliminary phase, but also in parallel to AOSTA, other experiments can be performed (George Imel proposals).

THANK YOU GEORGIOS!

Characterization of the new ALFRED core configuration

Francesco Lodi², Giacomo Grasso¹, Antonio Cammi³, Stefano Lorenzi³, Davide Mattioli¹, Marco Sumini²

1 ENEA - SICNUC - PSSN
 2 Università di Bologna - DIN
 3 Politecnico di Milano

- Introduzione
- Review configurazione precedente
- Nuovi modelli di nocciolo
- Caratterizzazione della nuova configurazione
 - Analisi della stabilità e dinamica di ALFRED
- Verifica termoidraulica
- Conclusioni

Dopo la **revisione critica** della configurazione di nocciolo, così come emersa dal progetto LEADER, lo scorso anno si era arrivati ad un possibile assetto nel quale le criticità rivelate sono state corrette.

L'obiettivo della presente attività è perciò la **caratterizzazione neutronica** della nuova <u>configurazione di riferimento</u> così da ricavare gli arricchimenti e la zonizzazione che garantiscano l'operabilità del reattore per il tempo atteso, rispettando i limiti di progetto.

I dati ottenuti nella fase di caratterizzazione sono stati utilizzati per <u>verificare le performance</u> termoidrauliche di elemento in modo da fare un cross-check dell'effettivo raggiungimento degli obiettivi.

Poiché alcune modifiche hanno un impatto sui coefficienti di reattività un modello per l'analisi dinamica di ALFRED è stato sviluppato e applicato allo **studio di stabilità** del sistema.

Evitare sovrariscaldamento canali angolari: allargamento della scatola esagonale.

Elemento centrale $T_{guaina} = 522$ °C

	Parametro	Valore nominale [°C]	Fattore di macchia calda	Valore atteso [°C]
C 198.02 194.45 190.89 187.32 183.76 180.79 176.63 173.06 169.50	Temperatura d'ingresso	400		400
	Salto termico nel sottocanale	98	1,203	117
	Temperatura di bulk	498		517
	Salto termico alla parete	24	1,382	33
	Temperatura di parete	522		550

Revisione critica:2&3

Sovra-danneggiamento dell'Inner Vessel e mancanza di margini di aggiustamento della massa critica:

- estensione della vita dell'Inner Vessel a
 - 45 (schermo semplicemente modificato) o
 - 500 (schermo polifunzionale) anni.

Revisione critica: 4&5

Valutazione dell'impatto sulla criticità di:

1. impurità nel piombo

	Pb puro	C00	C0	C1	C2C
Grado purezza	100%	99,9985%	99,992%	99,985%	99,97%
Concentrazione Bi	0%	0,0005%	0,004%	0,006%	0,02%
$\Delta k_{ m eff}$		-74 pcm	-77 pcm	-83 pcm	-99 pcm

2. materiale della scatola

	Materiale	Spessore	Δk _{eff}
Riferimento	T91	4,0 mm	
Rimpiazzo	15-15Ti	4,0 mm	-391 pcm
Candidato	15-15Ti	3,5 mm	+193 pcm

Aggiunta posizione instrumentate

Nuovi modelli nocciolo

Data la necessità di caratterizzare la nuova configurazione e dati i cambiamenti geometrici e materiali da aggiungere ai modelli, sembra appropriato **aggiornare gli input di ERANOS2.2 e MCNP6.1;** inoltre, considerando che i precedenti input erano stati preparati da organizzazioni differenti (CEA per ERANOS e ENEA per MCNP), qualche incongruenza era presente nelle proprietà materiali, temperature e dilatazioni utilizzati.

Codice	ERANOS 2.2	MCNP 6.1		
Libreria	JEFF3.1.1	JEFF3.1.2	ENDF/B-7.1b	
$k_{_{ m eff}}$	1.08307	1.08373 ± 21 pcm	1.07756±22pcm	
Err _{max} su potenza FA a BoL relativo a MCNP-ENDF/B- 7.1b	1.32%	1.35%		

Le principali differenze possono ora essere imputate ai differenti approcci numerici dei codici e alle <u>librerie di sezioni d'urto</u> utilizzate.

OBIETTIVO: determinare i <u>nuovi arricchimenti</u> e la <u>zonizzazione</u> per garantire l'operabilità del reattore per il tempo stabilito (5 anni), rispettando tutti i vincoli progettuali:

La strategia neutronica utilizzata è stata appiattire il più possibile la temperatura di gauina, a livello di pin, <u>includendo</u> <u>le incertezze</u> fin dalle prime fasi; l'appiattimento è perseguito sia a EoC che a BoC.

Caratterizzazione: CR

Con l'obiettivo di massimizzare lo sfruttamento del combustibile:

- BoC → CR inserite così da compensare la reattività in eccesso dovuta allo swing di BU
- EoC \rightarrow CR considerate completamente estratte

In media quindi sono inserite in modo da dare un'anti-reattività pari a metà BU swing. Poiché le CR sono inserite dal basso, incrementano la potenza nella zona di maggior temperatura di guaina.

Come simulare in modo semplice il loro movimento?

Caratterizzazione: CR

Con l'obiettivo di massimizzare lo sfruttamento del combustibile:

- BoC → CR inserite così da compensare la reattività in eccesso dovuta allo swing di BU
- EoC \rightarrow CR considerate completamente estratte

In media quindi sono inserite in modo da dare un'anti-reattività pari a metà BU swing. Poichè le CR sono inserite dal basso, incrementano la potenza nella zona di maggior temperatura di guaina.

Come simulare in modo semplice il loro movimento?

Stato	Bo	oC EoC		рС
Zona	INN	OUT	INN	OUT
FADF	1.093	0.994	0.932	1.006
ADF media	1.003	1.020	0.992	0.974
ADF fine	0.996	1.047	1.004	0.922
FPDF	1.011	1.024	1.009	0.979

L'incremento di altezza <u>peggiora l'effetto di densità</u> del piombo nella zona attiva e aumenta le perdite di carico di conseguenza si <u>riduce la</u> <u>circolazione naturale</u>. Grazie ai margini di sicurezza dimostrati in LEADER questo non dovrebbe porre problemi. Per valutare preliminarmente il **margine di stabilità** un'analisi dinamica è stata effettuata in **funzione del coefficiente di densità**.

Analisi di stabilità

L'analisi di stabilità è stata effettuata sia per il nocciolo stand-alone sia per il caso di accoppiamento con il circuito primario. Per tenere in conto gli effetti del bruciamento, lo studio è stato ripetuto sia a BoC che EoC.

OBIETTIVO: dare al progettista un feedback quantitativo riguardo al coefficiente di densità da una prospettiva safety-related.

Il modello sviluppato è analitico zero-dimensionale:

Neutronica \rightarrow Cinetica punto con 8 gruppi di precursori collassati ad 1

Termoidraulica → Scambio termico con singolo nodo e 3 regioni di temperatura (refrigerante, guaina e combustibile)

Reattività \rightarrow Coefficienti funzione di T_{media} nelle varie regioni a differenti livelli di potenza

Primario \rightarrow Generatore di vapore (SG) modellato così da dare in condizioni nominali un salto di 80°C tra ingresso ed uscita nocciolo

Dopo aver linearizzato il sistema si arriva a:

- x: vettore variabili di stato
- $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$ x. Vettore variablind u: vettore di input y: vettore di output

Studio degli autovalori della matrice di stato

Analisi di stabilità: Nocciolo stand-alone

L'<u>effetto del BU è trascurabile</u> BoC simile ad EoC

Dopo una certa potenza il sistema presenta oscillazioni smorzate con frequenza crescente

Neutronica come loop aperto e termoidraulica come feedback

Valore non realisticamente raggiungibile (in ALFRED 0.5pcm/K solo zona attiva).

densità diventa +12pcm/K.

Analisi di stabilità: Nocciolo+SG

Comparsa di oscillazioni smorzate a più bassa frequenza, dovute alla modifica della T_{ingresso} nocciolo

Aggiunta del feedback del SG

Andamento qualitativo simile al caso precedente, ma sistema instabile quando il coeff. di densità diventa **+6pcm/K**. Il <u>cambio di altezza attiva non</u> <u>pregiudica stabilità.</u>

L'effetto delle incertezze è stato valutato in via preliminare, includendo incertezze dovute alle <u>proprietà fisiche, tolleranze di fabbricazione, modelli usati nel design e sistemi di misura e controllo</u>.

Il metodo utilizzato è noto come "Semi-statistical vertical approach"

$$F_{y}^{D} = \prod_{x}^{N_{D}} f_{y,x}^{D} \qquad F_{y}^{S} = 1 + \sqrt{\sum_{x}^{N_{s}} (f_{y,x}^{S} - 1)^{2}} \qquad F_{y}^{D} = F_{y}^{D} F_{y}^{S} \qquad Fattore di punto caldo$$

Contributo diretto

Contributo statistico

Stato	B	oC	E	oC
Zona	INN	OUT	INN	OUT
Pb _{media} uscita [°C]	494	481	479	481
Pb _{max} uscita [°C]	501	495	485	491
Guaina _{max} [°C]	523	522	502	513
Guaina _{max} + unc [°C]	550 —	551	525	540
Vincolo rispettato				

Chiudendo il percorso delineato negli ultimi due anni dell'AdP, il nocciolo di ALFRED, così come emerso dal progetto LEADER, è stato criticamente analizzato in un ampio spettro di aspetti in modo da arrivare ad una **configurazione di riferimento** più matura.

In questo lavoro la <u>caratterizzazione neutronica</u> è stata presentata tenendo in conto il movimento delle CR e le incertezze, rispettando gli imposti vincoli di progetto sulle potenze lineari, BU, DPA etc. Una <u>preliminare verifica termoidraulica</u> a livello di FA è stata effettuata in modo da assicurare che i vincoli sulle temperature fossero realmente rispettati in condizioni stazionarie. La verifica ha rivelato la robustezza della configurazione in condizioni nominali. Il modello dinamico sviluppato ha inoltre evidenziato i <u>buoni margini di</u>

stabilità della configurazione proposta, con particolare enfasi per il coefficiente di densità del piombo.

Concludendo la configurazione di nocciolo di ALFRED qui presentata viene proposta come il nuovo riferimento per future analisi, che potrebbero includere il calcolo dei coefficienti di reattività.

POLITECNICO MILANO 1863

POLITECNICO DI MILANO

Workshop tematico "LFR-Gen IV: Stato attuale della tecnologia e prospettive di sviluppo" Presentazione attività LP2.A.2_A C.R. ENEA Brasimone, 19 Novembre 2015

Supporto alla progettazione del combustibile nucleare per il reattore LFR – Lead-cooled Fast Reactor

Responsabile PoliMi:Lelio LuzziCollaboratori PoliMi:Davide Pizzocri, Stefano Lorenzi

Contesto

Modellazione e analisi del comportamento integrale di barretta di combustibile per il progetto di reattori a piombo innovativi

Supporto alla progettazione del combustibile nucleare per reattori veloci

Attività POLIMI + ENEA: Estensione del codice TRANSURANUS per l'analisi dei reattori veloci a piombo ed applicazione alla *fuel pin performance* di ALFRED

Obiettivi

1 Estensione del codice PARTE I 4 Feedbacks su design 2 ALFRED reference case 3 Sensitività e worst case

Aggiornamento del codice di *fuel pin performance* TRANSURANUS, **rispetto alla versione** *LFR-oriented* (PAR2013)

Modellazione e analisi termo-meccanica di barretta **(ALFRED)**, per migliorarne il *design* concettuale e le caratteristiche di sicurezza

POLITECNICO MILANO 1863

Attività svolte

- . Modello di ridistribuzione del plutonio
- . Modello per il rilascio di gas di fissione in transitori di potenza (*burst release*)
- . Modellazione della barretta di combustibile di ALFRED
 - **Verifica** del rispetto dei limiti di *design* preliminari (reference scenario = modellazione best estimate)
 - Analisi di sensitività su alcuni aspetti significativi (worst case scenario)
 - Ottimizzazione di alcuni parametri di progetto della barretta di combustibile

ALFRED – barretta di combustibile

	Parametri di progetto	
	Combustibile	MOX
	Guaina	AIM1
	Termo-vettore	Lead
	Arricchimento Pu/(Pu+U) (wt. %) (zona interna)	21.7
	Arricchimento Pu/(Pu+U) (wt. %) (zona esterna)	27.80
	Densità del combustibile (%TD)	95
	O/M (/)	1.97
	Gas di riempimento	Не
	Pressione iniziale di riempimento (MPa)	0.1
	Volume plenum superiore (mm ³)	≈ 30000
	Altezza plenum superiore (mm)	120
	Altezza attiva (mm)	600
7	Altezza plenum inferiore (mm)	550
	Diametro esterno guaina (mm)	10.5
5	Diametro interno guaina (mm)	9.3
	Diametro esterno combustibile (mm)	9
	Diametro interno combustibile (mm)	2
	Intercapedine guaina-combustibile (µm)	150
	Pin pitch (mm)	13.86

POLITECNICO MILANO 1863

ALFRED – selezione dei canali di potenza

Average Channel (AC) Condizioni di potenza medie del reattore (12.9 kW/pin)

Hot Channel (HC)

Elemento di combustibile della regione esterna più prossimo al centro del core, pin prossima all'angolo (17.7 kW/m)

ALFRED – limiti di design preliminari

	Limite proposto	Reference
Massima temperatura del combustibile	< 2000°C	Grasso et al., 2013
Temperatura esterna della guaina	< 550°C	Grasso et al., 2013
Pressione nel plenum	< 5 MPa	Grasso et al., 2013
Deformazione della guaina, $\Delta D/D$	< 3%	IAEA, 2012
Deformazione da swelling della guaina	< 5%	NEA, 2005
Deformazione da thermal creep della guaina (1)	< 0.2%	IAEA, 2012
Deformazione da thermal creep della guaina (2)	< 1%	NEA, 2005
Deformazione da creep della guaina	< 3%	NEA, 2005
Cumulative damage function*	< 0.2-0.3	IAEA, 2012
Deformazione plastica della guaina	< 0.5%	Vettraino and Luzzi, 2001

^{*}The Cumulative Damage Function (CDF) is a pin lifetime parameter that considers the linear accumulation of the fraction damage calculated as ratio between the short time interval and the time-to-rupture. (Luzzi et al., 2014).

Temperatura del combustibile

(a)

Temperatura dell'AC al di sotto del limite (2000 °C), mentre HC sopra il limite di circa 200 °C La conduttanza dell'intercanedine dinende dalla combinazione di EGR e chiusura

La conduttanza dell'intercapedine dipende dalla combinazione di FGR e chiusura dell'intercapedine

(b)

Temperatura della guaina

(b) (a) ALFRED HC | Slice 24 | z = 587.5 mm ALFRED AC | Slice 24 | z = 587.5 mm 600 600 Femperature (^oC) Temperature (°C) 550 550 500 500 450 450 Cladding inner temperature Cladding inner temperature Cladding outer temperature Cladding outer temperature Coolant temperature Coolant temperature 400 400 2 6 8 2 4 6 8 0 4 10 0 Burn-up (at. %) Burn-up (at. %)

La temperatura esterna della guaina rimane sempre sotto il limite di 550 °C

Dinamica dell'intercapedine

(a)

La dinamica dell'intercapedine è governata dall'espansione del combustibile

(b)

Sforzi e deformazioni nella guaina

(a)

(b)

Lo sforzo subisce una forte crescita dovuto all'interazione guaina-combustibile Per l'HC, a fine vita, il valore è vicino allo snervamento con una lieve deformazione plastica

Limiti di design

	AC	HC	Limite
			proposto
Massima temperatura del combustibile (°C)	1810	2184	< 2000°C
Temperatura esterna della guaina (°C)	497	551	< 550°C
Pressione nel plenum (MPa)	1.7	2.41	< 5 MPa
Deformazione da swelling della guaina (%)	0.020	0.024	< 5%
Deformazione da thermal creep della guaina (%)	1.8 · 10 ⁻⁵	0.086	< 0.2% (1)
Cumulative damage function (-)	0.000	0.0051	< 0.2-0.3
Deformazione plastica della guaina (%)	0	1.07 · 10 ⁻³	< 0.5%

POLITECNICO MILANO 1863

Analisi di sensitività

Modelli considerati

- 1. Swelling del combustibile
- 2. Conducibilità termica del combustibile
- 3. Swelling della guaina / frazione di flusso veloce

Motivazioni

- 1. Governano la dinamica dell'intercapedine
- 2. Influenzano la temperatura del combustibile

Modello	Reference ("Option A")	Sensitivity ("Option B")
Swalling dal combustibila	1.2% / at.% con intercapedine	2.0% / at.% con intercapedine
Swelling del combustibile	aperta (Preusser, 1985)	aperta (Freund et al., 1987)
Conducibilità termica del		Carbajo et al., 2001 (più marcata
combustibile	Philipponneau, 1992	riduzione con il burnup)
Swelling della guaina	"Specific AIM1"	"Generalized 15-15Ti"
Frazione di flusso veloce	> 100 keV	> 10 keV

Figura di merito Cumulative Damage Function, CDF

Analisi di sensitività

14 Presentazione attività LP2.A.2_A

POLITECNICO MILANO 1863

Risultati – ALFRED Worst case

Temperatura del combustibile

Rispetto al **reference case HC**

- 1. Anticipata chiusura dell'intercapedine
- 2. Maggior temperatura a fine vita (conducibilità termica minore)
- 3. Massima temperatura comparabile

Risultati – ALFRED Worst case

Deformazioni nella guaina

Rispetto al reference case HC

- 1. Tutto le deformazioni sono al di sotto dei rispettivi limiti
- 2. Considerevole incremento dello swelling (modello peggiorativo)

3.
$$CDF = 0.08 << 0.2$$

Risultati – ALFRED <u>Worst case</u>

Limiti di design

	Worst case	Worst case	Limite proposto
	AC	HC	
Massima temperatura del combustibile (°C)	1816	2201	< 2000°C
Temperatura esterna della guaina (°C)	497	551	< 550°C
Pressione nel plenum (MPa)	1.86	2.97	< 5 MPa
Deformazione da swelling della guaina (%)	0.26	0.35	< 5%
Deformazione da thermal creep della guaina (%)	1.85 · 10 ⁻⁵	0.135	< 0.2% (1)
Cumulative damage function (-)	0.000	0.081	< 0.2-0.3
Deformazione plastica della guaina (%)	0	2.62 · 10 ⁻⁵	< 0.5%

POLITECNICO MILANO 1863

Feedback per il design preliminare

Problematiche

- 1. Solo l'<u>HC</u> presenta problemi
- 2. <u>Temperatura del combustibile</u> al di sopra dei limiti preliminari
- 3. <u>Deformazioni e CDF alte</u>, ma ben al di sotto dei limiti

Tre parametri di progetto sono stati scelti come variabili <u>Tali da non modificare</u> <u>drasticamente il design del core</u> 1. Dimensione dell'intercapedine

2. Altezza dell'upper plenum

3. Pressione di riempimento

POLITECNICO MILANO 1863

Feedback per il design preliminare

Obiettivo

Riduzione della temperatura del combustibile sotto i 2000 °C nel worst case HC

Conseguenze Generale peggioramento della PCMI

Con i modelli del <u>reference case</u>, la barretta **rispetta tutti i limiti preliminari** Pressione di riempimento

da 0.1 MPa a 0.5 MPa

Feedback per il design preliminare

Temperatura del combustibile

(a)

ALFRED AC | Slice 14 | z = 337.5 mm

Burn-up (at. %)

(b)

AC ed HC al di sotto del limite (2000 °C)

Significativa riduzione della temperatura nei primi cicli

Feedback per il design preliminare

	Optimum AC	Optimum HC	Limite
			proposto
Massima temperatura del combustibile (°C)	1810 -> 1620	2184 -> 1994	< 2000°C
Temperatura esterna della guaina (°C)	497	551	< 550°C
Pressione nel plenum (MPa)	1.7 -> 2.32	2.41 -> 3.15	< 5 MPa
Deformazione da swelling della guaina (%)	0.020	0.024	< 5%
Deformazione da thermal creep della guaina (%)	1.8 · 10 -5	0.086 -> 0.15	< 0.2% (1)
Cumulative damage function (-)	0.000	0.0051 -> 0.085	< 0.2-0.3
Deformazione plastica della guaina (%)	0	1.07 · 10 ^{−3} -> 0.0554	< 0.5%

Conclusioni attività

- Disponibilità di una versione di TRANSURANUS orientata ai reattori a piombo
- 2. Valutazione dell'evoluzione del comportamento in reattore del sistema "guaina-combustibile" di ALFRED
 - . Analisi di sensitività sui modelli più delicati, in particolare per quanto riguarda il combustibile.
 - Individuazione di soluzioni costruttive finalizzate al conseguimento di margini di sicurezza più ampi,
 i.e., aumento della pressione di riempimento a 0.5 MPa

Sensitività e

worst case

3

PARTE II

Sviluppi futuri

- Estensione del codice con nuovi modelli per il MOX (**sviluppo fuel-oriented**). Il miglioramento del modello di Fission Gas Release in transitorio è prioritario (diffusione inter e intra grani, High Burnup Structure)
- . Miglioramento dei modelli di interazione guaina-combustibile (JOG, FAE, accoppiamento creep-sweeling)
- 3. Analisi di performance della barretta della nuova configurazione di ALFRED e ulteriori feedback per il design

24 Presentazione attività LP2.A.2_A

Risultati – ALFRED Reference case

(a)

Fission Gas Release

ALFRED AC | Slice 14 | z = 337.5 mm ALFRED HC | Slice 14 | z = 337.5 mm 2.5 100 2.5 100 Internal pressure Internal pressure < Fractional FGR Fractional FGR 2.0 80 2.0 80 Internal pressure (MPa) Internal pressure (MPa) Fractional FGR (%) Fractional FGR (%) 1.5 60 1.5 60 1.0 40 1.0 40 0.5 0.5 20 20 0 0 0 0 2 2 6 6 8 0 4 8 0 4 10 Burn-up (at. %)

Burn-up (at. %)

(b)

Internal pressure well below the design limit

Risultati – ALFRED <u>Worst case</u>

Sforzi nella guaina

Rispetto al reference case HC

- 1. Aumento della pressione di contatto
- 2. Alti stress ma rilassamento verso la fine dell'ultimo ciclo

Sviluppo dei sistemi LFR: strategie e prospettive

P.Agostini Brasimone, 20 Novembre 2015

Strategia per ALFRED

European frame: ALFRED in ESNII

Presented by N.Camarcat on 29 september

THE FALCON CONSORTIUM

Fostering ALfred CONstruction

- 30 months
- Unincorporated consortium

FALCO

- In-kind contributions
- Optimize the cooperation
- Areas: <u>strategic</u>, <u>management</u> <u>governance</u>, <u>financial</u> and <u>technical aspects</u>
- Detailed agreement
- <u>R&D needs management</u>
- Engineering design
- Licensing, and
- Commit the construction

Signature ceremony Dec 18th 2013

THE FALCON CONSORTIUM IS EXTENDED TO JUNE 2016

ENER AGENZIA NAZIONALI

Richiesta che ALFRED venga classificato come Major Project (oltre 50Meuro)

- Il 29 Ottobre, G.Villabruna di Ansaldo ha incontrato il ministro rumeno dell'Energia e la D.G. Elena Popescu
- Nella riunione G.V. ha sollecitato l'inserimento di ALFRED tra i "Major Projects" ricevendo un feedback positivo
- Il 4 Novembre, a causa delle dimissioni del primo ministro, il Memorandum, già firmato dal ministro dell'Energia e da quello dell'Educazione/Ricerca, si è arrestato presso il ministero dei fondi europei.
- Il 13 Novembre il Memorandum firmato dai tre Ministri e' stato portato alla riunione del Consiglio dei Ministri, ma, su indicazione del Ministero della Giustizia, non e' stato discusso in quanto essendoci un Governo ad interim non poteva essere approvato.
- Attendiamo la formazione del nuovo governo in Romania

- Il piccolo reattore svedese (ELECTRA) era già presente nella roadmap LFR.
- Nel 2013 il finanziamento fu cancellato dal governo svedese
- Il 20 Ottobre ENEA è stato contattato da Janne Wallenius, CEO della Lead Cool inc. per collaborare allo sviluppo del progetto SEASON: Small, Efficient And Safe Options for Nuclear
- Viene proposto di applicare ad NFRP 4 della recente call EURATOM

Prossime azioni nel Consorzio FALCON

- Sussistono ancora incertezze sulle modalità di accesso ai fondi strutturali europei ed incertezza sull'entità richiedibile. Saranno intensificati i contatti con le autorità Rumene
- Sono stati accumulati ritardi sull'avviamento delle attività tecniche incluse negli agreement of collaboration. E' urgente definire e pianificare le attività in kind da affidare ai sottoscrittori
- Sono in preparazione le proposte per i progetti di R&D della call EURATOM Fissione. E' necessario armonizzare in essa i contenuti degli agreement of collaboration
- Si prevede partecipazione significativa a progetti su:
 - sicurezza, gen IV
 - materiali,
 - SMR.

Stato delle collaborazioni in corso

Participazione a GIF -GEN IV Forum-

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

l paesi con interesse LFR in GIF sono: Europa, Russia, USA, Giappone, Corea

Collaborazione con USA

Fiscal Year 2016 Request: \$908M

- Reactor Concepts (\$108M)—Expands light water reactor sustainability efforts to maintain carbon free generation of the current fleet and supports development of non-water cooled reactor systems.
- **Small Modular Reactors** (\$63M)—Continues technical support for licensing SMRs.
- STEP R&D (\$5M) Initiates multi-program effort to accelerate commercialization of sCO2 Brayton cycle energy conversion technologies with a 10MW demonstration project.
- Fuel Cycle R&D (\$218M)—Expands effort to develop commercial used nuclear fuel disposal solutions; maintain schedule for 2016 selection of accident tolerant fuel candidates for further development and testing.
- Nuclear Energy Enabling Technologies (\$86M)—Continues Energy Innovation Hub for Modeling and Simulation for second 5-year period; advanced modeling and simulation for NE R&D programs.
- Idaho National Laboratory (\$338M) Modernization of facilities and security capabilities.

- Nell'ambito dei bandi DOE 2016, WESTINGHOUSE ha applicato per una proposta LFR.
 - L'unico partner non USA invitato a collaborare è stato ENEA
- ENEA partecipa alla proposta con una quota dell'8.5%
- Gli ambiti di partecipazione ENEA sono la progettazione del nocciolo e la tecnologia dei materiali
- Il consortium agreement tra ENEA e Westinghouse è attualmente in revisione presso ENEA

Collaborazione con la Russia

BREST-OD-300 SCHEDULE:

Design completed	2014
License approval	2015
Start of construction	2016
Commissioning	2020-2022

Seminar on thermal-hydraulics of lead-cooled reactors Ansaldo Nucleare HQs – December 2-3, 2015

- Safety Approach for LFR.
- CFD modeling of mixing of heavy metal model flows
- 3D simulation of turbulent heat transfer in a swirling flow
- Study of partial blocking the flow cross section at the coolant inlet

Collaborazione con la Cina

- ENEA Brasimone fornirà all' Accademia Cinese delle Scienze nel 2016 l'impianto CLEAR-S per la qualificazione sperimentale del prototipo di trasmutatore CLEAR I.
- La fornitura ha un valore di circa 6 Meuro
- L'accordo comprende anche assistenza nella fase di commissioning e sperimentazione nonché nella definizione della strategia di sperimentazione

Prospettive tecnologiche

Termoidraulica

- Dal 2008 ad oggi sono state risolte molte incertezze grazie agli impianti del Brasimone.
- In particolare sono state fatte misure del numero di Nusselt ed è stata dimostrata l'efficacia di raffreddamento della convezione naturale in condizioni di emergenza.
- Sono stati validati i codici di calcolo termofluidodinamico rendendo credibile l'impiego di tali strumenti
- Le prospettive future riguardano argomenti mirati a dimostrare la sicurezza del LFR :
- La dimostrazione dei dispositivi di emergenza (isolation condenser e DHX)
- L'approfondimento delle conseguenze del freezing e misure correttive
- L'approfondimento del flow blockage

Materiali

- Sono state condotte numerose ricerche, soprattutto nel progetto MATTER ed in AdP.
- Le ricerche hanno evidenziato quali acciai escludere dal LFR anziché identificare i materiali atti a fornire tutte le garanzie necessarie.
- La scelta dei materiali costituisce tuttora la maggiore incertezza di un reattore LFR.
- L'assenza di efficaci facility di irraggiamento rende arduo questo compito.
- La protezione delle camicie dalla corrosione è effettuata tramite un rivestimento superficiale

PROSPETTIVE

- L'acciaio dei fuel cladding è il 15-15 Ti, in quanto qualificato, ma si tende ad un austenitico a basso swelling.
- L'acciaio dei componenti (GV) è il 316 ma si tende ad un AFA.
- Ancora R&D da condurre e necessità di facility di irraggiamento.

DEMO-LFR ALFRED: Technical Overview

WORKSHOP LFR-GEN IV - STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO Brasimone, 19-20 Novembre, 2015 - Centro Ricerche ENEA Brasimone

Michele lamele

Michele.iamele@ann.ansaldo.it

CONTENTS

- Introduction and Design Guidelines
- Overview of Main Primary System Components
 - Reactor Assembly Configuration
 - Reactor Vessel
 - Inner Vessel and Upper/Lower Core Support Plates
 - Steam Generator
 - Primary Pump
 - Decay Heat Removal Systems
 - Reactor Building
- Conclusions & Open issues

Main Design Guidelines Top-level Technical Requirements

- ALFRED will be connected to the electrical grid (Reactor Power ~130 MWe)
- ALFRED design should be based on available technology as much as possible, in order to speed up the construction time
- ALFRED shall use structural materials compatible with the corrosive Lead used as coolant (Selected material AISI 316LN, T91, 15-15/Ti)
- ALFRED design shall limit coolant flow velocity to values compatible with the erosive Lead used as coolant
- ALFRED design solutions shall allow components to be removed from the Reactor Vessel to facilitate inspection, maintenance, replacement
- ALFRED design solutions (especially for Safety and Decay Heat Removal function) should be characterized by very robust and reliable choices to smooth the licensing process
- ALFRED Decay Heat Removal Systems shall be based on passive technology to reach the expected high Safety level

ALFRED – Advanced Lead Fast Reactor Europea

- Pool type primary system
- Relatively Low Power: 300 MWth (130 Mwe)
- Compact Design based on:
 - simple and removable components
 - proven technologies and materials
- The primary coolant is molten lead, which is characterized by good Nuclear and chemical properties
- The hot pool is enclosed by the Inner Vessel that feeds the suction pipes of the Primary Pumps and Steam Generators integrated into a single vertical unit.
- The Reactor assembly presents a simple flow path of the primary coolant, the position of the heat source (the Core) and the heat sink (the Steam Generators) are studied to allow an efficient natural circulation of the coolant.

UPPER AND LOWER CORE SUPPORT PLATES

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Lower core support plate

Box structure with two horizontal perforated plates connected by vertical plates. Plates holes are the housing of FAs foots. The plates distance assures the verticality of FAs

Upper core support plate

Box structure as lower grid but more stiff

- It has the function to push down the FAs during the reactor operation
- A series of preloaded disk springs presses each FA on its lower housing

SG GEOMETRY AND PERFORMANCES

Steam Generator Geometry				
Number of coaxial tubes	4			
Slave tube O.D	9.52 mm			
Slave tube thickness	1.07 mm			
Inner tube O.D	19.05 mm			
Inner tube thickness	1.88 mm			
Outer tube O.D	25.4 mm			
Outer tube thickness	1.88 mm			
Outermost tube O.D	31.73 mm			
Outermost tube thickness	2.11 mm			
Length of exchange	6 m			
Number of tubes	510			

Steam Generator Performance			
Removed Power [MW]	37.5		
Core outlet Lead Temperature [°C]	480.0		
Core inlet Lead Temperature [°C]	401.5		
Feedwater Temperature [°C]	335.0		
Immersed bayonet steam outlet T [°C]	451.5		
Steam Plenum Temperature [°C]	450.1		
SG steam/water side global ∆p [bar]	3.3		

Primary pump is an axial mechanical pump, always running at constant speed, with blade profile designed to achieve the best efficiency

ł		1
	Ē	
	\$	
F		

Parameters	Value
Flow rate	3247.5 kg/s
Head	1.5 m
Outside impeller diameter	0.59 m
Hub diameter	0.39 m
Impeller speed	315 rpm
Number of vanes	5
Vane profile	NACA 23012
Suction pipe velocity	1.12 m/s
Vanes tip velocity	9.8 m/s
Meridian (at impeller entrance and exit) velocity	2.0 m/s

PRIMARY PUNIP

AGENZIA NAZIONALE

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

PER LE NUOVE TECNOLOGIE, L'ENERGIA

E LO SVILUPPO ECONOMICO SOSTENIBILI

DHR Systems

One non safety-grade system, the secondary system, used for normal decay heat removal

Two independent, high reliable passive and redundant safety-related DHR systems:

- in case of unavailability of the secondary system, the DHR1 is called to operate and
- in the unlike event of unavailability of the first two systems, the DHR2 is called to operate

DHR-1:

Isolation Condenser system connected to 4 out of 8 SGs

DHR-2:

Isolation Condenser system connected to the other 4 SGs

Considering that, each SG is continuously **monitored**, ALFRED is a **demonstrator** and a redundancy of **266%** is maintained, the Diversity concept could be relaxed

DHR Systems features:

- Independence: two different systems with nothing in common
- Redundancy: three out of four loops (of each system) sufficient to fulfil the DHR safety function even if a single failure occurs
- Passivity: using gravity to operate the system (no need of AC power)

Parameter	Value	
Upper and lower spherical header diameter	560 mm	
Tube diameter	38.1 mm	
Number of tubes	16	
Average tube length	2 m	
Material Inconel	600	

ISOLATION CONDENSER

ALFRED Technical Review...

Open issues that need to be carefully addressed before defining the reference conceptual design:

Upper part of the "cold plenum" could result stagnant

Stratification

Smaller fluid volume partecipatig to the natural circulation phase

Oxigen/Chemical Control Issue

SG design: by pass flow & mechanical issues.

Need of two diverse DHR systems

The LEADER Project was able to give a reference configuration but much work has yet to be done before a final configuration is available.

TAPIRO Fast Reactor. Feasibility study of minor actinides irradiation campaign

M. Carta*, P. Console Camprini, V. Fabrizio, A. Grossi, V. Peluso (ENEA) P. Blaise, B. Geslot, A. Gruel (CEA) F. Boccia (Università di Roma "La Sapienza") C. Bethaz (Politecnico di Torino)

*<u>mario.carta@enea.it</u>

- > The reduction of the nuclear waste is one of the most important nuclear issues.
- The high radiotoxicity of the spent fuel is due to plutonium and some minor actinides (MAs) such as neptunium, americium and curium, above all.
- To allow the MAs destruction an important effort have been done on the nuclear data due to the poor knowledge in this field.
- To improve MAs nuclear data, in the framework of the second NEA Expert Group on Integral Experiments for Minor Actinide Management an analysis of the feasibility of MAs irradiation campaign in the TAPIRO fast research reactor is in progress. The work is performed in close collaboration with CEA.
- Some preliminary results have been obtained by calculations modelling the irradiation, in different TAPIRO irradiation channels, of some CEA samples coming from the French experimental campaign OSMOSE.
- On the basis of neutron transport calculation results, obtained by both deterministic *ERANOS* and Monte Carlo *Serpent* calculation tools, an estimate of the irradiated samples counting levels has been obtained.
- > The experimental campaign is named **AOSTA** (Activation of **OSMOSE** Samples in **TAPIRO**).

Background

Time integrated flux

$$\overline{\phi} T \sim \left[\frac{N_{Nd8}(T)}{N_{U5}(T)}\right]_m \frac{1}{\gamma_{Nd8}\overline{\sigma}_{U5}^f} \longrightarrow \text{At TAPIRO core center this value} \\ \text{is 1.265 \pm 3.5\% (barns).}$$

MA capture x-section

irradiation times?

$$\overline{\sigma}_{A+1}^{c} \sim 2 \frac{\left[R_{A+2}(T)\right]_{m}}{\left[R_{A+1}(T)\right]_{m} \left[\overline{\phi} T\right]_{m}}$$

$$\overline{\sigma}_{A+2}^{c} \sim 3 \frac{\left[R_{A+3}(T)\right]_{m}}{\left[R_{A+2}(T)\right]_{m} \left[\overline{\phi} T\right]_{m}}$$

The TAPIRO reactor ERANOS RZ model

TAPIRO is a simple system to model in view of benchmarking among calculation tools and data libraries (IRPhE)

TAPIRO channels and OSMOSE samples The OSMOSE programme

The OSMOSE programme in MINERVE

- Sample oscillation programme in MINERVE (2005 2010)
- In collaboration with DOE (INERI collaboration)
- Objectives :
- Pu recycling in LWR
- MA transmutation
- Waste disposal and storage

Two MINERVE configurations:

- R1-UO2 (REP-UO2 spectrum)
- R1-MOX (REP-MOX spectrum)
- An over-moderated spectrum was foressen but abandonned

 Main benefit: uncertainty reduction on nuclear cross sections of ²³⁷Np, ²³⁸Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am et ²⁴⁵Cm

- Sample Manufacturing (CEA Marcoule):
 - UO₂ or U₃O₈ pills (sintered or compacted)
 - Reprocessed uranium
 - Pure ThO2

TAPIRO channels and OSMOSE samples OSMOSE samples

Dimensions

- Internal sheath (Zy4): 9,56 mm
- External sheath (Zy4): 10,6 mm
- o Length : 103.5 mm

Precise Material certificate are available

Actinide	Sample n°1 (g)	Sample n°2 (g)	Matrix
Unat	48	1	1
Np237	0.1	0.6	UO2 nat
Pu242	0.5	1	UO2 nat
U236	0.6	2	UO2 nat
Am241	0.06	0.2	UO2 nat
Am243	0.1	0.5	UO2 nat
U234	0.3	1	UO2 nat
Pu238	0.4	1	UO2 nat
Pu240	0.15	1	UO2 nat
Pu239	0.6	1	UO2 nat
U233	0.5	1	UO2 nat
Th232	2	1	UO2 nat
Th232	48	1	1
Pu241	0.1	0.5	UO2 nat

TAPIRO channels and OSMOSE samples Compatibility

Name	Position	Penetration	Useful diameter	
Diametral channel (D.C.)	Piercing. Horizontal. Diametral in the core.	Inner and outer fixed reflector. Core.	10 mm in core	
Tangential channel	Piercing. Horizontal. 50 mm above core mid- plane. Parallel to D.C. 106 mm from core axis.	Inner and outer fixed reflector.	30 mm in reflector	
Radial channel 1 (R.C.1)	Radial. Horizontal on core mid-plane, at 90° with respect to D.C.	Inner and outer fixed reflector, up to 93 mm from core axis.	56 mm in reflector	
Radial channel 2	Radial. Horizontal on core mid-plane, at 50° with respect to R.C.1.	Outer fixed reflector, up to 228 mm from core axis.	80 mm in reflector	
Grand Horizontal Channel (G.H.C.)	Radial. Concentric with R.C.1.	Up to reflector outer surface	400 mm near reflector	
Grand Vertical Channel (G.V.C.)	Above core, on the same axis.	Outer fixed reflector, up to 100 mm from upper core base.	800÷900 mm in reflector	
Thermal column	Horizontal.	Shield, up to outer reflector	110x116x160 cm ³	
Irradiation cavity	On safety plug upper base.	7.4 mm	33 mm	

Dimensions

- Internal sheath (Zy4): 9,56 mm
- External sheath (Zy4): 10,6 mm
- Length : 103.5 mm

TAPIRO neutronic field analyses ERANOS vs. Serpent

CORE CENTER ERANOS/SERPENT COMPARISON

TAPIRO neutronic field analyses ERANOS vs. Serpent/MCNP

Per i risultati MCNP si ringrazia il CRESCO team, nelle persone dei colleghi Guido Guarnieri e Agostino Funel, che sono stati di grande supporto nella preparazione e ottimizzazione dell'ambiente di calcolo CRESCO per MCNP.

Isotopes considered: Np²³⁷, Pu²⁴², Am²⁴¹, Am²⁴³

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

TAPIRO neutronic field analyses Average capture cross sections (JEFF 3.1)

TAPIRO neutronic field analyses Average capture cross sections (JEFF 3.1)

Results Irradiation scheme for activities (@ 5kW)

1 week irradiation scheme

	Position	r = 12.07 cm	r = 24.58 cm	r = 45.5 cm
OSMOSE Samples	$\phi (n \cdot cm^{-2} \cdot s^{-1})$	6.94E+11	1.74E+11	8.79E+09
Np237	$\sigma_{c,Np237}$ (barn)	1.04	1.73	19.57
	A (Bq)	2.04E+08	8.49E+07	4.85E+07
Pu242	$\sigma_{c,Pu242}$ (barn)	0.34	0.62	22.48
	A (Bq)	1.15E+08	5.30E+07	9.68E+07
Am241	$\sigma_{c,Am241}$ (barn)	1.32	2.06	32.61
	A (Bq)	1.15E+08	4.50E+07	3.61E+07
Am243	$\sigma_{c,Am243}$ (barn)	1.13	1.83	33.40
	A (Bq)	2.10E+07	8.10E+06	7.14E+06

Results

Detection efficiency - MCNP evaluation

HPGe efficiency

$CPS(counts/s) \approx Activity(Bq) \times$

$\gamma \div X$ Intensity (line appearance/disintegration) × $\epsilon (\gamma \div X \text{ detected} / \gamma \div X \text{ emitted})$

Results

Counts estimate

	Position	r = 12.07 cm	r = 24 .58 cm	r = 45.5 cm
OSMOSE Samples	φ (n·cm ⁻² ·s ⁻¹)	6.94E+11	1.74E+11	8.79E+09
Np237/2	Np238Εγ (keV)	984.45	984.45	984.45
	γ Intensity (%)	25.19	25.19	25.19
	ε Detection (%)	0.186	0.186	0.186
	C (cps)	95487	39779	22738
Pu242	Pu243 Εγ (keV)	84	84	84
	γ Intensity (%)	23.10	23.10	23.10
	ε Detection (%)	0.530	0.530	0.530
	C (cps)	140305	64912	118561
Am241/1	Am 242 Ε Χ _{κα1} (keV)	103.374	103.374	103.374
	$X_{\kappa \alpha 1}$ Intensity (%)	5.70	5.70	5.70
	ε Detection (%)	0.107	0.107	0.107
	C (cps)	2104	823	661
Am241/2	Am 242 Ε Χ _{κα1} (keV)	103.374	103.374	103.374
	X _{κα1} Intensity (%)	5.70	5.70	5.70
	ε Detection (%)	0.107	0.107	0.107
	C (cps)	7014	2745	2204
Am243	Am244 Εγ (keV)	743.971	743.971	743.971
	γ Intensity (%)	66.00	66.00	66.00
	ε Detection (%)	0.213	0.213	0.213
	C (cps)	29466	11391	10032

Not overlapping lines with UO2 lines

54

NEA framework actions chronology since April 2015

- **EGIEMAM-II-02 (29-30 Apr. 2015).** List of Actions connected to AOSTA program:
- ✓ All to provide information of the FCs to NEA Secretariat [as soon as possible].
- ✓ NEA Secretariat to send the list of FCs to M. Carta [by the end of May 2015].
- ✓ M. Carta, P. Blaise, B. Geslot, and G. Imel to consider detailed experimental programs at TAPIRO using the FCs and OSMOSE samples
- > What has happened since then:
- ✓ 22 June. NEA sends list of SCK●CEN FCs available for the measurements in TAPIRO (contribution by Anatoly Kochetkov).
- ✓ 6 July. NEA sends material concerning CEA FCs available for the measurements in TAPIRO + papers about FCs manufacturing, spectral indexes measurements and calibration issues (contribution by Benoit Geslot).
- ✓ 6 July. NEA sends material concerning JAEA FCs available for the measurements in TAPIRO (contribution by Kazufumi Tsujimoto).
- ✓ May ÷ September. ENEA checks some aspects regarding FCs and measurement chains available in house. Checks are made also with the Italian National Institute for Environmental Protection and Research (ISPRA) about eventual constraints under the safety point of view. ENEA prepares a first scheduling of a preparatory program to the AOSTA campaign. Collaboration with CEA continues (Serpent TAPIRO input sent from ENEA to CEA).

- First of all thanks to all the contributors!
- > ENEA checks some aspects regarding FCs and measurement chains available at home.
- ✓ Available FCs: #3 U235 (different caracteristics) ; #5 U238 (different caracteristics); #1 Np237;
 #1 Pu239. All chambers (except one) have to be checked. <u>Calibration???</u>
- ✓ Measurement chains exist and are complete.
- Checks are made also with the Italian National Institute for Environmental Protection and Research (ISPRA) about eventual constraints under the safety point of view:
- ✓ Only reactivity margins, regardless the kind of material, have to be taken into account.
- ENEA prepares a first scheduling of a preparatory program to the AOSTA campaign:
- ✓ TAPIRO will come back to its original configuration within this year.
- ✓ A measurement campaign with some detectors in different positions (in collaboration with CEA, but of course all the volunteers are very welcomed!) has to be performed before AOSTA.
 Detectors calibration issues must be solved to obtain spectral indexes of interest.
- \checkmark A calculation benchmark has to go along with this experimental phase (\rightarrow IRPhE).
- ✓ During this preliminary phase, but also in parallel to AOSTA, other experiments can be performed (George Imel proposals).

THANK YOU GEORGIOS!

Verifica di fattibilità di sonde commerciali per la misura dei flussi neutronici in reattori raffreddati al piombo. Proposta di studio teorico-sperimentale di SPND innovativi ottimizzati per reattori LFR. (ADPFISS-LP2-089)

by <u>L. LEPORE¹</u>, R. REMETTI¹, M. CAPPELLI²

C.R. ENEA Brasimone, November, 19th 2015

1: Sapienza, University of Rome 2: ENEA, UT-FISST\MEPING

AIM OF THE WORK

The work faces <u>neutron instrumentation issues for Lead Fast</u> <u>Reactor</u> oriented to the control of the plant. Neutron flux detectors used in Sodium Fast Reactor could not completely fit the needs of LFRs.

AIM OF THE WORK

I&C OPEN ISSUES:

- What is the best control strategy (in/out-of-core; in/out-of-vessel) for LFR? Core neutron-monitoring-needs and instrumentation technology?
- SFR and LFR <u>reference</u> spectra are not so different, but spectral differences must be evaluated in the positions where instrumentation is supposed to be installed.
- Instrumentation & control issues may need to come in parallel with neutronics and thermal-hydraulics issues, in order to optimize the I&C instrumentation/system alongside the other customization processes on reactor design.

REFERENCE REACTOR

The LFR reactor modeled into MCNPX is based on **LEADER Project (ALFRED)**.

The MCNPX input deck now includes the 8 bayonet steam generators, having reached ~50000 lines.

Instrumentation selected for neutron flux:

- Fission Chambers (FC)
- Self Powered Neutron Detectors (SPND)

REFERENCE LFR REACTOR ENVIRONMENT

C6

OLD CONFIGURATION:

12 in and out-of-core position are studied:

- 6 radial POINTS on core plane
- 6 radial POINTS on nose plane

CURRENT CONFIGURATION:

12 in and out-of-core position are studied:

- 4 axial POINTS in the reactor central element
- 4 axial POINTS in a reflector element
- 4 radial POINTS on nose plane, along a traverse

RESULTS:

SELECTED INSTRUMENTATION, CALCULATION STEPS

Instrumentation analyzed consists of:

- Fission Chambers (FC): Manufacturer: PHOTONIS
 - 1 CFUE32

- Self Powered Neutron Detectors (SPNDs): Manufacturer: ThermoCoax
 - 1 Co-type
 - 1 Pt-type

Cresco4 allowed:

- Calculation of the <u>neutron fluxes</u> at Points Of Interest (POI);
- Calculation of the <u>neutron spectra</u> at POI;
- Calculation of the gamma background at POI;
- Update of detector's sensitivities [1] to neutron and gamma;
- Calculation of <u>detector's responses</u> at POI.

RESULTS:

REFERENCE LFR REACTOR ENVIRONMENT BY MCNPX

DETECTOR'S KIND vs. REACTOR POWER and POSITION

"Neutronics should need some detectors to be installed into the core or near the edge of the active length" [2][3]

If the statement is true, detector's kind vs. power and positioning could be different, due to neutron and gamma flux magnitudes and spectra. Indeed,

Fission Chambers with their higher sensitivities, can follow the reactor evolution from zero power to 1-10% of full power. Pulse, MSV and Current mode are exploited.

SPNDs with their lower sensitivities, can follow the reactor at full power without suffering an excessive burn-up. Current mode is exploited.

A <u>superimposition region</u> between those classes is foreseen for the switching <u>during the power evolution</u>

1E-18

RESULTS:

PHOTONIS CFUE32 SENSITIVITY AND RESPONSE (in CURRENT MODE)

PHOTONIS CFUE32 FISSION CHAMBER USABILITY in ALFRED

<u>Key points:</u>

- CFUE32 can follow the reactor power till 1-10% of full power;
- Neutron fluxes corresponding to reactor power >10% of full power burn the device too fast;
- When reactor power >0.1% of full power, devices too close to the active length suffer an excessive gamma bombardment; such a noise has to be studied;
- Replacement devices has to be foreseen inside the reactor design to insert the instrument as close as possible to the active length at start-up and remove it when neutron or gamma fluxes become unsustainable.

1E-21

RESULTS:

THERMOCOAX SPND Pt-type SENSITIVITIES and RESPONSES (in CURRENT MODE)

RESULTS:

THERMOCOAX SPND Pt-type USABILITY in ALFRED

Key points:

- SPND do not follow lower decades of reactor power;
- They can monitor from 10% to 100% of full power, according to positioning;
- Low Burn-up rate allow the device to endure for the whole irradiation campaign foreseen for the elements;
- They can be installed as a fixed component into fuel and reflector elements: no replacement is needed;
- They could suffer some gamma noise at installation sites within the fuel.
- > Maximum limits on burn-up has to be investigated.

Fission Chambers seem to be the only devices capable in monitoring the reactor power range 0-10% of full power as in-core-instrumentation;

RESULTS:

MAJOR REMARKS

SPNDs seem to be the only devices capable in monitoring the reactor power range 10-100% of full power as in-core-instrumentation;

Prompt-SPNDs are never been used as control instrumentation

At the state-of-the-art, ALFRED could suffer the lack of a suitable instrumentation for in-core monitoring at full power.

*It must be noted that ALFRED is a Demonstrator Reactor at reduced power, 300 MW*_{th}. *What to do with a 3000 MW*_{th}-sized reactor?

FUTURE WORKS :

MCNPX AS A DESIGN TOOL FOR NEW SPNDs DESIGNS

R&D on SPND is strongly suggested, in both **theoretical** and **experimental** approaches.

According to the **spectral characteristics of the neutron flux**, SPNDs for full power monitoring can be **optimized in materials** and **geometries**.

MCNPX can represent an useful **design tool** to conceive and test in simulation **innovative SPNDs**.

⇒ MCNPX for SPND modeling has to be validated first

⇒ An *irradiation experience on SPNDs in TAPIRO* has been reconstructed to validate MCNPX as a design tool for SPNDs

FUTURE WORKS :

MCNPX AS A DESIGN TOOL FOR NEW SPNDs DESIGNS

The SPNDs model in **MCNPX reproduces detectors' thermal sensitivities** as rated by manufacturer in factory conditions [4].

The **irradiation experience in TAPIRO** by Angelone et al. [5] has been reconstructed into MCNPX.

The experiment used a **Rh-type SPND** (not a prompt detector).

At the maximum reachable power for TAPIRO, the detector response was ${\sim}17~pA.$

The SPNDs model into MCNPX reproduces ~**4.4 pA**.

The order of magnitude of the detector's response is well reproduced [4].

FUTURE WORKS :

MCNPX AS A DESIGN TOOL FOR NEW SPNDs DESIGNS

3

MCNPX now can be used as a design tool for SPNDs.

SPND modification:

- prompt-commercial-SPND assembly;
- innovative geometries for sensitive volumes;
- innovative sensitive materials;
- innovative study on a special SPND assembly for real-time neutron spectra measurement.

STUDY SCHEDULE

STUDY SCHEDULE

- **1**st **year:** *analysis of performances* of current instrumentation (PAR 2013) in LFR environment (ALFRED) by MCNPX.
- **2nd year:** completing the ALFRED MCNPX input deck;
- (PAR 2014) validation of simulation technique by means of reproduction into MCNPX of experimental irradiations in TAPIRO.
- **3**rd **year:** customization of **new detectors and I&C** (PAR 2015?) **prototyping**;
 - feasibility study and experimental procedure for detector irradiation and testing in TAPIRO;
- (future work) detector **prototype construction and irradiation**.

BIBLIOGRAPHY

- [1] L. Lepore, R. Remetti and M. Cappelli, "Evaluation of the current fast neutron flux monitoring instrumentation applied to LFR demonstrator ALFRED: capabilities and limitations," in Proceedings of the 23rd International Conference On Nuclear Engineering, Makuhari Messe, Chiba, Japan, 2015.
- [2] J. C. Gauthier, G. Granget e M. Martini, «Techniques de mesures neutroniques au demarrage de SPX2,» in *Proceedings of a Specialists' Meeting on IN CORE INSTRUMENTATION AND REACTOR ASSESSMENT*, Cadarache, 1989.
- [3] J. C. Perrigueur, C. Berlin, J. C. Gauthier e J. Gourdon, «In core neutronic measurements in an industrial environment. Assessment of the performances of the in-vessel neutronic measurements chains of SUPER-PHENIX 1,» in *Proceedings of the Specialists' Meeting on IN CORE INSTRUMENTATION AND REACTOR ASSESSMENT*, 1989.
- [4] L. Lepore, R. Remetti and M. Cappelli "Verifica di fattibilità di sonde commerciali per la misura dei flussi neutronici in reattori raffreddati al piombo. Proposta di studio teorico-sperimentale di SPND innovativi ottimizzati per reattori LFR." ADPFISS-LP2-089, 2015.
- [5] M. Angelone, A. Klix, M. Pillon, P. Batistoni, U. Fischer e A. Santagata, «Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM,» Fusion Engineering and Design, vol. 89, p. 2194–2198, 2014.

Thank you for your attention!!!

WORKSHOP TEMATICO

LFR-GEN IV: STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

ADP ENEA-MSE (PAR2014-LP2)

CO DI MELANICI

POLITECNICO

MILANO 1863

Interazione chimica tra combustibile e refrigerante in sistemi LFR

<u>E. Macerata</u>, M. Mariani, M. Cerini, M. Negrin, E. Mossini, M. Giola *Laboratorio di Radiochimica e Chimica delle Radiazioni*

Brasimone, 19-20 Novembre, 2015

1. Il problema...

FUEL ASSEMBLIES

Interazione chimica tra combustibile e piombo liquido dovuto all'evento di fessurazione della guaina (failure event)

Fuel pellet

2

Scenario complesso

Composizione del combustibile Coinvolgimento della guaina Temperatura del sistema Dimensione della fessurazione Presenza di ossigeno nel refrigerante

Studio sperimentale

Studio teorico-computazionale

Elena Macerata

DATABASE contenente i dati termochimici di componenti e prodotti di reazione

- I. Barin, Thermochemical data of pure substances, 1993
- A. Dinsdale, SGTE data for pure elements, CALPHAD, vol. 15, n. 4, pp. 317-425, 1991
- IAEA TECDOC 1289, Thermophysical Properties of Materials For Nuclear Engineering: A Tutorial and Collection of Data, Vienna, 2008
- M. Binnewies e E. Milke, Thermochemical data of elements and coumpounds, New York: Wiley-VCH, 1999
- Z. Li, X. Liu e C. Wang, Thermodynamic modeling of the Pb-U and Pb-Pu systems, *Journal of Nuclear Materials,* n. 403, pp. 1-6, 2010
- P. Chiotti, V. Akhachinskij, I. Ansara e M. Rand, **The Actinide Binary Alloys**, in *The Chemical Thermodynamic of Actinides Elements and Compounds*, vol. Part 5, Vienna, IAEA, 1981
- OECD/NEA, Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Tecnologies, 2007 e 2015

S. Imoto, J. Nucl. Mater., **1986**, *140*, 19-27.
E.H.P. Cordfunke, R.J.M. Konings, J. Nucl. Mater., **1988**, *152*, 301-309.

Elena Macerata

ANALISI TERMODINAMICA

- Reattore di riferimento: ELSY, ALFRED
- Volume di riferimento
- Temperature operative (funzionamento nominale e caso incidentale ULOF)
- Sistemi binari con combustibile metallico
 - Validazione su sistema U-Pb

U 0.8	mol			Pb 0	.£ mol	
Temperatura	K	500	800	1100	1 400	1700
Uliq	mol	-	-	-	-	0.8
Pb ^{liq}	mol	-	-	-	-	0.Ø
PUU	mol	0.6	0.6	0.6	0.6	-
РЬ,Ш	mol	0.2	0.2	0.2	0.2	-

4

Elena Macerata

ANALISI TERMODINAMICA

	т [К]	700	800	900	1050	1250	1450
00 ₂ - PD	Pb _{liq} [mol]	0.4295	0.4295	0.4295	0.4296	0.4295	0.431
Sistema	U _{liq} [mol]	0	0	0	0	0	5.00E-04
Chimicamente	PbU [mol]	1.69E-07	4.86E-08	3.57E-06	4.26E-05	-	-
stabile	Pb ₃ U [mol]	5.00E-04	5.00E-04	4.96E-04	4.57E-04	5.00E-04	-
	UO ₂ [mol]	0.1895	0.1895	0.1895	0.1895	0.1895	0.1895

 $Pu_{metallico} - Pb \rightarrow Pb_5Pu_4 (98.8\%) e Pb_4Pu_5 (1.2\%)$

(U_{0.8}Pu_{0.2})O₂-Pb

Caso nominale

т [К]	700	750	800	850	900	950
Pb _{liq} [mol]	0.4255	0.4255	0.4255	0.4255	0.4255	0.4255
UO ₂ [mol]	0.1533	0.1533	0.1533	0.1533	0.1533	0.1533
PuO ₂ [mol]	0.0382	0.0382	0.0382	0.0382	0.0382	0.0382
U ₄ O ₉ [mol]		Prese	enti in tracce	<10 ⁻⁶		9.34·10 ⁻⁶
Pu ₂ O ₃ [mol]		11000				1.05.10-5

modesta instabilità a T ≥ 1250 K con possibile formazione di ossidi di U e Pu

5

Caso incider	ntale	000101		
т [К]	1050	1150	1250	1350
Pb _{liq} [mol]	0.4219	0.4219	0.4182	0.4218
PbO _{liq} [mol]	-	-	0.0037	0.0001
UO ₂ [mol]	0.1543	0.1543	0.1541	0.0805
PuO ₂ [mol]	0.0384	0.0384	0.0309	0.0012
Pb ₃ U [mol]	0	0	0	1.51·10 ⁻⁶
U ₃ O ₈ [mol]	0	0	6.57·10 ⁻⁶	<10 ⁻⁶
U ₄ O ₉ [mol]	Presenti in t	tracce <10 ⁻⁶	4.00·10 ⁻⁵	0.0185
Pu ₂ O ₃ [mol]		-	0.0038	0.0186

Negrin, M., Interazione tra combustibile e termovettore in sistemi LFR di IV generazione: analisi termodinamica preliminare, Tesi di Laurea Specialistica in Ingegneria Nucleare, A.A. 2011-2012;

M. Negrin, E. Mossini, E. Macerata, M. Cerini, M. Giola, M. Mariani and L. A. Pellegrini, Proc. Int. 23rd International Conference Nuclear Energy for New Europe-NENE 2014, p. 1211, Nuclear Society of Slovenia (2014) (CD-ROM), ISBN 978-961-6207-37-9

Elena Macerata

...per simulare il sistema MOX_{irr}-Pb...

Sistema La-Pb

il codice descrive correttamente la composizione del sistema all'equilibrio in termini sia di quantità sia di stato fisico

Sistema MOX-La-Pb

- Comportamento simile al sistema MOX -Pb
- Già a 900K si formano ossidi di U, Pu e Pb con elevato contenuto di O
- No formazione di composti La-U/Pu

6

0.2

0.8

0.2

0.2

0.2

0.2

0.2

0.2

Open issues...

Limitazione del codice

- Composti che decompongono;
- Composti non stechiometrici;
- Curve di miscibilità e punti eutettici.

Compilazione del Database

Mancanza di dati termodinamici sperimentali

"IDEE IN CORSO"

Metodi semi-empirici

- costi computazionali ridotti
- sviluppati per il calcolo di numerose grandezze
- "spesso" in buon accordo con i dati sperimentali
- DFT Density Functional Theory
 - relativamente poco oneroso
 - può trattare gli attinidi

WORK IN PROGRESS

Elena Macerata

Stima mediante metodi semi-empirici:

- Entalpia di formazione ΔH^f e entalpia di soluzione ΔH^{sol} mediante metodo Miedema e sua estensione (di Neuhasen) al gruppo dei calcogeni ¹
- Entalpia di formazione ΔH^f per ossidi e intermetallici <u>ternari</u> con l'estensione di Gallego

Entalpia di formazione

A. Tosolin, Interazione tra combustibile e termovettore in sistemi LFR di IV generazione: stima di grandezze termodinamiche tramite metodi semiempirici, <u>Tesi di Laurea Specialistica in</u> Ingegneria Nucleare, A.A. 2012-2013;

8

A. Tosolin, E. Macerata, E. Mossini, M. Cerini, M. Giola and M. Mariani, *Proc. Int.* 23rd International Conference Nuclear Energy for New Europe-NENE 2014, p. 1212, Nuclear Society of Slovenia (2014) (CD-ROM), ISBN 978-961-6207-37-9

1. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals, Transition Metal Alloys, 1988

Stima mediante metodi semi-empirici:

- Entropia mediante il metodo di Witusiewicz-Sommer per intermetallici binari²
- Calore specifico per intermetallici binari mediante la legge di Kopp modificata

Entropia

Composto	Entropia tota	ale, S _{tot} [J/Kmol]
	calcolata	sperimentale
AuSn	75.83	98.115
AuSn ₂	115.23	135.562
AuSn ₄	193.98	250.622
Cu ₂ Sb	108.01	126.482
CdSb	89.13	94.558
InSb	66.47	86.199
Mg ₂ Pb	84.59	110.876

Entropia totale in fase solida per i sistemi La-Pb, Fe-Pu, Sr-Pb e Cs-Pb.

Calore specifico

c_P(T) degli intermetallici: U-Pb, Pu-Pb, Fe-Pb, La-Pb, Fe-Pu, Sr-Pb e Cs-Pb.

Non sono stati individuati metodi per la stima di Entropia e Calore specifico di ossidi e composti ternari.

9

2. V.T. Witusiewicz, F. Sommer, Journal of Alloys and Compounds, 2000, 312, 228-237

Stima di entalpia, entropia e calore specifico mediante DFT-GGA

• Studio preliminare in fase gas¹⁻²:

Simulatore Gaussian09 / **Basis-set** RECP – *Relativistic Effective Core Potential* / **Funzionale** ibrido-GGA (*Generalized Gradient Approximation*)

- È stata selezionata e validata una combinazione funzionale/basis-set per un approccio semisistematico;
- Ottimizzazione della geometria per ricavare la configurazione di minima energia;
- Nella configurazione di minima energia:
 - dalle frequenze vibrazionali sono state calcolate l'S₀ e il c_p(T) in fase gas;
 - dai contributi energetici (energie SCF, ZPE e H_{corr} in output) è stata calcolata l'entalpia di formazione.

G. Dia, Compatibilità chimica in reattori di IV generazione: studio preliminare tramite metodi abinitio di composti Pb-An, Tesi di Laurea Specialistica in Ingegneria Nucleare, A.A. 2012-2013.

N. Tarrat, C. J. Marsden, J. Phys. Chem. A, 2008, 112, 7632-7642
A. Kovacs, P. Pogany, J.M. Konings, Inorganinc Chemistry, 2012, 51, 4841-4849

POLITECNICO MILANO 1863

10

Elena Macerata

Stima mediante simulazioni DFT-GGA:

- <u>Ossidi di Pb</u>: PbO, PbO₂, Pb₃O₄;
- Intermetallici Pu-Pb: PuPb, PuPb₃, Pu₃Pb;
- Ossidi dell'Am, Np e Cm: AmO, AmO₂, AmO₃, Am₂O₃,
- Intermetallici Pb-FP: LaPb₃, SrPb₃, Cs₂Pb₃;
- Intermetallici: UFe₂, UNi₂, PuFe₂, PuNi₂;
- Intermetallici Am/Np/Cm-Pb: AmPb, AmPb₃, Am₃Pb, ...
- Intermetallici Pb-guaina: PbFe₂, PbAl₂, PbAl₃, PbNi₂, PbNi₃, PbNi₄, PbCr, PbCrO₄

Molecule	Vibrationa [cr	Vibrational Frequency Entropy [cm ⁻¹] [J/K·mol]		Formation [kJ/	n Enthalpy mol]			
	Calculated	Experimental	Calculated	Experimental	Calculated	Experimental		
UO ₂	807.8	820.0	251.013	263.554	-565.0	-477.8		
UO ₃	904.7	852.5	309.644	308.683	-892.1	-799.2	Quantity	Δ % Exp-Calc
PuO ₂	832.6	786.8	275.951	278.0 ± 5	-373.2	-410.2	Entropy	+ 5
UPb	93.3	-	295.341	-	501.6	-		. 7
UPb ₃	135.6	-	444.145	-	88.9	-	Specific Heat Capacity	+ /
PuPb	87.7	-	297.267	-	478.9	-	Formation Enthalpy	-20
PbO	764.9	721.0	239.536	240.039	-84.5	70.2	Bond Dissociation Energy	-12

M. Cerini, G. Dia, E. Macerata, E. Mossini, M. Giola, M. Mariani, C. Cavallotti, Proc. Int. <u>23rd International Conference Nuclear Energy for New Europe-NENE 2014</u>, Portorose, Slovenia, Settembre 8-11, 2014, p. 1209, Nuclear Society of Slovenia (2014) (CD-ROOM), ISBN 978-961-6207-37-9

M. Cerini, E. Macerata, M. Giola, M. Mariani, C. Cavallotti, Advancing the chemistry of the f-elements, Dalton Discussion 14, 28-30 July 2014, Edinburgh, UK

85 Calore Specifico [J/Kmol] 80 Cp calc. 75 Cp sper. 70 65 60 0 500 1000 1500 2000 т [к]

Elena Macerata

POLITECNICO MILANO 1863

11

2500

Stima di entalpia, entropia e calore specifico mediante DFT-GGA

- In fase condensata tramite il codice <u>VASP (Vienna Ab-initio Simulation Package)¹</u>:
 - \rightarrow Projector Augmented Wave potentials (PAW)
 - \rightarrow Generalized Gradient Approximation (GGA)
- Procedura:
 - Determinazione della cella cristallina;
 - Identificazione della posizione degli atomi nella cella unitaria;
 - Ottimizzazione dei parametri di reticolo in corrispondenza della configurazione di minima energia;
 - Valutazione delle proprietà (S, c_P, ΔH_f⁰) dalle frequenze vibrazionali e dai contributi energetici mediante le relazione della termodinamica statistica.
- Validazione:
 - Parametri di reticolo, a_o;
 - Entalpia di formazione, Entropia e Calore specifico;
- Collaborazione col Centro di Supercalcolo CINECA:
 - Progetti LISA:
 - CHILDHOOD Chemical issues in Lead Fast Reactors by theoretical methods 12 mesi (Maggio 2013 Aprile 2014); Budget: 94000 stdhours su EURORA, PLX, FERMI
 - FueLead Computational approach for fuel-coolant chemical compatibility in Lead-cooled Fast Reactors 6 mesi (Giugno 2014 – Dicembre 2014); Budget: 50000 stdhours su PLX
 - Progetto ISCRA:
 - ThermPro Estimation of thermodynamic properties by theoretical approach within the development of Lead-cooled Fast Reactors

9 mesi (Aprile2015 – Dicembre2015); Budget: 50000 stdhours su Galileo

1. J. Hafner, Journal of Computational Chemistry, **2008**, 29, 2044

Stima di entalpia, entropia e calore specifico mediante DFT-GGA

Compound		a₀ [Å]		Compound		a ₀ [Å]	c/a
Compound	Calc.	Exp.	% deviation	Compound	Calc.	Exp.	% deviation	
UO ₂	5.43	5.47	-0.73%	UPb ₃	4.84	4.79	+1.04%	-
NpO ₂	5.42	5.43	-0.18%	Pu ₃ Pb	4.82	4.74	+1.69%	-
PuO ₂	5.41	5.40	+0.18%	LaPb ₃	4.96	4.90	+1.22%	-
AmO ₂	5.41	5.38	+0.56%	SrPb ₃	4.98	4.95.	+0.61%	1.01
CmO ₂	5.42	-	-	CsPb	8.89	-	-	1.63
				BaUO ₄	5,8	5,75	0,87	

M. Cerini, *Fuel-Coolant Chemical* Interaction for Lead-cooled Fast Reactors by a computational approach, <u>Tesi di</u> <u>Dottorato</u>, II anno.

13

Compound		Entropy [J/(K	(mol)]	Specif	Specific Heat Capacity [J/(Kmol)]			Formation Enthalpy [kJ/mol]		
	Calc.	Exp. ^[1]	% deviation	Calc.	Exp. ^[1]	% deviation	Calc.	Exp. ^[1]	% deviation	
UO ₂	80.22	77.00	+4.18%	65.86	63.57	+3.60%	-1034.36	-1084.90	-4.66%	
NpO ₂	80.27	80.33	-0.07%	65.94	63.72	+3.49%	-1069.74	-1029.26	+3.93%	
PuO ₂	82.37	66.00	+24.80%	66.52	66.35	+0.41%	-1018.12	-1055.70	-3.55%	
AmO ₂	80.06	75.50	+6.04%	65.96	66.17	-0.32%	-928.48	-932.3	-0.41%	
CmO ₂	84.80	-	-	67.56	-	-	-763.66	-	-	
UPb ₃	164.15	-	-	102.19	-	-	-70.82	-73.67	-3.87%	
Pu ₃ Pb	172.74	-	-	103.76	-	-	-196.28	-	-	
LaPb ₃	172.63	-	-	103.73	-	-	-193.07	-206.00	-6.28%	
SrPb ₃	170.61	-	-	103.17	-	-	-150.60	-	-	
CsPb	92.49	-	-	49.73	-	-	121.72	-	-	
BaUO ₄	160,24	154	4,05	127,58	125,3	1,82	-1975,34	-1993,8	-0,93	

M. Cerini, E. Macerata, M. Giola, M. Mariani, C. Cavallotti, *DFT-GGA Predictions of Thermodynamic Parameters in Solid Phase for Binary Compounds of Actinides and Fission Products*, <u>GLOBAL 2015 International Conference</u>, 20-24 September 2015, Paris, France

POLITECNICO MILANO 1863

Elena Macerata

Confronto tra le stime con metodi semi-empirici e con DFT

Compound	Forma	tion Enthalpy [kJ/mol]
Compound	DFT	Miedema	Exp.
LaPb ₃	-193.07	-188.4	-206.00
UPb ₃	-70.82	-68.8	-73.67
PbTiO ₃	-1182.73	-1239.4	-1194.7
UO ₂	-1097.99	-922.5	-1084.9
NpO ₂	-1069.74	-836.17	-1029.26

Semneund	Entropy [J/(K·mol)]		Compound	Specific Heat [J/(K·		
Compound	DFT	W-T	Exp.	Compound	DFT	
UFe ₂	109.7	83.22	104.6	UFe ₂	75.75	8
LaAl ₂	98.56	59.81	98.74	LaAl ₂	73.63	96
Mg ₂ Pb	109.63	92.02	110.88	YPb ₃	103.36	128.
Cu ₂ Sb	118.99	126.48	100.33	Cu ₂ Sb	76.58	74.0

L'approccio DFT proposto è più accurato dei metodi semiempirici considerati.

14

Database di dati termodinamici

- È stato quindi possibile implementare un Database [12-14] di dati termochimici (entalpia di formazione e soluzione, entropia, calore specifico) <u>in fase gas e</u> <u>condensata</u> di:
 - Ossidi binari di Pb, U, Pu, Am, Cm, Np, principali prodotti di fissione;
 - Composti binari del Pb con U, Pu, Am, prodotti di fissione (Cs, Sr, Y, lantanidi, Pd, Zr);
 - Composti ternari di Pb-U-Pu; Pb-Sr-Y, Pb-Cs-U, Pb-Cs-Pu, Pb-Sr-U, Pb-Sr-Pu, Pb-Y-U, Pb-Y-Pu; Pb-O-Cr/Mo/Ti;
 - Uranati di Pb, Cs e Sr;
 - Intermetallici di U/Pu con Fe/Ni: UFe2, UNi2, PuFe2, PuNi2.

15

Solubilità di elementi/composti in piombo liquido

- Simulazione DFT in VASP mediante modello a diluizione infinita;
- Calcolo di entalpia e entropia di dissoluzione;
- Correlazioni riportate nella pubblicazione della NEA nº 7268, 2015.

M. Cerini, E. Macerata, M. Giola, M. Mariani, C. Cavallotti, "Study of Fission Products solubility in liquid Pb by DFT approach", Submitted at *Scientific Basis for Nuclear Waste Management XXXIX*, Montpellier, France, 2-6 November 2015

POLITECNICO MILANO 1863

16

Elena Macerata

Studio propedeutico all'attività sperimentale

- Progettazione di prove volte all'ottenimento di parametri termodinamici di interesse, utilizzabili per validare l'approccio computazionale sviluppato nei precedenti PAR;
- Studio del sistema La-Pb e Sr-Pb con Calorimetria a scansione differenziale (DSC):
 - sistemi di interesse per reattori LFR
 - sistemi facile da manipolare
 - mancanza di dati termodinamici (c_P, S₀, ...)
 - <u>Obiettivo dell'esperimento</u>: studiare il calore specifico degli intermetallici LaPb₃ e La₅Pb₃ (Sr-Pb)
 - <u>Preparazione campioni</u>: miscela di polvere di Pb (99.99%) e di La (Sr) in proporzioni stechiometriche in atmosfera di Argon,
 - <u>Analisi termica</u>: condizioni di temperatura in DSC; Indicazioni su reazioni eso- ed endo-termiche; calcolo del calore specifico; confronto dei dati sperimentali ricavati con quelli stimati - validazione metodi teorici
 - <u>Analisi in diffrazione a raggi X</u>: informazioni strutturali su fasi intermetalliche, cfr con dati di letteratura;
- Collaborazione con ITU per ricavare informazioni sperimentali su sistemi U-Pb, Np-Pb e Pu-Pb (2016).

17

• Approccio promettente

- Limitazione del codice per l'analisi termodinamica
- Mancanza di dati sperimentali
- Metodo DFT per stima di parametri termodinamici
- Validazione = step difficile
- Complementarietà con l'attività sperimentale
- Attività sperimentale con elementi stabili e loro composti

• ...

<u>Contatti</u>:

mario.mariani@polimi.it

elena.macerata@polimi.it

18

University of Pisa Department of Civil and Industrial Engineering

LFR-GEN IV: Stato Attuale Della Tecnologia e Prospettive Di Sviluppo ADP ENEA-MSE (PAR2014-LP2)

ANALYSIS OF THE CORE COMPACTION PHENOMENON

R. Lo Frano

rosa.lofrano@ing.unipi.it

Brasimone, 19-20 Novembre, 2015 Centro Ricerche ENEA Brasimone

CONTENTS

WHAT IS THE CORE COMPACTION PHYSICAL PROBLEMS TO BE ADDRESSED CORE COMPACTION MODELLING STRATEGY ANALYSIS AND RESULTS CONCLUSION

FURTHER DEVELOPMENTS

Why to investigate core compaction?

- The safety is the priority in any nuclear reactor: core compaction is a DBE in LFR
- Dynamic solicitation affects particularly the core design of LMR because of the high density of the primary coolant (convective mode according to ASCE rules), and the high temperature (operating condition).
- Nuclear stability dictates that the geometry of the core be closely controlled at all times: keep the reactivity known and controlled.
- Core deformation, caused by dynamic condition like the seismic motion, may determine to a large or small extent.
- Radial inward displacement (i. e. flexion + constraint on pads) could be accompanied by a localized surface bulging.
- □ Core compaction could cause severe and dangerous consequences particularly in the case of severe (and near fault) seismic event.

Physical problems to be addressed

The vertical, radial or circumferential deformations (large or small) are induced by dynamic or vibration loads.

Physical problems to be addressed (Contd)

Since it is not possible to exclude core compaction, no matter the number and robustness of the countermeasures adopted to prevent the initiating causes, it becomes of paramount importance to limit the compaction, through passive, simple and reliable means, so to manage the associated reactivity insertion.

The reactivity inserted should not approach the effective delayed neutron fraction that is 1\$ (prompt-criticality).

At design stage, the geometrical restraints must be known and controlled to assure adequate safety and core performance.

Scheme of the radially inward deformation of an assembly

Physical problems to be addressed

Major restraints to consider:

- <u>Reactivity</u>: to enhance the inherent core safety, assemblies have to be supported such to accommodate "dynamic motions" by finite interassembly and peripheral gaps.
- <u>Assembly Deformation</u>: high temperature and neutron flux environment produce duct dilation and permanent assembly bowing.
- <u>Assembly Alignment</u>: thermo-mechanical loads can modify the alignment of the assemblies with interfacing control and refuelling system components.
- <u>Load Transmission</u>: the definition of load transmission planes allows to identify interfacing gaps at core and internals component elevations.

Core compaction modeling strategies

Few modelling approach (referred to LMFBR) are available in literature:

• 2D models of cores includes a single row of assemblies to analyze and design the LMFR assemblies against seismic loadings.

 Preumont (1987) 2D model considers the fluid coupling created by the thin fluid layers between assemblies

•Martelli model replaces the coupling effect of the fluid with added masses on each assembly.

• Moussallam et al. (2011) model assumes the fluid effect as purely inertial, with no energy dissipation, and small relative displacement between adjacent assemblies: the full Navier-Stokes equations describing the fluid behaviour are reduced to the wave propagation equation associated with a pressure boundary condition at the interfaces with structures.

A lot of work must be done to investigate core compaction on LFR...
Core compaction modeling strategies (Contd)

<u>Deterministic methodology</u> plays an important role in evaluating the inherent capability of plants to withstand severe internal external events.

The SMA methodology considers, often, a higher level of hazard (high intensity/magnitude of the initiating event) to be conservative and determine/associate it the really strength capacity.

The inherent additional capacity of the SSCs may be taken into account as well all significant information concerning material property, geometry (progressive damage of component and structure) and operational status, boundary and initial conditions.

<u>Conservatism</u> is also present since this approach is compounded through the safety analysis and design chain.

Core Compaction analysis

LFR main key issues and proposed strategies and R&D needs.

GENERAL ISSUE	SPECIFIC ISSUE	PROPOSED STRATEGY/NEEDED R&D
Lead technology	Lead purification	Technology for the purification of large quantities of lead to be confirmed.
	Oxygen control	Extend oxygen control technology to pure lead for pool reactors.
Potentially high mechanical loading	Earthquake	Reactor building built with seismic isolators plus short vessel design.
	SGTR accident	Prevention by design of: - steam entrainment into the core; - reactor vessel pressurization; - pressure wave propagation across the primary system.
Main safety functions	Diversified, reliable, redundant DHR and shut down system	Use of both atmospheric air and pool water and of diversified solutions

The primary system design temperature ranges between 400°C and 480°C, while the design pressure is about 1 bar (primary system not pressurized). The operational condition range of the secondary side, entering the RV through the SG tubes, is between 335°C and 450°C at about 18 MPa.

Core Compaction analysis

In studying the core compaction the Advanced Lead-cooled Fast Reactor European Demonstrator - ALFRED, was considered: the reactor building of which was already defined in the ELSY 6th FP.


```
http://www.leader-fp7.eu/
```

http://www.elsy-fp6.eu/

Core Compaction analysis

The major components of the ALFRED reactor are: assemblies, diagrid, inner cylindrical vessel, lateral supports (at two elevations along the ICV) etc. The assemblies are axially positioned and supported by upper and lower core support plates.

The RV, SGs and SG outlet, and the skirt are made of SA 240 316LN, whereas the SGs support box and the base plate of SA 516 Gr 70 carbon steel.

Core compaction analysis

Fuel rods are of small diameter and able to slide to each other and duct: the contribution to the bending stiffness of assembly is negligible if compared to the duct.

The top load pad (TLP) is located on a transition section between the fuel rod bundle and outlet nozzle. This section is relatively thick and as a result the TLP is essentially rigid when lateral loads are applied, although its characteristic stiffness depends on the nature of the applied/sustained loading (e.g. mechanical, dynamic loads, etc.).

Core compaction analysis

Dynamic loadings to be taken into account :

• *Fluid-induced vibration*, e.g. due to the coolant flow through the assemblies.

• <u>Shock induced excitation</u>, typically of short duration, associated to an accidental handling condition, steam generator tube rupture (SGTR) event etc.

• <u>Internal energy release</u> represents a beyond design condition; namely, whatever the initiating event (normal or accidental conditions), the nature of the energy release and its forms (pressure wave, kinetic energy of the coolant, etc.), it shall not bring the core to the limit of the prompt-criticality.

• <u>Seismic excitation</u> is of major concern because it is unpredictable like its severity. Specific design criteria must be fulfilled, such as the limitation of the maximum allowable displacement of the assemblies, at the foot and head, the maximum allowable acceleration at pins level, etc.

Because of the complexity and lack of information on geometry, not all the RV components are modelled: no piping or primary coolant.

BCs are:

double symmetry condition along the centre line;

clamp restraints at the diagrid foots and upper part of upper plate and IC shell.

- The lower part has a diameter slightly greater than the main one to allow the insertion of the lower grid

-In the middle part the diameter and thickness increase due to the presence of outlet nozzles.

- In the upper part is present an inner flange for supporting the upper grid.

The sustaining diagrid has openings to allow coolant flows upward.

- The bottom diagrid was simulated through its two horizontal perforated plates, each one 100 mm thick, connected and stiffened by vertical spokes, and plates holes for housing FAs foots and plates distance guaranteeing verticality.
- This component is enclosed by two identical cylindrical perforated plates, each one 100 mm thick. The distance between the two plates is guaranteed through an internal grid with an hexagonal geometry.

Material: AISI 304;

Main dimension:

- H=550 mm;
- De=3420 mm;
- t=100 mm.

On the lateral surface are obtained eight holes, four of which used for the insertion of plugs to connect it to the bottom part of the inner vessel.

- The upper grid and inner vessel are linked together via twenty screws;

- The upper grid enclosed at the ends by two perforated cylindrical plates: the diameter of the holes in the upper plate is 20 mm, while the one of the holes in the lower plate is 90 mm.

- An inner grid separates the two plates, its geometrical shape is similar to that one of the lower grid

Each assembly has an hexagonal shape containing 295 total fuel element. It is 8.15 m long and about 171 mm width.

The pitch between two adjacent assembly is 171 mm, while the gap is 5 mm. The spike (bottom part of the assembly) has 0.115 m diameter. It is inserted for about 1 m in the bottom plate allowing lead to flow in the sub-channels.

Modelling assumption (Contd)

- The core assemblies were represented by means of a distributed mass over the lower support plate.
- Surface-to-surface contact/interaction is implemented like a single side contact algorithm. The contact detection is based on the touching at the beginning and during the analysis
- Minimum contact distance, defined as the distance value below which two bodies are going in contact, was assumed equal to 10⁻⁵ m.
- FAs are also restrained to each other's in order to avoid/limit vibrations.
- The ballast, linked to the upper plate, together with the Upper Head is represents through upper restraints.
- FAs spike restraint FAs to the bottom plate
- Clamped restraint between the support skirt and the main vessel and the one between the inner vessel and the reactor cover has been imposed
- No variation of the mechanical properties along the height and radius.

Core compaction results: dynamic behaviour

Contact forces determine a change of the compression rigidity of the structures, and influence the deformation of the element cross-section.

The structure, hit by the seismic motion, amplifies the input acceleration (0.21g and 0.28g at the upper plate and IC restraints) that reaches 7 and 5.7 m/s² respectively at the radial peripheral and central FAs positioned along x axis.

Vibrations (high spikes (f > 65 Hz)) are also visible .

Analysing the Von Mises stress behaviour at the same FAs, it is possible to observe that the stress sometimes overcome the yielding for a prolonged time duration.

A wide plasticisation appears in the upper part of the upper plate, at the nozzle penetration. This latter in particular ovalizes (circumferential buckling).

The FAs horizontal displacement is 1+8 cm; the mean vertical displacement ~ 2.5 cm.

FAs horizontal displacements.

The deformed shape along the FA elements is characterised by inflexion which determines the inward displacement: the gap between two adjacent FA is 5 mm !!

Compaction is affecting mostly part of FAs (and LOFA could subsequently occur).

Conclusions

- The contact forces determines a change of the compression rigidity of structures, and influences the deformation of the element cross-section;

- The input acceleration amplifies till to reach 7 and 5.7 m/s² respectively at the radial peripheral and central FAs positioned along x axis.

- Vibrations also appear and influence the response of structures (high spikes at f > 65 Hz).

- Von Mises stress sometimes overcomes the allowed limit for a prolonged time duration.

- $D_x = 2 \div 9$ cm (from the bottom to the upper plate) indicates the presence of the compaction

- Both the lower and upper plates did not suffer a wide plasticization, the opposite occurs instead in the nozzle-piping region

Further insights are needed to better understand the phenomenon also by executing specific experiments (never done on this topic).

Thank you for your attention

List of the publication:

- R. Lo Frano, et al., 2014, Proceedings of the ASME 2014 Small Modular Reactors;
- R. Lo Frano, A. Sanfiorenzo, Analysis of the core compaction phenomenon, Proceedings of 23th Int. Conference on Nuclear Engineering, Chiba, Japan May 17-21, 2015.
- R. Lo Frano, G. Forasassi, Preliminary Assessment of the Fluid-structure Interaction Effects in a Gen IV LMR, Proceedings of 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July 2012.

Reference:

IAEA, Intercomparison of liquid metal fast reactor seismic analysis codes- Vol. 2: Verification and improvement of reactor core seismic analysis codes using core mockup experiments, Proc. Research Co-ordination Meeting, Sept. 1994.

- A. Martelli, J. Gauvain, A. Bernard, Non Linear Dynamic and Seismic Analysis of Fast Reactor Cores: 1. Theoretical Model, SMIRT 6, Paris, 1981.
- Y. Shinaora, T. Shimogo, Vibration of Square and Hexagonal Cylinders in a Liquid, J. Pressure Vessel Technology, August, vol. 103, 233-239, 1981.
- A. Preumont, A. Pay, A. Decauwers, The Seismic Analysis of a free standing FBR core, Nuclear Eng. Design, 103, 199-210, 1987.
- M. Morishita, K. Iwata, Seismic Behavior of a free-standing core in a large LMFBR, Nuclear Eng. Design, 140, 309-318, 1993.
- G-H. Koo, J-H Lee, Fluid Effects on the Core Seismic Behavior of a Liquid Metal Reactor, KSME International Journal, 18, 12, 2125-2136, 2004.
- R. Lo Frano, G. Forasassi, Conceptual evaluation of fluid-structure interaction effects coupled to a seismic event in an innovative liquid metal nuclear reactor, Nucl. Eng Design, 239, 11, 2333-2342, 2009.
- N. Moussallam et al., Design of liquid metal fast breeder reactor (LMFBR) core under dynamic loading, Transactions, SMiRT 22, August, 2013.
- P. G. Reinhall et al., Analysis of mechanical bowing phenomena of fuel assemblies in passively safe advanced liquid–metal reactors, Nucl. Tech. 83, 197-204, 1988.
- K. Tsukimori, H. Negishi, Development of 'Pad Element' for detailed core deformation analyses and its verification, Nucl. Eng. Design, 213, 141-156, 2002.

Accordo di Programma MSE-ENEA PAR2014-LP2

WORKSHOP TEMATICO LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

Centro Ricerche ENEA Brasimone, 19-20 Novembre, 2015

Qualifica coatings e materiali strutturali per sistemi LFR

Massimo Angiolini ENEA C.R. Casaccia Via Anguillarese, 301 00123 Roma

Introduzione

Lo sviluppo di reattori veloci raffreddati a piombo e piombo bismuto rappresenta una sfida unica per i materiali che sono sottoposti, con diversa entità, a diversi meccanismi di degrado legati a

- Irraggiamento neutronicoEsposizione al metallo liquido
 - Corrosione (T>450°)
 - Infragilimento da metallo liquido (F/M steels)

Esposizione ad alte temperature

Le attività sono state dedicate principalmente allo sviluppo di materiali e tecnologie per la realizzazione dei componenti del nocciolo del reattore

Sviluppo e caratterizzazione di trattamenti superficiali protettivi
Sviluppo di acciai da creep resistenti al danno da irraggiamento

Sviluppo di Rivestimenti

La soluzione più praticabile per far fronte ai problemi di corrosione da metallo liquido pesante è lo sviluppo di trattamenti superficiali

Questo approccio ha il vantaggio, rispetto allo sviluppo di leghe resistenti alla corrosione, di impiegare materiali strutturali con proprietà note e codificata dalle normative di riferimento

Abbiamo concentrato la nostra attenzione su

- Rivestimenti autopassivanti alumina forming (FeCrAl)
- Rivestimenti ceramici a base allumina

- Resistenza alla corrosione in Pb
- Self-healing
- > Buona adesione e compatibilità meccanica con il substrato
- Stabili sotto irraggiamento neutronico (30 DPA / Y)
 - Stabilità dimensionale
 - Stabilità chimica e microstrutturale
 - Conservazione delle proprietà meccaniche
- > Affidabilità, durata
- Alto grado di riproducibilità microstrutturale
- Fattibilità con tecnologie già disponibili
- Rapporto costi-efficacia

Sviluppo di Rivestimenti

•	AlFe	Magnetron sputtering
*	AlFeCR+Al2O3	Cathodic arc deposition (arc – PVD) + Mag. sputtering
*	AlFeCr	Pack – cementation
*	FeCrAlY	HVOF (High Velocity Oxy Fuel)
*	AlFeCrY+ Al2O3	Mag. sputtering + Ablazione Laser (PLD)

Prove e Caratterizzazioni

- Invecchiamento termico (in aria)
- Invecchiamento tramite cicli termici (in aria)
- Irraggiamenti con ioni pesanti
- Prove di corrosione in piombo
- Prove di Creep in piombo
- Prove di piega a tre punti/U-bending test
- Microscopia TEM SEM EDS
- Micro e nano indentazione

Rivestimenti PVD basati su leghe FeCrAl

I rivestimenti di leghe a base FeCrAl depositati per PVD sono stati applicati sui substrati : P91, 304, 316L, 441

- Magnetron sputtering
- Arc-PVD
- Rivestimenti con buona adesione al substrato in tutti i casi
- Spessore intorno ai 2 μm non uniforme
- Ottime proprietà di resistenza alla corrosione: localmente dei punti di attacco in presenza di difetti

5000 ore di esposizione al piombo liquido @500°C nell'impianto CHEOPEIII

Rivestimenti arc-PVD basati su leghe FeCrAl

Prove di irraggiamento con ioni 58Ni 110 MeV a TA e 550°C FeCrAl arc-PVD su SS 316L

L'esame al microscopio elettronico non mostra segni di delaminazione o cricche

Il campione ha mantenuto adesione al substrato

Stabilità microstrutturale

Rivestimenti CVD basati su leghe FeCrAl

- La pack cementation è una tecnica di deposizione da fase vapore largamente impiegata nell'industria sin dagli anni 60' per il rivestimento di pale di turbine a gas
- La tecnica è molto versatile e consente di rivestire pezzi con geometrie molto complicate e dimensioni anche notevoli
- La tecnica permette di rivestire anche l'interno di tubi: negli anni 90' la compagnia Alon Surface Technologies Inc, ha sviluppato diversi processi industriali per il rivestimento di tubi lunghi fino a 15 m ed una capacità produttiva di 100.000 metri lineari di tubo all'anno
- Il rivestimento viene ottenuto per deposizione e diffusione della lega sul substrato da rivestire
- Processo ad alta temperatura rischio di alterare la microstruttura e le proprietà meccaniche del substrato

B. Ganser et al "Operational experience with diffusion coatings on steam cracker tubes" Materials and Corrosion **50** (1999) 700

Rivestimenti CVD basati su leghe FeCrAl

- Trattamento di diffusion coating compatibile con il ciclo di trattamento termico dell'acciaio
- Evitando la formazione di intermetallici fragili

Ottimizzazione della miscela di alluminizzazione in termini di:

- composizione della master alloy
- percentuale e tipo di sale attivatore

Rivestimenti Thermal Spray (HVOF)di leghe FeCrAlY

Il materiale di rivestimento sotto forma di particelle fuse o semifuse viene spruzzato sulla superficie mediante un flusso di gas ad elevata temperatura e ad alta velocità (>1000 m/s)

Ottimizzati i parametri di deposizione per la deposizione di rivestimenti FeCrAlY in termini di

- assenza porosità
- controllo delle tensioni residue
- adesione al substrato

E' stata quindi verificata la possibilità di eseguire lavorazioni standard di rettifica per ridurre la rugosità del rivestimento

Rivestimenti Al₂O₃ per Ablazione Laser (PLD)

- ✓ Temperatura di deposizione flessibile
- ✓ Viene conservata la stechiometria del target
- Rivestimenti con straordinarie proprietà di adesione e compatibilità meccanica col substrato
- ✓ Ottime proprietà di resistenza alla corrosione

Dimostrata la fattibilità di deposizione su tubi

Progettato e realizzato un manipolatore per rivestire campioni cilindrici e dimostrare la possibilità di esportare il procedimento in un contesto produttivo per il rivestimento delle barrette di combustibile

Rivestimenti Al₂O₃ per Ablazione Laser (PLD)

200 <u>nm</u>

Prove di irraggiamento con ioni pesanti

Cristallizzazione progressiva della fase amorfa

@ 40 DPA il rivestimento è completamente cristallino

Per dosi più elevate si osserva la crescita dei grani quindi una stabilizzazione

Nonostante l'irraggiamento fino a dosi DPA molto elevate non si sono osservati segni di delaminazione o cricche ed il rivestimento ha mantenuto l'adesione al substrato

Sviluppo di acciai da creep resistenti al danno da

- Relativamente agli acciai strutturali per applicazioni nucleari, gli acciai doppio stabilizzati (Ti, Nb) hanno dimostrato grande stabilità al rigonfiamento ed ottime proprietà di creep
- Si tratta di leghe austenitiche appartenenti alla famiglia dell'AISI 316, sviluppate da ENEA in collaborazione con il CEA per l'applicazione quale materiale di guaina per i reattori veloci refrigerati al sodio
- I campioni degli acciai sviluppati in ENEA vennero sottoposti ad irraggiamento con neutroni nel reattore Phénix nell'ambito dell'esperimento "Supernova" mostrando una stabilità dimensionale sorprendente per dosi fino ad 89 DPA rispetto alle altre leghe austenitiche sviluppate
- Sono state riprese le attività di R&D ed è stato prodotto un lingotto DS4 (50 kg) dal quale sono stati ricavati dei campioni per l'analisi microstrutturale, prove di trazione e di creep, prove di corrosione e sviluppo di fagitta dei campioni dei constructione di constructurale.

Irraggiamento con ioni pesanti

Sono state presentate le seguenti proposte di irraggiamento Presso I Laboratori Nazionali di Legnaro dell'INFN

ACEIC "Advanced Coatings under Extreme Irradiation Conditions "

LP2-B1 e **LP2-B1C** "Study of the effect of high fluence irradiation on the swelling and microstructural behavior of anti corrosion coatings for high temperature operation of steels in heavy liquid metals"

Presso la piattaforma di irraggiamento Jannus del CEA due proposte

"Structural and mechanical stability of an advanced Al2O3 nanocomposite coating under ion irradiation up to high DPA"

Prove di creep in piombo @CR ENEA Faenza

L'esecuzione delle prove di creep in piombo liquido stagnante ha richiesto l'upgrade delle macchine da creep presenti nel laboratorio per prove termomeccaniche presso il CR ENEA Faenza

- Realizzazione di linee di gas inerte/riducente per ciascuna macchina per il conditioning del metallo fuso
- Modifica del sistema di acquisizione delle deformazioni
- Progettato e realizzato un nuovo sistema di acquisizione (Hardware/Software)

Eseguiti I test preliminare sui materiali base non ricoperti (15 15 Ti)

Overall view of the creep machine
Deliverables

2012 – 2013 Deliverables

- Sviluppo di sistemi multilayer per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo
- Sviluppo di layer per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo mediante tecniche di ablazione laser
- Report sulla caratterizzazione di coating realizzati mediante ablazione laser mediante prove di irraggiamento con ioni pesanti
- Rapporto sulla installazione e collaudo di una macchina per Detonation Spray
- Report sulla caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari
- Implementazione del laboratorio della chimica del piombo

2013 – 2014 Deliverables

- Sviluppo di ricoperture CVD a base AI-Fe per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo
- Studio del comportamento di rivestimenti sottoposti a ciclaggio termico
- Sviluppo di Ricoperture per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo mediante tecniche di ablazione laser
- Report sulla caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari: definizione dei criteri di fallimento dei rivestimenti per deplezione dell'elemento passivante
- Report sulla caratterizzazione delle proprietà meccaniche di ricoperture per applicazioni nucleari
- Report sulla caratterizzazione di rivestimenti mediante prove di irraggiamento con ioni pesanti
- Modellazione dei fenomeni di corrosione/dissoluzione da metallo liquido pesante
- Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante
- Double Stabilized Stainless Steel Procurement
- Concettualizzazione di un impianto per il monitoraggio del rateo di corrosione su materiali strutturali operanti in piombo

2014-2015 Deliverables

- Sviluppo di ricoperture a base FeCrAI per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo
- Sviluppo di ricoperture per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo mediante tecniche di ablazione laser
- Report sulla caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari
- Report sulla caratterizzazione di rivestimenti mediante prove di irraggiamento con ioni pesanti
- Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante
- Characterization of mechanical properties and Corrosion behavior in lead of DS4 steel

POLITECNICO MILANO 1863

Elena Macerata

Pubblicazioni

F. García Ferré, E. Bertarelli, A. Chiodoni, D. Carnelli, D. Gastaldi, P. Vena, M.G. Beghi and F. Di Fonzo, *The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy*, Acta Mater. 61 (2013) 2662-2670

F. García Ferré, M. Ormellese, F. Di Fonzo, M.G. Beghi, Advanced Al₂O₃ coatings for high temperature operation of steels in heavy liquid metals: a preliminary study, Corr. Sci. 77 (2013) 375-378

Presentazioni a conferenze:

- * EMRS, Strasbourg, 2013
- * HLM coolants in nuclear technology, Obninsk 2013
- * MRS, San Francisco, 2013
- * IAEA 46th Meeting of the Technical Working Group on Fast Reactors, Vienna 2013
- * CAARI, San Antonio, 2014
- * IAEA 47th Meeting of the Technical Working Group on Fast Reactors Vienna 2014
- * EUROCORR, Pisa, 2014
- * TMS, Orlando, 2015
- * EERA JPNM Meeting Madrid 2015
- * IAEA 48th Meeting of the Technical Working Group on Fast Reactors Obninsk 2015

Le attività sono state svolte in collaborazione con

CIRTEN <u>Consorzio</u> Interuniversitario per la <u>R</u>icerca <u>TE</u>cnologica <u>N</u>ucleare

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

ISTITUTO ITALIANO DI TECNOLOGIA CENTER FOR NANOSCIENCE AND TECHNOLOGY

materials, innovation & technology

Elena Macerata

POLITECNICO MILANO 1863

Sviluppo di ricoperture a base FeCrAl per pack cementation

•messa a punto di un protocollo da esportare su scala industriale per il rivestimento di simulacri e manufatti,

•messa a punto di lavorazioni pre e post deposizione per l'ottenimento di particolari proprietà superficiali e tolleranze.

Sviluppo di ricoperture mediante tecniche di ablazione laser.

rivestimento di campioni cilindrici per effettuare prove di creep su tubi pressurizzati,
Prove di corrosione in piombo liquido stagnante ad alta temperatura (800°C)

Prove di corrosione in Pb statico a diversi tempi di esposizione e concentrazione di ossigeno

Caratterizzazione delle proprietà meccaniche, di corrosione in piombo e di swelling dell' acciaio DS4

•proprietà a trazione ed analisi microstrutturale della lega,

•caratterizzazione a creep in aria del materiale,

•prove di irraggiamento con ioni pesanti.

Caratterizzazione degli strati ossidati in metallo liquido pesante con tecniche TEM, SEM, spettroscopia RAMAN, Diffrazione di raggi x e ICP-MS

Modelling termodinamico del sistema Fe-Cr-Pb-O

Elena Macerata

E' stata data una breve rassegna delle attività sui materiali per applicazioni Gen IV del triennio 2012-15, che hanno riguardato Lo sviluppo di rivestimenti protettivi ad alte prestazioni Lo viluppo di leghe per applicazioni ad alta temperatura resistenti al'irraggiamento Lo studio teorico e sperimentale dei processi di corrosione ed infragilimento da metallo liquido pesante

Sommario

Le attività sono state portate avanti in collaborazione con università italiane (CIRTEN) ed i partner industriali IIT e CSM

Le tematiche affrontate hanno ricadute immediate in campo nucleare ma hanno valenza ed applicazioni in altri contesti, come la fusione nucleare e più in generale nell'impiantistica

Sono state acquisite attrezzature ed impianti che oltre ad essere funzionali allo svolgimento e futura prosecuzione delle attività in progetto, hanno potenziato le capacità dell'ENEA nel settore della metallurgia avanzata e dei nuovi materiali

Le ricerche, collaborazioni e sinergie attivate nel contesto dell'accordo di programma hanno portato alla presentazione/partecipazione a quattro proposte di progetto in ambito EERA NM che vede coinvolti centri di ricerca e gruppi industriali della Comunità Europea Sviluppo di ricoperture a base di FeCrAl per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo

Alessandra Bellucci

WORKSHOP TEMATICO LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO Centro Ricerche ENEA Brasimone 19-20 Novembre, 2015

I contenuti

o Breve introduzione ai criteri di selezione dei rivestimenti

• I rivestimenti sviluppati:

- i principi dei processi di deposizione
- i settori industriali di applicazione
- l'attività sperimentale:
 - <u>l'ottimizzazione dei parametri di processo</u>
 - la produzione di provini per l'attività di caratterizzazione (Università di Tor Vergata)
 - la produzione di provini per le campagne di testing ENEA

I requisiti per i materiali operanti in piombo

- durability under irradiation;
- prevention of dissolution attack;
- tolerable oxidation rate during and after oxide scale formation;
- long-term stability under normal and temporarily abnormal conditions;
- self-healing ability;
- long-term mechanical stability;
- tolerable influence on the mechanical properties of the structural material;
- feasibility on an industrial level

G. Muller, G. Schumacher, A. heinzel, A. Jianu, A. Weisenburger "*Corrosion protection in lead and lead-bismuth eutectic at elevated temperatures*" in LBE Handbook, NEA No.7268 OECD (2015) 617 - 646

Al_2O_3 former

I materiali contenti Al presentano eccellente resistenza a corrosione in bagni di Pb grazie alla formazione di un **film protettivo di Al₂O₃**

- (5-15) wt% di Al superficiale: formazione film α Al₂O₃
- presenza di Cr: accelerazione trasformazione di θ in α Al₂O₃

E. Yamaki, M. Takahashi Journal of Nuclear Science and Technology vol. 48, No. 5, (2011) 797 - 804

- A.K. Rivai, M. Takahashi Journal of Nuclear Materials 398 (2010) 146 152
- E. Yamaki Irisawa, S. Numata, M. Takahashi Progress in Nuclear Energy, vol. 53, 7 (2011) 1066 1072
- A. Weisenburger, A. Heinzel, G. Muller, H. Muscher, A. Rousanov Journal of Nuclear Materials 376 (2008) 274 281
- G. Muller et al. Journual of Nuclear Materials 335 (2004) 163 168
- Y. Kurata, M. Futakawa, S. Saito Journual of Nuclear Materials 335 (2004) 501 507
- A. Heinzel, M. Kondo, M. Takahashi Journual of Nuclear Materials 350 (2006) 264 270
- M. Kondo, M. takahashi Journual of Nuclear Materials 356 (2006) 203 212
- P. Hosemann, H.T. Thau, A.I. Johnson, S.A. Maloy, N. Li Journual of Nuclear Materials 373 (2008) 246 253

Le soluzioni

- 1) Rivestimenti *mutilayer* FrCrAl + Al₂O₃ (PVD Physical Vapour Deposition)
- 2) Rivestimenti FeCrAlY (HVOF High Velocity Oxy Fuel)
- 3) Rivestimenti alluminuri (pack cementation)
 - <u>I substrati</u>:
 - acciai austenitici:

15 – 15 Ti

- AISI316
- acciai ferritici/martensitici:

T91

1) II processo PVD arco

- Generazione di vapori dalla sorgente attraverso la formazione di un arco:
 - catodo = sorgente
 - anodo = camera di deposizione

regime di arco: bassa tensione/elevata corrente

- Confinamento della scarica in una piccola area (decine di mm²): spot catodico
- Movimento rapido (1-100) m/s dello spot catodico (differenza di resistività): erosione uniforme della sorgente

1) Settori di applicazione dei rivestimenti PVD

- industria ottica: vetri e specchi architettonici, rivestimenti assorbenti e riflettenti, vetri selettivi;
- industria elettronica: conduttori, contatti, isolatori, celle solari;
- **industria meccanica**: film lubrificanti, rivestimenti anti-usura, anti-erosione ed anti-frizione, barriere di diffusione, rivestimenti duri per utensili;
- componenti di precisione: utensili, attrezzature, sensori, attuatori;
- industria chimica: rivestimenti anti-corrosione e catalitici, componenti batterie;
- industria elettronica e delle telecomunicazioni;
- **medicina e implantologia**: rivestimenti biocompatibili per protesi e scheletri dentali, per protesi ortopediche e per strumenti e utensili chirurgici;
- industria aereonautica e spaziale;
- industria materie plastiche: viti estrusione, ugelli iniezione, stampi trasformazione materie plastiche;
- componenti decorative: orologi, occhiali, bigiotteria....;

1) L'impianto PVD del CSM

- Due tecnologie di deposizione PVD:
 - » arco catodico (4 sorgenti)
 - » RF magnetron sputtering
- Riscaldatori:
- » 2 resistori (15 kW, 10³ V)
- » Tmax: 450 °C
- Portasubstrati:
- » movimentazione planetaria
- » carico massimo: 600 kg
- Dimensioni:
- » camera:(1000X1150)cm
- » I_{max} componenti:(40-60)cm

1) La campagna FeCrAl

SIGLA	SORGENTI	FeAl/Cr	CORRENTE PROCESSO/Ah	ADHESION LAYER	BIAS/V
FeAl - 1	FeAl	λ	100	Al	150
FeAl - 2	FeAl	λ	100	Al	50
FeAl - 3	FeAl	λ	100	Cr	50
FeAl - 4	FeAl	λ	100	Cr	150
FeAl - 5	FeAl	λ	300	Cr	100
FeAl - 6	FeAl	λ	100	Cr	125
FeAl - 7	FeAl	λ	100	Cr	100
FeAl - 8	FeAl - 8 FeAl		200	Cr	100
FeCrAl - 1	FeCrAl	λ	100	Al	150
FeCrAl - 2	FeCrAl	λ	94	Al	50
FeCrAl - 3	FeAl+Cr	0,9	100	Cr	50
FeCrAl - 4	FeAl + Cr	0,8	100	Cr	50
FeCrAl - 5	FeAl + Cr	0,7	100	Cr	50
FeCrAl - 6	FeAl + Cr	0,8	100	Cr	100
FeCrAl - 7	FeAl + Cr	0,8	200	Cr	100
FeCrAl - 8 FeAl + Cr (0,8	300	Cr	100

analisi EDS rivestimento

FeCr	Al -2
Al K	4,8
Cr K	20,5
Fe K	74,8

Al - 3
10,4
24,1
65,6

FeCr	Al - 4
Al K	8,6
Cr K	29,0
Fe K	62,4

1) PVD RF sputtering

- Generazione di vapori dalla sorgente attraverso l'accensione di una scarica a bagliore:
 - catodo = sorgente (target)
 - anodo = camera di deposizione
- Regime di scarica: tensioni elevate (1-2 kV)

1) La campagna Al_2O_3

modulabilità spessore:

- 0,5 micron
- 1 micron
- 4 micron
- 6 micron

1) II multilayer

1) PVD – la campagna TiN

controllo incremento spessore TiN

2) II processo HVOF

I processi di termospruzzatura consistono tutti di tre passaggi principali:

In un processo HVOF la velocità di impatto delle particelle è dell'ordine di 1000 m/s, mentre in un processo Plasma Spray è circa 100 m/s

- creare materiale di appropriata composizione in forma di polvere, filo o barretta
- impartire sufficiente energia cinetica o termica
- proiettare le particelle verso il substrato da rivestire

2) II processo HVOF

- Il principale vantaggio del processo HVOF è il ridotto tempo di permanenza della polvere nella fiamma e l'elevatissima velocità di impatto delle particelle con produzione di rivestimenti molto densi
- La forza di legame dei rivestimenti può raggiungere valori dell'ordine di 90 MPa con porosità inferiori a 1%.
- Spessori tipici dei rivestimenti HVOF sono 100 400 micron.

2) Settori di applicazione dei rivestimenti HVOF

- I rivestimenti termospruzzati sono utilizzati per la protezione delle superfici, principalmente contro la corrosione ad alta temperatura e l'usura.
- Si trovano applicati in diversi settori industriali, quali aeronautico, navale, meccanico, siderurgico, energia, cartario.
- I rivestimenti HVOF vengono impiegati come protezione termica per rivestire componenti di turbine a gas per applicazioni civili, militari, marine ed industriali; essi vengono depositati sulle parti "calde" della turbina quali liner, ugelli e palettature dei primi stadi.

2) L'impianto HVOF del CSM

I processi di deposizione sono stati eseguiti utilizzando l'impianto HVOF presente presso CSM, un sistema JP5000 Tafa System.

2) La campagna FeCrAIY

- La deposizione HVOF di polvere FeCrAlY (Amdry 9700 Fe24Cr8Al0.5Y) è un processo consolidato.
 Nell'attività di messa a punto del processi di deposizione dei rivestimenti ci è si quindi focalizzati su:
 - controllo delle tensioni residue del rivestimento
 - lavorazioni post deposizione di rettifica superficiale del rivestimento

A	A causa del contributo predominante del peening stress, in genere									
i	rivestimenti HVOF presentano stress compressivo: più alte									
V	velocità delle particelle producono rivestimenti con									
m	maggior stress residuo compressivo, ma minore porosità e frazione									
d	di ossidazione.									

pressione in camera combustione							
psi bar							
93	6,4						
82	5,6						
71	4,9						

2) Il rivestimento FeCrAIY HVOF

3) I processi di diffusion coating

- Varie sono le metodologie disponibili con un comune processo base:

- 1. generazione di vapori contenenti l'elemento formatore della scaglia protettiva
- 2. trasporto dei vapori alla superficie del componente da trattare
- 3. reazione con il substrato e diffusione

3) Il processo pack cementation

- Nel processo di *pack cementation* i componenti sono immersi in una miscela di polveri:

- gli elementi da depositare (sorgente)
- un sale alogenuro(attivatore)
- un diluente inerte (*filler*)
- Quando la miscela viene riscaldata, l'attivatore reagisce per produrre un atmosfera di alogenuri dell'elemento della sorgente che diffonde e trasferisce l'elemento della sorgente alla superficie da rivestire. Il *filler* crea nel *pack* porosità interconnesse per il trasporto dei gas e ne impedisce la sinterizzazione.
- Il riscaldamento avviene in flusso di gas inerte

3) Il processo pack cementation

Nella variante *above the pack* i componenti da rivestire sono posti sopra il *pack*:

- non è necessario l'*unpacking* dei componenti

- si evita l'intrappolamento di polveri nei rivestimenti

Nella variante **vapor phase aluminizing**, le polveri di sorgenti di Al sono sostituite da *pellets*:

- riduzione del lavoro di gestione dei rifiuti di processo
- Nella tecnica *slurry*, la miscela di polveri viene sostituita da una *slurry*.

3) Settori di applicazione dei rivestimenti alluminuri

- Si stima che sul primo stadio delle palette delle turbine a gas, più dell'80% dei componenti rivestiti sia trattata con il processo di *pack cementation*.
- Il trattamento di componenti di grandi dimensioni è stato oggetti di diversi studi, portando allo sviluppo di alcuni brevetti ed alla dimostrazione che questo processo permetta il rivestimento anche della superficie interna di un tubo.
- Negli anni ottanta la compagnia statunitense Alon sviluppò un processo noto con il marchio di Alonizing[™] basato sul processo di alluminizzazione per *pack cementation*. Lo scopo era proteggere i componenti delle fornaci per il trattamento di cracking dell'etilene dalla carburazione e dalla formazione di coke. Con gli impianti Alon si afferma di poter rivestire con Al, Cr e/o Si tubi lunghi 15 metri su scala industriale. Gli impianti della DAL Diffusion Alloys (UK) vengono dichiarati capaci di trattare tubi lunghi 18,5 metri.
- I trattamenti di alluminizzazione forniscono protezione da diversi fenomeni di degrado, incrementando la resistenza ad ossidazione, a sulfurazione, a carburazione.

3) L'impianto pack cementation CSM

Un impianto industriale

L'impianto CSM

3) Le campagne di alluminizzazione

- La microstruttura del rivestimento che si forma dipende dal substrato: lo sviluppo di rivestimenti alluminuri sui due substrati T91 e 15 – 15 Ti ha richieste due campagne di ottimizzazione dei parametri di processo.
- Per entrambe le tipologie di acciai è stato scelto di sviluppare rivestimenti alluminuri bassa attività, favorendo cioè la formazione di fasi meno ricche in Al e quindi meno fragili. Nella selezione dei componenti della pack è stato quindi scelto di utilizzare leghe base Al piuttosto che Al puro. In particolare sono state utilizzate le leghe Al – Co e Al – Cr, entrambi prodotti commerciali reperibili sul mercato.
- Quale sale attivatore è stato selezionato il NH₄Cl, cioè un attivatore che decompone evitando così la formazione di particelle solide che possano rimanere intrappolate nel rivestimento compromettendone la qualità. Esso inoltre non presenta tossicità, a differenza del rispettivo fluoruro.

Alluminizzazione bassa attività dell'acciaio T91

• Il trattamento termico dell'acciaio T91 consiste di:

- una fase di austenitizzazione **(1040 – 1080)** °C seguita da un rapido raffreddamento in aria per la trasformazione martensitica.

- una successiva fase di rinvenimento (730 – 800) °C è poi richiesta per trasformare parte della martensite in ferrite e permettere ai carburi di precipitare omogeneamente all'interno della matrice martensitica. Questo trattamento riduce la durezza del materiale, ne aumenta la tenacia a frattura e lo rende più facilmente lavorabile.

- 24/15: Al/Co; 12hrs@750°C - 28/15: Al/Co; 12hrs@780°C - 29/15: Al/Cr; 12hrs@780°C

trattamento 24/15							
provino	incremento peso (%)						
3	18,7						
4	17,0						
trattamento 28/15							
provino	incremento peso (%)						
11	19,0						
12	21,7						
trat	ttamento 29/15						
provino	incremento peso (%)						
13	47,1						
14	38,3						

MO sezione campione 29/15

Il profilo di composizione: l'analisi EDS puntuale

analisi SEM sezione campione Grade 91 alluminizzato

La microstruttura

campione Grade 91 alluminizzato

11.5

11.2

11.0

10.8

11.0

10.7

10.9

10.8

11.0

11.3

11.05

b0	pre trattamento	posttrattamento	I
Š	215	219	1
71	219	220	
T	216	219	1

Alluminizzazione bassa attività dell'acciaio 15 – 15 Ti

Nella messa a punto dei parametri del processo di alluminizzazione per l'acciaio 15 – 15 Ti si è fatto riferimento ai parametri del ciclo di produzione:

- *annealing treatment*: 15h (time in furnace) a 1230°C

- **post hot rolling**: when the sheet temperature has been above

45-50 minutes, the sheets are taken out of the furnace

and water quenched

1065°C for

- 26/15: Al/Co; 45min@1065°C - 27/15: Al/Cr; 45min@1065°C

ĺ	trattamento 26/15							
	provino	incremento peso (%)						
	7	554,0						
	8	564,1						

trattamento 27/15							
provino	incremento peso (%)						
9	460,7						
10	447,9						

Alluminizzazione bassa attività dell'acciaio 15 – 15 Ti

- Riscaldamento@1065°C + immersione in acqua

3)	Element	k-ratio (calc.)	ZAF	Atom %	Element 2)	Element	k-ratio (calc.)	ZAF	Atom %	Element Wt %	1) Element	k-ratio (calc.)	ZAF	Atom %	Element Wt %
	A1-K	0.327	1.43	46.6	46.8	Al-K	0.034	1.87	12.2	6.4	Al-K	0.104	1.91	34.4	19.8
	Ti-K	0.011	1.11	0.7	1.2	Ti-K	0.002	0.96	0.2	0.2	Ti-K	0.000	1.00	0.0	0.0
	Cr-K	0.046	1.07	2.6	5.0	Cr-K	0.165	0.91	14.9	14.9	Cr-K	0.044	0.95	3.8	4.2
	Fe-K	0.143	1.10	7.6	15.8	Fe-K	0.650	1.02	61.3	66.1	Fe-K	0.355	0.98	29.0	34.6
	Ni-K	0.058	1.11	2.9	6.4	Ni-K	0.099	1.05	9.1	10.4	Ni-K	0.396	1.04	32.9	41.3
	Si-K	0.007	1.76	1.2	1.3	Si-K	0.005	1.54	1.5	0.8	Total			100.0	100.0
	Mo-L	0.005	1.43	0.2	0.7	Mo-L	0.010	1.28	0.7	1.3					
	0 -K	0.111	2.05	38.3	22.8	Total			100.0	100.0					
	Total			100.0	100.0										

Alluminizzazione bassa attività dell'acciaio 15 – 15 Ti

Rif. 1

Element k-ratio ZAF Atom % Element Element k-ratio ZAF Atom % Element (calc.) WE % (calc.) Wt % A1-K 0.035 1.85 12.1 6.4 0.098 1.90 32.3 18.6 A1-K 0.003 Ti-K 0.97 0.4 0.3 Ti-K 0.003 1.00 0.3 0.3 Cr-K 0.174 0.91 15.5 15.8 Cr-K 0.071 0.95 6.1 6.7 0.652 1.02 60.5 66.5 Fe-K Fe-K 0.368 0.99 30.5 36.4 Ni-K 0.069 1.05 6.3 7.3 Ni-K 0.354 1.04 29.5 37.0 Si-K 0.005 1.53 1.4 0.8 0.002 Si-K 1.69 0.5 0.3 Mo-L 0.015 1.28 1.0 1.9 0.004 1.37 0.5 Mo-L 0.3 0 -K 0.006 1.60 2.8 0.9 0.001 0 -K 1.79 0.7 0.2 100.0 Total 100.0 Total 100.0 100.0

Rif. 2
Conclusioni

- Nell'ambito del triennio PAR2011- 2014, CSM ha sviluppato rivestimenti per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo valutando e comparando diverse tecnonologie di deposizione appartenenti alle tre famiglie:
 - Physical Vapour Deposition (PVD)
 - HVOF
 - pack cementation

Sulla base dei risultati conseguiti, le soluzioni protettive FeCrAlY da processo HVOF e alluminizzazione da processo pack cementation appaiono maggiormente promettenti.

- E' necessario sviluppare attività propedeutiche allo sviluppo di metodologie di scale up delle soluzioni sviluppate, quali ad esempio:
 - trattamenti termici post deposizione
 - lavorazioni meccaniche post deposizione
 - operazioni di giunzione post deposizione
 - messa a punto dei parametri di deposizione e/o di mascherature per il rivestimenti di simulacri

francisco.garcia@iit.it

fabio.difonzo@iit.it

Acknowledgements

Alexander Mairov Kumar Sridharan ISTITUTO ITALIANO DI TECNOLOGIA

Rosaria Brescia Luca Ceseracciu

Ente per le Nuove tecnologie, l'Energia e l'Ambiente

Dario Gastaldi Pasquale Vena Marco G. beghi

Yves Serruys Patrick Trocellier Lucile Beck

Cédric Baumier Odile Kaitasov

Materials degradation modes

- Fatigue
- Low T radiation hardening & embrittlement
- Radiation-induced and -modified solute segregation and phase stability
- High temperature He embrittlement
- Corrosion
- Creep (thermal & irradiation)
- Void swelling

Requirements for coatings

- High thermal conductivity
- Strong interfacial bonding
- Match of mechanical properties with steels
- Wear resistance
- Chemical stability
- Toughness
- Radiation tolerance

J.L. Straalsund – Westinghouse Hanford

Radiation damage in sapphire

neutrons

R.A. Youngman et al – J Mater Res - 1991

- voids and dislocation loops
- anisotropic void swelling along c-axis
- intergranular micro-cracking

Radiation damage in sapphire

R.A. Youngman et al – J Mater Res - 1991

- voids and dislocation loops
- anisotropic void swelling along c-axis
- intergranular micro-cracking

equivalent microstructural features

Y. Katano et al. – J Nucl Mater - 1998

What is the effect of irradiation spectrum and type of ions?

Zinkle - Journal of Nuclear Materials - 1995

A high ionizing component suppresses dislocation loop formation and enhances loop growth For sapphire in LFRs: ENSP ≈ 4 (PKAs + Y radiation)

Nanostructure

homogeneous dispersion of randomly oriented crystalline Al₂O₃ nanodomains in amorphous Al₂O₃ matrix

Amorphous matrix as a lubricant

Au and W ions up to 20, 40 and 150 dpa (end-of-life damage) @600°C

Main criteria

- Minimum coating thickness for nanoindentation: 1 μm
- Implantation beyond coating \rightarrow negligible chemical effects
- Low ENSP ratio to simulate effect of neutrons
- Low enough absolute electronic stopping power to avoid single swift ion track formation (7 keV/nm vs ≈ 9,5 keV/nm threshold @RT)
- Different doses, corresponding to up to **20, 40 and 150 dpa** at the interface between Al₂O₃ and BL
- dpa calculated using SRIM (Kinchin-Pease)

Sample holder

Structural features and mechanical properties

radiation-induced nanocrystallization & coarsening

Structural features and mechanical properties

Fracture toughness

Coarsening slows down as grain size increases

Twinning

Nanoimpact

cube-corner diamond stylus «blasted» 10 times against sample's surface in the same point

Impact energy dissipated more efficiently in the irradiated samples

Mechanisms of impact energy dissipation

Mechanisms of impact energy dissipation

Nanoimpact testing (1mN – 10 impacts)

twinning

local shear amorphization

Mechanisms of impact energy dissipation

Ni ions up to 250 and 450 dpa (beyond end-of-life dose) @ 600°C

Main criteria

- Minimum coating thickness for nanoindentation: 1 μm
- Implantation beyond coating \rightarrow negligible chemical effects
- Low ENSP ratio to simulate effect of neutrons
- Low enough absolute electronic stopping power to avoid single swift ion track formation (2 keV/nm vs ≈ 9,5 keV/nm threshold @RT)
- Different doses, corresponding to up to 250 and 450 dpa at the interface between Al₂O₃ and BL
- dpa calculated using SRIM (Kinchin-Pease)

Sample holder

Role of the irradiation spectrum

4 MeV Ni²⁺

12 MeV Au⁵⁺ + 18 MeV W⁷⁺

Irradiation of Al₂O₃ coatings with heavy ions yields an improvement in-situ of the material's performance

- Nanocrystallization, grain growth and twinning
- Increase of hardness according to the Hall-Petch effect
- Increase of fracture toughness suggested by H/E ratio & nanoimpact: lattice plasticity & localized shear amorphization
- Effect of the irradiation spectrum: lighter ions → reduced grain coarsening

ISTITUTO ITALIANO DI TECNOLOGIA CENTER FOR NANOSCIENCE AND TECHNOLOGY

Nano2Energy Lab

Microindentation

cracks form and propagate but a quantitative estimation of fracture toughness is not possible (indentation reaches deep into the substrate)

Microindentation

cracks form and propagate but a quantitative estimation of fracture toughness is not possible (indentation reaches deep into the substrate)

cracks form but propagation is strongly hampered, suggesting an increase of fracture toughness

Qualitative trend of fracture toughness in agreement with trend for H/E

Displacement cascades

simplified scheme

G.S. Was – Fundamentals of radiation materials science

- "Central" vacancy-rich zone
- "External" interstitial-rich zone
- Thermal spike (local "fusion"/amorphization)
- Number of defects above equilibrium concentration \rightarrow precipitation

incident neutron

PKA: primary knocked-on atom

more realistic version

Radiation damage basics

- **Electrons**: low mass \rightarrow low energy loss creation of Frenkel pairs
- Protons: mass ratio closer to 1 →
 many "small" displacement
 cascades (Coulomb potential of
 interaction) energy loss to
 electrons
- Heavy ions: mass ratio close to 1
 → few displacement cascades
 (Coulomb potential of interaction
 BUT large inertia) energy loss to
 electrons
 - **Neutrons**: interaction through nuclear forces (no Coulomb potential) – rigid spheres with good approximation \rightarrow few large displacement cascades

Energy loss is proportional to mass ratio ———

Different incident particles produce different types of damage

HAADF-STEM + EDS mapping

Implantation of ions beyond the coating – agreement with SRIM

Thermal stability

Adhesive strength

0 dpa

Microscratch tests

- Conical tip (r = $200 \mu m$)
- Scratch length 10 mm
- Maximum load 30 N
- 10 mm/min

Critical loads:

- LC1: cracking without exposure of substrate
- LC2: cracking with exposure of substrate at the borders
- LC3: cracking with exposure of the substrate within the track

LC1 = 3,2 ± 0,3 N LC2 = 4,2 ± 0,4 N LC3 = 25,6 ± 2,9 N

Adhesive strength

Radiation damage in bi-phase Al₂O₃ coatings

Radiation damage in bi-phase Al₂O₃ coatings

Large number of small voids, only in the inner grains

Hall-Petch hardening

S. Veprek, M.G.J. Veprek-Heijman – Thin Solid Films - 2012

Heavy ion irradiation (Ni)

STEM + DPs @ 450 dpa

MA.S.T. Lab - MAterial Science and Technology Laboratory University of Rome "Tor Vergata"

Workshop Finale PT 2012-2014

LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

ADP MiSE-ENEA-Progetto B3.1-LP2

CR ENEA Brasimone, 19-20 Novembre 2015

"Report sulla caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari"

F. Nanni, <u>F.R. Lamastra</u>, M. Bragaglia, G. Forasassi

Attività sperimentale UTV

•Rivestimenti di allumina via deposizione mediante ablazione laser (PLD):

-su substrati in acciaio 316, 316L e 15-15 Ti (lamine e tubi);

-con e senza *buffer layer* (FeCrAlY, FeCrSi);

-as-deposited;

-sottoposti a ciclaggi termici;

-sottoposti a irraggiamento con ioni pesanti.

•Produzione provini: IIT Milano

•Caratterizzazioni: UTV

•Rivestimenti multistrato *via* tecniche di deposizione fisica da fase vapore (PVD):

Al₂O₃ (RF sputtering)/FeCrAl (arc-PVD)

-su lamine in acciaio 316;
-as-deposited;
-sottoposti a irraggiamento con ioni pesanti.

•Diffusion Coating via Pack Cementation:

-su lamine in acciaio 15-15 Ti e T91;

•Rivestimenti di FeCrAlY *vi*a termospruzzatura HVOF (High Velocity Oxy Fuel):

-su lamine in acciaio T91; -as-deposited e sottoposti a ciclaggi termici.

•Produzione provini: CSM Castel Romano

•Caratterizzazioni: UTV
Caratterizzazioni UTV

Caratterizzazioni Meccaniche

Rivestimenti PLD di Al₂O₃: Microstruttura

5 μm Al₂O₃/500 nm FeCrAlY/lamina 316 *as-deposited*

Rivestimenti PLD di Al₂O₃: Microstruttura post-irraggiamento

5 μm Al₂O₃/500 nm FeCrAlY/lamina 316 post-irraggiamento (110 MeV Ni²⁺-16 dpa-RT)

Rivestimenti PLD di Al₂O₃ : Microstruttura post-irraggiamento

5 μm Al₂O₃/500 nm FeCrAlY/lamina 316 post-irraggiamento (110 MeV Ni²⁺-16 dpa-550 °C)

Modifiche morfologiche del rivestimento nelle zone di impatto degli ioni;Assenza di delaminazione.

*Rivestimenti PLD di Al*₂O₃ : Analisi delle fasi cristalline

5 μm Al₂O₃/500 nm FeCrAlY/lamina 316 *as-deposited*

Rivestimento di allumina amorfo nel campione as deposited

Rivestimenti PLD di Al₂O₃ post-irraggiamento: Analisi delle fasi cristalline

5 μm Al₂O₃/500 nm FeCrAlY/lamina 316 post-irraggiamento (110 MeV Ni²⁺-16 dpa-RT e 550 °C)

Fasi cristalline di allumina: Al₂O₃ (romboedrica), γ - Al₂O₃ (cubica), δ - Al₂O₃(tetragonale)

Formazione di fasi cristalline di Al₂O₃ a seguito dell'irraggiamento ionico;
Influenza della temperatura sulle fasi cristalline.

Fasi cristalline di allumina: Corindone (romboedrica), γ - Al₂O₃ (cubica), Al₂O₃ (cubica)

Rivestimenti PLD di Al₂O₃: Influenza dell'irraggiamento sulla durezza

indentatore piramidale Berkovich

Campione	H (Al ₂ O ₃) GPa	E (Al ₂ O ₃) GPa
As-deposited	12.2±1.6	165
Irraggiato 150 dpa	12.7±3	152

L'irraggiamento non influenza in modo significativo durezza e modulo elastico del rivestimento di Al₂O₃

considerati in modo assoluto ma come valori comparativi dei diversi provini.

F.R. Lamastra "Report sulla caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari" - ENEA -Brasimone 19/11/2015

Rivestimenti PLD di Al₂O₃: Influenza dell'irraggiamento sull'adesione

Parametri di prova:

-as deposited;

-indentatore con profilo "Rockwell C" di diamante con raggio pari a 200 μm;

-lunghezza traccia 10 mm;

Scratch test (UNI EN 1071-3:2005) su:

1.3 μ m Al₂O₃/200 nm FeCrAlY/ lamina 15-15 Ti:

-carico progressivo da 0.03 N iniziali fino a 30 N finali;

-velocita relativa tra punta e provino 10 mm/min.

carichi critici (Lc) dipendono dai

e non vanno

parametri di prova

Rivestimenti PLD di Al₂O₃: Influenza dell'irraggiamento sull'adesione

1.3 μm Al₂O₃/200 nm FeCrAlY/ lamina 15-15 Ti *as-deposited*

1.3 μ m Al₂O₃/200 nm FeCrAlY/ lamina 15-15 Ti post-irraggiamento 150 dpa

L'irraggiamento peggiora leggermente l'adesione del film di Al₂O₃

Rivestimenti PLD di Al₂O₃ su tubi: Microdurezza

Influenza dello spessore del film di Al₂O₃, del *buffer layer* e del ciclaggio termico sulla durezza dei tubi rivestiti

Rivestimenti PLD di Al₂O₃ su tubi: Influenza dello spessore sulla microdurezza

Campione 5 μm Al₂O₃/316L valori di microdurezza maggiori dell'acciaio 316L;
Campione 1 μm Al₂O₃/316L valori di microdurezza confrontabili con quelli dell'acciaio 316L.

Aumentando lo spessore del rivestimento di Al₂O₃ aumenta la microdurezza dei campioni

Rivestimenti PLD di Al_2O_3 su tubi: Influenza del ciclaggio termico sulla microdurezza

Rivestimenti su tubi in acciaio 316L

Dopo ciclaggio termico la microdurezza diminuisce di ≈ 0,3 GPa

Fenomeni di distensione del substrato

Rivestimenti PLD di Al_2O_3 su tubi: Influenza del buffer layer sulla microdurezza

Rivestimenti su tubi in acciaio 316L

La presenza del buffer layer in FeCrSi aumenta la microdurezza dei campioni

Rivestimenti PLD di Al_2O_3 su tubi: Adesione

Prove di flessione a tre punti (ASTM-C1161)

Distanza coltelli 30 mm;
Velocità di applicazione del carico 0,05 mm/min;
Corsa 2 mm

Su tubi 316L rivestiti in Al₂O₃:

spessori del film di Al₂O₃ 1 e 5 μm;
 con o senza buffer layer in FeCrSi;
 -as deposited -dopo ciclaggio termico in Ar
 (11 cicli tra 300 e 600°C)

Caratterizzazione al microscopio ottico per osservare eventuale insorgenza di criccature o delaminazioni.

Influenza dello spessore, del *buffer layer* e del ciclaggio termico sull'adesione del rivestimento di Al₂O₃ al substrato

Rivestimenti PLD di Al₂O₃ su tubi: Influenza dello spessore sull'adesione

 $1 \,\mu\text{m Al}_2O_3/\text{tubo 316L}$

 $5 \mu m Al_2O_3/tubo 316L$

•Cricche presenti in entrambi i provini in direzione parallela all'asse del tubo; •Il provino con 5 μ m Al₂O₃ mostra vaste zone di delaminazione.

Lo spessore del rivestimento influenza l'adesione al substrato

Rivestimenti PLD di Al_2O_3 su tubi: Influenza del ciclaggio termico sull'adesione

 $1 \mu m Al_2O_3/tubo 316L$

1 μm Al₂O₃/tubo 316L dopo ciclaggio termico

Cricche presenti in entrambi i provini in direzione parallela all'asse del tubo;Zone di delaminazione presenti nel campione ciclato termicamente.

Il ciclaggio termico ha ridotto l'adesione rivestimento-substrato

Rivestimenti PLD di Al_2O_3 su tubi: Influenza del buffer layer sull'adesione

1 μm Al₂O₃/tubo 316L dopo ciclaggio termico

1 μm Al₂O₃/200 nm FeCrSi/tubo 316L dopo ciclaggio termico

Nel campione con il buffer layer il rivestimento risulta in gran parte delaminato

La presenza del buffer layer influenza negativamente l'adesione del rivestimento al substrato

Al₂O₃ (RF sputtering)/FeCrAl (arc-PVD)/316: Microstruttura pre- e post-irraggiamento

Irraggiamento: 110 MeV Ni²⁺-16 dpa-RT e 550 °C

Microstruttura allumina influenzata dalla rugosità del FeCrAl sottostante;
L'irraggiamento non modifica in modo significativo la microstruttura superficiale del rivestimento di Al₂O₃;
Assenza di delaminazione.

Al₂O₃ (RF sputtering)/FeCrAl (arc-PVD)/316: Influenza dell'irraggiamento sulle fasi cristalline

Multilayer as deposited e post-irraggiamento (110 MeV Ni²⁺-16 dpa-RT e 550 °C)

L' irraggiamento non ha influenza sulle fasi presenti:

-l'allumina rimane amorfa;

-non subiscono variazioni le fasi cristalline attribuibili al FeCrAl identificate dalle schede JCPDS relative a AlCrFe2, AlFe3, AlFe.

Diffusion Coating su 15-15 Ti: Microstruttura

Campione 26/15:

-Alluminizzazione 15-15 Ti con granuli Al/Co;
 -Spessore diffusion coating 70-80 μm;
 - Spessore outer layer 20-30 μm.

Campione 27/15:

-Alluminizzazione 15-15 Ti con granuli Al/Cr; -Spessore *diffusion coating* 50-60 μm; -Spessore *outer layer* 10-20 μm.

Diffusion Coating su 15-15 Ti: Microstruttura

Campione 26/15: alluminizzazione 15-15 Ti con granuli Al/Co

Diffusion Coating su 15-15 Ti: Microdurezza

Influenza della differente composizione elementare lungo la sezione sulla durezza

•HV 15-15 Ti pre-trattamento di alluminizzazione 3-3.5 GPa;
•HV *diffusion coating* 3.3-5.7 GPa;
•HV *outer layer* 5-5.7 GPa;
•HV 15-15 Ti post-trattamento di alluminizzazione 1.6-1.9 GPa.

Il trattamento termico impiegato nella *pack cementation* causa una diminuzione della durezza dell'acciaio 15-15 Ti (fenomeni di ricristallizzazione e distensione)

Diffusion Coating su T91: Microstruttura

T_{Pack} 780°C, t_{Pack} 12 h

Campione 28/15: -Alluminizzazione T91 con granuli Al/Co; -Spessore *diffusion coating* 20 μm. Campione 29/15:

-Alluminizzazione T91 con granuli Al/Cr; -Spessore *diffusion coating* 10 μm.

Diffusion coating a basso spessore;
HV T91 (~2 GPa) non è influenzata dal trattamento termico impiegato nella *pack cementation* (T del processo relativamente bassa).

Rivestimenti FeCrAlY (HVOF) su T91: Microstruttura

Campione H34/15-1 as-deposited

Rivestimento compatto;

•Spessore 240 µm;

Zone scure attribuibili probabilmente alla presenza di ossidi;
Possibilità di ottenere un profilo regolare della superficie superiore a seguito di un processo di rettifica.

Superficie rivestimento FeCrAIY rettificata Acciaio Resina

Rivestimenti FeCrAlY (HVOF) su T91: Microstruttura dopo ciclaggio termico

Campione H34/15-1 dopo ciclaggio termico in aria (25 cicli tra 380 e 630°C)

Assenza di delaminazione dopo ciclaggio termico in aria

Conclusioni

Rivestimenti PLD di Al₂O₃ su lamine 316

A seguito dell'irraggiamento:

delaminazione parziale (RT) e modifiche morfologiche (550°C) del rivestimento; formazione di fasi cristalline dell'allumina; durezza e modulo elastico del rivestimento di Al_2O_3 non variano in modo significativo; peggiora leggermente l'adesione del film di Al_2O_3 .

Rivestimenti PLD di Al₂O₃ su tubi 316L:

-la durezza dei tubi rivestiti aumenta con lo spessore di Al₂O₃ e in presenza del *buffer layer* in FeCrSi; la durezza diminuisce dopo ciclaggio termico;

-l'adesione rivestimento-substrato è minore aumentando lo spessore del film di Al₂O₃; dopo ciclaggio termico; in presenza del *buffer layer* in FeCrSi.

Multilayer Al₂O₃ (RF sputtering)/FeCrAl (arc-PVD)/316:

l'irraggiamento non modifica in modo significativo la microstruttura superficiale del rivestimento di Al_2O_3 e che non ha influenza sulle fasi presenti nel campione *as-deposited*.

Conclusioni

Diffusion Coating su 1515 Ti:

spessori maggiori (70-80 μm) utilizzando granuli Al/Co; HV *diffusion coating* 3.3-5.7 GPa; HV *outer layer* più ricco in Al 5-5.7 GPa; Il trattamento termico impiegato nella *pack cementation* causa una diminuzione della durezza dell'acciaio 15-15 Ti.

Diffusion Coating su T91:

bassi spessori ottenuti (20 μ m utilizzando granuli Al/Co, 10 μ m utilizzando granuli Al/Cr; HV T91 (~2 GPa) non è influenzata dal trattamento termico impiegato nella *pack cementation* (T del processo relativamente bassa).

Rivestimenti FeCrAlY (HVOF) su T91:

compatti; profili regolari della superficie superiore a seguito di un processo di rettifica; HV 3.2-3.8 GPa; Assenza di delaminazione dopo ciclaggio termico in aria.

Alessandro Merli

"Caratterizzazione microstrutturale meccanica e tribologica di rivestimenti PLD in allumina su acciai inox per applicazioni nucleari" Laurea in Ingegneria Meccanica

Fabrizio Mario Ferrarese "Caratterizzazione di film ceramic sottili per applicazioni nei reattori nucleari di quarta generazione" Laurea in Scienza dei Materiali

Mario Bragaglia "Caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari" Dottorato di ricerca in Ingegneria Industriale

PROVE DI CORROSIONE IN PIOMBO STAGNANTE E FLUENTE E CONTROLLO DELL'OSSIGENO IN IMPIANTI A PIOMBO

S. Bassini, A. Antonelli, I. Di Piazza, M. Tarantino

Workshop ADP ENEA-MSE PAR2014-LP2 C.R. ENEA Brasimone, 19-20 Nov. 2015

MATERIALS BEHAVIOUR IN LEAD

CORROSION OF CONVENTIONAL STEELS

- high capability of liquid Pb to dissolve the chemical elements of steels (Ni and Cr in particular);
- dissolved alloy elements contribute to plugging.

Surface "ferritization" due to Ni and Cr dissolution in 316L steel exposed to flowing LBE at 400°C with low C₀ for 1500 h.

*Benamati, Journal of Nuclear Materials 335 (2004) 169–173.

Strategy against Metal Dissolution:

- active oxygen in Pb for steel passivation (Fe₃O₄ formation) to minimize degradation of structures exposed to T < 480°C</p>
- use of coatings above structures exposed to T > 480°C (e.g. fuel cladding tubes at 550°C)

STATIC CORROSION TESTS: EXPERIMENTAL

Experimental Capsules for Corrosion Tests in Pb with low Co

small capsules

large capsules

STUDY AND IMPLEMENTATION OF CAPSULE SETUPS

Different cover gas to obtain different C_0 in Pb:

- Argon gas for oxygen saturation level (formation of PbO crust on liquid Pb free surface)
- Ar/H_2 mixture for low oxygen level (C_0 monitored with oxygen sensor for HLM)

Muffle furnace for Corrosion Tests in Pb with high C_{0} (sat. level)

- alumina crucible containing liquid Pb and samples
- Ar/air flowing gas on Pb free surface
- C_0 % wt. = 10⁻⁴ 10⁻³ at 480-550°C

CORROSION TESTS OF TIN COATING

TiN coating: arc-PVD (Physical Vapor Deposition)

- ✓ produced by CSM (Centro Sviluppo Materiali)
- \checkmark industrial availability and good oxidation resistance in air

✓ Defects on TiN coating

	Parameters
Samples	n°2 TiN at 550°C and n°3 at 480°C
HLM	Pb (static)
C _o % wt.	10 ⁻³ - 10 ⁻⁴ (sat.)
Exposure Time	1000 and 2000 hours
Cover gas	Ar and Ar/air

Test at 550°C for 2000 h

TIO ₂ TIN 3				
1 1	% wt.	1	2	3
5:1.	Ν	-	-	30.4
	0	39.1	46.9	-
HV mag det 20.00 kV 5 000 x BSED PM 87412 [Ti	10.0	46.2	69.6
	Fe	6.1	7.0	-
	Pb	44.9	_	_

TiN

Test at 480°C for 1000 h

✓ Oxidation and Ti release in Pb

According to literature: $2\text{TiN} + 2\text{O}_2 \rightarrow 2\text{TiO}_2 + \text{N}_2$ at 450-700°C in air

CORROSION TESTS OF TA COATING (1)

Ta coating: CVD (Chemical Vapor Deposition)

- ✓ proposed for heat exchanger and primary pumps protection in ALFRED reactor
- ✓ produced by Tantaline (Denmark)
- ✓ Ta low solubility in liquid Pb and industrial availability

PM 09714 [1] AISI 316 L + coat. Ta Pre Prova Particolare superficie coating - zona terminale

 ✓ loss of coating due to oxidation (very low oxidation resistance)

	Parar	neters		
Samples	n°3 Ta coating			
HLM	Pb (sta	atic)		
Temperature	480°C	(HX ar	nd Pump	os T)
C _o % wt.	10-4 (sat.)		-
Exposure Tim	ie 1000 k	nours	Bi	
Cover gas	Ar/air			
-200 -300 -400 -500 (Tow/Y) -500 -500 -500 -500 -500 -500 -500 -50	Pb/Pb0 Ni/NiO Fe/Fe ₃ O ₂ Cr/Cr ₂ Q ₃ Ta/Ta ₂ O ₅ Si/SiO ₂ Ti/TiO ₂ Al/Al ₂ O ₃			10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰ C

-1100

300

400

500

Pb Temperature (°C)

600

700

CORROSION TESTS OF Ta COATING (2)

Test in Pb at 480°C, low C_o for 700 h

 ✓ no oxidation, no Ta dissolution
 ✓ no migration of chemical elements (to be confirmed)

Tests in Pb at 550°C, low C_o for 1000 h: mismatch

✓ no oxidation✓ no Ta dissolution

✓ total Ta oxidation✓ sample not dipped in Pb?

	Parameters
Samples	n°1 Ta at 480°C and n°2 Ta at 550°C
HLM	Pb (static)
C _o % wt.	10 ⁻⁹ - 10 ⁻⁸ (low oxygen)
Exposure Time	≈ 1000 hours
Coverses	Are II with C = 100/

(to be confirmed)

CORROSION TESTS OF TA COATING (3)

SIMULATION OF REACTOR PRE-HEATING Oxidation Test in Argon gas at 400°C for 500 h

	Parameters	
Samples	n°6 Ta	
Cover gas	Ar 99.9999 %, Sovra-p = 0.7 bar	
C _o % Vol.	0.1 ppmv	
Temperature	400°C (reactor pre-heating)	
Exposure Time	≈ 500 hours (21 days)	

 ✓ Ta coating completely spalled off due to oxidation

CORROSION TESTS OF Al₂O₃ COATING

Al₂O₃ coating: PLD (Pulsed Laser Deposition)

- ✓ coating candidate for fuel cladding tubes protection in ALFRED reactor
- ✓ amorphous Al₂O₃ with nano-crystalline inclusions, excellent mechanical and corrosion behaviour
- ✓ produced by IIT (Istituto Italiano di Tecnologia)

FLOWING CORROSION TESTS: LECOR LOOP

OXYGEN CONTROL AND MONITORING

FORMATION and DEPOSITION of PbO

- \blacktriangleright when C₀ = C_{0, sat.}
- plugging phenomena in ΔT loop
- reduced heat exchange capability

T (°C)	C _o s	at. in Pb	C _o sat. in LBE		
	wt. %	ppm or µg/g	wt. %	ppm or µg/g	
330	8.1E-06	0.1	3.66E-05	0.4	
400	5.9E-05	0.6	1.41E-04	1.4	
450	1.9E-04	1.9	3.15E-04	3.2	
500	5.4E-04	5.4	6.34E-04	6.3	
550	1.3E-03	13	1.17E-03	12	
600	3.0E-03	30	2.02E-03	20	

*Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies, 2007.

Strategy against PbO formation:

> control C₀ in liquid Pb at low values > C₀ < C_{0, sat.} at the min. working T

deposition of PbO and plugging in Pb-Bi cooled K-27 Soviet Nuclear Submarine

Slag in pipeline

Slag deposit in the circuit during circulation pump tests

Slag deposit in heat exchanger

C_o ALFRED = 10⁻⁶ - 10⁻⁸ % wt. 400-550°C

OXYGEN SENSOR FOR LOOPS (HELENA, NACIE, LECOR)

□ Follows the Nernst law;

- One end-close tube of "stabilized ZrO₂" as solid electrolyte sensitive to oxygen and internal reference electrode within the tube (basic configuration for small scale experiments)
- Various Internal Reference electrode with different performances (<u>air reference</u> with Pt or Perovskite electrode and solid and liquid <u>metal/metal oxide</u> reference such as Cu/Cu₂O or Bi/Bi₂O₃)

oxygen sensor for LECOR loop

Components for Pt-air oxygen sensor assembly

Sensor calibration: comparison between LECOR sensor output (E_{LECOR}) and the theoretical one (E_{th})

OXYGEN SENSOR FOR CIRCE POOL (1)

Pt/air based sensor ENEA/FER-Strumenti (Milan)

- Pt(Ni)/air reference electrode and YSZ electrolyte cell
- cell pressed against the sensor steel body by a flange and the tightness ensured by a graphite gasket (previous configuration)
- reference air blown into the cell through a steel tube
- > need of a «internal heater» to lower the Pt-air cell resistance
- the length has to be adapted up to 8 m

Test in HELENA tank (oxygen-saturated Pb)

OXYGEN SENSOR FOR CIRCE POOL (2)

Sensor new configuration:

600

- > YSZ cell with a lateral step
- YSZ cell pressed against the sensor body by a perforated cap which pushes on the step
- > YSZ completely exposed to HLM

OXYGEN CONTROL METHODS

H_2/O_2 direct injection

dynamic conditions to remove or supply oxygen;already used to condition HLM at low values in storage tank;simple methodHELENA, NACIE,

Ar/H₂/H₂O cover gas

equilibrium condition;

 C_0 in HLM controlled by a specific H_2/H_2O ratio in the cover gas; needs to be coupled with H_2/O_2 injection in case of huge deviations

LECOR (loops),

BID1, CIRCE (pools)

(screening test),

BID1, HELENA

CIRCE

Oxygen Getters

oxygen removing method;

e.g. Ti, Zr, Mg, Ta steal O_(diss.) from HLM to form very stable oxides; need to be restored after the consumption

PbO Mass Exchanger

oxygen giving method

PbO (spheroids) \rightarrow Pb(liq.) + O(diss.) needs accurate control of parameters needs to be restored after the consumption 45

BID1 FACILITY

BRASIMONE GAS INJECTION DEVICE:

H-generator +

small pool (150L Pb) aimed to test the oxygen control methods:

- H₂/O₂(air) injection
- oxygen getters
- $Ar/H_2/H_2O$ cover gas
- oxygen sensors performances

CONCLUSIVE REMARKS & PLANNED ACTIVITIES

Corrosion Tests

- > TiN coating has low oxidation resistance and it oxidizes in static Pb with high Co
- > Ta coating strongly oxidizes in static Pb with high C_o and in argon gas (reactor pre-heating)
- Al₂O₃ coating shows good corrosion resistance in static Pb with low C₀ (in agreement with thermodynamic considerations) and it is going to be exposed to static Pb at longer exposure times
- exposure tests in flowing Pb of 15-15Ti and 15Cr-25Ni (DS4) austenitic steels and Al₂O₃ and TiN coating are going to be performed in LECOR loop (start by the end of Nov.)

Oxygen Control and Monitoring in HLM systems

- manufacturing of oxygen sensors for loops (based on LECOR sensor configuration, using different Internal Reference according to the operating T)
- oxygen sensor for CIRCE pool (last design) exhibits good tightness and potential output in accordance with the theoretical up to 450°C. Next step: installation of the internal heater to lower the Pt-air cell resistance (allowing the reading at 300°C, working T of CIRCE)
- operation of BID1 pool and testing of the oxygen control methods (starting from H₂/O₂ injection and oxygen getters)

Thank you for the attention

RACHEL Lab

REACTIONS AND ADVANCED CHEMISTRY FOR LEAD

BACK-UP SLIDES

Pb CONDITIONING AT LOW Co

IMPLEMENTATION OF A GAS CONTROL SYSTEM

Ar- H_2 mixture obtained by mixing pure Ar (cylinder) and pure H_2 (H-generator) for laboratory use

Gas Mixture Control:

- 2 flow-meters (one for Ar and one for H₂)
- 1 mixing chamber
- 1 pressure transducer
- remote control PC

C_o in Pb monitored with a Pt-air oxygen sensor

Test in Pb using Ar/H₂ mixture with C $_{H2} \le 10$ %: \checkmark fast and easy deoxygenation \checkmark different C₀ by selecting different C_{H2}

Ta CORROSION

*A. Weisenburger, «Lead Cooled Reactors – Material Issue», Nuclear 2012 – May 16-18, Pitesti, Romania.

*C. Cristalli et el., «Corrosion behaviour of reference materials exposed to Pb after fast neutrons irradiation in the BOR60 reactor up to 16 dpa". NUMAT Conference, Florida, 2014.

low-oxygen Pb, 550°C for 7500h and 16 dpa

Characterization of mechanical properties and Corrosion behavior in lead of DS4 steel

C. Cristalli, L. Pilloni, C. Testani (CSM), S. Storai

Workshop PAR 2014, Brasimone, 19/11/2015

Introduzione sullo sviluppo storico degli acciai DS

All'inizio degli anni 80, all'interno di un programma sperimentale portato avanti a Saclay, una serie di test di irraggiamento (1 MeV) dimostrò l'efficacia della contemporanea presenza di Ti e Nb sulla resistenza a swelling di matrici austenitiche 316 e 15-15.

Realizzazione della **Prima Generazione** di Acciai Doppio Stabilizzati:

316DS 15-15DS

Nei doppio-stabilizzati di prima generazione la temperatura di ricottura utilizzata, 1125°C, non risultò sufficiente a ottenere una buona solubilizzazione di Ti e Nb anche a causa dell'alto rapporto di stabilizzazione (3,18 per il 316DS e 2,04 per il 15-15DS)

Rapporto di Stabilizzazione:

Revisione della composizione

$$R = \frac{[Ti] + [Nb] - [N]}{[C]}$$

Nascita della Seconda Generazione di Acciai Doppio Stabilizzati:

DS3 (15Cr-15Ni); R=1,38 DS4 (15Cr-25Ni); R=0,55 DS5(15Cr-25Ni) 53

Risultati: Swelling dei Doppio Stabilizzati

Produzione lingotto DS4; processo fusorio VIM

Impianto VIM (Vacuum Induction Melting) CSM

Lingotto DS4

Certificato composizione chimica

Rapporto d'analisi N. 8352

Data di richiesta : 2014-07-15

	8 8		
CAMP. Fe C S N P	Mo Co	Cr s	t Ti
-0195- BAL 0.041 0.0082 0.013 0.037	1.46 <0.01	14.8	0.88 0.17
MINIMO BAL 0.0400 0 0 0.0350	1.20 0	14.0	0.80 0.100
MAXIMO BAL 0.060 <0.015 <0.02 0.0450	1.80 < 0.1	16.0	1.00 0.300
SIGLA * * * * *	* * Zr ₩	a T	% % a Ni
-0195- 1.48 0.06 0.20 0.013	<0.05		24.6
MINIMO 1.20 0 0.100 0 0	0 0	0	0 24.5
MAXIMO 1.80 <0.1 0.300 0 0.015	0.03 0.03	0.03	0.03 25.5

ESEGUITO DA : /MARCHESINI/PACIELLO

Responsab Firma

Produzione lingotto DS4; laminazione a caldo

		Campione	Materiale	Temperatura 90		%	%			Error		
Nº pass Tipo di prova				Laminazione		Riduzione Spessore (mm)		n)	applicata			
			Riscaldo	Richiesta	misu	urata					0	
						Pirometro	Termocop.	Calcolata	Inizi ale	Finale	Ottenuto	
1						nd		20,0	120,0	96,0		53,4
2						1078		25,0	96,0	72,0		66,3
3						1068		25,0	72,0	54,0		82,6
4	1 1 2 2	<				1034		25,0	54,0	40,5		88,1
5		8	2	1200		1029		22,0	40,5	31,6		97,3
6	5 S	8	l 8	1200		1018		22,2	31,6	24,6		95,3
7	들러				850	1011		21,1	24,6	19,4]	106,6
	<u> </u>]	
											21,0	
									120.0			
1					<u> </u>	na		20,0	120,0	96,0		49,8
4					<u> </u>	1086		25,0	96,0	72,0		60,9
3		1 1			<u> </u>	1071		25,0	72,0	54,0		77,3
4	. <u>8</u> a				L	1046		25,0	54,0	40,5		83,4
5	. <u>5</u> 5	8	2	1200		1040		22,0	40,5	31,6		91,9
6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ĸ	õ			1036		22,2	31,6	24,6		90,7
7	들혀				850	1021		21,1	24,6	19,4		106,8
	2											
											21,0	

Inizio laminazione lingotto (Preriscaldato a 1200°C)

laminato finale dopo l'ultima riduzione (919°C) spessore 20 mm

Produzione lingotto DS4; incrudimento 20%

• Solubilizzazione delle lamiere; <u>5 minuti a 1135°</u> <u>C</u>

• Laminazione a freddo; 20% riduzione spessore (ca. 20 passate da 1%)

Lamiera finale (s=15 mm) dopo cold-working

Effetto di *«waving»* sulla direzione di laminazione della lamiera

Produzione lingotto DS4; Durezza HV

EXT

laminato a freddo (sezione longitudinale)

Lotto anni '80 (DS4): 260 HV

Grain Size sezione trasversale

Materiale solubilizzato

Materiale incrudito al 20%

Centro spessore

Grain Size; confronto

Prove di Trazione; Curve Tensile

Materiale solubilizzato (RT, 550°C, 650°C)

Materiale Laminato a freddo 20% (RT, 550°C, 650°C)

Prove di Trazione (RT, 550,650°C)

Materiale solubilizzato

Materiale Laminato a freddo 20%

T (°C)	YS (MPa)	UTS(MPa)	A(%)	Z(%)	E (GPa)
RT	209	579	50	68	209
RT	204	577	50	69	197
RT	209	584	51	68	209
MEDIA	207	580	50	68	205
550	160	503	-	46	180
550	163	512	-	46	182
550	156	496	_	47	173
MEDIA	159	503	nd	46	178
650	139	379		59	155
650	137	390		58	165
650	137	386		58	160
MEDIA	137	385	nd	58	160

T (°C)	YS (MPa)	UTS(MPa)	A(%)	Z(%)	E (GPa)
RT	609	681	27	63	210
RT	585	665	30	65	205
RT	608	688	27	63	203
MEDIA	600	678	28	63	206
550	489	560		42	181
550	468	560		44	185
550	468	561		44	186
MEDIA	475	560	nd	43	184
650	405	459		54	167
650	421	466		52	164
650	414	459		51	167
MEDIA	413	461	nd	52	166

Prove di Trazione senso di laminazione (550,650°C)

T (°C)	YS (MPa)	UTS(MPa)	A(%)	E (GPa)
550	559	623	18 %	133,1
550	556,7	609	18 %	143
MEDIA	558	616	18 %	138
650	472,5	531,4	21 %	137,7
650	487,4	549	17 %	141,4
MEDIA	480	540	19 %	140

Anisotropia del materiale; confronto tra le direzioni di estrazione

Confronto DS4; barre anni 80-laminato 2014

Caratterizzazione del lingotto DS4

AdP PAR 2013: Produzione lingotto DS4

AdP PAR 2014: Caratterizzazione meccanica e microstrutturale

- Fasi del trattamento termico; materiale solubilizzato vs materiale laminato a freddo; misure di durezza (HV), Diametro di Grano (Microscopio Ottico), Prove di Trazione; anisotropia tra senso di laminazione e traverso di lamiera;
- Task 1, Prove di Corrosione Pb fluente, atmosfera ossidante;
- Task 2, Irraggiamento con Ioni; inoltro della proposta a LNL, fabbricazione provino ed esecuzione primo turno di irraggiamento (secondo turno a dicembre);
- Task 3, Prove di Creep (fabbricazione provini e ripristino funzionamento macchine trasferite da Casaccia a Brasimone);
- Task 4, Collaborazione Università di Pisa e laboratori USA (fornitura materiale e fabbricazione provini)

Fabbricazione provini

Pregresso Test di corrosione; Pb stagnante 2013

Parametri di prova:

Il provino è immerso per metà della sua lunghezza in un bicchiere in Al2O3 riempito di Pb; il forno è flussato internamente con Argon.

Provini testati	DS3 (15Cr-15Ni) DS4 (15Cr- 25Ni) e DS5 (15Cr-25Ni)
Ambiente	Piombo Stagnante
Temperatura(°C)	550
O wt%	10^-6 / 5.10^-4
Durata di prova (h)	900 (DS3) 1000 (DS4 and DS5)
Durata di prova (h)	900 (DS3) 1000 (DS4 and DS5)

Corrosione dei DS in atmosfera ossidativa

Vari austenitici di matrice 15-15 testati a 10^-6 wt% Ossigeno

In DS3 e DS5 notiamo uno spessore di 8-10 μ m, solamente qualche μ m più ampio di quello che si misura in AISI 316 and 15-15 Ti dopo 1000 h a 500°C in Pb-Bi.

Nel DS4, invece, l'ampiezza dell'ossido risulta 15-20 μm.

area plunged in Pb

acciaio	Voto (da * a ***)
15-15 std	***
DS3 (15-15)	**
DS4 (15-25)	*
DS5 (15-25)	**

<u>DS4</u> = <u>15-20 μm</u>

<u>DS3 e DS5</u> = <u>8</u>-<u></u>10 μm

Attività 2015

Task 1: Prove di corrosione

Prove 550 ° C, Pb fluente, 1000-2000 ore. Necessaria operatività dell'impianto a Pb fluente LECOR. Atmosfera: 10^{-5} wt% O₂.

Fabbricazione 20 campioni.

Matrice di prova proposta:

Series	Testing Temperature	Exposure (hrs)	N of samples
1	550°C	1000	8
2	550°C	2000	8

Caratterizzazione meccanica: Prove di Creep

Proprietà a Creep; Confronto con altri acciai austenitici 15-15

Pregresso anni 90: Risultati a Creep dei DS

Attività 2015

Task 2: Prove di creep

Prove previste: 550-650 °C, fino a 8000 ore. Necessario ripristinare il funzionamento delle macchine obsolete trasferite dai laboratori di Casaccia a quelli di Brasimone.

Matrice di prova proposta:

Series	Testing Temperature	Initial Stress (MPa)	N of samples
1	550°C	400	2
2	550°C	430	2
3	550°C	460	2
4	550°C	490	2
5	550°C	520	2
6	550°C	550	2
7	550°C	580	2
8	650°C	250	2
9	650°C	300	2
10	650°C	320	2
11	650°C	340	2
12	650°C	350	2
13	650°C	390	2
14	650°C	73415	2

Prove già eseguite

Attività 2015

Prova 650°C – 415 Mpa (Yield Stress)

Prova 650°C – 390 Mpa

Task 2: Prove di creep eseguite in modalità tempo a rottura

- 2 telai ripristinati su 12
- Hall non ancora termostatata per l'esecuzione di prove di creep strumentato (misura del creep rate)

Confronto tra i tempi a rottura ottenuti:

Task 4: Collaborazione Università di Pisa + ANL (Argonne National Laboratories) + INL (Idaho National Laboratories) + Urbana Laboratories

Task 4.1

Preparazione micro-provini tensile da irraggiare con fotoni (analisi Raggi X) al Sincrotrone di Argonne (ANL) per monitorare il movimento delle dislocazioni durante prova di trazione in temperatura.

Task 4.2

Fornitura di materiale per fabbricazione di provini cilindrici per prove di creep biassiale. Matrice di prova dipendente dal sistema di pressurizzazione dei cilindretti (massima pressione interna che si riesce a raggiungere) e dal rapporto spessore/diametro che la tecnologia adottata ci consente (lavorazione di macchina o elettroerosione). Condizioni operative (550°C) o incidentali (fino a 850°C).

Task 4.3

Fornitura di materiale per caratterizzazione microstrutturale dell'adesione di coatings prodotti da ANL ed IIT sul substrato DS4. Ricoperti micro-provini tensile con allumina amorfa (Pulsed Laser Deposition, IIT) per poter essere inseriti in una campagna di irraggiamento con neutroni.

Produzione lamiere DS4; conclusioni

- Prodotti 80 Kg di acciaio DS4; eseguite le laminazioni a caldo e a freddo (incrudimento 20%);
- Sui laminati (sia allo stato solubilizzato che incrudito) eseguite analisi ottiche, prove di durezza HV, prove di trazione. I Risultati mostrano un affinamento della dimensione del grano austenitico a seguito del processo di deformazione a freddo. Tale affinamento è più evidente in prossimità delle superfici esterne e giustifica la maggior durezza lì registrata. La dimensione del grano nel solubilizzato varia da 35 a circa 50 micron e nel laminato a freddo varia da 30 a 35 micron. Tali caratteristiche hanno influito sulle variazioni delle proprietà meccaniche registrate sul materiale prima e dopo la laminazione a freddo.
- Si rileva consistente anisotropia delle proprietà tra i provini estratti nella direzione di laminazione e quelli estratti dal traverso di lamiera.
- Le proprietà meccaniche della nuova colata corrispondono a quelle del lotto di fine anni '80.

Caratterizzazione del lingotto DS4; conclusioni

- Task 1, Prove di Corrosione Pb fluente, in attesa del funzionamento dell'impianto a piombo fluente LECOR;
- Task 2, Irraggiamento con Ioni; in corso...primo turno di irraggiamento già svolto a giugno (secondo turno a dicembre);
- Task 3, Prove di Creep; fabbricazione provini e ripristino funzionamento macchine trasferite da Casaccia a Brasimone ; prove «tempi a rottura» in corso; termostatazione della hall per l'esecuzione delle prove di creep strumentato.
- Task 4, Collaborazione Università di Pisa e laboratori USA; fornitura materiale e fabbricazione provini.

Grazie dell'attenzione

Diapositive di riserva

Introduzione

Concetto chiave 2 : Precipitazione primaria e secondaria dei carburi:

Una buona resistenza a creep alle alte temperature per un acciaio austenitico è essenzialmente dovuta alla microprecipitazione dei carburi, i quali vanno a formare una fine dispersione sul reticolo dislocativo;

- <u>Precipitazione primaria</u>, quella che ha luogo durante il trattamento termico dell'acciaio. Bassa precipitazione primaria significa sufficiente contenuto "libero" di Carbonio, Ti e Nb in soluzione solida per garantire una benefica precipitazione secondaria (in esercizio).
- <u>Precipitazione secondaria</u>, cosiddetta <u>"in-service"</u>, che ha luogo per effetto dell'esposizione ad alta temperatura all'interno del reattore. Questa sorta di precipitazione "in esercizio" risulta altamente efficace come <u>inibitore di movimento</u> per I difetti lineari.

La precipitazione dei carburi non agisce solo sulla resistenza a creep del materiale; influenza anche positivamente la stabilità sotto wt% di irraggiamento. E' qui riportato il risultato grafico (Ti,Nb)c di un analisi condotta nei primi anni 90 riguardante la dipendenza del comportamento a swelling dalla precipitazione primaria e dal rapporto di stabilizzazione per una matrice 15Cr-15Ni. Tanto la precipitazione primaria risulta bassa (tenendo il rapporto di stabilizzazione vicino a 1) tanto più quella secondaria desiderabile) (altamente verrà favorita mantenendo basso lo swelling.

15-15DS; 105dpa, Tirr=450°C

Mechanical Characterization: Tensile tests

Results; DS4

T °C	0.2% PS MPa	U.T.S. MPa	U.Elon. %	T.Elon. %	R.A. %		800
C		iiii u	70	<i>,</i> ,	<i>,</i> 0		DS4 (25Ni-15Cr Ti+Nb)
20	673	708	6.55	20.69	70.68		NU E
200	601	666	3.26	15.01	64.23	\sim	600
400	570	650	10.82	17.28	55.5	Pa	19-9-9-1 -
450	560	639	11.2	21.44	56.67	Σ	500
500	548	624	10.64	21.79	54.79	SS	
550	530	601	9.2	19.22	54.16	tre	400 D.2 % P.S.
600	506	570	7.05	19.51	56.66	ŝ	I UTS
650	474	529	4.49	19.87	60.64		300 0.113.
700	434	476	0.86	29.85	70.53		200 Land and the stand of the s
750	383	410	0.67	29.69	78.39		0 100 200 300 400 500 600 700 800 900
800	320	329	0.36	36.68	84.62		Text Temperature (%C)
850	245	263	0.32	33.36	86.04		rest remperature (C)

No relevant differences in UTS and 0,2% PS in the two DS steels

Mechanical Characterization: Tensile tests

Comparison Total and Uniform Elongation

At room temperature and at higher test temperature (850°C), the total elongation of the lower Nichel content steel (DS3) is higher than that of DS4 (25% Ni), in the intermediate range DS4 shows a higher total thoughness. Concerning the uniform elongation DS4 behaviour is excellent. In the interval between 400 and 600-650°C the steel performs values that are almost twice respect to those of the other steel. This behavior, similar to the best ones for the stainless steels with high yield strength, is symptomatic of good characteristics of stretchiness, performing delayed onset of mechanical instability.

Caratterizzazione meccanica: Prove di Creep

Proprietà a Creep; Confronto con altri acciai austenitici 15-15

Mechanical Characterization: Creep tests

86

Results; DS4

т (°С)	σ(MPa)	$arepsilon_m^{\cdot}$ (1/h)	t0.2(h)	tR(h)	$\varepsilon_f(\%)$	$Z_f(\%)$
550	400	0.394	1560	2628	1.56	4.25
	430	0.568	1111	2140	1.67	3.74
	460	1.753	620	1424	2.25	5.97
	490	3.582	125	765	7.79	10.88
	520	6.041	4	575	6.07	18.35
	550	42.436	0.52	238	9.47	26
	580	331.73	0.26	93.4	14.89	44.66
650	250	0.386	2096	10507	16.58	68.76
	300	0.949	18.5	5637	19.34	57.54
	320	2.691	14	2570	12.96	63.2
	340	10.393	3	1067	12.97	54.94
	350	131.188	1.71	126.2	10.68	41.61
	390	572.69	2.02	26	12.52	44.49
750	90	1.212	1633			
	110	1.356	955	3358	36.58	85.11
	140	10.312	106	802	28.88	83.34
	170	16.206	34	384	32.29	79.32
	200	64.209	12.8	119	29.19	77.15
	240	356.75	3.5	23.6	19.01	70.75
850	10	0.252	4962			
	40	16.601	112	544	52.69	91.07
	50	17.856	108	354	49.89	90.59
	60	31.42	50.3	167	63.62	92.49
	70	173.07	8.7	46.2	37.35	89.91
	90	285.87	3.4	24.1	44.89	93.08
	110	471.76	6.9	26.1	37.84	86.41

Creep laws

To correlate secondary creep speed to the applied stress

Norton Bailey (low/intermediate stresses)

$$\dot{\varepsilon_{ss}} = A\sigma^n$$

Sherby-Burke (high stresses)

$$\dot{\varepsilon_m} = A \cdot exp(\beta \cdot \sigma)$$

Garofalo (comprehensive) $\dot{\varepsilon_m} = A^{II} \cdot [sinh(\alpha \cdot \sigma)]^n$

Grain Size sezione longitudinale

Materiale solubilizzato

Materiale incrudito al 20%

Task 3: Ion-Irradiation

Proposta all'LNL:

In data 12/12/2014 è stata inviata la Proposta a LNL (Laboratori Nazionali di Legnaro) per ottenere un irraggiamento a 100 dpa con ioni pesanti (58 Ni, 110 MeV).

<u>Risposta dell'LNL:</u>

Ci sono stati concessi 3 turni da due giorni l'uno; a luglio, a dicembre e il primo semestre dell'anno prossimo.

Irraggeremo due campioncini 0,5x2 cm per tre sessioni per sei giorni totali per ottenere il danneggiamento a 100 dpa.

Campagna di test per verificare l'adesione coating-substrato. Provini pronti a inizio giugno per poter essere inviati a IIT per ricoprimento.

Materiali e fabbricazioni Qualifica, modellizzazione e analisi di coating e materiali strutturali per sistemi LFR

LP2.B1_14 "Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante"

Brasimone 19 Novembre 2015

A. Coglitore, A. Strafella

ENEA – SSPT-PROMAS-TEMAF

Dipartimento Sostenibilità dei sistemi produttivi e territoriali (SSPT)

Divisione Tecnologie e processi dei materiali per la sostenibilità (PROMAS)

Laboratorio tecnologie di materiali Faenza (TEMAF)

- **1.** Ricerca e Sviluppo Tecnologie e Nuovi Materiali
- 2. Qualificazione di Materiali e Componenti
- **3.** Servizi

ENEA – SSPT-PROMAS-TEMAF:

2. Laboratorio termomeccanico

Strumenti

- Tre macchine universali MTS per prove materiali fino 500 kN e 1500°C
- Dieci macchine per prove di creep a trazione fino a 1000°C
- Tre macchine per prove di creep in flessione fino a 1500°C
- Impianto di pressurizzazione per prove di scoppio/tenuta fino a 200 bar.

PAR2012 LP2 B1: Messa a punto di prove meccaniche in piombo liquido stagnante per la caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari

Nell'ambito della campagna sperimentale di caratterizzazione dei rivestimenti realizzati nella precedente annualità sono state avviate le prove di creep-rupture in piombo liquido stagnante

- Substrati : AISI 316L , T91, 15-15 Ti (mod. Si, 20% CW)
- Rivestimenti: TiN (PVD), Fe(67wt%)Al(33wt%) (PVD), Fe Cr (18-20 wt%)Al(8-10 wt%) (PVD), Ta (CVD))
- Test preventivati : 96

Questa attività ha richiesto modifiche ed implementazioni alla strumentazione presente presso i laboratori di caratterizzazione termomeccanica "Creep" presenti nei Laboratori ENEA di Faenza

- Realizzazione di una linea di gas inerte/riducente dedicata ad ogni singola macchina di prova
- Modifiche alla linea di carico del campione per il contenimento del piombo liquido per poter utilizzare le termo-camere da vuoto in dotazione
- Progettazione e realizzazione di un nuovo sistema di acquisizione (Hardware/Software)

Disegno complessivo della facility di prova

PAR2013 LP2.b1_h: "Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante"

- Sono stati realizzati i particolari dei disegni CAD per la progettazione finale dell'attrezzatura di prova per i test in metallo liquido
- È stato individuato come materiale prioritario il [15-15 Ti(Si)]
- Sono state eseguite delle prove preliminari nelle seguenti condizioni:
 - •550°C; 300MPa; in aria
 - •550°C; 400MPa; in aria
- Sono stati elaborati risultati delle prove
- I risultati sono stati confrontati con quelli di un acciaio austenitico analogo, disponibili in letteratura.
- Si è provveduto a identificare un adeguato sistema di aspirazione (come richiesto da normativa vigente, a causa della presenza di vapori di Pb durante i test)

Risultati:

Nell'ambito del ADP ENEA-MSE PAR2014 (attività LP2.B1_14):

- Realizzazione dell'attrezzatura di prova per i test in metallo liquido
- Sono state eseguite delle prove nelle seguenti condizioni del materiale di riferimento individuato nel ADP ENEA-MSE PAR2013 LP2.b1_h (15-15 Ti (Si)):
 •550°C; 400MPa; in aria
 •550°C; 558MPa; in aria
 - •550°C; 576MPa; in Pb

Sono stati elaborati risultati delle prove .

Particolari disegni attrezzatura per prove in Pb

Particolari disegni attrezzatura per prove in Pb

Particolari montaggio attrezzatura per prove in Pb

Particolari di campioni in aria ed in Pb

Curva Creep Strain test 15-15 Ti (Si) in aria

Curva Creep Strain test 15-15 Ti (Si) a 558 MPa in aria ed 576 Mpa in Pb

Confronto curve Creep Strain test 15-15 Ti (Si) in aria ed in Pb

Analisi delle steady-state creep rate (sscr)

CONCLUSIONI

Nell'ambito del ADP ENEA-MSE PAR2014 LP2.b1 sono state svolte le seguenti attività:

- realizzazione ed ultimazione dell'attrezzatura necessaria per la realizzazione della facilty di prova per poter effettuare i test di creep-rupture in piombo;
- test di CREEP in aria di un acciaio austenitico 15-15 Ti (Si) a due differenti livello di carico (400 e 558MPa);
- test di CREEP in piombo di un acciaio austenitico 15-15 Ti (Si) a 576MPa
- confronto dei risultati ottenuti
- determinazione dei parametri del secondario per i test in aria, in accordo con la legge di Norton

ALFRED-SGBT. HERO Test Section on CIRCE facility

ADP-WORKSHOP: LFR-Gen IV: Stato attuale della tecnologia e prospettive di sviluppo

Brasimone, 19th - 20th November 2015

Del Nevo A., Rozzia D., Tarantino M, Sermenghi V.,

INTRODUCTION

	← 335 °C	Stean	1 Generator	general properties		
	18 Mpa	Description	Quantity	Description	Quantity	 •
Steam	0.047	Removed Power [MW]	37.5	Number of tubes	510	
		Feed-water flow rate [kg/s]	24.1	Water pressure [bar]	180	
Helium		Bundle geometry	triangular	Pitch / tube diameter	1.42	
		Feed-water temperature [°C]	335	Steam outlet temperature [°C]	450	
	υ	Lead inlet temperature [°C]	480	Lead outlet temperature [°C]	400	
Argon	420		Bayonet t	ube geometry		
48		Description	Quantity	Description	Quantity	
30°C		Slave tube outer diameter [mm]	9.52	Slave tube thickness [mm]	1.07	
\bigtriangledown		Inner tube outer diameter [mm]	19.05	Inner tube thickness [mm]	1.88	n
5m		Second tube outer diameter [mm]	25.40	Second tube thickness[mm]	1.88	
.36		Third tube outer diameter [mm]	31.37	Third tube thickness [mm]	2.11	ר
g/s		Powder annular gap width [mm]	1.07	Length of heat exchange [mm]	6000	
	1.0	Argon plenum height [mm]	1000	He plenum height [mm]	800	
40		Steam plenum height [mm]	800	T91 plates thickness [mm]	250	l
		East motor flow rate [a/a]	17.2			

INTRODUCTION

Reactor	Classification	Th. Power	SG type	Operation
RAPSODIE (France)	Exp. reactor	40 MWth	No SG	1967 - 1983
KNK-II (Germany)	Exp. reactor	58 MWth	Once-through evaporator, twin tubes	1971 - 1991
FBTR (India)	Exp. reactor	40 MWth	Once through; triple S shaped tubes	1985 -
PEC (Italy)	Exp. reactor	120 MWth	No SG	Never operated
JOYO (Japan)	Exp. reactor	140 MWth	No SG	1977 -
DFR (UK)	Exp. reactor	60 MWth	Parallel tubes in copper heat transfer block	1959 - 1977
BOR-60 (Russia)	Exp. reactor	55 MWth	7 types of once through SGs	1968 -
EBR-I (USA)	Exp. reactor	4 MWth	Once through; straight double wall tubes	1951 - 1970
EBR-II (USA)	Exp. reactor	62.5 MWth	Once through; straight double wall tubes	1964 - 1994
FFTF (USA)	Exp. reactor	200 MWth	No SG	1980 - 1996
BR-10 (Russia)	Exp. reactor	8 MWth	No SG	1958 - 2003
CEFR (China)	Exp. reactor	65 MWth	Once through; straight tubes, evaporator and super-heater	2011 -
Phenix (France)	DEMO	350 MWth	Once-through, vertical bank of large S-shaped tubes, each containing small pipes for water	1973 - 2010
SNR-300 (Germany)	DEMO	762 MWth	Once-through evaporator and separate super-heater, tubes straight in 2 loops, helical in 3rd	Never operated
MONJU (Japan)	DEMO	714 MWth	Once-through evaporator and separate super-heater; helical coiled; intermediate coolant on shell side	1994 - ?
PFR (UK)	DEMO	650 MWth	Forced recirculation evaporator and drum separate super-heater; separate re-heater	1974 - 1994
BN-350 (Kazakhstan)	DEMO	750 MWth	Shell and tubes, Fild's tubes in evaporator, U-tubes in super-heater	1972 - 1999
BN-600 (Russia)	DEMO	1470 MWth	Shell and straight tubes, module type	1980 -
Super-Phenix	Commercial	2990 MWth	Once-through evaporator and super-heater with helical tubes	1985 - 1998
BN-800 (Russia)	Commercial	2100 MWth	Shell-and straight tubes, module type	2012 -

HERO CIRCE TEST SECTION

The Heavy liquid mEtal - pRessurized water cOoled tube (HERO) aims

- To investigate a bundle of seven 1:1 double wall bayonet tubes under conditions that represent, as much as possible, the ALFRED SG.
- To provide suitable experimental data to support the validation process of TH-Sy codes and CFD codes coupled simulations.

The primary circuit flow path includes

Feeding Conduit

the main vessel

Fuel Pin Simulator: it corresponds to the heat source *Riser*: it is an insulated pipe connecting the fitting volume with the separator. A nozzle is installed in the lower section to allow the argon injection inside this pipe. *Separator*: it connects the riser to the HERO-SGBT. It allows the separation of the LBE flowing downward into the HX from the Argon flowing in the test section cover gas through the free surface. It works as an expansion vessel. *HERO-SGBT*: it corresponds to the heat sink of the system. It consists in **seven double-walls bayonet tubes** (with stainless steel powder +He filling the gap) fed by pressurized water (180 bar). It has a thermal duty of about <u>500 kW</u>. *Down-comer*: It is the volume between the test section and

HERO SGBT UNIT

e Contraction	
Riemp polver	
The second s	

Label	Inner diameter [mm]	Outer diameter [mm]	Thickness [mm]	Material
Feed-water slave tube	7.09	9.53	1.22	AISI-304
Feed-water tube gap	9.53	15.75	3.11	Slight vacuum
Feed-water outer tube	15.75	19.05	1.65	AISI-304
Annular riser gap	19.05	21.18	1.07	Water- steam
Second tube	21.18	25.40	2.11	AISI-304
Annular gap	25.40	26.64	0.62	AISI 316 powder
Third tube	26.64	33.40	3.38	AISI-304

Description	Unit	Water-Steam side	He side	LBE side
Fluid		Water – steam	Helium	LBE
Circulation		Axial pump +	leakage	Gas
mechanism		accumulator	accommodation	enhanced
Main		bayonet tubes,	Helium	SGBT unit
components		steam chamber	chamber	shell
Bundle type - and P/D		Triangular / 1.42		Shell
Inlet temp. °C		335		480
Mass flow kg/s		0.330785	stagnant	44.57352 9
Design pressure	bar	180	5.0	As CIRCE
Operating bar pressure		172	4.5	Hydraulic head
Design temp.	°C	432	432	As CIRCE

HERO SGBT UNIT

HERO SGBT UNIT

Central byonet tube

Central tube TCs

- Fluid flow: 1 TC at inlet, 1 TC at the end of the descendent tube, 1 TC at the end of the active height and 1 TC its outlet. These TC are located at the center of the channel.
- <u>**Boiling height**</u>: 10 TC in the center of the riser (pitch 300mm).
- <u>Condensation</u>?: 1 TC at the riser outlet located in the descendent tube outer surface.
- <u>Lead side:</u> 12 TC at four heights and 3 azimuth.
- In total 27 TH (15 TC-0.25mm, 12-1mm)
- 4 TCs initially planned to be inserted in the AISI powder gap were not installed due to technological feasibility.

HERO SGBT UNIT

Remaining tubes tube

- <u>Fluid flow</u>: 1 TC at inlet, and 1 TC at its outlet. These TC are located at the center of the channel.
- In total 12 TH (0.25mm)
- <u>+4 TC in the steam chamber</u>

Lead channel

- <u>Sub-Channel monitoring:</u> Two TC at 120° respect to the central tube and 1 TC at the center of the triangle.
- **Boundary effects:** three TC at the center of the outer subchannels
- This is repeated for three elevation in the active length

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

□ The commissioning of the secondary loop is presently ongoing. It is based on a open loop circuit fed by water. The water should be pressurized at 172 bar and preheated at 335°C before entering the SGBT unit (approximately 500kW required).

- Pressurization function is actuated by a volumetric pump (with oscillation reducer) connected with a control valve. Both these devices have been acquired.
- The collector has been <u>designed and manufactured</u>.
- Secondary loop TC instrumentation <u>has been investigated</u>.

Collector

The component is designed in order to achieve as uniform as possible distribution c the feed-water to the seven bayonet tubes.

water at 335°C, 170 bar, 0.33 kg/s.

Φ 60.3mm x 8.7 mm L 1100 mm

#	ID	Location	Elev /Position	Туре	Diameter	Length	Operating range	
					-			
1	TF-100-01	PIPE-100	After the pump	K-type	3 mm	0.5 m	[5-50]°C, [1-200] bar	
2	TF-100-02	PIPE-100	Twin to TF-100-01	K-type	3 mm	0.5 m	[5-50]°C, [1-200] bar	
3	TF-100-03	PIPE-100	Spiral pipe inlet	K-type	3 mm	0.5 m	[5-50]°C, [1-200] bar	
4	TF-100-04	PIPE-100	Twin to TF-100-03	K-type	3 mm	0.5 m	[5-50] C, [1-200] Bar	
-	100-05	PIPE-100	spiral pipe inlet- tube surface	к-туре	1 mm	0.5 m		
6	TW-150-01	SPIRAL-PIPE-150	3 rd spire from the inlet, outer surface	K-type	1 mm	2m	150-500°C, 1587 giunzione della termocoppia di stile a terra a bullone, spina di termocoppia a dimensioni standard OSTW. Lunchezza 1 metro	
7	TW-150-02	SPIRAL-PIPE-150	5 th spire from the inlet, outer surface	K-type	1 mm	2m	[50-500]°C, 1bar giunzione della termocoppia di stile a terra a bullone, spina di termocoppia a dimensioni standard OSTW. Lunghezza 1 metro	
8	TW-150-03	SPIRAL-PIPE-150	8 th spire from the inlet, outer surface	K-type	1 mm	2m	[50-500]°C, 1bar giunzione della termocoppia di stile a terra a bullone, spina di termocoppia a dimensioni standard OSTW. Lunghezza 1 metro	
9	TW-150-04	SPIRAL-PIPE-150	11 th spire from the inlet, outer surface	K-type	1 mm	2m	[50-500]°C, 1bar giunzione della termocoppia di stile a terra a bullone, spina di termocoppia a dimensioni standard OSTW. Lunghezza 1 metro	
1(TW-150-05	SPIRAL-PIPE-150	12 th spire from the inlet, outer surface	K-type	1 mm	2m	[50-500]°C, 1bar giunzione della termocoppia di stile a terra a bullone, spina di termocoppia a dimensioni standard OSTW. Lunghezza 1 metro	
1:	TW-150-06	SPIRAL-PIPE-150	Electric joints	K-type	1 mm	2m	[50-500]°C, 1bar giunzione della termocoppia di stile a terra a bullone, spina di termocoppia a dimensioni standard OSTW. Lunghezza 1 metro	
12	TW-150-07	SPIRAL-PIPE-150	Electric joints	K-type	1 mm	2m	[50-500]°C, 1bar giunzie dimen: 260 5	
15	TW-150-08	SPIRAL-PIPE-150	Electric joints	K-type	1 mm	2m	[50-50] 2 0 0 1 0	>
14	TW-150-09	SPIRAL-PIPE-150	Electric joints	K-type	1 mm	2m	[50-50] giunziα Ο dimens Ω	
15	TF 200 01	PIPE 200	Spiral pipe outlet	K type	3 mm	0.5 m		_
16	TF-200-02	PIPE-200	Twin to TF-200-01	K-type	3 mm	0.5 m	[50-45]	
17	TW-200-03	PIPE-200	Spiral pipe outlet, outer surface	K-type	1 mm	0.5 m		_
18	TF-200-04	PIPE-200	Collector inlet	K-type	3 mm	0.5 m		-
19	TF-200-05	PIPE-200	Twin to TF-200-04	K-type	5 mm	0.5 m		_
20	TW-200-06	PIPE-200	Collector Inlet, outer surface	K-type	1 mm	0.5 m		-
21	TW-250-01	Collector-250		K-type	1 (1)(1)	1 m	T-150-07	_
22	TU/ 250 02	Collector 250		K-type	1 mm	1 m		-+
24	TC-250-04	Collector-250	Heating cable middle	K-type	1 mm	1 m		
24	TW-250-05	Collector-250	Outer surface hottom	K-type	1 mm	1 m		4
26	TC-250-06	Collector-250	Heating cable bottom	K-type	1 mm	1 m		Ξ
27	TE-250-07	Collector-250	After the last grid	K-type	3 mm	1 m	[50-45] (0	-+
28	TF-SGT-01	HERO-SGBT	Steam plenum outlet nozzle	K-type	1 mm	1 m	[50-45]	=
29	TF-SGT-02	HERO-SGBT	120° to TF-SGT-01	K-type	1 mm	1 m	[50-45]	-+
30	TF-SGT-03	HERO-SGBT	240° to TF-SGT-01	K-type	1 mm	1 m	[50-45]	
31	TW-SGT-04	HERO-SGBT	Nozzle outer surface	K-type	1 mm	1 m	[50-50]	
32	TF-300-01	PIPE-300	After VC-300-01	K-type	3 mm	0.5 m	[50-45]	_
33	TF-300-02	PIPE-300	Twin to TF-300-01	K-type	3 mm	0.5 m	[50-45]	_
34	TF-300-03	PIPE-300	Outer surface	K-type	1 mm	0.5 m	[50-50]	
35	TF-400-01	PIPE-400	After VB-400-01	K-type	3 mm	0.5 m	[50-45]	
36	TF-400-02	PIPE-400	Twin to TF-400-01	K-type	3 mm	0.5 m	[50-45]	
37	TW-400-03	PIPE-400	Outer surface	K-type	1 mm	0.5 m	[50-50]	

TC instrumentation

The secondary loop has been mapped with 37 thermocouples

T-150-05

-150-04

T-150-03

T-150-02/

T-150-01

300

T-150-08

300

0

S

T-150-09

27

227.5

HERO-CIRCE MODELING

HERO-CIRCE facility model

Tool: RELAP5-3.3

Objectives: Development of the test matrix

Pre-test calculations

Development of CFD/RELAP5 coupled simulations

The model includes

- The Fuel Pin Simulator (FPS): PIPE component that has axial 11 volumes including the active zone with length equal to 1 m; five spacer grids are located in the lower, middle and upper part are simulated as concentrated pressure losses.
- **The riser** PIPE component characterized by axial 25 volumes. This component is filled from the bottom with Ar in order simulate enhanced circulation.
- **The upper plenum** modeled with 8 branch: in this part of the facility are present LBE and argon. The gas flows away into the BRANCH-999.
- **The pool** is modeled with some branches and pipes nodalized in order to simulate LBE mixing
- **The lower plenum** is the zone sliced with the conveyor (PIPE-60), the FPS and the feeding conduit (PIPE 40-30-20). It is modeled with some branches
- The DHR-air is modeled as a single pipe
- The dead zone

HERO-CIRCE MODELING

The HERO SGBT includes

- The feed-water tube, the annular steam riser and the equivalent lead channel.
 - The heat exchange between the annular steam riser and the Argon zone has been neglected.
 - The insulating zone in the feed-water tube has been considered.
 - The material adopted for the tubes is SS
 - The <u>filling powder (AISI-316) in the double</u> wall meatus is according to the experimental <u>findings achieved in TxP Facility</u>.
 - The heat transfer between the lead side and the annular riser is modeled according to the Mikityuk correlation.

HERO-CIRCE ISOTHERMAL TESTS

ENEN
AGENZIA NAZIONAL PER LE NUOVE TECNOLOGIE, L'ENERGI
E LO SVILUPPO ECONOMICO SOSTENIBIL

Data from	TEST 28-2				
	h 9.50 to 11.10, 9-12-2014				
Average fuel bundle power	35 kW				
Average LBE temperature at HERO	295 °C				
inlet					
Ar mass flow rate	1.51 – 1.58 NI/s				
LBE mass flow rate at HERO inlet	40 – 46 kg/s				
Average power removed by DHR	5 kW				

HERO-CIRCE facility model Check is ongoing against 28.2 TEST

The preliminary experimental campaigns consisted of eight different tests aimed to assess the thermal hydraulic performance of CIRCE – HERO test section.

TEST 28-2 proved that the LBE mass flow rate at the fissure inlet is consistent with the requirements of HERO (about 44 kg/s) by using gas enhanced circulation inside the capabilities of the facility (1.55

Nl/s of Argon).

CONCLUSIONS AND PERSPECTIVES

- The SGBT unit has been instrumented, installed in CIRCE and subjected to isothermal tests
- The secondary loop system has been designed and is presently under commissioning
 - The spiral heater, its supporting system and its containment have been constructed. The supporting requires minor modifications
 - The pump has been identified acquired
 - The collector has been designed and constructed
 - Water-steam control valves have been acquired
 - Instrumentation have been identified and partially acquired
 - The commissioning is expected to end on April 2016
 - The first experimental campaign is expected on June-September 2016
- HERO-CIRCE RELAP-5 model has been developed. It will be checked against isothermal tests and then used to develop the experimental test matrix and to perform pre-test calculations

Design dell'esperimento e specifica tecnica di fornitura relativa all'up-grade dell'impianto LIFUS5/Mod2

A. Del Nevo, M. Eboli, S. Mannori, A. Neri, S. Cati, D. Giannotti, M. Valdiserri

Workshop tematico

LFR-Gen. IV: Stato attuale della tecnologia e prospettive di sviluppo ADP ENEA-MSE (PAR2014-LP2)

> Brasimone, 19-20 Novembre, 2015 Centro Ricerche ENEA Brasimone

LIST OF CONTENTS

- **FRAMEWORK**
- **OBJECTIVES OF THE ACTIVITY**
- **OVERVIEW OF EXP ACTIVITY**
- **CODE ACTIVITY IN SUPPORT OF EXP**
- **SUMMARY**

FRAMEWORK [1]

- Steam generator tube rupture (SGTR) issue
- Besides, the safety hazards (i.e. steam bubbles dragged into the core; LBE chemistry, etc.), steam generator is the prime component having potential to reduce plant availability
- Instrumentation able to promptly detect the presence of a crack in the HX's tube may be used to prevent its further propagation which would possibly lead to a full rupture of the tube

 Early detection might be applied, if endorsed as a technically justifiable approach, for making the consequences of a postulated accident acceptable, or even for eliminating the accident (i.e. in this case the SGTR scenario)

OBJECTIVES OF THE ACTIVITY [1]

- The goal is to implement an <u>experimental activity</u>, supported by the numerical simulations, that will **characterize the leak rate and bubbles sizing through typical cracks** occurring in the pressurized tubes
 - Basic tests in LIFUS5/Mod2 facility will be carried out to correlate the flow rates of the leakage through selected cracks with signals detected by proper transducers
 - Different crack sizes and geometries will be analyzed, while the injection pressure and the temperature will be kept constant
 - An acoustic device to detect the bubbles migration through the free level will be implemented

Beside this, LIFUS5 has been also involved in the 5y EUROfusion programme (DEMO), in connection with the WCLL BB design and safety, therefore...

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

21/19

OVERVIEW OF EXP ACTIVITY [2/8]

LIFUS5/Mod3 system A

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

22/19

CS104

OVERVIEW OF EXP ACTIVITY [3/8]

- 5 microphones (MPHs), installed on the top flange and *l* "acoustic sensor", installed in the melt
- 3 level measurements (LVs)
- 2 pressure transducers (PT)
- 2 thermocouples (TP)
- 6 strain gauges

Feasibility of measuring the velocity of steam bubbles in the melt as function of the crack dimension is under evaluation using Magnetic

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Nov. 19-20, 2015

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

OVERVIEW OF EXP ACTIVITY [4/8]

- S2 \rightarrow Acquisition system is based on
 - 2 DP (level measurements)
 - 1 Absolute pressure transducer (PT)
 - 1 Coriolis flow meter

• 4 thermocouples (TP)

- 2 pressure transducer (PT)
- 2 thermocouple (TP)
- 1 level measurement (LV)

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

24/19

Nov. 19-20, 2015

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

OVERVIEW OF EXP ACTIVITY [6/8]

Acoustic detection system – Feasibility tests

- Measured "1/f shaped" acoustic emission spectrum (in Ar) with 10Hz-200 Hz limits, consistent with the pulse/burst signal registered in the time domain
 - 40 tests 4mm Ar
 - 32 tests 1mm Ar
 - 3 tests 1mm H2O \rightarrow both microphones were lost

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

PER LE NUOVE TECNOLOGIE, L'ENERGI

OVERVIEW OF EXP ACTIVITY [7/8]

Acoustic detection system – Feasibility tests

5 microphone PCB piezotronicsAE AE sensor view from the top Electrical signal cables sensors placed: EM #1 EM #2 $4 \rightarrow$ square corners (side ~200mm) Cooling Fan EM #5 1 in the center Installed outside the S1A using stainless EM #4 EM #3 Argon Cover Gas Vapor steel acoustic tube and cooled with cold Bubbles air. \cap Steam Multi channel configuration aimed at: Generator Liquid Metal Pool Correlating crack size, mass flow rate (*hopefully bubble size*) and acoustic E-8

Location of bubble emersion from the surface pool: acoustic emission of bubble expansion and explosion in cover gas

conditions

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

emission in MYRRHA operating

OVERVIEW OF EXP ACTIVITY [8/8] Injection system and planned tests

- The injector orifice features:
 - diameter ranges 0.002-0.1 mm
 - different shape (cylindrical or laminar)

#	Parameter	T#1	T#2	T#3	T#4	T#5	T#6	T#7	T#8	T#9	T#10
1	Injector cylindrical orifice diameter [mm]	0.002	0.004	0.006	0.008	0.010	0.020	0.040	0.060	0.080	0.100
2	Injector laminar dimensions []	TBD									

Nov. 19-20, 2015

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

28/19

CODE ACTIVITY IN SUPPORT OF EXP [1/5]

□ CODE ACTIVITY BY MEANS RELAP5/MOD3.3 AND SIMMER-III CODES

RELAP5/MOD3.3 CALCULATIONS:

- Supporting the design of the injection line
- Testing the fill and drain procedure
- Providing boundary condition to SIMMER-III calculations

SIMMER-III CALCULATIONS:

- Bubble characterization
- Pre-test calculations

29/19

CODE ACTIVITY IN SUPPORT OF EXP [2/5]

RELAP5/Mod3.3 simulation of the injection line

Nov. 19-20, 2015

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

AGENZIA NAZIONALE

CODE ACTIVITY IN SUPPORT OF THE EXP [3/5] RELAP5/Mod3.3 simulation of the injection line PER LE NUOVE TECNOLOGIE, L'ENERGIA LO SVILUPPO ECONOMICO SOSTENIBILE

WAiher and the injection WAiher and the injection Internation Inte

- Planned tests will cover a wide range of micro/small le $\frac{1}{\text{MDPVOL-100}}$ tube $\rightarrow < 1 \text{ g/s}$
 - Critical value corresponding to incipient fracture propagation is ur vn
- Investigation of behavior of niection line during the conditioning S101

Nov. 19-20, 2015

ADP ENEA-MSE (PAR2014-LP2) - ENEA - CR Brasimone, ITALY

Nov. 19-20, 2015

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

32/19

CODE ACTIVITY IN SUPPORT OF THE EXP [5/5] SIMMER-III modeling and simulations

Case #8 \rightarrow D=0.1mm

- Results confirmed R5/M3.3 predictions concerning the possibility of LBE drop down
- > Mass flow rate behavior is slightly different from RELAP5 results because
 - 1. reverse of the LBE towards the injector during the transient
 - 2. bubble formation and expansion in the cells above the injector
- Bubble formation (voidf) and bubble rising in melt during the transient is characterized

Nov. 19-20, 2015

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

33/19

ACTIVITY IN PROGRESS

- * "Additional" instrumentations (i.e. Magnetic Grid Sensor and acoustic sensor in LBE) would be an added value Feasibility will be addressed by early 2016
- PROCUREMENTS ARE IN PROGRESS
- ► COMMISSIONING TESTS OF LIFUS5/MOD3 EXPECTED BY JUNE 2016
- \succ END OF ACTIVITY BY END OF 2016

... INCLUDING EUROFUSION PBLI TESTS

LIFUS5/Mod3 facility

Nov. 19-20, 2015

ADP ENEA-MSE (PAR2014-LP2) – ENEA – CR Brasimone, ITALY

35/19

Ivan Di Piazza – ENEA ivan.dipiazza@enea.it <u>Morena Angelucci</u> – Università di Pisa morena.angelucci@for.unipi.it

Giuseppe Polazzi – ENEA Valerio Sermenghi – ENEA Lorenzo Laffi – ENEA Daniel Giannotti – ENEA Mariano Tarantino – ENEA

WORKSHOP TEMATICO: LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO AdP ENEA-MSE (PAR2014-LP2) 19-20 Novembre 2015, C.R. ENEA Brasimone

Outline

• NACIE-UP facility

- overall description
- FPS test section

 \odot Experimental test matrix and post-processing methods

Obtained Results

- tests P43X0 & P217
- Heat transfer analysis
- Planned work & Conclusions

NACIE-UP loop

ry side is composed by:

tical pipes (O.D. 2.5") 8*m* long and two horizontal .D. 2.5") 2.4*m* long;

in Simulator (19-pins) of 235 kW maximum power; and tube HX with two sections, operating at *low* 5-50 kW) and *high power* (50-250 kW);

on **gas injection device**, placed inside the riser, s the driving force to enhance the circulation;

insion tank, at the end of the riser, partially filled ;on;

le tubes and several thermocouples to monitor and temperature along the flow path.

to the distance between the heat source and the k *H* is about **5.5** *m* the **natural circulation regime** blish inside the loop.

NACIE-UP P&ID

NACIE-UP test section

19 pins wire-spaced arranged in triangular lattice

235 kW maximum power

D _{pin}	6.55 mm
Р	8.4 mm
P/D	1.2824
d	1.75 mm
P _{wire}	262 mm
L _{tot}	2000 mm
L _{active}	600 mm
D _{H,nom}	3.84 mm

•In red instrumented pins

•In orange instrumented sub-channels

FPS Instrumentation

- 11 pins instrumented Embedded-wall TCs 0.35 mm (52)
- 5 sub-channels instrumented Sub-channel TCs 0.5 mm (15)

Pins 1,2,4,5,6,7,9,16,18,19 instrumented at three axial positions: *z* = 38, 300, 562 *mm* from the *beginning of the active length*

(562-300 mm = 300-38 mm = 262 mm = P_w , at the three axial position the same relative position between pin and wire)

• Pin 3 instrumented with wall embedded TCs every 43.66 mm (13 TCs). This will allow to study axial thermal development

41

Outline

• NACIE-UP facility

- overall description
- FPS test section

\odot Experimental test matrix and post-processing methods

Obtained Results

- tests P43X0 & P217
- Heat transfer analysis
- Planned work & Conclusions

Experimental Matrix

$$u_{sc} \approx 0.1 - 0.9 \ m \ / \ s$$

$$\operatorname{Re}_{sc} \approx 2000 - 20000$$

$$\dot{m}_{NACIE} \approx 0.4 - 5.0 \ kg \ / s$$

 $\dot{m}_{FA} \approx 2.3 - 28.7 \ kg \ / s$

$$Q_{lin} \approx 0.9 - 9.5 \quad kW / m$$
$$Q_{FPS} \approx 11 - 110 \quad kW$$

Post-processing method

- Acquisition frequency of data **1 Hz** (duration 15-20 min)
- Matlab routines were written for data post-processing
- Error analysis implemented. Sources of error considered: *statistical error, instrumental error and uncertainties on LBE properties*
- Mass flow rate calculated through the energy balance across the heated length
- Definition of **section-averaged** bulk and wall temperatures

$$\overline{T}_{b} = T_{bS2} \cdot w_2 + T_{bS5} \cdot w_5 + T_{bS22} \cdot w_{22} + T_{bS26} \cdot w_{26} + T_{bS33} \cdot w_{33}$$

$$\overline{T}_{w} = T_{wS2} \cdot w_2 + T_{wS5} \cdot w_5 + T_{wS22} \cdot w_{22} + T_{wS26} \cdot w_{26} + T_{wS33} \cdot w_{33}$$

• Wall temperatures correction for embedded thermocouples

$$T_w = T_{ac} - \frac{Q}{2\pi M L_{active}} k_{ss} \ln \left(\frac{D/2}{D/2 - \delta_g} \right)$$

 $Nu_{sc} = \frac{q''}{\left(T_{wsc} - T_{hsc}\right)} \cdot \frac{l}{dt}$

- **Re, Pe** and **Pr** numbers computed in each section from \overline{T}_{b}
- Average Nusselt number is computed using \overline{T}_{h} and \overline{T}_{w}
- Local Nusselt number is computed in each monitored subchannel

 $\frac{D_{H,nom}}{k}$

Outline

• NACIE-UP facility

- overall description
- FPS test section

Experimental test matrix and post-processing methods

\circ Obtained Results

- tests P43X0 & P217
- Heat transfer analysis

Planned work & Conclusions

Tests P43X0 & P217 1/2

PEC TEST	Q [kW]	Gas flow rate [NI/min]	∆T _{FPS} [°C]	u _{sc} [m/s]	m _{NACIEUP} [kg/s]	m _{MYRRHAFA} [kg/s]	Re _{sc}	Pe _{sc}
P43X0	43	-	176.9	0.24	1.63	9.38	5350	111
P217	43	15	89.4	0.47	3.21	18.49	9980	228

P217

Tests P43X0 & P217 2/2

Nusselt number: S2 & S5

Nu vs Pe – Inner rank: sub-channels S2 and S5

$$Nu_{sc} = \frac{q''}{\left(T_{w,sc} - T_{b,sc}\right)} \cdot \frac{D_{H,nom}}{k}$$

Nusselt number: S22

49

Nusselt number: S26 & S33

Nu vs Pe – External rank: sub-channels S26 and S33

$$Nu_{sc} = \frac{q''}{\left(T_{w,sc} - T_{b,sc}\right)} \cdot \frac{D_{H,nom}}{k}$$

Overall heat transfer

Nu vs Pe – Section-averaged heat transfer

 $Nu_1 = \frac{q''}{\left(\overline{T}_w - \overline{T}_b\right)} \cdot \frac{D_{H,nom}}{k}$

Outline

• NACIE-UP facility

- overall description
- FPS test section

 \odot Experimental test matrix and post-processing methods

Obtained Results

- tests P43X0 & P217
- Heat transfer analysis

Planned work & Conclusions

NACIE-UP: upgrade

Upcoming Experiments

New experimental campaigns are foreseen in 2016:

- Preliminary tests:
- Zero power-very low mass flow rate test to characterize heat losses through the structure (T=400°C--->250°C);
- Isothermal test at 350°C and different mass flow rates of gas injected (in the range of 0-20 NI/min;
- Further steady-state tests in order to complete the characterization of the bundle coolability (in natural and forced circulation regimes);
- Steady state tests for the INERI benchmark for CFD codes on the NACIE-UP 19-pins bundle;
- Transient tests for a benchmark for CFD and STH/CFD coupled calculations inside the SESAME project;
- Several transient tests characterized by transitions from high power and relative high mass flow rates to low power and natural circulation regime (PLOFA-like tests).

Conclusions

- An experimental campaign was performed at ENEA Brasimone PEC Lab (NACIE-UP facility) on a LBE cooled 19-pins bundle in the context of the SEARCH FP7 EU
- A well instrumented 19-pin bundle test section was specifically designed and manufactured for the experiment
- Several tests have been performed both in Natural and Forced Circulation (range explored: Re_{sc}=2000-20000, Q=11-110 kW)
- Post-test error analysis was performed according to the error propagation theory
- Analysis of local Nusselt and average Nusselt
 - Local Nusselt for inner sub-channels in agreement with existing correlations
 - Local Nusselt for external sub-channel is lower than in the inner ranks
 - Section-averaged Nusselt number is in accordance with the Carelli-Kazimi correlation
- Some improvements are being implemented in the facility for the upcoming experimental campaign that will focus on the thermal-hydraulic behavior of the sub-channels during transients

Thank you for your attention Morena Angelucci Università di Pisa Facoltà di Ingegneria Dipartimento di Ingegneria Civile e Industriale +39-050/2218080 morena.angelucci@for.unipi.it

Flow Blockage experimental studies in HLM systems

R. Marinari (ENEA/UniPi), P. B. Ghionzoli (ENEA/UniPi),

I. Di Piazza (ENEA), M. Serra (ENEA),

F. Magugliani (ANN)

➢Introduction

>NACIE-UP present status and upgrade

>NACIE-UP FPS test section: present configuration

>BFPS test section design: present status

>CFD pre-test analysis

Timeline & Conclusions

INTRODUCTION

Thermal-hydraulics of the flow in fuel assemblies with grid spacers with and without blockage is investigated experimentally and numerically. **Reference data obtained from the NACIE-UP experiment** as well as from DNS data will be used for the validation of CFD models. The validated models are used to develop a reduced resolution CFD approach to simulate a real size ALFRED fuel assembly.

The NACIE-UP loop is an LBE loop working in natural circulation and with gas-lift pumping. The facility is already arranged with Induction flow meters in the primary side and with a pressurized water secondary side to remove heat.

The test section will consist of a 19 pin rod bundle, 250 kW power, hexagonally staggered, with a rod diameter 10.5 mm and with a maximum heat flux 0.7 MW/m², of the same order of what is expected in the ALFRED demonstrator reactor. The test section is named Blocked Fuel Pin Simulator (BFPS). A special spacer grid will be manufactured and mounted at the beginning of the active region, in order to have the correct pitch to diameter ratio and to close some sub-channels to operate with a degree of blockage. Two or three different spacer grids will be manufactured and mounted at mounted to achieve different levels of blockage. The bundle will be instrumented with several thermocouples in the whole region behind the blockage and along the active region to assess the clad temperature distribution. Both the local phenomena and the integral phenomena due to the blocked mass flow rate in the sub-channels will be experimentally assessed. A large test matrix will be carried out to collect as much data as possible on turbulent convective heat transfer and its effect on maximum clad temperature. Mass flow rate and inlet temperature will be also available to assess the role of the thermal inertia of the pins.

NACIE-UP P&ID (PRESENT CONFIGURATION)

- The facility includes:
- ✓ The Primary side, filled with LBE, with 2 ½" pipes, where the main new components and instruments are placed;
- ✓ A Fuel Pin Simulator (19-pins) 250 kW maximum power;
- ✓ A Shell and tube HX with two sections, operating at low power (5-50 kW) and high power (50-250 kW);
- ✓ A mass flow rate induction flow meter (3-15 kg/s) FM102;
- ✓ Absolute pressure transducer;
- ✓ Differential pressure transducers;
- Several bulk thermocouples to monitor the temperature along the flow path;
- ✓ Motorized valve to regulate mass flow rate;
- ✓ Difference in height between Heat Source and Heat sink 4.8 m (natural circulation);
- The Secondary side, filled with water at 16 bar, connected to the HX, shell side. It includes a pump, a preheater, an air-cooler, by-pass and isolation valves, and a pressurizer (S201) with cover gas;
- An ancillary gas system, to ensure a proper cover gas in the expansion tank, and to provide gas-lift enhanced circulation (0-20 NI/min);
- ✓ A LBE draining section, with ½" pipes, isolation valves and a storage tank (S300);
- The ancillary gas system is practically identical to the previous configuration of the NACIE facility and does not have significant upgrade. It has the function to ensure the cover gas in S101 and to manage the gas-lift system in the riser (T103) for enhanced circulation regime;

NACIE-UP FPS (PRESENT CONFIGURATION)

-Features:

- 19 pins (triangular lattice);
- d = 6.55 mm, $L_{active} = 600$ mm;
- $L_{entry} > 600 \text{ mm} (> 2 \text{ pitches});$
- p/d = 1.28;
- -q " = 1 MW/m², uniform (\approx 235 kW);
- wire spaced (d = 1.75 mm).
- Configuration relevant for MYRRHA
- Each pin can be fed separately

NACIE-UP FPS (PRESENT CONFIGURATION)

NACIE-UP PRIMARY SIDE

64

NACIE-UP PRIMARY SIDE

NACIE-UP SECONDARY SIDE

The facility is under upgrade/improvement

- Mass flow rate will be measured accurately in the whole range by innovative **thermal flow meter** (ENEA/Thermocoax design) (European patent): tests in water with very promising results. It should be very accurate and reliable in the range 0-20 kg/s.
- Differential pressure across the test section will be measured by accurate differential pressure transducer (Rosemount 1199, 0-1000 mbar, 1 mbar accuracy)
- Improvement in the **auxiliary systems and HX** (maldistribution corrected)
- Low oxygen tests by Ar-H₂ injection in the expansion tank
- Gas injection system improvement to increase flow rate
- Expansion tank enlarged
- Filter section to be installed
- Then preliminary tests on the instrumentation with the present test section can start by the end of the year

NEW BFPS TEST SECTION

- A new **FPS test section was designed** in order to assess the flow blockage local and global effect
- The test section will have **the same 'flange-to-flange' dimensions** of the present FPS in order to mount it directly in NACIE-UP
- It will have **19 pins, 250 kW power**, but **grid-spaced**: the pin number and the power will be identical to the present configuration and will minimize the facility refurbishment (plug and play strategy)
- The p/d ratio was fixed to 1.4 close to the ALFRED FA
- ALFRED FA 19-pin Mock-up for thermal investigations, d_{pin}=10 mm
- The test section will investigate a degree of blockage and possibly several degrees
- It will be instrumented with wall-embedded thin thermocouples in the region behind the blockage (local effect) and in several subchannels at the end of the active region (global effect) (experience with previous FPS, 100 TCs)
- The mixing in the FA plenum will be investigated
- Experiments without blockage are also feasible
- It will provide a **valid data set** for CFD code validation
- In parallel a detailed CFD model of the test section will be developed for pre and post-test in collaboration with UniPi/Ansaldo/UniGe
- Ansaldo feedback is mandatory for design and to plan a good experiment

Parameter	BFPS	ALFRED FA	
d _{pin} [mm]	10	10.5	Pin Outer diameter
p/d	1.4	1.32	Pitch to diam ratio
Power [kW]	250	-	Total power
Pin power [kW]	13	-	Pin power
Wall heat Flux [MW/m²]	0.7	0.7-1	Heat flux
Subch velocity [m/s]	0.8	1.1	Subch velocity
Npin	19	127	Number of pins
Lactive [mm]	600	600	Active region
L _{plenum} [mm]	500	500	FA mixing region

BFPS TEST SECTION

BFPS TEST SECTION

Mechanical design is completed

The *flow blockage accident* in a Fuel Assembly (FA) of a nuclear reactor consists in a *partial or total occlusion of the flow passage area*. This leads in general to a *reduced heat transfer* between the FA and the coolant and/or *reduced mass flow rate* potentially causing a temperature peak in the clad which can eventually lead to the fusion of the clad itself. While a partial blockage at the *fuel assembly foot* may be dangerous for the integrity of the FA (e.g. *Fermi 1 fuel meltdown accident*), see NRC (2011) and Bertini (1980), the

phenomena can be investigated and assessed by an integral system code in order to devise proper mitigation actions. On the other hand, **an internal blockage can be even more dangerous** and it is not easy to detect; this kind of blockage can be more effectively modeled and studied by a proper use of a **CFD** code.

Regarding the *sodium fast reactors*, they adopt generally wire-spaced bundles, and the accumulation of debris from failed fuel pins or broken wires, generally occurs **along the wire**. Therefore, in this case, the preferential shape of the blockage is elongated *and it follows the helicoid wire* (Schultheiss, 1987).

For **grid-spaced fuel assemblies**, experimental results on blockage growth by particles show that particles with sizes spread around the subchannel dimensions are collected at the spacer grid. A horizontal *plate like* particle bed with strong radial growth tendency has been found (Schultheiss, 1987).

FLOW BLOCKAGE: TYPES

- External
 - Central hole in SA foot part is blocked, coolant enters only through the side openings
- Internal
- Internal blockage inside fuel SA in a form of a thin plate (grid spaced FA)
- Internal blockage inside fuel SA in a form of an elogated Pb oxide slug (wire-spaced FA)

- The ENEA experiment will focus on <u>Internal blockage in grid-spaced FA.</u>
- A feedback from the designers (ANN) was required for the BFPS test section design

From these remarks, the most likely internal blockage in a grid-spaced bundle is *at the lower spacer grid*, and, if the spacer grid is positioned in the active region, a remarkable effect can be evidenced and a possible damage can occur. In principle, in the latter case, two different effects can be distinguished:

- A *local* effect due to the stagnation-recirculation/wake region downstream of the blockage, with a local <u>minimum of the heat transfer</u> and a clad temperature peak;
- A *global* 'subchannel' effect due to the <u>lower mass flow rate</u> in the blocked subchannels; this effect leads to an increase of the bulk fluid temperature with respect to the 'unblocked' regions and a consequent peak in the clad temperature at the end of

the active region.

ALFRED FA CFD STUDY

Nblock=19, β=0.15, case 11,

HIGHLIGHTS

Nblock=37, β=0.29, case 12, stationary

CFD PRE-TEST ANALYSIS

Flow rate	BFPS	ALFRED		
А	4 kg/s	27 kg/s		
В	8 kg/s	54 kg/s		
С	16 kg/s	108 kg/s		

Alfred FA nominal flow rate 144 kg/s

Blockage type	Description	Blockage %
0	No blockage	0%
1	Total sector	16,67%
2	Central blockage	6,89%
3	Corner blockage	13,22%
4	Edge blockage	14,94%
5	2 Sectors blockage	33%

CFD TEST MATRIX

Case Number	Case	Mesh	Turbolence model	Calculation Type	Blockage Type	Blockage %	Mflow BFPS [Kg/s]	Power [W]	ΔT LBE	T INLET	Notes	Computation
Oof	A_C0of	А	SST k-om	STATIONARY	0		16	94284,80	40	200	UNBLOCKED, mesh indep, only fluid	ENEA
1of	B_C1of	В	SST k-om	STATIONARY	0		16	94284,80	40	200	UNBLOCKED, mesh indep, only fluid	ENEA
2of	C_C2of	С	SST k-om	STATIONARY	0		16	94284,80	40	200	UNBLOCKED, mesh indep, only fluid	ENEA
3of	D_C3of	D	SST k-om	STATIONARY	0		16	94284,80	40	200	UNBLOCKED, mesh indep, only fluid	ENEA
												ENEA,
2	C_C2	С	SST k-om	STATIONARY	0		16	94284,80	40	200	UNBLOCKED	ANSALDO
4	C_C4	С	SST k-om	STATIONARY	0		8	47142,40	40	200	UNBLOCKED	ENEA
5	C_C5	С	SST k-om	STATIONARY	0		4	23571,20	40	200	UNBLOCKED	ENEA
												ENEA,ANSALD
6	C_C6	С	SST k-om	STATIONARY	1	16,67%	16	94284,80	40	200	SECTOR BLOCKAGE	0
7	C_C7	С	SST k-om	STATIONARY	1		8	47142,40	40	200	SECTOR BLOCKAGE	ENEA
8	C_C8	С	SST k-om	STATIONARY	1		4	23571,20	40	200	SECTOR BLOCKAGE	ENEA
9	C_C9	С	SST k-om	STATIONARY	2	6,89%	16	94284,80	40	200	CENTRAL BLOCKAGE	ENEA
10	C_C10	С	SST k-om	STATIONARY	2		8	47142,40	40	200	CENTRAL BLOCKAGE	ENEA
11	C_C11	С	SST k-om	STATIONARY	2		4	23571,20	40	200	CENTRAL BLOCKAGE	ENEA
12	C_C12	С	SST k-om	STATIONARY	3		16	94284,80	40	200	CORNER BLOCKAGE	ANSALDO
13	C_C13	С	SST k-om	STATIONARY	3		8	47142,40	40	200	CORNER BLOCKAGE	ANSALDO
14	C_C14	С	SST k-om	STATIONARY	3	13,22%	4	23571,20	40	200	CORNER BLOCKAGE	ANSALDO
15	C_C15	С	SST k-om	STATIONARY	4	14,94%	16	94284,80	40	200	SIDE BLOCKAGE	ANSALDO
16	C_C16	С	SST k-om	STATIONARY	4		8	47142,40	40	200	SIDE BLOCKAGE	ANSALDO
17	C_C17	С	SST k-om	STATIONARY	4		4	23571,20	40	200	SIDE BLOCKAGE	ANSALDO
18	C_C18	С	SST k-om	STATIONARY	5	33,00%	16	94284,80	40	200	2 SECTORS BLOCKAGE	ANSALDO
19	C_C19	С	SST k-om	STATIONARY	5	33,00%	8	47142,40	40	200	2 SECTORS BLOCKAGE	ANSALDO
20	C_C20	С	SST k-om	STATIONARY	5	33,00%	4	23571,20	40	200	2 SECTORS BLOCKAGE	ANSALDO
											SECTOR BLOCKAGE, model	
21	C_C21	С	RSM-om	STATIONARY	1		16	94284,80	40	200	independence	ENEA
22	C_C22	С	SST, Prt=1.0	STATIONARY	1		16	94284,80	40	200	SECTOR BLOCKAGE, Prt independence	ENEA
23	C_C23	С	SST, Prt=1.2	STATIONARY	1		16	94284,80	40	200	SECTOR BLOCKAGE, Prt independence	ENEA

Coolant constant Properties at 220 °C

LBE	
BFPS Mass flow rate	16 kg/s
Density	10443,3 kg/m ³
Heat capacity at costant pressure	147,32 J/kg*K
Dynamic viscosity	2,28 10 ⁻³ Pa*s

Geometrical and thermal-hydraulic parameters

Hexagon internal key	62 mm
Active Lenght	600 mm
Pin diameter	10 mm
Pitch to diameter ratio P/D	1,4
Equivalent diameter D _h	9,05 mm
Number of pins	19
Mean assemby power	94,285 kW
LBE inlet temperature	200 °C
Lbe outlet temperature	240 °C

outlet

Solver	CFX-15
Туре	Stationary
Discretization	2 nd order
Turbulence model	SST k-ω
Reynolds Number	~35 000
Inizialization velocity	0,79 m/s

Inlet
16 [kg/s]
200 °C
Outlet
0 [Pa]
0,05 [Pa]
Wall
94284,8 [W]

MESH INDEPENDENCE

Friction factor f Darcy % [-] Mnodes Mesh Mesh A 10 0,01182 0,01144 -3,21% Mesh B 15 Mesh C 0,01130 19 -1,22% 0,01131 0,088 % Mesh D 24

T max, T average pins, Nusselt number

	T _{pin max}	T _{average pins}	T _{bulk}	Nu	% [-]
Mesh A	267,6 °C	222,35 °C	213,11°C	23,86	
Mesh B	269,8 °C	225,82 °C	213,11°C	17,31	-27,45%
Mesh C	272,4 °C	226,46 °C	213,11°C	16,48	-3,48%
Mesh D	272,6 °C	226,42 °C	213,11 °C	16,52	0,16%

UNBLOCKED CASE

Mass flow rate	16 kg/s
Blockage type	0
Blockage %	0 %

Temperature contours

T max= 261°C

LBE-Pins

LBE-Outlet

LFR-GEN IV : STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO ADP ENEA-MSE, Brasimone, 19-20/11/2015, Centro Ricerche ENEA Brasimone

SECTOR BLOCKAGE CASE

Mass flow rate	16 kg/s
Blockage type	1
Blockage %	16,67 %

Temperature Contours

Т Мах		ΔΤ
No blockage	261 °C	
Sector Blockage	366 °C	~105°C

LBE-Pins

LBE-Outlet

- Pin Line -

blocked channel
free channel

SECTOR BLOCKAGE CASE

----- blocked channel

OVERALL CFD RESULTS

The maximum temperature value is reached for the 2 sector blockage simulation as expected.

C_18, C_12, C_2 and C_9 have the same temperature profile behind the blockage, while C_15 and C_6 have a different profile

Blockage type		Blockage %	ΔT [°C]
0	No blockage	0%	
1	Total sector	16,67%	105°C
2	Central blockage	6,89%	~0°C
3	Corner blockage	13,22%	76°C
4	Edge blockage	14,94%	109°C
5	2 Sectors blockage	33%	117°C

Total amount of 24 RTD/TC into the mixing region

TR name	r [mm]	Θ[°]	τ [mm]	BFPS sector	TR dimension [mm]
TR-1	0	60	85	С	5
TR-2	15	60	85	С	5
TR-3	30	60	85	С	5
TR-4	0	120	135	В	5
TR-5	15	120	135	В	5
TR-6	30	120	135	В	5
TR-7	0	60	185	С	5
TR-8	15	60	185	С	5
TR-9	30	60	185	С	5
TR-10	0	120	235	В	5
TR-11	15	120	235	В	5
TR-12	30	120	235	В	5
TR-13	0	60	285	С	5
TR-14	15	60	285	С	5
TR-15	30	60	285	С	5
TR-16	0	120	335	В	5
TR-17	15	120	335	В	5
TR-18	30	120	335	В	5
TR-19	0	60	385	С	5
TR-20	15	60	385	С	5
TR-21	30	60	385	С	5
TR-22	0	120	435	В	5
TR-23	15	120	435	В	5
TR-24	30	120	435	В	5

- A new FPS test section was designed in order to assess the flow blockage local and global effect: mechanical design is over.
- The test section will have **the same 'flange-to-flange' dimensions** of the present FPS in order to mount it directly in NACIE-UP
- It will have **19** pins, **250** kW power, but grid-spaced: the pin number and the power will be identical to the present configuration and will minimize the facility refurbishment (plug and play strategy)
- The p/d ratio was fixed to 1.4 close to the ALFRED FA
- ALFRED FA 19-pin Mock-up for thermal investigations
- A detailed CFD model of the test section will be developed for pre and post-test in collaboration with UniPi/Ansaldo/UniGe
- Ansaldo feedback is mandatory for design and to plan a good experiment (strong collaboration is active)
- Results are in line with literature and previous studies
- The dominant phenomenon is local (<100 mm) behind the blockage (Instrumentation)
- The recirculation region is of the same dimension of the blockage area
- At higher level of blockage (2 sectors, 33%) the heated region is extended **200 mm** behind the blockage
- The temperature distribution in the plenum region seems to be detectable at any blockage level (at least 10
 °C section temperature drop)
- A more accurate model of the (500 mm) mixing region must be done and further simulations carried out

- A new **BFPS test section was designed** in order to assess the flow blockage local and global effect
- The mechanical design of the test section is finished
- The design and pre-test analysis was carried out by a joint tight collaboration among ENEA, Ansaldo Nucleare (ANN, Alfred designers) and UniPi
- From the pre-test analysis, the experimental setup and test matrix will be developed

- Ansaldo stressed the importance to study the mixing in the plenum region of the FA for blockage detection
- The test section will be arranged with additional 24 RTD in the plenum region
- Technical specification for the test section will be written by the end of the year
- The test section will be manufactured in 2016
- Experiments can start in January 2017 *low risk margin* for the results delivery
- Synergy with European H2020 project SESAME
- The test section will be used in ADP to characterize heat transfer in the ALFRED FA

Thank you for your attention

LFR-GEN IV : STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO ADP ENEA-MSE, Brasimone, 19-20/11/2015, Centro Ricerche ENEA Brasimone

Ivan Di Piazza – ENEA ivan.dipiazza@enea.it <u>Morena Angelucci</u> – Università di Pisa morena.angelucci@for.unipi.it

Giuseppe Polazzi – ENEA Valerio Sermenghi – ENEA Lorenzo Laffi – ENEA Daniel Giannotti – ENEA Mariano Tarantino – ENEA

WORKSHOP TEMATICO: LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO AdP ENEA-MSE (PAR2014-LP2) 19-20 Novembre 2015, C.R. ENEA Brasimone

Outline

• NACIE-UP facility

- overall description
- FPS test section

 \odot Experimental test matrix and post-processing methods

Obtained Results

- tests P43X0 & P217
- Heat transfer analysis
- Planned work & Conclusions

NACIE-UP loop

ry side is composed by:

tical pipes (O.D. 2.5") 8*m* long and two horizontal .D. 2.5") 2.4*m* long;

in Simulator (19-pins) of 235 kW maximum power; and tube HX with two sections, operating at *low* 5-50 kW) and *high power* (50-250 kW);

on **gas injection device**, placed inside the riser, s the driving force to enhance the circulation;

insion tank, at the end of the riser, partially filled ;on;

le tubes and several thermocouples to monitor and temperature along the flow path.

to the distance between the heat source and the k *H* is about **5.5** *m* the **natural circulation regime** blish inside the loop.

NACIE-UP P&ID

NACIE-UP test section

19 pins wire-spaced arranged in triangular lattice

235 kW maximum power

D _{pin}	6.55 mm
Р	8.4 mm
P/D	1.2824
d	1.75 mm
P _{wire}	262 mm
L _{tot}	2000 mm
L _{active}	600 mm
D _{H,nom}	3.84 mm

•In red instrumented pins

•In orange instrumented sub-channels

FPS Instrumentation

- 11 pins instrumented Embedded-wall TCs 0.35 mm (52)
- 5 sub-channels instrumented Sub-channel TCs 0.5 mm (15)

Pins 1,2,4,5,6,7,9,16,18,19 instrumented at three axial positions: *z* = 38, 300, 562 *mm* from the *beginning of the active length*

(562-300 mm = 300-38 mm = 262 mm = P_w , at the three axial position the same relative position between pin and wire)

• Pin 3 instrumented with wall embedded TCs every 43.66 mm (13 TCs). This will allow to study axial thermal development

Outline

• NACIE-UP facility

- overall description
- FPS test section

\odot Experimental test matrix and post-processing methods

Obtained Results

- tests P43X0 & P217
- Heat transfer analysis
- Planned work & Conclusions

Experimental Matrix

 $u_{sc} \approx 0.1 - 0.9 \, m \, / \, s$

$$\operatorname{Re}_{sc} \approx 2000 - 20000$$

$$\dot{m}_{NACIE} \approx 0.4 - 5.0 \ kg \ / s$$

 $\dot{m}_{FA} \approx 2.3 - 28.7 \ kg \ / s$

$$Q_{lin} \approx 0.9 - 9.5 \quad kW / m$$
$$Q_{FPS} \approx 11 - 110 \quad kW$$

Post-processing method

- Acquisition frequency of data **1 Hz** (duration 15-20 min)
- Matlab routines were written for data post-processing
- Error analysis implemented. Sources of error considered: *statistical error, instrumental error and uncertainties on LBE properties*
- Mass flow rate calculated through the energy balance across the heated length
- Definition of **section-averaged** bulk and wall temperatures

$$\overline{T}_{b} = T_{bS2} \cdot w_2 + T_{bS5} \cdot w_5 + T_{bS22} \cdot w_{22} + T_{bS26} \cdot w_{26} + T_{bS33} \cdot w_{33}$$

$$\overline{T}_{w} = T_{wS2} \cdot w_2 + T_{wS5} \cdot w_5 + T_{wS22} \cdot w_{22} + T_{wS26} \cdot w_{26} + T_{wS33} \cdot w_{33}$$

• Wall temperatures correction for embedded thermocouples

$$T_w = T_{ac} - \frac{Q}{2\pi M L_{active}} k_{ss} \ln \left(\frac{D/2}{D/2 - \delta_g} \right)$$

 $Nu_{sc} = \frac{q''}{\left(T_{wsc} - T_{hsc}\right)} \cdot \frac{L}{\left(T_{wsc} - T_{hsc}\right)}$

- **Re, Pe** and **Pr** numbers computed in each section from \overline{T}_{b}
- Average Nusselt number is computed using \overline{T}_{h} and \overline{T}_{w}
- Local Nusselt number is computed in each monitored subchannel

Outline

• NACIE-UP facility

- overall description
- FPS test section

Experimental test matrix and post-processing methods

\circ Obtained Results

- tests P43X0 & P217
- Heat transfer analysis

Planned work & Conclusions

Tests P43X0 & P217 1/2

PEC TEST	Q [kW]	Gas flow rate [NI/min]	∆T _{FPS} [°C]	u _{sc} [m/s]	m _{NACIEUP} [kg/s]	m _{MYRRHAFA} [kg/s]	Re _{sc}	Pe _{sc}
P43X0	43	-	176.9	0.24	1.63	9.38	5350	111
P217	43	15	89.4	0.47	3.21	18.49	9980	228

P217

Tests P43X0 & P217 2/2

Nusselt number: S2 & S5

Nu vs Pe – Inner rank: sub-channels S2 and S5

$$Nu_{sc} = \frac{q''}{\left(T_{w,sc} - T_{b,sc}\right)} \cdot \frac{D_{H,nom}}{k}$$

Nusselt number: S22

105

Nusselt number: S26 & S33

Nu vs Pe – External rank: sub-channels S26 and S33

$$Nu_{sc} = \frac{q''}{\left(T_{w,sc} - T_{b,sc}\right)} \cdot \frac{D_{H,nom}}{k}$$

106

Overall heat transfer

Nu vs Pe – Section-averaged heat transfer

Outline

• NACIE-UP facility

- overall description
- FPS test section

 \odot Experimental test matrix and post-processing methods

Obtained Results

- tests P43X0 & P217
- Heat transfer analysis

Planned work & Conclusions

NACIE-UP: upgrade

Upcoming Experiments

New experimental campaigns are foreseen in 2016:

- Preliminary tests:
- Zero power-very low mass flow rate test to characterize heat losses through the structure (T=400°C--->250°C);
- Isothermal test at 350°C and different mass flow rates of gas injected (in the range of 0-20 NI/min;
- Further steady-state tests in order to complete the characterization of the bundle coolability (in natural and forced circulation regimes);
- Steady state tests for the INERI benchmark for CFD codes on the NACIE-UP 19-pins bundle;
- Transient tests for a benchmark for CFD and STH/CFD coupled calculations inside the SESAME project;
- Several transient tests characterized by transitions from high power and relative high mass flow rates to low power and natural circulation regime (PLOFA-like tests).

Conclusions

- An experimental campaign was performed at ENEA Brasimone PEC Lab (NACIE-UP facility) on a LBE cooled 19-pins bundle in the context of the SEARCH FP7 EU
- A well instrumented 19-pin bundle test section was specifically designed and manufactured for the experiment
- Several tests have been performed both in Natural and Forced Circulation (range explored: Re_{sc}=2000-20000, Q=11-110 kW)
- Post-test error analysis was performed according to the error propagation theory
- Analysis of local Nusselt and average Nusselt
 - Local Nusselt for inner sub-channels in agreement with existing correlations
 - Local Nusselt for external sub-channel is lower than in the inner ranks
 - Section-averaged Nusselt number is in accordance with the Carelli-Kazimi correlation
- Some improvements are being implemented in the facility for the upcoming experimental campaign that will focus on the thermal-hydraulic behavior of the sub-channels during transients

Thank you for your attention Morena Angelucci Università di Pisa Facoltà di Ingegneria Dipartimento di Ingegneria Civile e Industriale +39-050/2218080 morena.angelucci@for.unipi.it

112

Mixing and Stratification in HLM large pool facility

M. Tarantino (mariano.tarantino@enea.it)

C.R. ENEA Brasimone, 19th – 20th November 2015

@ Goal of the CIRCE Experiments

@ CIRCE Overview

- Experimental Results
- Outlook
Goal of the CIRCE Experiments

- The main goal of the CIRCE Experiments is to provide data on steady- state and transient flow phenomena in HLM large pool, including the transition from forced to natural circulation
- Experimental data will be used to develop and validate codes for their use in the design and safety analysis of ADS/LFR
- Q Natural circulation in the primary system is the chosen option for the design in terms of decay heat removal. The viability of the natural circulation has to be fully demonstrated in large pool experiments
- Investigate the stability of a large-scale pool system operating in natural circulation
- Q A good knowledge of convection patterns, flow mixing and stratification in operational and accidental conditions (e.g. partial or complete loss-of-flow, loss-of-heat-sink) etc. is needed

ameters	Value
Outside Diameter	1200 mm
Wall Thickness	15 mm
Material	AISI 316L
Max LBE Inventory	90000 kg
Electrical Heating	47 kW
Cooling Air Flow Rate	3 Nm ³ /s
Temperature Range	200 to 550 °C
Operating Pressure	15 kPa (gauge)
Design Pressure	450 kPa (gauge)
Argon Flow Rate	15 NI/s
Argon Injection Pressure	600 kPa (gauge)

Electrical Power (Pin Bundle) \sim **1 MW**

117

Assembly:	Hexagonal
<i>d</i> :	8.2 mm
p/d:	1.8
L _{act} :	1000 mm
N _{Pin} :	37
q":	100 W/cm ²
Q _{Pin} :	26 kW

• Thermal Power:	800 - 925 kW
• LBE T _{AV} :	300 - 350 °C
 Core ΔT: 	100 °C
• Core velocity:	1.0 m/s
• LBE Flow Rate:	55.2 kg/s

 $\textbf{T-MS-01} \rightarrow \textbf{T-MS-119}$

Mixing & Stratification

Test Matrix

Name	LBE Mass flow rate [kg/s]	Argon Mass flow rate [kg/s]	FPS Electrical Power [kW]	∆t (outlet- inlet) FPS	∆t (clad- bulk) Mikityuk	∆t (clad- bulk) Ushakov	Nu = -
1-FC	70	5	800	80	35	36	$T_c - T_b$
2-FC	65	4.4	760	80	37	39	
3-FC	60	3	700	80	39.5	41	(1
4-FC	55	2.4	640	80	41.6	43.5	
5-FC	50	1.6	580	80	43.5	45.7	$D_{eq} = 4$
6-FC	45	1.45	525	80	45.4	47.8	
7-FC	40	1.41	465	80	47	49.5	

$Nu = \frac{H}{2}$	$IC \cdot D_{eq}$
1 1 00	K
T - T -	$q^{"} \cdot D_{eq}$
$\mathbf{I}_c \mathbf{I}_b =$	$Nu \cdot K$

 $D_{eq} = 4 \frac{\left(\frac{\sqrt{3}}{4}p^2 - \pi d\right)}{\frac{\pi d}{2}}$

	LBE	FPS	ΔT
Name	Mass flow rate	Electrical	(outlet-inlet) FPS
	[kg/s]	Power[kW]	
1-NC	25	600	113
2-NC	23	500	101
3-NC	21	400	90
4-NC	19	300	72
5-NC	14	200	73
6-NC	12	100	37

521<Pe<2916

Steady State condition

Experimental Results

60		LBE	Da	S	ECTION 1	-	S	ECTION	3	-
50		<i>ṁ</i> [kg/s]	[-]	T clad [°C]	T bulk [°C]	Nu [-]	T clad [°C]	T bulk [°C]	Nu [-]	Ŋ
40	1-FC	70	2916	365	312	27	413	355	35	
30	2-FC	65	2754	363	311	26	410	353	33	
20	3-FC	60	2577	351	300	25	398	343	31	
10	4-FC	55	2357	352	304	24	399	348	31	
0	5-FC	49	2117	343	298	23	387	340	27	-
Ĵ.	6-FC	43	1876	336	291	21	381	335	25	
	7-FC	40	1761	325	285	21	369	326	24	-
MLANAL ALA	1-NC	25	1009	435	372	16	522	464	20	
MANAMAAN	2-NC	23	925	429	376	15.6	510	460	21	
	3-NC	21	815	452	409	15.48	522	483	20	Ą
	4-NC	19	746	431	399	15.41	490	459	18	
	5-NC	14	585	364	341	14.77	420	398	17	
	6-NC	12	521	321	309	14	354	342	17	
www.http://www.	Hourselawayoung	el Mirymand Maryn y Anne	valey talki (aquil 1)	uprar ulan huppy	10 5					
C	ראיזעראיין איזעראיין איזעראיין איזעראיין איזעראיין איזעראיין איזעראיין איזעראיין איזעראיין א געראיין געראיין געראיין געראיין געראיין געראיי	0.1 0.15 Time [h]	יייעוייעי יייעויעי יייעויעי אייזאזיי (איקנאראן) ר 0.2	2 0.25	5 0 0) 0.05	0.1 Ti	0.15	0	.2

123

Experimental Results

Test Matrix

@Test #1

- Full Power steady state circulation by gas Lift (800 kW)
- PLOFA transition
- Mixing & stratification and FPS data
- No long run (20 h)

@Test #2

- Full Power steady state circulation by gas Lift (600 kW)
- PLOFA transition
- Mixing & stratification and FPS data
- No long run (6 h)

TEST 1

Nominal Steady State	PLOH+LOF transient
HS Thermal Power ~800 kW	Isolation of the main HX (isolating the feed water)
HLM flow rate: 60-70 kg/s (by gas lift)	Core "scram" at about 30 kW (decay power)
Argon mass flow rate ~3NI/s	Start-up of the DHR-system (air mass flow rate 0.24 kg/s)
Average velocity into the HS:1m/s	DHR air inlet @ room temperature
Pool LBE initial temperature ~314°C (Vertical gradient in the pool of 3°C 316 T-MS-001, 312 °C T-MS-119)	"Main pump" turn-off (the gas injection is interrupted)
Vessel heating system: not active	Vessel heating system: not-active
HX water flow rate ~ 0.6 kg/s	
HX thermal power removed ~750 kW	
DHR: not active	
HX inlet Water @ room temperature	

FULL POWER RUN	FULI	L POV	NER	RUN	
----------------	------	-------	-----	-----	--

TRANSITION

<u>EVENT</u>	TIME
Power ramp (0-800 kW)	0.3h → 0.35h
Full power (800kW)	0.35 h → 10.3 h
Water injection (main HX)	0.35 h → 10.35 h
Argon Injection	0.17 h → 10.35 h

<u>EVENT</u>	TIME	
Power ramp (800-30 kW)	10.3 h → 10.35 h	
Air Injection (DHR)	10.35 h → 20.09 h	26

TEST 1: Boundary conditions

127

TEST 1

Nominal Steady State	PLOH+LOF transient
HS Thermal Power ~800 kW	Isolation of the main HX (isolating the feed water)
HLM flow rate: 60-70 kg/s (by gas lift)	Core "scram" at about 30 kW (decay power)
Argon mass flow rate ~2.7 Nl/s	Start-up of the DHR-system (air mass flow rate $\dot{m} \sim 0.325 / 0.22 kg/s$)
Average velocity into the HS:1m/s	DHR air inlet @ room temperature
Pool LBE initial temperature ~280°C (Vertical gradient in the pool of 4°C 282 T-MS-001, 278 °C T-MS-119)	"Main pump" turn-off (the gas injection is interrupted)
Vessel heating system: not active	Vessel heating system: not-active
HX water flow rate ~ 0.6 kg/s	
HX thermal power removed ~750 kW	
DHR: not active	
HX inlet Water @ room temperature	

EVENT

Power ramp (0-600 kW)

Full power (600kW)

FULL POWER RUN

TRANSITION

Water injection (main HX)	0.35 h → 2.28 h	
Argon Injection	0.16 h → 2.28 h	
<u>EVENT</u>	TIME	
Power ramp (600-30 kW)	2.25 h → 2.28 h	
Air Injection (DUR)	2.28 h → 4.9 h (0.325 kg/s)	
Air Injection (DHR)	4.9 h → 6.15 h (0.22 kg/s)	129

TIME

0.24h → 0.28h

0. 28h → 2.28 h

TEST 2: Boundary conditions

130

TEST 2

- Nu has been calculated considering the average cladding temperature and the central sub-channel temperature consistently with the measuring technique.
- Results carried out showed that the LFR primary system is technological feasible. Nu in the FPS has been computed, (Pe ~ 500-3000) results are in good agreement with correlations justifying their use for HLM fuel pin bundle design (±15%).
- Results showed that Nu is slightly lower in the middle section (Section 1) if compared with the ones into the upper section (section 3).
- Thermal Stratification happens in the pool, up to 40°C in forced circulation regime, and 10°C in natural circulation regime.
- Thermal stratification takes place in the downcomer, being localized at the outlet section on the main heat exchanger / decay heat removal

UNIVERSITY OF PISA

Dipartimento di Ingengeria Civile e Industriale (DICI)

PRELIMINARY ANALYSIS OF CIRCE FACILITY BY CFD CODES

<u>Daniele Martelli</u> Nicola Forgione Francesco Andreoli Gemma Damiani

ADP ENEA-MSE (PAR 2014-LP2) C.R. ENEA Brasimone 19-20 Nov. 2015

Outline

CIRCE experimental Facility

Outline

- CIRCE Experimental facility
- Geometrical model
- CFD Simulations
- Obtained results
- Pool thermal Stratification
- CIRCE post-test simulation
- CIRCE HERO experimental facility
- CIRCE-HERO 3D model
- Conclusions

CIRCE Facility

Geometrical model

CIRCE Experimental facility

Geometrical model

CFD simulations

Geometrical model

Obtained results

CFD simulations

k-ε standard RNG with enhanced wall treatment First order UPWIND scheme Adiabatic External walls

Air mass flow rate 0.3 kg/s Air inlet temperature 20°C

CD-adapco

www.cd-adapco.com

 1.28×10^5 cells

Obtained results (2di 2)

Stan

Obtained Results 1 of 2

Obtained results (2 di 2)

Pool thermal stratification

S. S. S. C.

Obtained Results 2 of 2

Pool thermal stratification (1 of 2)

Pool thermal stratification (2 of 2)

Pool Thermal Stratification 1 of 2

CD-adapco

NNSYS®

Pool thermal stratification (2 of 2)

> CIRCE Post-test simulation

Pool Thermal Stratification 2 of 2

CIRCE Post-test simulation

CIRCE – HERO Experimental facility

CIRCE Post-test Simulation

Post Test simulation performed with STAR CCM+ according to the PLOHS+LOF accident experimentally reproduced in CIRCE (TEST IV)¹

BC full power run: Mfr \rightarrow 56kg/s; T \rightarrow 258°C;Q \rightarrow 730 kW

CIRCE-HERO experimental facility

CIRCE –HERO 3D Model

CIRCE-HERO Experimental facility

CIRCE 3D Model

Conclusions

$\textbf{NEXT} \rightarrow \textbf{CIRCE-HERO 3D model}$

Conclusions

- A simplified 2D CIRCE ICE-DHR numerical model was developed adopting both Ansys Fluent & STAR-CCM+
- RNG k-e (FLUENT) & k-@SST (STAR-CCM+) turbulent model were adopted
- External losses were neglected
- Boundary conditions of LBE mass flow rate passing through the FPS and the thermal power removed by the HX after the transition to natural circulation obtained from a previous RELAP5 simulation
- Numerical simulation highlighted that long calculation time is required to reach a steady state condition due to the high thermal inertia of the pool
- Comparison between FLUENT & STAR-CCM+ shows a good agreement
- After 20 h the thermal stratification is foreseen with a thermal gradient concentrated between the exit section of the DHR and of the HX
- Both codes predict a temperature difference of about 34 °C between the upper and lower plenum
- A three-dimensional calculation model of the CIRCE –HERO is under development

Thank you for the attention

Ing. Daniele Martelli, Ph.D Assistant Professor Dip. Ingegneria Civile e Industriale Largo Lucio Lazzarino, 2 56122 Pisa (Italy), Phone: +39 050 2218060 Mobile +39 3476243491 e-mail: daniele.martelli@ing.unipi.it

> ADP ENEA-MSE (PAR 2014-LP2) C.R. ENEA Brasimone 19-20 Nov. 2015

PRE-TEST CFD ANALYSIS OF THE ROD BUNDLE EXPERIMENT IN THE HEAVY LIQUID METAL FACILITY NACIE-UP

Ranieri Marinari (UniPi / ENEA), Ivan Di Piazza (ENEA)

LFR-GEN IV : STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO ADP ENEA-MSE, Brasimone, 19-20/11/2015, Centro Ricerche ENEA Brasimone

≻Introduction

- Literature review on HLM cooled wire-wrap bundles
- ➤The NACIE-UP facility
- Code validation
- Development of the CFD model
- Sensitivity analysis
- ➢ Results
- Highlights for the experimental activity
- ≻Conclusions

WIRE WRAPPED PINS VS. GRID SPACERS

Advantages :

- Easy to fabricate
- Less expensive
- Mechanical vibrations problems reduced
- Reactivity oscillations reduced
- Higher mixing of the coolant

Disadvantages :

- Higher steel volume into the core
- Lower breeding ratio
- Higher pressure loss wire Wrap
- Complex geometrical features (subch)
- Complex velocity and temperature fields
- Lower 'computability', loss of symmetry

PRESSURE FIELD IN THE PIN BUNDLE

VELOCITY FIELDS IN THE PIN BUNDLE

From: R. Gajapathy, K. Velusamy, A comparative CFD investigation of helical wire-wrapped 7, 19 and 37 fuel pin bundles and its extendibility to 217 pin bundle, NED,2009.

PRESSURE LOSS AND HEAT TRANSFER

UNIVERSITÀ DI PISA IN THE PIN BUNDLE

NACIE-UP FACILITY

UNIVERSITÀ DI PISA

CODE VALIDATION

From M.H. Fontana, Temperature Distribution in the Duct Wall and at the Exit of a 19-Rod Simulated LMFBR Fuel Assembly (FFM-2A). ORNL-4852, Oak Ridge National

CODE VALIDATION: CFD MODEL AND TEST MATRIX

Case number		Bundle power [kW]	Cable power [kW]	Re [-]	T _{inlet} [K]
TEST4 - RUN102	2.03 [0.11]	12.67	3.8	1841	590
TEST4 - RUN105	4.97 [0.27]	31.13	5.95	8380	587
TEST4 - RUN202	2.12	22.15	0.65	1841	602.52
TEST4 - RUN205	5.13	58.61	0.44	8381	595.48
TEST6 - RUN103		117.14	0.67	50927	590.77
TEST6 - RUN103' (Finer mesh)		117.14	0.67	50927	590.77
TEST6 - RUN103" (Second order turbulence model)	30.36 [1.62]	117.14	0.67	50927	590.77
	Case numberTEST4 - RUN102TEST4 - RUN105TEST4 - RUN202TEST4 - RUN205TEST6 - RUN103TEST6 - RUN103Stest6 - RUN103 <t< th=""><th>Case numberG (gpm) (kg/s)TEST4 - RUN1022.03 (0.11)TEST4 - RUN1054.97 (0.27)TEST4 - RUN2022.12TEST4 - RUN2055.13TEST6 - RUN10330.36 (1.62)TEST6 - RUN103"30.36 (1.62)Stest6 - RUN103"30.36 (1.62)Stest6 - RUN103"30.36 (1.62)</th><th>Case numberG (gpm) (gpm) (kg/s)Bundle power (kW)TEST4 - RUN1022.03 (0.11)12.67TEST4 - RUN1054.97 (0.27)31.13TEST4 - RUN2022.1222.15TEST4 - RUN2055.1358.61TEST6 - RUN10330.36 (1.62)117.14TEST6 - RUN103" (Second order model)30.36 (1.62)117.14</th><th>Case numberG (gpm) (kg/s)Bundle power (kW)Cable power (kW)TEST4 - RUN1022.03 (0.11)12.673.8TEST4 - RUN1054.97 (0.27)31.135.95TEST4 - RUN2022.1222.150.65TEST4 - RUN2055.1358.610.44TEST6 - RUN10330.36 (1.62)117.140.67TEST6 - RUN103*30.36 (1.62)117.140.67</th><th>Case number G (gpm) (kg/s) Bundle power (kW) Cable power (kW) Re (1) TEST4 - RUN102 2.03 (0.11) 12.67 3.80 1841 TEST4 - RUN102 4.97 (0.27) 31.13 5.95 8380 TEST4 - RUN202 2.12 22.15 0.65 1841 TEST4 - RUN205 5.13 58.61 0.44 8381 TEST6 - RUN103 30.36 (1.62) 117.14 0.67 50927 TEST6 - RUN103* (Second order unbulence model) 30.36 (1.62) 117.14 0.67 50927</th></t<>	Case numberG (gpm) (kg/s)TEST4 - RUN1022.03 (0.11)TEST4 - RUN1054.97 (0.27)TEST4 - RUN2022.12TEST4 - RUN2055.13TEST6 - RUN10330.36 (1.62)TEST6 - RUN103"30.36 (1.62)Stest6 - RUN103"30.36 (1.62)Stest6 - RUN103"30.36 (1.62)	Case numberG (gpm) (gpm) (kg/s)Bundle power (kW)TEST4 - RUN1022.03 (0.11)12.67TEST4 - RUN1054.97 (0.27)31.13TEST4 - RUN2022.1222.15TEST4 - RUN2055.1358.61TEST6 - RUN10330.36 (1.62)117.14TEST6 - RUN103" (Second order model)30.36 (1.62)117.14	Case numberG (gpm) (kg/s)Bundle power (kW)Cable power (kW)TEST4 - RUN1022.03 (0.11)12.673.8TEST4 - RUN1054.97 (0.27)31.135.95TEST4 - RUN2022.1222.150.65TEST4 - RUN2055.1358.610.44TEST6 - RUN10330.36 (1.62)117.140.67TEST6 - RUN103*30.36 (1.62)117.140.67	Case number G (gpm) (kg/s) Bundle power (kW) Cable power (kW) Re (1) TEST4 - RUN102 2.03 (0.11) 12.67 3.80 1841 TEST4 - RUN102 4.97 (0.27) 31.13 5.95 8380 TEST4 - RUN202 2.12 22.15 0.65 1841 TEST4 - RUN205 5.13 58.61 0.44 8381 TEST6 - RUN103 30.36 (1.62) 117.14 0.67 50927 TEST6 - RUN103* (Second order unbulence model) 30.36 (1.62) 117.14 0.67 50927

CODE VALIDATION : RESULTS

TEST4 - RUN105

Mass Flow Rate [gpm]	4.97 (0.27 kg/s)				
Power [kW]	31.13				
u _{sc} [m/s]	0.78				
Re _{sc}	8380				
Pe _{sc}	33.65				

NACIE-UP FPS: THE CFD MODEL

COMPUTATIONAL SETUP

Code	ANSYS CFX 15.0					
Analysis method	RANS (Stationary)					
Turbulance medal	Standard SST k-ω (Menter)					
i ui buience model	All y+ wall treatment					
Numerical scheme for convective terms	High Resolution (second order)					
Working fluid	Lead Bismuth Eutectic (LBE) (Constant Properties)					
Inlet	473 K mfr (according to the test matrix)					
Outlet	Zero pressure					

SENSITIVITY ANALYSIS

Mesh independence

Medium mesh (~ 22 ·10⁶ nodes) Fine mesh (~ 28.3 ·10⁶ nodes)

G	u _{sc}	Re _{sc} [-]	Thermal power
[kg/s]	[m/s]		[kW]
2.032	0.29	6162	32.52

Mesh independence: velocity field

Axial velocity component

MESH INDEPENDENCE: TEMPERATURE FIELD

The medium size mesh has been chosen for the simulations

THE INFLUENCE OF THE SOLID STRUCTURES

CFD TEST MATRIX (ΔT_{IO} =110 K)

Preliminary model cases	Complete model cases	mfr [<i>kg</i> /s]	Q [kW]	Re _{sc}	Pe _{sc}	
OF05	SS05	0.5	8.07	1516	41.0	
OF10	SS10	1	16.14	3032	81.9	
OF20	SS20	2.032	32.52	6162	166.5	
OF30	SS30	3	48.42	9097	245.8	
OF40	SS40	4	64.56	12130	327.7	
OF50	SS50	5	80.70	15162	409.6	
OF60	SS60	6	96.84	18195	491.5	
OF70	SS70	7	112.97	21227	573.5	

Case SS20: Axial velocity development

Case SS20: Swirl velocity development

INFLUENCE OF REYNOLDS NUMBER

LFR-GEN IV : STATO ATTUALE DELLA TECNOL $470 \frac{1}{0} 50 100 150 200 250 300 350 400 450 500 550 600 650 700 11/2015$, Centro Ricerche ENEA Brasimone Active region height [mm]

LFR-GEN IV : STATO ATTUALE DELLA OGIA E

COMPARISON WITH THE CORRELATIONS: HEAT TRANSFER COEFFICIENT (HTC)

COMPARISON WITH CORRELATIONS: HTC "EXPERIMENTAL DEFINITION"

HIGHLIGHTS FOR THE EXPERIMENTAL ACTIVITY

The pre-test CFD analysis of the NACIE-UP FPS shows some interesting features of the experimental test section and provided **highlights** on the experimental test matrix itself.

In particular the following points can be stressed:

- 1. The considerable effect of the **conjugate heat transfer** on the LBE thermal field in particular for the lower mass flow rate cases: *hexagonal pipe* creates a thermal bridge between the hot and the cold region of the fluid;
- 2. The small difference between the pin temperature and the subchannel temperature that can be attained in the inner sub-channels especially at the lower mass flow rates of the experimental range (as the 0.5 and 1.0 kg/s results) (HTC experimental impact);
- 3. The **thermal field does not reach a fully developed** and stable **condition** in the heated/instrumented region and this phenomenon was predicted by other authors.

NEW EXPERIMENTAL TEST MATRIX

TEST	mNACIE[kg/s]	mMYRRHAFA[kg/s]	usc[m/s]	Resc	Pesc	Nu Ushakov	Nu Mik	h[W/m2K]	o[w]	Q[kW]	DT IOBulk	DT wallBulk	Tmaxclad[°C]	Regime	нх	TRANSITION	V142[°]
T101	1.37	7.9023717	0.203366	4.20E+03	113.541	10.00552033	8.914783	27351	1.08E+04	10.8	53.85	1.69	255.54	NAT CIRC	LOW	STATIONARY	X°
T102	1.08	6.201861334	0.159604	3.30E+03	89.108	9.80879592	8.713497	26813	1.08E+04	10.8	68.61	1.72	270.34	NAT CIRC	LOW	STATIONARY	X°
T103	0.83	4.801441033	0.123564	2.55E+03	68.987	9.638683124	8.537978	26348	1.08E+04	10.8	88.63	1.75	290.38	NAT CIRC	LOW	STATIONARY	X°
T104	0.66	3.801140818	0.097822	2.02E+03	54.614	9.511171137	8.405321	25999	1.08E+04	10.8	111.95	1.78	313.73	NAT CIRC	LOW	STATIONARY	X°
T105	0.50	2,900870624	0.074653	1.54F+03	41.679	9.390623258	8.278847	25670	1.08F+04	10.8	146.69	1.80	348.49	NAT CIRC	IOW	STATIONARY	×°
T106	0.40	2.300690495	0.059208	1.22E+03	33.056	9.306173402	8,18949	25439	1.08F+04	10.8	184.96	1.82	386.78	NAT CIRC	LOW	STATIONARY	X°
T107	1.75	10.10303217	0.26	5.37E+03	145.159	10.24819026	9.161047	28014	2.17E+04	21.7	84.32	3.30	287.62	NAT CIRC	LOW	STATIONARY	X°
T108	1.37	7.9023717	0.203366	4.20E+03	113.541	10.00552033	8.914783	27351	2.17E+04	21.7	107.80	3.38	311.18	NAT CIRC	LOW	STATIONARY	X°
T109	1.08	6.201861334	0.159604	3.30E+03	89.108	9.80879592	8.713497	26813	2.17E+04	21.7	137.36	3.45	340.81	NAT CIRC	LOW	STATIONARY	X°
T110	0.83	4.801441033	0.123564	2.55E+03	68.987	9.638683124	8.537978	26348	2.17E+04	21.7	177.42	3.51	380.93	NAT CIRC	LOW	STATIONARY	X°
T111	0.66	3.801140818	0.097822	2.02E+03	54.614	9.511171137	8.405321	25999	2.17E+04	21.7	224.11	3.56	427.67	NAT CIRC	LOW	STATIONARY	X°
T112	2.03	11.70351252	0.301188	6.22E+03	168.155	10.41809953	9.332352	28478	3.25E+04	32.5	109.01	4.86	313.88	GAS LIFT	LOW	STATIONARY	X°
T113	1.58	9.102731958	0.234257	4.84E+03	130.787	10.1393271	9.050822	27716	3.25E+04	32.5	140.16	5.00	345.16	NAT CIRC	LOW	STATIONARY	X°
T114	1.23	7.102131528	0.182772	3.78E+03	102.043	9.914104125	8.82145	27101	3.25E+04	32.5	179.64	5.11	384.75	NAT CIRC	LOW	STATIONARY	X°
T115	0.97	5.601681205	0.144158	2.98E+03	80.484	9.736927036	8.639527	26616	3.25E+04	32.5	227.76	5.21	432.96	NAT CIRC	LOW	STATIONARY	X°
T201	0.5	2.87985	0.074113	1.53E+03	41.377	9.38772769	8.275795	25662	2.17E+04	21.7	296.39	3.61	500.00	NAT CIRC	LOW	STATIONARY	X°
T202	0.75	4.319775	0.111169	2.30E+03	62.066	9.578010697	8.474987	26182	3.24E+04	32.4	294.72	5.28	500.00	NAT CIRC	LOW	STATIONARY	X°
T203	1	5.7597	0.148225	3.06E+03	82.755	9.755989672	8.659172	26668	4.30E+04	43.0	293.13	6.87	500.00	NAT CIRC	HIGH	STATIONARY	X°
T204	1.25	7.199625	0.185281	3.83E+03	103.444	9.925345542	8.832946	27131	5.35E+04	53.5	291.60	8.40	500.00	NAT CIRC	HIGH	STATIONARY	X°
T205	1.5	8.63955	0.222338	4.59E+03	124.132	10.08813226	8.998849	27576	6.39E+04	63.9	290.13	9.87	500.00	NAT CIRC	HIGH	STATIONARY	X°
T206	1.75	10.079475	0.259394	5.36E+03	144.821	10.24565164	9.158481	28007	7.41E+04	74.1	288.72	11.28	500.00	NAT CIRC	HIGH	STATIONARY	X°
T207	2	11.5194	0.29645	6.13E+03	165.510	10.39879793	9.312934	28426	8.43E+04	84.3	287.35	12.65	500.00	GAS LIFT	HIGH	STATIONARY	X°
T208	2.5	14.39925	0.370563	7.66E+03	206.887	10.69441181	9.609265	29234	1.04E+05	104.5	284.77	15.23	500.00	GAS LIFT	HIGH	STATIONARY	X°
T209	3	17.2791	0.444675	9.19E+03	248.265	10.97855911	9.892175	30010	1.24E+05	124.3	282.35	17.65	500.00	GAS LIFT	HIGH	STATIONARY	X°
T210	3.5	20.15895	0.518788	1.07E+04	289.642	11.25351216	10.16439	30762	1.44E+05	143.8	280.07	19.93	500.00	GAS LIFT	HIGH	STATIONARY	X°
T211	4	23.0388	0.5929	1.23E+04	331.019	11.52083192	10.42777	31493	1.63E+05	163.1	277.92	22.08	500.00	GAS LIFT	HIGH	STATIONARY	X°
T212	4.5	25.91865	0.667013	1.38E+04	372.397	11.78165227	10.68367	32206	1.82E+05	182.2	275.89	24.11	500.00	GAS LIFT	HIGH	STATIONARY	X°
T213	5	28.7985	0.741125	1.53E+04	413.774	12.03683153	10.9331	32903	2.01E+05	201.0	273.96	26.04	500.00	GAS LIFT	HIGH	STATIONARY	X°
T214	5.5	31.67835	0.815238	1.68E+04	455.152	12.28704034	11.17684	33587	2.20E+05	219.6	272.13	27.87	500.00	GAS LIFT	HIGH	STATIONARY	X°
T215	6	34.5582	0.88935	1.84E+04	496.529	12.53281602	11.41554	34259	2.35E+05	235.0	266.95	29.24	496.19	GAS LIFT	HIGH	STATIONARY	X°
T216	6.5	37.43805	0.963463	1.99E+04	537.907	12.774598	11.64969	34920	2.35E+05	235.0	246.41	28.69	475.10	GAS LIFT	HIGH	STATIONARY	X°
T217	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	STATIONARY	0
T301	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	PLOFA	0
	1.20	6.91164	0.17787	3.68E+03	99.306	9.892051612	8.798884	27040	1.18E+04	11.8	66.74	1.85	268.59	NAT CIRC	LOW		0
T302	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	PLOFA	0
	1.70	9.79149	0.251983	5.21E+03	140.683	10.21452198	9.126999	27922	2.35E+04	23.5	94.22	3.59	297.80	NAT CIRC	LOW		0
Т303	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	PLOFA	0
	2.00	11.5194	0.29645	6.13E+03	165.510	10.39879793	9.312934	28426	3.53E+04	35.3	120.13	5.29	325.41	NAT CIRC	LOW		0
T304	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	PLOFA	0
	2.40	13.82328	0.35574	7.35E+03	198.612	10.63629662	9.551181	29075	4.70E+04	47.0	133.47	6.89	340.37	NAT CIRC	HIGH		0
T305	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	PLOFA	0
	2.60	14.97522	0.385385	7.96E+03	215.163	10.75207223	9.666817	29391	5.88E+04	58.8	154.01	8.52	362.53	NAT CIRC	HIGH		0
Т306	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	PLOFA	0
	2.70	15.55119	0.400208	8.27E+03	223.438	10.80929873	9.723861	29548	7.05E+04	70.5	177.97	10.17	388.14	NAT CIRC	HIGH		0
T401	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	1.00E+05	100.0	97.37	11.98	309.35	GAS LIFT	HIGH	STATIONARY	0,10,20,30,40
T402	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	FBLOCKAGE	0
	2.60	14.97522	0.385385	7.96E+03	215.163	10.75207223	9.666817	29391	5.88E+04	58.8	154.01	8.52	362.53	GAS LIFT	HIGH		X°(da T401)
T403	7	40.3179	1.037575	2.14E+04	579.284	13.01275178	11.87974	35571	2.35E+05	235.0	228.81	28.16	456.98	GAS LIFT	HIGH	FBLOCKAGE	0
	4.00	23.0388	0.5929	1.23E+04	331.019	11.52083192	10.42777	31493	5.88E+04	58.8	100.11	7.95	308.06	GAS LIFT	HIGH		X°(da T401)

CONCLUSIONS

- ✓ A CFD pre-test analysis was carried out on the NACIE-UP fuel pin bundle simulator (FPS) placed at the ENEA Brasimone Research Centre. The FPS has 19-pins, it is wire-wrapped and it is cooled with liquid Lead Bismuth Eutectic (LBE) and the study is in the context of GEN.-IV nuclear reactors research.
- An experimental campaign will be carried out in 2014 on the bundle coolability in the context of the SEARCH FP7 EU project to support the MYRRHA design. The thesis documents the code assessment for the wire wrap bundle geometry, the CFD model developed to describe the experimental test section, the sensitivity analysis developed on the model, model validations and pretest results.
- ✓ The whole FPS test section was modelled including the inlet region, the entry region, the active region, the outlet region with the upper grid, and the hexagonal wrap. The total number of nodes and elements in the model was 3.5·10⁷ and 9.7·10⁷ respectively, with wall resolution y⁺ = 1 4 in the range of interest. Stationary RANS computations were performed for the whole experimental range with mass flow rates from 0.5 to 7 kg/s and with a corresponding Reynolds number from 1.5·10³ to 2.1·10⁴.
- A CFD code validation was carried out on experimental data by ORNL in a similar geometry cooled by sodium. Results showed a global coherence of the results and a correct description of the conjugate heat transfer effects. A good agreement was found between numerical and experimental data, although the RANS approach showed some limitations for the central sub-channel temperature distributions at high mass flow rates.
- ✓ The velocity field in the wire-wrapped assembly of NACIE-UP shows complex features and a strong secondary fluid flow due to the swirl. Results show that the hydrodynamic field is fully developed well before the beginning of the active region after one wire pitch about. Nevertheless, the thermal field is not fully developed in the active region and the slopes of the wall and bulk temperatures are different.
- ✓ A good agreement was obtained by comparing CFD results with existing pressure drop correlations Chen & Todreas.
- ✓ Regarding the conjugate heat transfer effect, from numerical simulations it is clear that the conduction in the wrap pipe structure and in the wire is very important to correctly capture the temperature gradients, the local temperature maxima close to the wire and temperature minima in the edge sub-channels, especially for the lower Reynolds number cases.
- ✓ Several highlights for the experimental activity emerged by the pre-test CFD analysis. In particular, the fuel bundle power should be increased as much as possible in the low mass flow rate range to improve the accuracy on the heat transfer coefficient measurement. Moreover, the numerical evidence of the not fully developed thermal field in the bundle, implies that experimental results must be released with details on the experimental test facility and boundary conditions.
- ✓ The developed CFD model will be used for pre and post test analysis of PLOFA and foot flow blockage experiments.

PRE-TEST CFD ANALYSIS OF THE ROD BUNDLE EXPERIMENT IN THE HEAVY LIQUID METAL FACILITY NACIE-UP

Thanks you for your attention

Pre-Test Analysis of SGTR Event on Large Scale Experimental facility by SIMMER-IV code

<u>A. Pesetti</u>, M. Tarantino, P. Gaggini (alessio.pesetti@for.unipi.it)

ADP (PAR2014-LP2), 19-20 November 2015, CR ENEA Brasimone

List of contents

- Introductory remarks
- ❑ MYRRHA-PHX
- CIRCE facility (ENEA Brasimone CR)
- Preliminary pre-test analysis by SIMMER-III (2D) code
- Test Section design, components and instrumentation
- Detailed pre-test analysis by SIMMER-IV (3D) code
- Test Section assembly
- Conclusive remarks and future work

Introductory remarks

- The SGTR scenario needs to be analysed in the integrated pool type HLMFR configuration, aiming to predict the hazardous consequences of the SG/PHX tube rupture taking place in the HLM pool (pressure wave propagation and cover gas pressurization, domino effect, steam dragged into the core, primary system pollution and slug formation)
- The SGTR event will be experimentally investigated on the large scale CIRCE facility, implementing a test section oriented to simulate a portion of full scale SG tube bundle of MYRRHA reactor
- The design of the test section, the instrumentation foreseen to be implemented, the preliminary numerical study performed by SIMMER-III (2D), the pre-test analysis by SIMMER-IV (3D) codes and the test section assembly are presented

MYRRHA-PHX

- □ In the CIRCE facility a portion of the full scale bundle of the MYRRHA PHX will be host, with LBE inlet and outlet regions
- Two rupture positions will be experimentally investigated: Middle and Bottom positions
- The main parameters of the MYRRHA PHX are listed in the table

Parameter	Unit	Value		
Power of one HX	MW	27.5		
Shroud external diameter	mm	~850		
Shroud internal diameter	mm	~800		
Feed water pipe external diameter	mm	~200		
Number of water tubes	-	684		
Pitch of water tubes	mm	26		
External diameter of water tubes	mm	16		
Internal diameter of water tubes	mm	14		
Thickness of water tubes	mm	1		
Length of water tubes	mm	~8500		
HX LBE inlet temperature	°C	350		
HX LBE outlet temperature	°C	270		
HX LBE mass flow rate	Kg/s	~2500		
HX water inlet temperature	°C	200		
HX water outlet temperature	°C	201.6		
HX water mass flow rate	Kg/s	~47		
HX water pressure	bar	16		

CIRCE facility (ENEA Brasimone CR)

Main Vessel S100

- → Outside Diameter 1200 mm
- → Wall Thickness 15 mm
- \rightarrow Material

AISI 316L

 \rightarrow LBE Inventory (max)

The largest LBE pool worldwide

Test section design, objectives

- Tube rupture propagation in the HX-tube bundle
- The vapour flow path in the tube bundle
- Pressure waves propagation into the HX-tube bundle and damping effect of the HX-shell towards the surrounding structures
- Assessment and performance evaluation of the safety-guard devices (rupture disk) aiming to mitigate the effects of the SGTR event
- Investigation on the solid impurities formation after the SGTR event, accompanied by a quantitative qualification of filtering performance in the pool
- Qualitative characterization of the LBE particulate discharged by water and rupture disk discharge lines

Preliminary pre-test analysis by

Argon

SIMMER III model: 31 radial(i) and 67 axial(j) cells

$$T_{H2O} = 200^{\circ}C$$
 $P_{H2O} = 16 \text{ bar}$
 $T_{LBE} = 387^{\circ}C$ $P_{ARGON} = 1 \text{ bar}$

The rupture disk in the cover vessel is simulated to perform an assessment of the SGTR accident mitigation

Preliminary pre-test analysis by SIMMER-III Water injection (started at 40 s) through the top, middle and bottom ruptures

Test section design

Test section components

Test section instrumentation

5 **fast Pressure Transducers** (transient pressure)

12 **Bubble Tubes** (level, mass flow rate and stationary pressure)

~200 Thermocouples

~45 in each SGTR-TS

6 TCs at level (two level below, one level at and 5-6 levels above the rupture position)

N 6 tubes 3x1 mm, 6" tube drilled Vapour path propagation

Test section instrumentation

6 Strain Gages in the **bottom** 8 Strain Gages in the **middle** SGTR-TS rupture scenario SGTR-TS rupture s higher level (+ 500 mm) higher level (+ 250 mm) 25,6 500 mm spacer grid spacer grid + 25<u>0 mm</u> middle level (+ 250 mm) + 500 mm + 0 mm 25,6 SG 605 + 250 mm - 250 mm 500 mm ŚG middle leve spacer grid plate (+ 0 mm) 7,11 lower level (+ 0 mm) 300 lower level (- 250 mm) 33

P&ID of the secondary side circuit

Detailed pre-test analysis by SIMMER IV H20 Section B-B H20 ∕**₩20** Ar cover Ar cove gas **SGTR-**TS LBE **LBE Section A-A** Virtual walls are not shown in 3D views B **Flowing areas SGTR**conserved TS Mass flow rates, temperatures, A^Î B conserved 30 dummy tubes 1 water tube

simplified model (30x27x42cells) 34020 cells

Detailed pre-test analysis by SIMMER IV section A-A model (30x27x42cells) 34020 cells **33**I Ø 14 section B-B Middle RD rupture section C-C R Middle Bottom rupture rupture Middle rupture

Detailed pre-test analysis by SIMMER IV

Stationary conditions before water injection

Detailed pre-test analysis by SIMMER IV

Test section components, CIRCE cover and PP

Test section assembly

Test section assembly

Thermocuople

Strain Gage

Test section assembly

Conclusive remarks

- Preliminary and detailed pre-test analysis by SIMMER-III and IV are carried out, respectively, the test section assembly is ongoing
- □ The SGTR experimental campaign is unique in the international research scenario: vertical scale 1:1 of MYRRHA in a large pool facility (Dint=1170 mm, H= 8500 mm)
- □ The tests will provide high quality data on SGTR event about domino effect, vessel pressurization, safe-guard devices, pressure wave propagation/strain, vapour flow path and impurities formation in a configuration relevant for HLMRs. They provide feedback for design work about such issues
- Solved criticalities: execution of more tests without TS removal (separator/sliding valves), water tubes rupture (notch/hydraulic system), B.C. of MYRRHA reactor (water, LBE), safe execution of the tests (pressurization transient/rupture disks)
- The experimental campaign will constitute a first evidence of the SGTR scenario consequences for HLMRs

Conclusive remarks

THANK YOU FOR YOUR ATTENTION

Time schedule

- The assembling of the instrumented test section is foreseen to be concluded by November 2015
- The test section is foreseen to be set in CIRCE facility by the end of 2015 as well as the implementation of the secondary side (water supply line)
- The experimental campaign (4 tests) will be carried out by March 2016

Advances in the development of the FRENETIC code for the coupled dynamics of lead-cooled reactors (CERSE-POLITO RL 1572/2015)

R. Bonifetto, D. Caron, S. Dulla, P. Ravetto, L. Savoldi, R. Zanino

NEMO Group, Dipartimento Energia, Politecnico di Torino, Italy

> ADP ENEA-MSE (PAR2014-LP2), Brasimone, 19-20 novembre 2015

Contents

- The FRENETIC code
- Standalone validation of the thermalhydraulic module
- First coupled validation of the FRENETIC code
- Conclusions and perspective

The FRENETIC code

Fast REactor NEutronics/Thermal-hydraullCs (FRENETIC) code for full-core coupled analyses [R. Bonifetto et al., Nuc. Eng. Design, 2013] **Principal objective**: Power computationally distribution efficient, multiphysics Neutronic Thermal-hydraulic analyses suitable for (TH) module (NE) module design and safety Temperature studies distribution

Preliminary validation of coupled code on EBR-II experimental data [R. Bonifetto et al., presented at ICENES, 2015]

The FRENETIC code: NE module

- Transient point kinetic analysis [R. Bonifetto et al., Fusion Sci. Technol., 2012]
- **3D neutron diffusion** model with delayed neutron emissions solved by coarse-mesh nodal method in space and direct integration in time [D. Caron et al., *presented at ICENES*, 2013]
- Adjoint and quasi-static solvers for multigroup nodal neutron diffusion equations [D. Caron et al., *Ann. Nuc. Energy*, 2015]
- Decay heat model

The FRENETIC code:

IN EACH HA:

Coolant: 1D axial model (mass / momentum / energy eqs.) along each closed assembly (**z**), for 1+ regions in each HA

• **Single HA** (1D) **validation** against experimental data from CIRCE facility @ ENEA Brasimone (**Pb-Bi eutectic**) [R. Zanino et al., Transactions of the ANS, 2012]

Pins: **1D** radial model, locally coupled to coolant

BETWEEN HAs: (weak) **2D** inter-assembly thermal coupling (**xy**)

- Steady-state benchmark against RELAP5-3D© in a simplified EBR-II geometry (Na) [R. Zanino et al., Transactions of the ANS, 2013]
- Preliminary validation against EBR-II data (Na) [R. Zanino et al., Proceedings of ATH, 2014]

EBR-II reactor and shutdown heat removal tests transients

- No available database for multiple hexagonal assembly (HA) configuration cooled by Pb →
- Participation in an IAEA CRP on the shutdown heat removal tests (SHRTs) of the *sodium-cooled* Experimental Breeder Reactor-II (EBR-II, 62.5 MWth fast reactor, in operation from 1964 to 1994 at Argonne National Laboratory (ANL), USA)
- **Benefit**: provides experimental data for two transients against which participants may benchmark codes
 - SHRT-17 (protected loss of flow) to be modelled only TH
 - intended application: standalone validation of TH module
 - SHRT-45R (unprotected loss of flow) to be modelled NE+TH
 - intended application: coupled validation of FRENETIC code

ADP ENEA-MSE (PAR2014-LP2), Brasimone, 19-20 novembre 2015 **EBR-II** computational domain for SHRT-17 transient POSITION IN ROV **RELAP5-3D** INCOT **FRENETIC**: Whole EBR-II plant (primary and KEY BAR Bundle region only intermediate systems) ORIENT (TYP $(\sim 0.61 \text{ m tall})$ NSAT 2 127 HAs (Inner-AUXILIARY FLOW TO SURGE TANK most 7 annuli) GEN, 120 axial nodes SUPERHEATERS IN SECTO CONDENSATE/ FEEDWATEF WAPORATORS REACTOR T FLOW METE - AUXILIARY E. M. PUMP E.M. PUM **Upper plenum** MAIN STEAM LINE To Z-pipe Α Α Limited set of available HAs \mathbf{J} ctive core RELAP5-3D full core nodalization: T_{in} , $(dm/dt)_{in}$, p_{out} region • 5 radial zones x 12 azimuthal measurements; missing BCs sectors from RELAP5-3D o inlet pipe hia 15 axial nodes [A. Del Nevo] Lower Plenum 81

NE model of EBR-II SHRT-45R transient

At various (T_{fuel}, T_{coolant}) : homogenisation of material and condensation of energy grid (6 groups) with JEFF3.1.1

TH model of EBR-II SHRT-45R transient

 Each subassembly modelled individually, including dummy and blanket elements (total of 12 tipologies of subassemblies)

 BCs: inlet mass flow rate, inlet coolant temperature and outlet pressure (from exp. or design values)

Neutronics benchmark specifications for EBR-II shutdown heat removal test SHRT-45R, Rev. 1, Argonne National Laboratory, Nuclear Engineering Division, January 2013

Benchmark against other models (integral quantities)

ADP ENEA-MSE (PAR2014 EP2), Brasine re (1972 97 201 20 mbre 2014 RT-

45R): initial fission power distribution

+100.0

$$e_k \equiv \frac{p_k - p_{k,ref}}{p_{k,ref}} \cdot 100[\%]$$

+50.0
 $p_k \equiv \text{subassembly power}$

- Reference values assumed from ANL computation
- $_{+0.0}$ Most errors are below 10 %
 - Difficult to represent heterogeneity with few materials
- -50.0• Dummy and reflector elements «cold» due to lack of neutron and gamma kermas

-100.0

FRENETIC validation (SHRT-45R): fission power evolution

• SHRT-45R: starting from nominal conditions, unprotected loss of flow (ULOF) accident initiated by simultaneous trip of primary and intermediate pumps

ADP ENEA-MSE (PAR2014-LP2), Brasimone, 19-20 novembre 2015 **FRENETIC** validation (SHRT-45R): T_{coolant} in XX09 XX09 average of all thermocouples at specified axial location + standard deviation general good agreement both at steady-state and during transient 950 800 FRENETIC FRENETIC <u>xperiment</u> Experiment • 900 T(t) [K] [Y] 750 L 850 800

FRENETIC validation (SHRT-45R):

XX10 heated only by the adjacent assemblies (no fissile material, no g heat deposition in the model) \rightarrow XX10 is «colder» and neighbouring assemblies are «hotter» than in the reality

Conclusions and perspective

- Development of FRENETIC proceeds by improving existing models and extending overall capabilities
- The most recent FRENETIC validation activities focused on SHRT-17 (pure TH) and SHRT-45R (NE+TH) transients of EBR-II
 - steady-state and transient analysis in generally good agreement with experimental measurements
- Perspective
 - development and implementation of additional physics models (gammas, ...)
 - analysis of ALFRED transients

Workshop Tematico PAR2014 - LP2 – LFR GEN IV ENEA - Brasimone, 19-20 novembre 2015

System codes application to HLM nuclear systems

Fabio Giannetti, Vincenzo Narcisi, Gianfranco Caruso

Sapienza, Università di Roma Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica DIAEE – Area Nucleare TH system codes

- Thermal-hydraulic system codes have demonstrated the capability to adequately predict a large variety of off-normal and accidental transients, as has been shown by exhaustive code verification and assessment programs as conducted in the last decades.
- Originally based on different assumptions and equation formulations, the T-H system computer codes generally used, e.g. RELAP5, TRAC, TRACE, ATHLET, CATHARE, are today being developed to have rather similar bases and capabilities.

TH system codes (2)

- They are now based on governing equations representing the transient, non-homogeneous, non-equilibrium, twophase flow including heat transfer processes from solid heat structures like the fuel rods, piping and RPV wall structures, as well as internal support structure components.
- Due to the numerical approximations and the empirical nature of the models included in the T-H system codes, extensive activities (partially experimental, through IETs and SETs) related to validation of the code models have been pursued over the years.
- Nevertheless, one should not forget that good agreement with experimental integral test facilities is not always free of specific code tuning and compensating errors.

TH system codes application for HLM nuclear systems

• At present, a fairly well-based experience has been established as concerns the codes' capability to simulate the T-H conditions prevailing during various time windows in specified transient scenarios.

But.....

- All TH system codes were developed and validated for LWRs
- Minor modifications were carried out starting from water versions to analyze other fluids, mainly through:
 - Implementation of thermo-physical two-phase properties;
 - Implementation of some specific heat transfer and friction factors correlations.

TH system codes application for HLM nuclear system No TH system code is presently validated for HLM,

- No TH system code is presently validated for HLM, but is required a long V & V process, based on experimental data.
- This activity is needed for demonstrating the reliability of a code in the perspective of a use during the licensing.
- Four of the six Generation-IV systems have a fast neutron spectrum and two of them use liquid metal (sodium and lead) as a coolant. The increased requirements to advanced safety make it necessary to provide as accurate as possible numerical simulation of the processes of heat transfer, fluid flow, etc. in the core and in the whole reactor system.

RELAP5 versions used in HLM TH analysis

RELAP5 mod 3.3 *

Based on original NRC version developed by INL and modified by ANN, ENEA and UniPI.

Developed thermophysical proprierties for lead, LBE and sodium

Implemented HTC correlations for liquid metal RELAP5-3D

Developed by INL with DOE sponsored improvements:

(new fluids, *multidimensional* components, multidimensional NK, etc.)

HTC evaluation differences

- Two different correlations for rod-bundle convective heat transfer in liquid metals are used.
- In RELAP5 mod3.3 (LM version) HTC evaluation is based on the Ushakov's correlation (1977):

Nu = 7.55
$$\frac{P}{D} - 20\left(\frac{P}{D}\right)^{-13} + \frac{3.67}{90\left(\frac{P}{D}\right)^2} Pe^{\left(\frac{0.56+0.19\frac{P}{D}}{D}\right)^2}$$

Validity range: $1 \le Pe \le 4000$, $1.2 \le P/D \le 2.0$

 In RELAF5-5D me westinghouse correlation (Todreas and Kazimi, 1990) is used:

$$Nu = 4.0 + 0.33(P/D)^{3.8}(Pe/100)^{0.86} + 0.16(P/D)^{5.0}$$

 $1.1\!\le\!P/D\!\le\!1.4$ and $10\!\le\!Pe\!\le\!5000$

Heat transfer coefficient correlations for HLM

Rod Bundle

Thermo-physical properties differences (2) $\alpha = -\frac{1}{\overline{\rho}} \frac{\partial \rho}{\partial T} \left[K^{-1} \right]$

	REF	R5-3D	R5-ENEA
LEAD	1.161 E-04	1.266 E-04	1.048 E-04
LBE	1.324E-04	1.130E-04	1.206E-04

- The expansion coefficient ratio between RELAP5-3D and RELAP5 mod3.3 for lead is 1.22 and for LBE is 0.94
- A difference induced by using R5-3D respect to R5 in the natural circulation mass flow rate for a temperature range 400-480°C is about +10% for lead and -5% for LBE

NACIE Relap Model details: Test 201 BOUNDARY CONDITIONS IMPOSED

- IN water mass flow rate and temperature
- Argon mass flow rate
- FPS thermal power

HYPOTHESIS

• K powder=1.35 W/(mK)

CIRCE-HERO

SESAME In the framework of SESAME project, the ENEA CIRCE pool facility has been modified to host the HERO test section. The aims are:

- To experimentally investigate flow behavior in all flow regimes;
- To provide experimental data for the validation and benchmarking of numerical codes on liquid metal pools.

Sapienza, University of Rome

HERO SGBT Primary side

Secondary side

Data collection All CIRCE-HERO main geometric data have been calculated and collected in an "Engineering Handbook" to guarantee a repeatability of the calculation with other TH codes in order to organize a benchmark

	🗶 🔛 🦌	9 • (2 • =	_			Engine	ering handbool	k_12 - Microso	ft Excel u	iso non commerciale	🗶 🛃 🤊 •	(≃ - =		Sec. 1	A CONTRACTOR OF THE	Enginee	ring handt	ook_12 - Microso	ft Excel us	o non com	merciale
	File	Home Ins	erisci Layout di pagin	a Formule	Dati Revisio	one Visuali	izza PDF Ar	chitect			File	iome Ins	erisci Layout di pagina	Formule	Dati Revisio	ne Visuali:	zza PD	- Architect			
Incluit	Ê,	Calibri	* 11 * A* A	= = =	≫~ 📑 Tes	to a capo	Gen	erale	•		Ë *.	Calibri	· 11 · A ▲ A	= = =	≫r∗ 📑 Test	o a capo	•	Senerale	•	5	
Appell Carater Allneamento Allneamento <th< td=""><td>Incolla 🦂</td><td>🥤 G C 🔮</td><td>• 🖽 • 🌺 • 🛕</td><td></td><td>管 🚛 📴 Un</td><td>isci e allinea al</td><td>centro 👻 🛒</td><td>- % 000 🐔</td><td>8 400 F</td><td>ormattazione Formatta ondizionale - come tabell</td><td>Incolla</td><td>G C §</td><td>• • 🖽 • 🌺 • <u>A</u> •</td><td></td><td>🛊 🛊 🔤 Uni</td><td>sci e allinea al c</td><td>entro -</td><td>🥦 - % 000 🕻</td><td>\$00 Fo €00 co</td><td>rmattazione ndizionale r</td><td>Formatta come tabel</td></th<>	Incolla 🦂	🥤 G C 🔮	• 🖽 • 🌺 • 🛕		管 🚛 📴 Un	isci e allinea al	centro 👻 🛒	- % 000 🐔	8 400 F	ormattazione Formatta ondizionale - come tabell	Incolla	G C §	• • 🖽 • 🌺 • <u>A</u> •		🛊 🛊 🔤 Uni	sci e allinea al c	entro -	🥦 - % 000 🕻	\$00 Fo €00 co	rmattazione ndizionale r	Formatta come tabel
C75 C	Appunti	Gi .	Carattere	Ga .	Allineamento		Gi .	Numeri	5	Stili	Appunti 🕞		Carattere 🖓		Allineamento		Gi .	Numeri	Gi -		Stili
A B C D E F O H J K 2		C75	• (= f_x =110	96-1,3236*F43							C75	5		6-1,3236*F43	1						
1 1	A	В	C	D	E	F	G	Н	1	J K	- A	В	C (tiouble)	D	E	F	G	н		J	К
2 CAD NUME# VOUME# 10	1										32		(apvole)	Water p	acking scheme	sì		0	0		
3 CAD MUNDER VOULNE N° Second 3 3 3 3 4 9 8 9 1 9 1 <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>9 9 .</td> <td>33</td> <td></td> <td></td> <td>Vertica</td> <td>I stratification</td> <td>sì</td> <td></td> <td>0</td> <td>v</td> <td></td> <td></td>	2							+		9 9 .	33			Vertica	I stratification	sì		0	v		
4 -	3	CARD NUMBER	VOLUME N°		10			0			34			Interp	phase friction	sì		0	b		
S Josophu ware: Sector I Josophu ware: Sector IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	4							R			35			w	all friction	sì		0	f		
6 100000 Name: Feddoll 0	5							i			36			Non-	-equilibrium	noneq.		0	e		
7 7	6	100000	Name:	feedcon1							37										
6 0 0 0.0002 m 0.0002 m 0 0.0000 m 0	7		Type:	pipe			De	0,1143	m		38		Volume initial conditions								
9 0 0 0,022 m 0 0,022 m 0 0,022 m 0	8						Spessore	0,00602	m		40		volume initial conditions								
0 1	9		Description:	tronchetto da tubo da	a 4" sch 40 (cad 0370 rif.	.9)	Di	0,10226	i m		41		Volume number	eht	Pressure [Pa]	Temperature [K]					
1	10										42					i aniperatare (it)					
G Certurn age: -7,248 m -	11			Top level:			-7,145	m			43	101201	010-1	003	971657.3844	673.15					
9 0	12		-	Centrum level:			-7,295	m			44	101202	010-2	003	956640,6994	673,15					
m m	10			Bottom level:			-7,445	m			45							e	0	Defau	t fluid
0 0	19										46							b	0	No b	oron
99 volume Quantities 0 volume of volumes; 2 0	10										47							t	3	Pressure and	temperature
0 10001 Number of volumes: 2 1 <td>17</td> <td></td> <td>VOLUME QUANTITIES</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>48 49</td> <td></td>	17		VOLUME QUANTITIES								48 49										
Since Number Center level (m) Lengths (m) Slope (T) Volumes (m ²) Area (m ²) DH (m) Roughness DP [bar] 22 Volume number Center level (m) Lengths (m) Slope (T) Volumes (m ²) Area (m ²) DH (m) Roughness DP [bar] Slope (T) Volumes (m ²) Area (m ²) DH (m) Roughness DP [bar] Slope (T) Volumes (m ²) Area (m ²) DH (m) Roughness DP [bar] Slope (T) Volumes (m ²) Area (m ²) DH (m) Roughness DP [bar] Slope (T) Volumes (m ²) Area (m ²) DH (m) Roughness DP [bar] Slope (T) Volumes (m ²) Area (m ²) DH (m) Roughness DP [bar] Slope (T) Volumes (m ²) Montaria (machine mass from (m ₂) Initial vapour mass from	19	100001	Number of volumes:	2							50 51		JUNCTION QUANTITIES								
Volume number Center level (m) Lengths (m) Siope (T) Volume (m ²) Area (m ²) DH (m) Roughnesis DP [bar] 23 0100101, 501 010-1 -7,77 0,15 90 0,00212999 0,00021 0,0021 0,0011	21										52		the set is a strength of the set								
Car Volume function	22		Valume number	Contex level [m]	Longhts [m]	Elana (9)	Volumes (m ³)	Area [m ²]	DH [m]	Doughoors DD [bar]	54		Number of junctions:	1							
Solution O100101,802 O10011 -7,37 0,15 90 0,00212989 0,00025 56 Junction number Forw loss coeff Initial liquid mass flow light) Initial vapour mass flow	22		volume number	Center lever [m]	cengina (m)	siope[]	volumes (m.)	And a fund	Un [iii]	Koughness DP [bar]	55										
25 0.0001, 002 0.02 1,02 0,012, 102 0,0002 57 26 0.0010, 002 0.02 -7,22 0,15 90 0,0002, 1029 0,10228 0,00002 57 26 0.001 0,01 0,001 <	24	0100101 801	010-1	.7 ?7	0.15	5 00	0.001231040	0.008212002	0 10226	5 0.000025	56		Junction number	Forw loss coeff.	Back loss coeff.	Initial liquid ma	ass flow [kg/s]	Initial vapour mass	flow [kg/s]	Interface ve	locity [m/s]
8	25	0100102, 802	010-2	-7,57	0,12	5 0	0.001231949	0.008217993	0.10226	5 0.000025	57										
27 Total: 0,3 0,00246389 - - 53 -	26			7,22	0,23		,	2,000212000	-,	-,	58	100901	001-1	0,001	0,001)	0			
28 28 10001 Volume flags: Thermal front tracking no 0 t 62 10001 Modified PV term no 0 i 30 101001 Volume flags: Thermal front tracking no 0 t 62 (jetvrahs) Modified PV term no 0 e 31 (tipvbfe) Mdure level tracking no 0 1 62 (jetvrahs) Modified PV term no 0 e 32 Water packing scheme si 0 P 65 Choige model no 1 64 33 Vertical straffication si 0 V 66 Abupt rasc hange no 1 36 Wall friction si 0 f 67 Homogeneous model no si 36 Non-equilbrium noneq 0 f 68 Momentinas bot ways si o si	27	1	Total:		0,3	3	0,002463898				59										
23 0 Volume fags: Themai font tracking no 0 t 30 101001 Volume fags: Themai font tracking no 0 t 31 101001 (tipubfe) Muture level tracking no 0 1 31 101001 Water gesching scheme si 0 1 32 Water gesching scheme si 0 p 33 Vertical tradification si 0 p 34 Interplate friction si 0 p 35 Water gesching scheme si 0 p 36 Non-equilibrium noneq. 0 e	28				-/-						60										
30 101001 Valume flags: Thermal front tracking no 0 t 31 (tpvbfe) Mdaue level tracking no 0 t 31 (tpvbfe) Mdaue level tracking no 0 t 32 Water packing scheme si 0 p 33 Vertical tradification si 0 v 33 Vertical tradification si 0 v 34 Interpreting representation of si 0 f 35 Wall friction si 0 f 38 Non-equilibrium noneq. 0 e	29										61	101101	Junction flags :	Je	t junction	no		0	i		
31 (top bfe) Moture level tracking no 0 1 00 7 32 Water packing steme sl 0 p 64 Holiconstitutefication no 0 7 33 Overfact isratification sl 0 p 66 Abuty tracking no 0 1 c 34 Overfact isratification sl 0 p 66 Abuty tracking no 0 a 34 Interplace fiction sl 0 p 66 Abuty tracking no 0 a 35 Wall fiction sl 0 f 67 Monogeneous model nohomoge. 0 s 36 Wall fiction sl 0 f 1 Condotto aspirazione pipe1_file Boccaglio-Venturi _ Flangia_2 _ Condotto aspirazione pipe2 Lower grid _ flat	30	101001	Volume flags :	Thermal f	front tracking	no		0	t		62		(JervCahs)	Mod	tied PV term	no		0	e		
32 Water packing scheme sl 0 p 65 Choling model no 1 c 33 Verdal transfitation sl 0 v 66 Abutar and	31		(tipvbfe)	Mixture k	evel tracking	no		0	1		64			Horizont	appression tal stratification	10		0	v		
33 0 Vertical tradification al 0 v 34 Interpretent fordom al 0 b 35 West findom al 0 f 36 Non-equilibrium neneq. 0 e	32			Water pag	cking scheme	sì		0	р		65			Cho	king model	10		1	c		
34 Interplase fiction si 0 b 35 Well fiction si 0 f 36 Well fiction si 0 f 38 Non-equilibrium noneq. 0 e	33			Vertical s	stratification	sì		0	v		66			Abrup	t area change	no		0	а		
35 Wallfridon al 0 f 38 Non-equilibrium noneq. 0 e	34			Interph	ase friction	sì		0	b		67			Homog	eneous model	nonhomog.		0	h		
Ab Non-equilibrium noneq. 0 0 If (+) H Condotto aspirazione pipe1 / Fangla_1 / Boccaglo-Venturi / Fangla_2 / Condotto aspirazione pipe2 / Lower grid (f) ()	35	1		Wall	I friction	sì		0	f		68			Momentu	m flux both ways	sì		0	s		
	36			Non-er	quilibrium	noneq.		0	e		H I P H C	ondotto as	pirazione pipe1 / Fland	ja 1 / Bocc	aglio-Venturi / Fl	angia 2 / C	ondotto a	pirazione pipe2	Lower	grid / fil	(
		and the second se																		200 A 11	

FIRST NODALIZATION

A mono-dimensional input was initially developed.

Each component is divided in several volume in order to have axial volume basic length of 150 mm.

The primary loop is divided into 155 volumes and 156 junctions.

HERO secondary side is composed by 98 volumes and 99 junctions.

In order to study heat transfer, we have defined 12 heat structures with 155 axial mesh.

Boundary conditions

- Argon inlet mass flow rate, pressure and temperature
- HERO secondary side inlet mass flow rate, pressure and temperature
- FPS power
- DHR power

3D POOL VOLUN

- The pool will be nodalized with same 3D volumes for the analysis of the pool mixing.
- In particular, for the HERO outlet zone:
- 8 azimuthal zone
- 6 radial zone
- 10 axial levels

		0.104		
		0.104		
	PIPE 180	0.144		
		0.12		
		0.064		
		0.232		
	4	0.1465		
		0.1465		
		0.102		
		0.178		
		0.12		
		0.1555		
		0.1555		
		0.16		
		0.128		
		0.128		<u> </u>
ſ	/	BRANCH 210 - 0.033		\backslash
	/	BRANCH 220 - 0.12		\
		BRANCH 230 - 0.12		
		BRANCH 231 - 0.12		
$\left \right $		BRANCH 232 - 0.12		
		0.168		
		0.12		
		0.126	/	/
		0.12		
		0.12		
		0.12		
		0.12		

PRELIMINARY MODEL TEST

The first test carried out:

- isothermal with the gas lift circulation
- Acceptable stability of the model obtained using 0.0005 s as time step, but 1E-4 has been chosen to avoid spurious crash.
- Verification of the pressure drop in progress

Future works

- Verification of the CIRCE thermal dissipations
- Qualification of total pressure drops with experimental data (isothermal test)
- Comparison with R5-ENEA analysis
- Implementation of a new thermophysical properties for Pb and LBE in R5-3D with a state-of-the-art data

Thank you!

WORKSHOP TEMATICO LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO ADP ENEA-MSE (PAR2014-LP2)

Centro Ricerche ENEA Brasimone, 19-20 Novembre, 2015

Verifica e validazione preliminare sull'accoppiamento del codice di calcolo RELAP5-3D e il codice di fluidodinamica computazionale ANSYS CFX

Attività svolta per conto di GRNSPG – UNIPI – CIRTEN

Fabio Moretti GRNSPG – Università di Pisa NINE – Nuclear and Industrial Engineering srl f.moretti@nineeng.com

Contenuti

- Contesto e Obbiettivi Generali
- Programma di Lavoro Pluriennale
- Caratteristiche del Tool di Accoppiamento
- Validazione dell'Accoppiamento
- Sintesi dei Risultati
- Conclusioni e Prospettive

Contesto e Obbiettivi Generali

- Sviluppo e messa a punto (*) di uno strumento che permetta l'utilizzo **accoppiato** del codice di calcolo termoidraulico di sistema RELAP e del codice CFD ANSYS CFX.
 - Potenziamento delle capacità disponibili per l'analisi termoidraulica di sistemi GEN IV, mediante un approccio «ibrido» teso a combinare le capacità dei codici individuali, ovvero ad ovviare a parte delle rispettive limitazioni
 - Con particolare riferimento a situazioni in cui processi e fenomeni locali e tridimensionali (p.es. scambio termico turbolento a livello di componente) hanno un impatto importante sul comportamento dell'intero sistema (p.es. circolazione naturale)
 - Analoghi contributi «coupling-related» da parte di diversi partecipanti in ambito LP2, nell'ottica di un'ulteriore estensione delle capacità di analisi, e di un maggiore approfondimento delle problematiche connesse con l'accoppiamento tra codici

(*) mediante attività di Verification & Validation

Programma di Lavoro Pluriennale

- PAR 2011
 - ✓ Analisi dello stato dell'arte
 - ✓ Predisposizione di una prima interfaccia di accoppiamento
- PAR 2012
 - Perfezionamento e ampliamento del tool precedentemente sviluppato (anche mediante sviluppo di un'interfaccia grafica)
 - Parziale attività di V&V Concentrata su «Verification»
- PAR 2013
 - ✓ Ulteriore potenziamento e perfezionamento del tool di accoppiamento
 - Prosecuzione dell'attività di V&V Questa volta con particolare riferimento alla validazione a fronte di dati sperimentali
- PAŘ 2014
 - ✓ Estensione della base di validazione
 - Mediante simulazioni di esperimenti NACIE, sia accoppiate che standalone

✓ Parallelizzazione (e altri miglioramenti)

Caratteristiche del Tool di Accoppiamento

- Non-overlapping (1D-SYS / 3D-CFD):
 - I due domini di calcolo sono distinti, con regioni non sovrapposte
- Partitioned:
 - Due codici distinti si scambiano le variabili di accoppiamento «esternamente»
 - Impossibilità di risoluzione di una singola matrice di calcolo
- Sub-cycling:
 - I codici possono eseguire sotto-iterazioni / time-steps in maniera indipendente fino a raggiungere il punto di sincronizzazione per l'accoppiamento
- Sequential Coupling:
 - I due codici lavorano in modo sequenziale alternativo
 - Maggiori tempi di calcolo
 - Maggior stabilità
- Explicit & Implicit
- Underrelaxation

•

Caratteristiche del Tool di Accoppiamento

Caratteristiche del Tool di Accoppiamento

- Interfacce di accoppiamento
 - Due principali tipologie di interfaccia (default):

Туре		CFX	RELAP	_
	COMPONENTS	VARIABLES	VARIABLES	COMPONENTS
			F	
	Inlet/Opening	Possible 1D -> 3D profiles	Temperature (Enthalpy)	PIPE/BR
In-Flow	(GET)	(Default: Uniform Profile)	Velocity (Mass Flow Rate)	SNGJ
	Inlet/Opening (SEND)	Pressure		TDV
	Outlet/Opening (GET)	•	Pressure	PIPE/BR
Out-Flow	Outlet/Opening	Temperature (Enthalpy)	`	TDV
	(SEND)	Velocity (Mass Flow Rate)		ТОЈ

In-Flow: Flusso entrante nel dominio di calcolo

Implementazione del Tool di

- Coupling Masterento
 - Routine PERL che coordina l'esecuzione dei due codici e gestisce i file necessari per il trasferimento dati
- CFX User Fortran Routines COUPLING INTERFACE Node • Gestiscono le funzioni di trasferimento (-darl∮ar}-Memory Management System di CFX **RELAP** results txt file **CEL** input **CFX boundary** interface Node N **RELAP RESTART** Input file to **RELAP** jcb exchange

Caratteristiche del Tool di

• Interface a grafice couper vol

a⊟ CRCoupler v0.0								
File Edit Shov	v Data Tools ?							
General information	oupling interfaces Calculation management							
Working directo Case nam	Please specify working directory ? e case1							
RELAP								
RELAP solver	RELAP5 3D v2.4.2 Restart							
RELAP input file	Please specify RELAP input file Edit							
RELAP restart file	Please specify RELAP restart file ?							
CFX								
CFX version	v14.0 💌							
CFX definition file	Please specify CFX definition file							
CFX results file	Please specify CFX results file ?							
	Create CCL from .def Update .def from CCL							

in Cru	Supler V0.0										
File	Edit Show	Data Tools	?								
General information Coupling interfaces Calculation management											
Parse RELAP input file Parse CCL file Add interface Remove interface											
	Interface name	Sender code	CFX boundary	RELAP boundary	RELAP boundary type	Exchanged variable	Control variable	Control variable name	Initial value	Velocity profile	
•	001	RELAP	inlet	104010000	pipe	Temperature	na	na	1	Fully developed	
	002	RELAP	inlet	106000000	sngljun	Velocity	na	na	1	Uniform	
	003	CFX	inlet	108010000	tmdpvol	Pressure	20590010	pres1	1	na	
	004	CFX	outlet	200010000	tmdpvol	Temperature	20590020	temp1	1	na	
	005	CFX	outlet	20200000	tmdpjun	Velocity	20590030	velf	1	na	
	006	RELAP	outlet	204010000	pipe	Pressure	na	na	1	na	

CRCoupler v0.0) ×
File Edit Show D	ata Tools ?							
General information Couplin	g interfaces Calculation management	t						
Coupling scheme	Explicit •	Show CFX output Show RE File shown: temporary dir\file_0	LAP screer	Show RE	LAP output	Show coupling log]	Clear
		+	1 0.00	+ 2.4E-05	+	1.0E+01	+ ok	*
Write coupling input fi	le	V-Mom W-Mom P-Mass	0.00 0.00 0.00	5.8E-05 3.2E-03 7.7E-03	1.9E-03 1.2E-02 1.0E-01	9.2E+00 1.4E-01 8.5 5.6E-02	ok ok OK	
Update CFX definition	file	+	1 0.00	2.4E-02	4.6E-01	5.3 3.0E-02	OK	
Run coupled	Stop	OUTER LOOP ITERATION =	2		CPU	SECONDS = 4.461	 E+00	
calculation	calculation	Equation	Rate	RMS Res	Max Res	Linear Soluti	on I	
		U-Mom V-Mom	59.00 70.02	1.4E-03 4.1E-03	2.6E-02 6.2E-02	8.2E-02 2.8E-02	OK I	
Test standalone CFX	Krun Stop	W-Mom P-Mass +	0.97	3.1E-03 3.9E-03	4.3E-02 9.6E-02	6.0E-02 8.5 7.1E-02	OK OK	_
Test standalone REL	AP run Stop							

 Validazione dell'Accoppiamento Verificare il corretto funzionamento del tool di accoppiamento mediante <u>verifica</u> <u>di consistenza</u> tra

- risultati simulazione RELAP5-3D standalone, e
- risultati simulazione accoppiata RELAP5-3D / CFX
- Le simulazioni si riferiscono a esperimenti di circolazione naturale e assistita
 - Obbiett l'applica ambito

piamento in

□ Test NACLE (2012) Selezionati

	ID	Tav	Power	Power	Ramp t	Heat Sink	Glift	Transition	Transition
		[°C]	%	[kW]	[min]		[NI/min]	NC to GLC	GLC to NC
	201	200-250	50	9.5	5	YES	0	NO	NO
	203	200-250	50	9.5	5	YES	5	NO	YES
	204	200-250	50	9.5	5	YES	2,4,5,6,8, 10,6,5,4,2	YES	NO
	206	200-250	0	0	-	NO	2,4,5,6,8, 10,6,5,4,3	NO	NO
	301	300-350	100	21.5	5	YES	0	NO	NO
	303	300-350	100	21.5	5	YES	5	NO	YES
,	304	300-350	100	21.5	5	YES	2,4,5,6,8, 10,6,5,4,2	YES	NO
	305	300-350	50	9.5	5	YES	0	NO	NO
	306	300-350	0	0	-	NO	2,4,5,6,8, 10,6,5,4,2	NO	NO
	406	350-360	25	3.5	5	NO	2,4,5,6,8, 10,6,5,4,2	NO	NO

Validazione – Modelli di Calcolo Mesh ANSYS CFX

- Dominio di calcolo dimezzato (simmetria)
- Include LBE, FPS, tubo inox, coibentazione
- Esteso per ca. 1m a valle del FPS
- Geometria inlet semplificata per migliorare la qualità della griglia e quindi la performance numerica
- Mesh esaedrica, buona qualità, 142000 nodi (di cui 68000 per LBE)

Interfaces for data transfer between CFX and RELAP

□ Interfacce di accoppiamento Modelli di Calcolo

Variables exchanged from RELAP to CFX

Var #	Variable	From	То
001	Т	22005	inlet
002	V	22500	inlet
006	р	12001	outlet

Variables exchanged from CFX to RELAP

Var #	Variable	From	То	Control var.
003	p (tot)	inlet	23001	9001
004	Т	outlet	11001	9002
005	V	outlet	11500	9003

Validazione – Test #303 300-350 °C; 21.5 kW; with HX; NC + gas lift

25

20

15 (M) 10 Mer (km)

5

0

30000

25000

130/29

Validazione – Test #301 300-350 °C; 21.5 kW; with HX; NC only (no gas lift)

^{135/29}

Validazione – Test #201 200-250 C; 10 kW; with HX; NC only (no gas lift)

Validazione – Test #201

Sintesi dei Risultati

- TEST #201
 - I risultati della simulazione accoppiata RELAP/CFX sono consistenti con quelli della simulazione RELAP standalone
 - Prova della corretta implementazione e del corretto funzionamento del tool di accoppiamento
- TEST #301
 - I risultati della simulazione accoppiata RELAP/CFX sono «abbastanza» consistenti con quelli della simulazione RELAP standalone
 - Discrepanza nelle temperature di LBE dovuta a piccole differenze nelle proprietà del materiale isolante adottate nelle due simulazioni
 - Interessante indicazione del ruolo dello *user effect* nelle simulazioni accoppiate (maggior numero di *modelling issues* da tenere in debita considerazione)
- TEST #303
 - Piccole discrepanze su portata e temperature di LBE, dovute ad alcune inconsistenze tra i *setup* delle due simulazioni (da ripetere)
 - Proprietà materiali; condizioni iniziali e al contorno; ecc.

Conclusioni e Prospettive

- Il tool di accoppiamento è stato ulteriormente migliorato
 - **Parallelizzazione** della parte CFD
 - Ottimizzazione della gestione dei file di output
- L'attività di V&V svolta ha dimostrato la corretta implementazione del tool e la sua applicabilità all'analisi termoidraulica di circuiti a circolazione naturale e assistita di metalli liquidi
 - Risultati «coupled» consistenti con risultati «standalone», salvo discrepanze indotte da inconsistenze tra i setup delle due simulazioni
- L'analisi accoppiata mostra, in generale, una minore robustezza numerica e maggiori difficoltà di convergenza
 - Necessari aggiustamenti dei time step e dei parametri di sottorilassamento
- L'eventuale applicazione alla simulazione di esperimenti diversi, magari con strumentazione CFD-grade (o comunque più estesa e accurata), costituirà la base per una validazione più approfondita e solida, e potrà mettere in evidenza i vantaggi dell'integrazione 1D-3D
 - Possibilità di tener conto adeguatamente della natura 3D dei fenomeni termofluidodinamici e di predire più accuratamente lo scambio termico

UNIVERSITY OF PISA

Dipartimento di Ingegneria Civile e Industriale (DICI)

RELAP5/FLUENT COUPLING MODEL DEVELOPMENT FOR CIRCE FACILITY

Daniele Martelli Nicola Forgione Davide Rozzia Francesco Andreoli

ADP ENEA-MSE (PAR 2014-LP2) C.R. ENEA Brasimone 19-20 Nov. 2015

Outline

CIRCE experimental Facility

Outline

- CIRCE Experimental facility
- RELAP5 model
- Coupling Overview
- Coupling tool
- Tool Applications (Loop type facility)
- Tool Applications (Pool type facility)
- Test Matrix
- Preliminary results
- Conclusions

CIRCE Facility

RELAP5 model

CIRCE Experimental facility

RELAP5 model

Coupling overview

STENA.

3

S

RELAP5 model

Coupling tool

Coupling overview

1D System codes offer:

- Possibility to model behavior of large part of a NPP (at least the entire system)
- Tested physical models for two-phase applications and Phase transition <u>3D CFD Codes offer:</u>
- Better techniques for modeling large "open" volume with complex flows
- Detailed information on 3D flows such as Turbulence, Flow Patterns (multidimensional phenomena in general)
- Fine phenomena can be represented: mixing, stratification....

(Thermal stratification phenomena cannot be adequately investigated using only STH codes for the importance related to the axial conduction in such phenomena)

Benefits:

- ✓ Best of both "worlds"
- Mutually improved boundary conditions
- RELAP5/mod3.3 CFD ANSYS Fluent

Coupling tool

Tool applications (Loop)

Coupling tool

"A coupled system consist of **two of more different but well defined sub-system**: each one is governed by **its own set of differential equations** but **some variables are shared** so that the sub-systems **cannot** be solved separately"

Code Integration:

Monolithic solution \rightarrow Ad hoc solver to **simultaneously** solve the coupled system **Partitioned** solution \rightarrow **Independent** solvers are employed (coupling interface)

TINA DICULTATION

Tool Applications (Loop)

Tool Applications (Pool)

Tool applications (Loop facility)

Tool applications (Pool) 1 of 2

Tool applications (Pool) 2 of 2

Tool applications (Pool) 2 of 2

Test Matrix

MODEL simulating the

cover gas

Tool applications (Pool facility) 2 of 2

Pressure outlet changed in Velocity outlet

Test Matrix

Preliminary coupled results

S

Test Matrix

Experimental DATA: courtesy by

T [°C]	FPS Power %	HX Power %	Gas_lift [Nl/s]			
280	0	0	Step 1	1.9	Step 7	4.5
			Step 2	2.3	Step 8	4.9
			Step 3	2.7	Step 9	4.1
			Step 4	3.1	Step 10	3.1
			Step 5	3.7	Step 11	2.2
			Step 6	4.1	-	-

Name	Time Step	CFD Geometrical Domain	Serial/Parallel	
RELAP5 Stand – alone	Max Courant limit	-	serial	
Fluent + RELAP5 Coupled	0.025 s	2D	Parallel-Implicit scheme	

Preliminary coupled results

Preliminary coupled results

Preliminary coupled results

Preliminary coupled results

CIRCE-HERO

Preliminary coupled results

CIRCE-HERO

CIRCE-HERO RELAP5 model

CIRCE-HERO

<u>HERO-SGBT</u>: seven double-walls bayonet tubes (with stainless steel powder +He filling the gap) fed by pressurized water (180 bar @ 335°C). It has a thermal duty of about <u>500 kW</u>

CIRCE-HERO RELAP5 Model

CIRCE-HERO RELAP5 model

The HERO SGBT includes

- The feed-water tube, the annular steam riser and the equivalent lead channel.
- The heat exchange between the annular steam riser and the Argon zone has been neglected.
- The insulating zone in the feed-water tube has been considered.
- The material adopted for the tubes is SS
- The filling powder (AISI-316) in the double wall meatus is according to the experimental findings achieved in TxP Facility.
- The heat transfer between the lead side and the annular riser is modeled according to the Mikityuk correlation.

Conclusions

- RELAP5 model of CIRCE pool type facility developed and preliminary results verified against experimental data
- Improvements in the coupling tool in order to simplify the interface (Fluent UDF no more needed) and substantial reduction of the required computational time
- The cover gas of the pool simulated in the FLUENT code trough the VOF model
- A "coupled model" of the CIRCE facility is developed (ICE test section simulated by RELAP5 and the pool simulated by FLUENT code)
- Thermodynamic variables exchanged at the interfaces adapted for simulations applied to a poll type configuration (CIRCE) → pressures are computed by FLUENT while LBE mass flow rates computed by RELAP5
- Preliminary RELAP5/FLUENT coupled simulations of isothermal tests in forced circulation conditions are performed
- Obtained results show a good agreement with experimental data with differences in the LBE mass flow rate in the range ±5%
- RELAP5 model of the CIRCE-HERO pool facility under development

Thank you for the attention

Ing. Daniele Martelli, Ph.D Assistant Professor Dip. Ingegneria Civile e Industriale Largo Lucio Lazzarino, 2 56122 Pisa (Italy), Phone: +39 050 2218060 Mobile +39 3476243491 e-mail: daniele.martelli@ing.unipi.it

> ADP ENEA-MSE (PAR 2014-LP2) C.R. ENEA Brasimone 19-20 Nov. 2015

Integrazione del codice FEM-LCORE nella piattaforma SALOME

D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini

Alma Mater Studiorum - Università di Bologna

20 Novembre 2015, Centro Ricerche ENEA Bologna

Sviluppo piattaforma SALOME per sistemi LFR Piattaforma SALOME per sistemi LFR Piattaforma Open-Source per sistemi LFR Piattaforma CEA per sistemi LFR

Schema calcolo neutronico multiscala

Schema calcolo termo-idraulico multiscala (DEFECTIVE METHOD)

Test 1 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Test 2 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Conclusioni

Sviluppo piattaforma SALOME per sistemi LFR Piattaforma SALOME per sistemi LFR Piattaforma Open-Source per sistemi LFR Piattaforma CEA per sistemi LFR

Schema calcolo neutronico multiscala

Schema calcolo termo-idraulico multiscala (DEFECTIVE METHOD)

Test 1 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Test 2 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Conclusioni

Piattaforma di calcolo ENEA-UNIBO (per LFR)

fisica	scala 1	scala 2	
Termoidraulica	CFD-porous 3D	sistema 1D	
open-src CEA-EDF	FEMLCORE MC/TRIOU	FEMuS CATHARE	
Neutronica	trasporto	diffusione 2-5 gruppi	
open-src CEA-EDF	DRAGON (assembly)	DONJON (reticolo) APOLLO	
Strutturale	3D strutturale	1D travi	
open-src CEA-EDF	FEMuS Code_Aster	FEMuS Code_Aster	
Multifase	interfaccia	modello due fluidi	
open-src CEA-EDF	FEMuS TRIOU NEPTUNE	FEMuS CATHARE	

Sviluppo piattaforma SALOME LFR

Sviluppo piattaforma SALOME LFR

Sviluppo piattaforma Open-Source SALOME LFR

Sviluppo piattaforma Open-Source SALOME LFR

D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini

Sviluppo del codice FEM-LCORE

D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini

Sviluppo del codice FEM-LCORE

D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini

Sviluppo piattaforma SALOME per sistemi LFR

Schema calcolo neutronico multiscala

Schema calcolo termo-idraulico multiscala (DEFECTIVE METHOD)

Test 1 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Test 2 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Conclusioni

Schema neutronico multiscala (DRAGON-DONJON)

Eq. del trasporto neutronica in geom semplice (DRAGON)

 $\begin{array}{l} \mbox{assembly} \rightarrow \mbox{Dragon} \rightarrow \mbox{equazione del trasporto} \\ \rightarrow \mbox{metodo delle caratteristiche} \\ \mbox{per geometrie ripetitive infinite} \\ \mbox{flusso neutronico} \rightarrow \mbox{sezioni d'urto medie per } \\ \mbox{gruppi energetici} \end{array}$

Eq. di diffusione neutronica in geometria a reticolo (DONJON)

Neutronica solo Cartesiana \rightarrow CFD non Cartesiano

Sviluppo piattaforma SALOME per sistemi LFR

Schema calcolo neutronico multiscala

Schema calcolo termo-idraulico multiscala (DEFECTIVE METHOD)

Test 1 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Test 2 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Conclusioni

Schema termo-idraulico multiscala (FEMLCORE-CATHARE)

DEFECTIVE METHOD (con mesh sovrapposti 1D e 3D)

CATHARE (circuito completo) FEMLCORE (3D)+CATHARE (1D)

Boundary conditions \rightarrow 3D FEMLCORE

 $T_1=T_1^c$ temperatura imposta da CATHARE 1D a 3D FEMLCORE $m_1=m_1^c$ portata imposta da CATHARE 1D a 3D FEMLCORE

Correzione (FEMLCORE 3D \rightarrow CATHARE 1D)

$$\begin{array}{l} T_2^c = < T_2 >^{3D} \text{ mediante feedback } Q = \alpha (T_2^c - < T_2 >^{3D}) \\ P_2^c = < P_2 >^{3D} \text{ con } S = \beta (\Delta P_{21}^c + \Delta P_g - \Delta P_{21}^{3D}) \end{array}$$

Sviluppo piattaforma SALOME per sistemi LFR

Schema calcolo neutronico multiscala

Schema calcolo termo-idraulico multiscala (DEFECTIVE METHOD)

Test 1 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Test 2 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Conclusioni

Figure 3.1

Ramo Upward poi sostituito dal 3D

CIRCUITO COMPLETO Ramo Downward

D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini

1D circuit CATHARE

1D CATHARE +3D FEMLCORE

Pressione 1D-3D centerline

Temperatura 1D-3D centerline Neutronica

Sviluppo piattaforma SALOME per sistemi LFR

Schema calcolo neutronico multiscala

Schema calcolo termo-idraulico multiscala (DEFECTIVE METHOD)

Test 1 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Test 2 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Conclusioni

Sviluppo del codice FEM-LCORE

D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini

Schema con algoritmo difettivo: P1 e P2 punti con Sorgenti

NEUTRONICA - GENERAZIONE CALORE 3D

PRESSIONE FEMLCORE(3D)

TEMPERATURA FEMLCORE(3D)

VELOCITÀ FEMLCORE(3D)

Complessivo

Sezione G1

CIRCUITO 1D (CATHARE)

Sviluppo del codice FEM-LCORE

D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini

PRESSIONE - TEMPERATURA CATHARE(1D)

PUNTI FEMLCORE(3D)-CATHARE(1D)

Sviluppo piattaforma SALOME per sistemi LFR

Schema calcolo neutronico multiscala

Schema calcolo termo-idraulico multiscala (DEFECTIVE METHOD)

Test 1 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Test 2 di integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

Conclusioni

Conclusioni

Integrazione SALOME-FEMLCORE(3D)-CATHARE(1D)

- Integrazione FEMLCORE-SALOME-CATHARE
- DEFECTIVE method: robustezza rispetto a BC
- ► DEFECTIVE method: evidenzia errore del 1D rispetto al calcolo 3D
- Accoppiamneto Reattore/Plenum(3D)-Primario(1D)

Sviluppi futuri

- Test della piattaforma (casi tempo dipendente)
- Miglioramento degli algoritmi per i codici
- Miglioramento nel trasferimento dati
- Inclusione di altri codici

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

AdP PAR 2014

Revisione della validazione del codice T/H CATHARE2 attraverso il benchmark LACANES

Massimiliano Polidori massimiliano.polidori@enea.it

PAR 2014 Workshop LP2 Brasimone – 20 Novembre 2015

Laboratori UTFISSM-SICSIS (Bologna)

Sommario

- AdP MSE-ENEA sulla Ricerca di Sistema Elettrico \geq
 - Piano Annuale di Realizzazione PAR 2014
 - LINEA PROGETTUALE 2 "Collaborazione internazionale per il nucleare di IV-gen"
 - C1 Sperimentazione e modellistica per la termoidraulica dei metalli liquidi

DELIVERABLE LP2.C1

"Revisione della validazione del codice T/H CATHARE2 attraverso il benchmark LACANES" Ref. Massimiliano Polidori, nessun contributo CIRTEN.

SCOPO

Verifica e validazione del codice T/H di sistema CATHARE-2 per le analisi di sicurezza di sistemi LFR utilizzando dati sperimentali disponibili dal Benchmark OECD LACANES anche attraverso benchmark di calcolo con il codice RELAP5.

- ENEA partecipa ufficialmente al benchmark LACANES con il codice RELAP5.
- * L'attività si concentrerà nella simulazione di test in circolazione naturale di esperimenti condotti sulle facility HELIOS (South-Korea) e NACIE (Brasimone).
- E' stata utilizzata l'ultima versione di CATHAREv2.5_3 mod2.1, la prima versione provvista di HLM rilasciata ufficialmente dal CEA

L'attività rappresenta il proseguimento delle precedenti annualità (deliverable ADPFISS – LP2 – 043 del PAR2013).

PAR 2014 Workshop LP2 – Brasimone – 20 Novembre 2015

Attività

Nelle precedenti attività all'interno del PAR, CATHARE ha dimostrato buone capacità di simulazione sia in circolazione forzata che naturale.

- Revisione dei modelli HELIOS e NACIE alla luce delle «best practices» acquisite nel benchmark.
- I dati sperimentali di riferimento:
 - A seguito di upgrade alla facility HELIOS, nuovi dati «ufficiali» per i test in circolazione naturale sono stati rilasciati a Marzo 2015. E' stato proposto l'approccio «calorimetrico» per la simulazione dei test in N.C., i.e. ricostruzione dei salti entalpici lungo il loop, calibrazione delle pdc e del coeff di scambio termico dell'HX.
 - I dati provenienti dalla campagna di caratterizzazione di un flowmeter a induzione di NACIE, resi disponibili da Brasimone per il benchmark LACANES.
- I risultati ottenuti con CATHARE2 sono stati confrontati anche con i risultati RELAP5 del benchmark con l'uso delle proprietà TD dell'Handbook OECD (2007).

LACANES Benchmark – Nice, France – May 06, 2015

Mockup Core

HELIOS Model for Natural Circulation Tests

Expansion Tank

T/C 5

T/C 4

T/C 3

T/C 2

r/c 1

T/C 6

T/C 7

T/C 8

T/C 9

Heat

Exchanger

Mechanical Pump

/C10

HELIOS Facility

HELIOS è una facility termoidraulica in scala del reattore PEACER-300 raffreddata a LBE. Olio come fluido termovettore lato secondario.

- 1D description of the natural circulation flow path.
- Thermal structures: core rod bundle, HX, piping insulated by glass-wool
- Pumps simulated with timedependent junctions
- Friction loss coefficients calculated by the code
- K-factor coefficients calculated with Handbook correlations and tuned on experimental data obtained during forced circulation tests.
- Explicit description of the HX secondary side driven by BC.
- **HELIOS Nodalization**

OECD (

Thermal Exchange Calculation in HX

- The reference correlations from HANDBOOK are now available in RELAP5 mod3.3 and are used in present simulations.
- > Thermodynamic properties of the **THT oil** (Tetra Hydro Thiophene) **except** the thermal **conductivity** that refers to DowthermRP (λ =0.169-0.00013*T[K]). The

heat capacity is bit lower, but the calibration of secondary side is not considered at working T

ER LE NUOVE TECNOLO

Seban-Shimazaky correlation (LBE side) for convective heat transfer in pipe geometry: $Nu = 5.0 + 0.025 Pe^{0.8}$

Dittus-Boelter standard RELAP5 correlation (Oil side):

$$N\mu = 0.023 \text{Re}^{0.8} \text{Pr}^{0.4}$$

OECD

HELIOS Model calibration for NC Tests (RELAP5)

OECD (

Simulazione degli stati stazionari di due test in circolazione naturale a 15kW e 9.8 kW

- The test at 15 kW is taken as reference
- Two steps calibration suggested by SNU followed

STEP1(1): Calibration of primary loop temperatures secondary side removed, heat exchanger simulated as heat losses, mass flow imposed at 2.394 kg/s:

- o Sections with heat losses in blue
- o Sections with heat gain in red
- Other sections considered adiabatic
- STEP1(2): Calibration of NC mass flowrate

free LBE mass flowrate

- o k-factors roughly removed in black dashed lines
- STEP2: Calibration of HX heat transfer

restoration of secondary side

 Fouling factor on HX heat structure oil side (fouling acts as multiplier for the heat transfer correlation)

Modello HELIOS per CATHARE

- Modello dedicato a studi di circolazione naturale (eliminato il ramo con la pompa meccanica)
- ☆ assenza di olio come fluido in CATHARE → Scambio termico nell'HX derivato da RELAP5 e simulato con heat-loss.
- La calibrazione del modello per CATHARE è stata condotta con l'approccio «calorimetrico» suggerito nel benchmark (ricostruzione delle heat-loss e heat-gain lungo il loop), relativamente ai dati del test a 15 kW.
- Non è stato necessario calibrare le pressure drops.

Results of NC Test – 15 kW

		EXPERIMENT	RELAP5	CATHARE	Error C2
CODE	TC1	249.5	249.9	249.2	-0.13%
CORE	TC2	292.4	292.8	292.2	-0.04%
	TC3	292.5	292.8	292.2	-0.09%
	TC4	294.5	294.7	294.2	-0.09%
	TC5	295.5	295.8	295.5	-0.02%
	TC6	289.0	289.3	288.9	-0.05%
HX	TC7	253.8	254.1	253.5	-0.14%
	TC8	251.1	251.5	250.9	-0.11%
	TC9	251.3	251.6	250.9	-0.16%
	TC10	251.2	251.6	250.9	-0.15%
	DT_HX	35.2	35.2	35.4	0.62%
	DT_OIL	16.6	17.1	NA	
	PUMP flow		0.0	NA	
	BYPASS flow	2.394	2.392	2.382	-0.49%
	OIL flow	0.29	0.29	NA	
	P_HX_pri	-12332	-12269	-12349	0.14%
	P_core	15000	15000	15000	0.00%
	P_HX_sec	9260	9362	NA	
	Heatloss Mantello	3072	3209.82	NA	
	sec+heatloss mantello	12332	12572.1	NA	
	heatloss loop	2668	2427.9	2651	-0.63%

DATA		
Power	15000	W
Tin_oil	113.6	°C
Mflow_oil	0.29	kg/s

8

STARN

OECD К 🔵

Results of NC Test – 9.8 kW

	time = 20000 s	EXPERIMENT	RELAP5	CATHARE	Error
CODE	TC1	257.4	257.2	259.2	0.71%
CORE	TC2	288.0	289.7	291.6	1.24%
	TC3	289.6	289.7	291.6	0.69%
	TC4	292.4	291.9	293.9	0.50%
	TC5	293.9	293.2	295.3	0.46%
	TC6	288.0	289.5	291.4	1.21%
HX	TC7	260.0	260.7	261.8	0.69%
	TC8	257.4	258.6	260.2	1.09%
	тс9	259.5	258.6	260.2	0.28%
	TC10	258.5	258.6	260.2	0.65%
	DT_HX_pri	28.0	28.7	29.7	6.08%
	DT_OIL	25.6	29.2	NA	
	PUMP flow		0.0		
	BYPASS flow	2.100	2.062	2.070	-1.44%
	OIL flow	0.12	0.12	NA	
	P_HX_pri	-8952	-8641	-8985	0.37%
	P_core	9800	9800	9800	0.00%
	P_HX_sec	6224	7044	NA	
	Heatloss Mantello	2728	1764	NA	
	sec+heatloss mantello	8952	8808	NA	
	heatloss loop	848	992	816	-3.82%

DATA	
Power	9800 W
Tin_oil	143.5 °C
Mflow_oil	0.12 kg/s

Imposte le condizioni di scambio termico HX di RELAP5

9 SEA

OECD К 🔵
Modello NACIE per CATHARE

Perdite di Carico – Griglia superiore (precedente)

WORKSHOP LFR-GEN IV (PAR2013-LP2) – Bologna – 16 Gennaio 2015

Perdite di Carico – Griglia superiore (attuale)

K(w0) = 1.2829

152 HANDBOOK OF HYDRAULIC RESISTANCE

Figure 4-8 General case of flow passage through an orifice in the wall from one volume into another: (a) sharp-edged orifice $(l/D_h = 0)$; (b) orifice with thick edges $(l/D_h > 0)$; (c) orifice with edges beveled in the flow direction; (d) orifice with edges rounded in the flow direction.

21. The resistance coefficient of the flow passing through orifices in the wall, with edges of any shape and of any thickness, is calculated (in the general case considered under paragraph 18) from the author's generalized formula [13, 14]

$$\zeta = \frac{\Delta p}{\rho w_0^2 / 2} = \zeta' \left(1 - \frac{F_0}{F_1} \right) + \left(1 - \frac{F_0}{F_2} \right)^2 + \tau \sqrt{1 - \frac{F_0}{F_1}} \left(1 - \frac{F_0}{F_2} \right) + \zeta_{\rm fr} \tag{4-5}$$

where ζ' is a coefficient which depends on the shape of the orifice inlet edge and is determined as ζ from Diagrams 3-1 through 3-4 and 3-7; τ is the coefficient representing the effect of the wall thickness, the inlet edge shape of the opening, and conditions of flow passage through the opening with thick edges [it is determined from the curve $\tau = f(l/D_h)$ in Diagram 4-12, while for beveled or rounded edges, it is approximated by $\tau \approx 2\sqrt{\zeta'}$; $\zeta_{\rm fr} = \lambda(l/D_h)$ is the friction coefficient over the entire depth of the orifice opening; and λ is the hydraulic friction factor of the opening depth determined from diagrams in Chapter 2. In the case of beveled or rounded edges, $\zeta_{\rm fr}$ is assumed to be zero.

Simulazione Dinamica del Test 301

Test301 (circolazione naturale): Accensione del FPS a 21.5 kW seguito dallo spegnimento.

Calibrazione iniziale per compensare le incertezze su misure e procedure:

- > potenza iniziale FPS 3.4kW (16%) in funzione di riscaldatore
- conducibilità powder 10.5% AISI304
- perdite di calore

Il secondario è caricato con vapore a 1.5 bar, pressione costante durante il transitorio Si assume che all'accensione del FPS, i riscaldatori forniscono ancora una certa potenza (inerzia termica). Rampa di potenza da 16% al 116%.

Simulazione Dinamica del Test 301

Test 301: Circolazione Naturale, Potenza 21.5 kW, portata stimata con bilancio termico 4.71 kg/s (media su 1h). La portata di MP101 è affetta da forti incertezze alle basse portate.

Portate stimate dai partecipanti al benchmark LACANES

Dato sperimentale	ENEA	RSE	SNU	Ansaldo	INEST	ENEA	
da bilancio termico	(RELAP5)	(LEGO)	(MARS)	(RELAP5-3D)	(RELAP/SCDAPSIM/MOD4	(CATHARE)	
4.71	5.15	5.30	5.21	5.19	5.26	5.29	

PER LE NUOVE TECNOLOGIE, L'ENERGI E LO SVILUPPO ECONOMICO SOSTENIBILI

Conclusioni

- I modelli di HELIOS e NACIE per il codice T/H CATHARE2 sono stati riveduti (geometria e pdc) per la simulazione di test in circolazione naturale, usando CATHARE versione v2.5_3 mod 2.1.
- Le perdite di carico sono state valutate avvalendosi delle "best practice" acquisite nella Fase 1 del benchmark LACANES e con correlazioni in letteratura (Idelchik).
- Nella simulazione degli stati stazionari di due test in circolazione naturale a 15kW e 9.8 kW della facility HELIOS, di cui il primo usato per calibrazione del modello, CATHARE si è dimostrato capace di riprodurre anche il test a 9.8 kW. Rimane il limite di non avere una corretta simulazione dell'HX (olio).
- Nella simulazione del test 301 in circolazione naturale della facility NACIE si ha una sovrastima della portata in relazione a RELAP5 (come evidenziato in precedenti annualità) ma il valore risulta comunque in linea se comparato ai partner LACANES. Le discrepanze sono dovute a mancanza di informazioni sulle procedure di prova, specialmente sul lato secondario.