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Sommario
La crescente tendenza verso un uso piú sostenibile dei combustibili fossili per la generazione di potenza ha
aperto nuovi orizzonti applicativi per i cicli a CO2 supercritica (S − CO2), che hanno le potenzialitá per rap-
presentare una risposta efficace ad alcuni temi di grande attualitá: la flessibilitá operativa dei sistemi di gene-
razione da fonte fossile a supporto della generazione da fonte rinnovabile non programmabile, e la riduzione
delle emissioni inquinanti e climalteranti. L’estrema compattezza dei cicli a S − CO2 puó rappresentare una
soluzione mirata alla ricerca di flessibilitá operativa; inoltre, é ben accoppiata sia con l’efficienza termodina-
mica sia con la potenziale applicazione delle tecnologie di cattura e stoccaggio della CO2. Gli studi effettuati
nelle precedenti annualitá hanno evidenziato un significativo allineamento tra le esigenze di un sistema elettrico
de-carbonizzato ad alta penetrazione di rinnovabili non programmabili e le potenzialitá in termini di flessibi-
litá, risposta dinamica, efficienza, emissioni e performance economica che i cicli a S − CO2 alimentati con
ossi-combustione di gas naturale possono potenzialmente esporre.

Nella precedente annualitá, il codice HeaRT sviluppato da ENEA é stato testato con simulazioni numeriche
di problemi con la simultanea presenza di fasi liquide e gassose. In particolare, é stato identificato un caso
test relativo al mescolamento turbolento a 40 bar tra un getto di azoto liquido iniettato a 118 K e 5 m/s con
un getto coassiale di idrogeno gassoso a 270 K e 120 m/s. Le simulazioni hanno evidenziato una insufficiente
robustezza degli schemi numerici implementati in HeaRT in presenza di forti gradienti spaziali di densitá,
soprattutto dovuti a ”discontinuitá materiali o di contatto”: queste discontinuitá sono quelle che si incontrano
quando due fluidi con proprietá diverse (in particolare, velocitá del suono e calori specifici, in base alla nostra
esperienza) sono a contatto. E’ quindi nata la necessitá di identificare, valutare ed implementare uno schema
numerico di integrazione spaziale piú robusto.

Nella presente annualitá é stata inizialmente fatta una ricerca approfondita sugli schemi numerici di inte-
grazione spaziale giá presenti in letteratura, adatti a simulare (senza oscillazioni numeriche spurie) flussi in
condizioni di gas reale con presenza di un’interfaccia liquido/gas. La nascita di oscillazioni nell’intorno di
discontinuitá di contatto con l’uso del codice HeaRT é fondamentalmente dovuta alla formulazione pienamente
conservativa delle equazioni di trasporto implementate. Sono state identificate due possibili strategie per evitare
il problema:

1. implementare un’equazione di trasporto per la pressione al posto di quella per l’energia totale, ed uti-
lizzare la tecnica LAD (Local Artificial Dissipation), cioé aggiungere termini di viscositá artificiale alle
equazioni di trasporto per evitare o smorzare oscillazioni numeriche spurie;

2. implementare lo schema numerico AUS M+ − up che, sulla base della letteratura esistente, sembra avere
particolari capacitá di robustezza.

La prima strategia é stata studiata a livello teorico in modo approfondito, e la tecnica LAD é stata implementata
nel codice HeaRT. La seconda strategia é stata pure studiata in modo dettagliato sulla base della letteratu-
ra esistente, quindi implementata e testata diffusamente. L’aver ottenuto degli ottimi risultati con lo schema
AUS M+ − up, unito alla sua semplicitá ed al fatto che l’adozione di un’equazione di trasporto per la pressione
comporterebbe la perdita della proprietá di conservativitá delle equazioni, ha portato alla scelta della seconda
strategia come soluzione ai problemi riscontrati nella precedente annualitá. Si osserva che nel codice HeaRT
lo schema AUS M+ − up é stato accoppiato ad una procedura di interpolazione WENO (5-3 ordine) per la ri-
costruzione degli stati destro e sinistro delle variabili di campo, con l’ulteriore possibilitá di ricorrere ad una
interpolazione meno costosa, ma anche meno accurata, quella QUICK (3 ordine).

In particolare, lo schema AUS M+ − up ha superato con successo i seguenti test:

1. problema mono-dimensionale di SOD (shock-tube, con salto iniziale di pressione 150 bar - 15 bar, rispet-
tivamente a sinistra e a destra di un setto), con presenza di un’espansione, una discontinuitá di contatto
ed un urto, in condizioni di gas reale (vedi Fig. 0.1);

2. problema mono-dimensionale di una discontinuitá materiale ferma ed in movimento;
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Figura 0.1: Soluzione del campo di densit, a diversi istanti, del problema mono-dimensionale di SOD con gas
reale: il campo é inizializzato con 150 bar e 15 bar, rispettivamente a sinistra e a destra di un setto
posto a 0.05 m.

3. shear-layer temporale, bidimensionale, tra un getto centrale di metano ed uno coassiale di ossigeno,
entrambi gassosi ed a 300 K, in condizioni di gas ideale ad 1.5 bar;

4. shear-layer temporale (ingresso/uscita periodici), bidimensionale, tra un getto centrale di azoto liquido
(118 K, 5 m/s) ed uno coassiale di idrogeno gassoso (270 K, 120 m/s), in condizioni di gas reale a 40 bar.

Si sottolinea che il quarto test é stato derivato da quello utilizzato nella precedente annualitá e che aveva evi-
denziato i problemi numerici: la semplificazione del test ad uno shear-layer temporale ha permesso di eseguire
simulazioni di lunga durata (un milione di passi temporali) per avere certezza della stabilitá del calcolo. La
Fig. 0.2 mostra per un certo istante, le distribuzioni di temperatura e di densitá. Si nota che in alcune zone di
mescolamento tra i due getti, la temperatura scende (circa 107 K) al di sotto di quella dell’azoto liquido: questo
non é dovuto ad oscillazioni numeriche spurie bensı́ é un effetto di gas reale dovuto al fatto che la curva della
temperatura di mescolamento adiabatica tra azoto ed idrogeno a 40 bar passa per la zona di equilibrio bifase.
Infine, é stata affrontata la simulazione di uno shear-layer spaziale (ingresso/uscita effettivi), reagente, bidimen-
sionale, di un getto centrale di metano a 100 m/s ed uno coassiale di ossigeno a 25 m/s, entrambi gassosi a 300
K ed in condizioni di gas reale a 150 bar. Tale condizione é tipica degli ossi-combustori dei cicli a S − CO2.
Si osserva che le condizioni non-riflessive di uscita sono state estese per lavorare con gas reali: questo é stato
pure oggetto di implementazione e test nella presente annualitá. La Fig. 0.3 mostra le distribuzioni istantanee
di temperatura e fattore di comprimibilitá per questo caso. Si osserva come la temperatura massima superi i
3000 K della temperatura adiabatica attesa, a causa del meccanismo cinetico semplificato adottato (mancanza di
reazioni endotermiche delle principali specie radicali). Il fronte appare notevolmente corrugato, evidenziando
la presenza di piccole scale. Il fattore di comprimibilitá evidenzia invece la tendenza al comportamento di gas
ideale nella regione occupata dai gas combusti, e ad un comportamento di gas reale altrove, con forti gradienti
spaziali.

In conclusione, con le notevoli migliorie apportate agli schemi numerici ed alle condizioni al contorno non-
riflessive, il codice HeaRT sviluppato da ENEA é ora uno strumento di calcolo numerico parallelo avanzato,
adeguato per la simulazione fluidodinamica di flussi turbolenti, reagenti e non, in condizioni di gas reale. A
titolo di esempio é stata infine condotta una simulazione introduttiva alle problematiche che verranno affrontate
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Figura 0.2: Distribuzioni istantanee di temperatura e densitá per lo shear-layer temporale azoto liquido /

idrogeno gassoso a 40 bar in condizioni di gas reale.
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Figura 0.3: Distribuzioni istantanee di temperatura e fattore di comprimibilitá per lo shear-layer spaziale
reagente metano / ossigeno gassosi a 150 bar in condizioni di gas reale.
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Figura 0.4: Distribuzioni istantanee di temperatura e frazione massica di ossigeno per il test esplorativo reagente
metano / ossigeno (fortemente diluito in CO2) gassosi a 295 bar in condizioni di gas reale.

nella prossima annualitá. Si tratta di un caso di combustione a 295 bar di un getto centrale di metano con uno
coassiale di ossigeno, fortemente diluito in CO2 (circa 88% in massa), iniettati in un’ulteriore corrente prin-
cipale di CO2. Tale simulazione, con puro scopo esplorativo, ha evidenziato notevoli problemi di ancoraggio
della fiamma dovuti alla grande concentrazione di CO2, ed una combustione poco efficiente, caratterizzata da
pacchetti reagenti (con temperature che possono essere anche molto elevate) estremamente pericolosi per una
eventuale turbina a valle del combustore (vedi Fig. 0.4). Questi temi saranno investigati con il codice HeaRT
nelle prossime annualitá al fine di definire una opportuna strategia di combustione e le modalitá di iniezione dei
reagenti, per arrivare al ”concept-design” della piastra di iniezione di CH4/O2/S − CO2 e del combustore di un
ciclo a CO2 supercritica con ossi-combustione.
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1 Non-Reflecting Boundary Conditions
for Real Gas Flows

In the LES context of compressible flows, it is highly recommended to use non-reflecting or partially reflecting
boundary conditions to avoid spurious reflections of acoustic and entropic waves at boundaries. Such boun-
dary conditions consist in solving the Navier-Stokes equations written in terms of waves (NSCBC method,
Navier-Stokes Characteristic Boundary Conditions); depending on their propagation velocity, the waves mo-
ving towards the boundaries (outgoing waves) can be calculated from the computational field, while the waves
moving from the boundaries (incoming waves) have to be modelled. The method is also useful to provide
soft (or so called numerical) boundary conditions to the set of partial differential equations to be solved: the
conservation equations are used at the boundary to complement the set of physical boundary conditions.

Although the approach goes back to the ’80s, being developed by Rudy and Strikverda [1, 2] first, and then
furtherly developed by Thomson [3, 4], nowadays, the reference paper for the non-reflecting or partially reflec-
ting boundary conditions is that of Poinsot and Lele [5], later extended to reacting flows with variable transport
molecular properties [6]. The NSCBC method consists in assuming Euler conditions (the inviscid conditions)
and supplying additional relations (the viscous conditions) which refer to viscous or diffusion effects. The
wave amplitude variations in the viscous multidimensional case is inferred by examining a local associated
one-dimensional inviscid (LODI) problem: the transverse and viscous terms in the conservation equations
written at the boundaries are neglected. Lodato [7] extended the NSCBC-1D approach for ideal gases to the
three-dimensional case (NSCBC-3D) by adding transverse fluxes in wave computation.

1.1 Non-Reflecting Boundary Conditions for Real Gas Flows

Here is the formulation adopted for recasting the Navier-Stokes equations in terms of amplitude variation of
the waves Li incoming and outcoming from a boundary. It is observed that the approach adopted is the one
extended to treat reacting flows in [6], but written using the formalism adopted in [5]. The approach pursued
by Okong’o and Bellan [8] to extend the NSCBC-1D approach to real gases is also adopted here.

Considering a boundary orthogonal to the z direction, the equations are (in cylindrical coordinates; the car-
tesian formulation is obtained by replacing r = 1 and erasing the two source terms in the radial and azimuthal
momentum equations):

• Continuity equation

r
∂ρ

∂t
+ rd1 +

∂rρUr

∂r
+
∂ρUϑ

∂ϑ
= 0 (1.1)

• Momentum equations

r
∂ρUr

∂t
+ rUrd1 + rρd4 +

∂rρU2
r

∂r
+
∂ρUrUϑ

∂ϑ
− ρU2

ϑ = −r
∂p
∂r

+

∂rτrr

∂r
+ r

∂τrz

∂z
+
∂τrϑ

∂ϑ
− τϑϑ

(1.2)

r
∂ρUz

∂t
+ rUzd1 + rρd3 +

∂rρUzUr

∂r
+
∂ρUzUϑ

∂ϑ
= −r

∂p
∂z

+

∂rτzr

∂r
+ r

∂τzz

∂z
+
∂τzϑ

∂ϑ

(1.3)

r
∂ρUϑ

∂t
+ rUϑd1 + rρd5 +

∂rρUϑUr

∂r
+
∂ρU2

ϑ

∂ϑ
+ ρUrUϑ = −

∂p
∂ϑ

+

1
r
∂r2τϑr

∂r
+ r

∂τϑz

∂z
+
∂τϑϑ
∂ϑ

(1.4)
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• Energy equation

∂ρU
∂t

+

K +

Ns∑
i=1

YiHi

 d1 + ρuzd3 + ρurd4 + ρuϑd5+

ρ

Ns∑
i=1

HiLs,i − ρcpL6 − Rg2
L2

γ − 1
+

1
r
∂ρurUr
∂r

+

1
r
∂ρuθU
∂θ

= −
1
r
∂purr
∂r

−
1
r
∂puθ
∂θ

+ ∇ · [τu]−

∇ · q + ρ

Ns∑
i=1

Yi fi · (u + Vi)

(1.5)

• Mass fraction equations

r
∂ρYi

∂t
+ rYid1 + rρUz

∂Yi

∂z
+
∂rρUrYi

∂r
+
∂ρUϑYi

∂ϑ
= −

∂rqM
r

∂r
−

r
∂qM

z

∂z
−
∂qM

ϑ

∂ϑ
+ rω̇i

(1.6)

where
d1 =

1
a2

(
L2 +

L1 + L5

2

)
d2 =

L1 + L5

2

d3 =
L5 − L1

2ρa
d4 = L3

d5 = L4

d6 = L6

(1.7)

L1 = (Uz − a)
(
∂p
∂z
− ρa

∂Uz

∂z

)
L2 = Uz

(
a2 ∂ρ

∂z
−
∂p
∂z

)
L3 = Uz

∂Ur

∂z

L4 = Uz
∂Uϑ

∂z

L5 = (Uz + a)
(
∂p
∂z

+ ρa
∂Uz

∂z

)
Ls,i = Uz

∂Yi

∂z

L6 =

Ns∑
i=1

W
Wi

T Ls,iRg1i

(1.8)

and

Rg1i =
ρvi

αvWT
(1.9)

Rg2 = αvT (1.10)
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Figura 1.1: Plot of the distribution of the compressibility factor Z and the real gas corrections for an
instantaneous flowfield of the non-reacting shear-layer considered in Section 1.3.

The terms Rg1i and Rg2 in (1.5) have been derived by comparing the formalism and formulation introduced
by Okong’o and Bellan [8] to extend the NSCBC-1D approach to real gases with the commonly used ideal gas
formulation [5, 6]; the coefficient αv is the expansivity coefficient and can be evaluated by means of

αv =
1
v

(
∂v
∂T

)
p.Yα

= −

(
∂p
∂T

)
v,Yα

v
(
∂p
∂v

)
T,Yα

(1.11)

while the partial molar volume vα is

vα =

(
∂v
∂Xα

)
p,T,Yβ,β,α

=

(
∂µα
∂p

)
T,Xα,Xβ

(1.12)

It is observed that the corrections become equal to one when the gas becomes ideal, i.e., the compressibility
factor is one: this is shown in Fig. 1.1 related to the exit of an instantaneous flowfield of the non-reacting
shear-layer considered in Section 1.3.

In the following we briefly report the waves that have to be modelled at outflow and inflow boundaries to
avoid or at least reduce spurious reflections.

1.2 Outflow and Inflow

In case of a supersonic outflow, there are no incoming waves: the complete set of (outgoing) waves can be
computed from the inner flowfield. In case of a subsonic outflow, there is just one incoming wave that has to
be modelled. Its amplitude has to be nil, i.e., L1 = 0, to avoid reflections. However, this strategy is useful
if the total time to be simulated is sufficiently short not to experience a dramatic pressure drift. In fact, when
imposing L1 = 0 the nominal pressure is not specified at boundaries; it is in the simulation just as an initial
condition. As a matter of fact, the pressure will drift during the computation towards lower values. When
compressibility effects are not important and when the actual value of pressure does not affect any physical
mechanism, the flowfield obtained will be fine since the pressure spatial gradient is the driving force in the
momentum equation. However, going on with the simulation, some floating point exception will be inevitably
encountered in the routines dealing with molecular property calculation.

Hence, the importance of outflow partially reflecting boundary conditions to keep the operating pressure
around a specified value, thus avoiding its drifting in long time computations. To fulfill this, for an outflow
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boundary located on the right side of the computational domain (the flow comes from the left side) the incoming
wave amplitude is modelled as

L1 = σ

(
1 − M2

)
c

Lz
(p − p∞) −

1
2

Q̇, (1.13)

where σ is a constant (its theoretical optimal value is 0.27) to control the level of reflection and the time
response of the boundary itself to perturbations, Lz is the acoustic domain length along the z direction, M is the
local Mach number, c is the local sound speed, p∞ the asyntotic nominal pressure. It is reminded that Poinsot
[5] obtained oscillating solutions for σ = 0.58, and good results for σ = 0.25, that is close to the theoretical
value of Rudy [2]. For reacting flows, we stress the importance of taking into account the effect of the local heat
Q̇ released by chemical reactions in the evaluation of the incoming wave, as firstly observed in [9], to avoid
unphysical pressure increase at the outlet when reacting pockets pass through.

When forcing the wave L1 at the outlet with σ > 0, the outlet becomes partially non-reflecting, its response
having a characteristic time

τ ∼
2Lz

σc
(
1 − M2) . (1.14)

Outgoing waves with frequencies higher than 1/τ will cross the boundary without reflections, while those with
lower frequencies will be reflected.

It is finally observed that a nil normal gradient is assumed for each of the diffusive fluxes, i.e., for τrz

and τθz (momentum diffusion), qz (heat diffusion), Jz (mass diffusion). Furthermore, to avoid flow reversal
and consequent numerical instabilities, if the velocity uz < 0 also a nil normal gradient is assumed for the
stress τzz and furthermore, all the outgoing waves that would become incoming have to be forced to be nil
(L1 = L2 = L3 = L4 = Lsi = L6 = 0).

At a supersonic inflow, the amplitude of all waves have to be specified. At a subsonic inflow, there are
4 + Ns (Ns being the number of transported species) incoming waves and just one outgoing. According to
our experience, inlet partially non-reflecting boundary conditions are mandatory when using high-order spatial
schemes. Moreover, they are particularly important in simulations dealing with flame flashback phenomena:
using a reflecting boundary will result in unphysical pressure increase at the inlet when the flame tends to move
towards the inlet, thus damping the flashback [10].

The same relaxation procedure adopted to model partially non-reflecting outflows is adopted at inlets. Hence,
for an inlet boundary located on the left side of the computational domain (the stream flows from left to right)
the outgoing L1 can be computed from the inner flowfield, while the amplitudes of the incoming waves are
modelled as [11, 12]

Ltarget
2 = −σTρRguz

T − T∞
Lz

(1.15)

Ltarget
3 = σuuz

ur − ur∞

Lz
(1.16)

Ltarget
4 = σuuz

uϑ − uϑ∞
Lz

(1.17)

Ltarget
5 = σuρc2 uz − uz∞

Lz
(1.18)

Ltarget
si = σYiuz

Yi − Yi∞

Lz
, (1.19)

where different relaxation constants σ can be assumed, and the asyntotic desired inlet values are specified; Lz

is the acoustic length in the z direction. It is observed that the inlet conditions currently implemented and tested
assumed no-NSCBC treatment for mass fractions for stability reasons: this means that Yi are simply fixed at
inlet, the associated transport equations are not solved, Lsi = 0, and hence flames cannot pass through the inlet
boundary.

Also in this case, a nil normal gradient is assumed for each of the diffusive fluxes, i.e., for τrz and τθz (mo-
mentum diffusion), qz (heat diffusion), Jz (mass diffusion). Furthermore, to avoid flow reversal and consequent
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numerical instabilities, if the velocity uz < 0 also a nil normal gradient is assumed for the stress τzz and further-
more, all the incoming waves that would become outgoing have to be forced to be nil (L2 = L3 = L4 = L5 =

Lsi = L6 = 0).

1.3 Some Notes on the Outflow for Real Gas Flows

The non-reflecting outflow boundary condition already implemented in the HeaRT code is extended to real gas
trans- and supercritical flows. There is a few literature on this topics: in fact, only three works provide some
details about characteristic boundary conditions extension to real gases, the first being the work of Okong’o
and Bellan [8] (used to derive the correction factors Rg1 and Rg2 in Eqn. (1.5)), the other two being the works
of Coussement [13] and Petit [14]. Besides there are other works that provide some tips about the outflow
boundary condition for transcritical and supercritical flows.

Considering the numerical simulations of real gases available in literature and focusing on the outflow
boundary conditions adopted, such simulations can be gathered in four groups:

1. simulations dealing with supersonic flows, that do not provide information on how to define the incoming
pressure wave (1.13) since it is not required [8];

2. simulations with sufficiently long domain in the streamwise direction, experiencing no or weak eddies
(negligible curvature) crossing the non-reflecting outflow [15, 16, 17];

3. simulations with short domain in the streamwise direction, assuming a simple pressure outlet (pressure
fixed at the exit) with or without a sponge layer to damp fluctuations close to the exit [18, 19, 14, 20];

4. simulations with three-dimensional treatment of waves in the Navier-Stokes Characteristic Boundary
Conditions approach [7] extended to real gases, suggesting an expression for the relaxation parameter σ
in Eqn. (1.13) in case of transcritical flows [13] or using the transverse relaxation parameter (required
in the original framework to specify the asimptotic transverse behaviour of the flow at the exit) as a
transverse damping parameter (to damp curvature effects at the exit) [14].

Reckoning on this, it can be concluded that in numerical simulation of transcritical and supercritical flows the
curvature effects onto the NSCBC-1D subsonic outflow boundary are expected to be amplified by the much
higher momentum with respect to the subcritical regime. In general, the best solution is to couple a sufficiently
long domain in the streamwise direction with a NSCBC strategy. The adoption of the NSCBC-3D strategy
with a transverse damping parameter or NSCBC-1D with a specific expression for the relaxation parameter σ
in Eqn. (1.13) may be of help in short computational domains when eddies cross the outlet. It is observed
that regions where flames cross the boundary produce less problems than simple mixing since hot combustion
products are close to an ideal gas also at high pressure.

The correction factors Rg1 and Rg2 in Eqn. (1.5) were implemented in the NSCBC-1D boundary treatment
and the standard expression for the incoming pressure wave (1.13) was assumed. Two two-dimensional tests
were performed through the code HeaRT:

• non-reacting spatial shear-layer (400×400 nodes uniformly distributed from 0 to 3 mm in the streamwise
direction, and stretched from -2 to 2 mm in the crosswise direction): a central nitrogen jet at 5 m/s and
130 K surrounded by a hydrogen coflow at 120 m/s and 270 K, at 40 bar (the inlet profiles come from the
simulation of an associated temporal shear-layer, and hence, they already show turbulent mixing);

• reacting spatial shear-layer (406× 427 nodes uniformly distributed from 0.3 to 5.3 mm in the streamwise
direction, and stretched from -2.47 to 2.06 mm in the crosswise direction): a central methane jet at
100 m/s and 300 K surrounded by an oxygen coflow at 25 m/s and 300 K, at 150 bar (the inlet profiles
come from the simulation of an associated temporal shear-layer, and hence, they already show turbulent
mixing and combustion).
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Figura 1.2: Instantaneous distribution of temperature, N2 mass fraction, density and compressibility factor for
the non-reacting shear-layer.

Outflow non-reflecting boundary conditions with σ = 0 were assumed along the bottom and top boundaries of
the non-reating shear-layer; adiabatic no-slip walls were assumed for the same boundaries in the second simu-
lation; the inlet boundary is reflecting (quantities imposed and nil pressure gradient) and the outlet is partially
non-reflecting with σ = 0.27 in both cases. Instantaneous distribution of temperature, N2 mass fraction, density
and compressibility factor for the non-reacting shear-layer are shown in Fig. 1.2. Instantaneous distribution of
temperature, H2 mass fraction, density and compressibility factor for the reacting shear-layer are shown in Fig.
1.3.
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Figura 1.3: Instantaneous distribution of temperature, H2 mass fraction, density and compressibility factor for
the reacting shear-layer.
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2 Numerical Schemes
for Real Gas Applications

Attention is here focused on the discretization of the convective terms of the transport equations in their con-
servative formulation or alternative strategies involving artifical diffusivity. The objective is to adopt a robust
and accurate numerical scheme able to solve problems involving large spatial gradients, contact discontinuities,
variable Mach number, typically found in real gas applications.

2.1 Localized Artificial Diffusion
and Pressure Evolution Equation

A fully conservative (FC) scheme formulation of the governing equations has been used for most simulations of
supercritical jet mixing flows. It is well known that spurious oscillations are generated at interfaces when a (ful-
ly conservative) FC form of the governing equations is used for simulations of compressible multi-component
flows and especially in the case of supercritical flows [21]. It occurs because of different thermodynamic pro-
perties in each fluid, e.g., different specific heat ratios between two fluids. The spurious oscillations may harm
the prediction accuracy of flow fields such as turbulence or acoustics, as well as computational stability, espe-
cially when high-order schemes are used. Instead of enforcing the total energy equation, for the simulation of
supercritical jet flows, a solution is to solve a pressure evolution equation. This enables to maintain pressure
equilibrium easily and can be used with any type of equation of state without major modifications [22]:

∂p
∂t

+ u · ∇p = −ρc2∇ · u +
αp

cvβT

[
1
ρ

(τ : E − ∇q)
]

+

N∑
i=1

(
∂p
∂Yi

)
ρ,e

[
1
ρ
∇ · (ρDi)∇Yi

]
, (2.1)

where E is the strain rate tensor, the symmetric part of ∇u.
Following the approach of [22], explicit numerical diffusion terms are usually introduced to the governing

equations to maintain stable computations when central difference schemes are used. If the numerical diffusion
terms are inconsistently introduced, they may disturb the velocity and pressure equilibriums at inviscid inter-
faces, producing severe spurious oscillations. In fact, when a cryogenic jet is injected into a chamber at room
temperature, interfacial regions with high density or temperature ratio exist between the jet and the chamber
fluids. A numerical diffusion term for the mass conservation equation using the density gradient is introduced

∂ρ

∂t
+ ∇ · (ρ(u)) = ∇ · (ϕρ∇ρ), (2.2)

with

ϕρ = Cρ
c
ρ

∣∣∣∣∣∣∣
S∑

l=1

∂4ρ

∂x4
l

∆5
l

∣∣∣∣∣∣∣, (2.3)

S being the number of dimensions. The overbar indicates a truncated Gaussian filter. The last term in Eqn. 2.2
must be consistent with the term ∇ · (ϕρ∇ρYi) added to the right hand side of species equations.

This approach has been validated in [22] for simulating cryogenic jet mixing under supercritical pressures
using high order schemes. The consistent numerical diffusion term for the species-mass equation is also built
and the artificial diffusion coefficient is introduced to avoid mass fraction/temperature oscillations in multi-
species flow cases.

Although this method is valid for the treatment of material discontinuities, avoiding the formation of spurious
oscillations, it was preferable to introduce into the HeaRT code a Riemann partial solver called AUS M+ − up
for its simpler implementation and effectiveness.

16



2.2 The AUS M+ − up Numerical Scheme

The AUS M (Advection Upstream Splitting Method) family scheme has been selected [23, 24, 25], and in
particular the latest release AUS M+ − up [26]. This numerical scheme has been selected because it features
these characteristics:

1. exact capturing of a contact discontinuity;

2. exact capturing of a normal shock discontinuity with an entropy-satisfying property;

3. positivity preserving property;

4. solution free of carbuncle phenomenon;

5. accurate solution of slowly moving contact discontinuities;

6. smooth transition through the sonic speed;

7. maintaining convergence and accuracy in a Mach-number-independent fashion.

In the referenced literature the reader can found more details than those in the present algorithm scheme. For
simplicity, the AUS M+−up numerical scheme is described considering the one-dimensional inviscid transport
equations:

∂Q
∂t

+ ∇ · F = 0, (2.4)

where Q = {ρ, ρu, ρU, ρYi}
T is the vector of transported quantities, F = {ρu, ρuu + p, ρuH , ρuYi}

T is the flux
vector, ρ being the density, u the velocity, U and H the total energy and enthalpy (the total quantities include
the kinetic energy u2/2), Yi the individual species mass fractions.

As common in all AUS M schemes, the inviscid flux is splitted into convective and pressure fluxes:

F =


ρu

ρuu + p
ρuH
ρuYi

 = ρu


1
u
H

Yi

 +


0
p
0
0

 = ṁψ + P (2.5)

where ṁ = ρu is the scalar mass flux with its own sign that convectively transports the vector quantity ψ.
According to the AUS M method the numerical flux at the interface I is written as

f I = ṁIψL/R + PI , (2.6)

where ψL/R are the left and right states of the vector quantity ψ at the interface I, with

ψL/R =

{
ψL if ṁI > 0
ψR otherwise.

(2.7)

For a collocated formulation, at first order such quantities can simply be the values at the computational nodes
at the left and right of the interface where the flux is calculated. In the code HeaRT, a 5th − 3rd order WENO
interpolation procedure is adopted to estimate the left and right states, the order of accuracy depending on a
local sensor.

2.2.1 The Mass Flux

According to the AUS M+ − up numerical scheme the mass flux at the interface I is

ṁI = aIMI

{
ρL ifMI > 0
ρR otherwise.

(2.8)
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where aI andMI = uI/aI are, respectively, the speed of sound and the Mach number (at the interface I) that
have to be calculated according to a specific procedure. In particular, in this work the simplest choice for the
interface speed of sound aI is adopted, i.e.,

aI =
aL + aR

2
, (2.9)

although more complex definitions can be chosen for specific problems 1. It is observed that the interface speed
of sound is uniquei, i.e., its left and right states are not used anymore in the algorithm: this strategy is believed
(by the authors of this report) to be the key to successfully solve contact discontinuities. The interface Mach
numberMI is estimated through the following procedure.

• The left and right Mach number is firstly defined: ML/R = uL/R/aI .

• The following split functions are computed (M will beML orMR):

M±(1)(M) =
M± |M|

2
(2.10)

M±(2)(M) = ±
(M± 1)2

4
(2.11)

M±(4)(M) =

 M±(1) if |M| ≥ 1
M±(2) ·

(
1 ∓ 16β ·M∓(2)

)
otherwise.

(2.12)

where β = 1/8 is assumed. The number written as pedex of the split functions are the degree of the
polynomial functions adopted.

• A pressure diffusion term is defined to enhance calculations of low Mach number or multi-phase flows,

Mp = −
Kp

fa
· Max

[
1 − σM

2
; 0

]
·

pR − pL

ρIa2
I

, (2.13)

where

M
2

=
M2

L +M2
R

2
(2.14)

ρI =
ρL + ρR

2
. (2.15)

In this expression there are two constants. The first one is Kp ∈ [0; 1] that is assumed to be 0.25. The
second one is σ ∈ [1/4; 1], that is assumed to be 1. The smaller σ becomes, the smoother the result is 2.

It is observed that, due to the term Max
[
1 − σM

2
; 0

]
, the pressure diffusion term Mp is activated only

when 1 − σM
2
> 0, i.e.,M

2
≤ 1/σ. Since the constant σ ∈ [0; 1], it follows that σ is effective only in

M > 1 regions, where 1 ≤ M
2
≤ 1/σ.

The suffix ”p” in the name of the scheme comes from including the Mp pressure diffusion term. At low
Mach numbers, the term Mp may not provide sufficient dissipation since (pR − pL) will be small and in
fact of the order O(M2 � 1. Including the scaling function fa for the speed of sound, an extension for
all speeds is provided. The fa function is a sound speed scaling factor, that will be adopted also in the
pressure flux definition and that makes the AUS M+ − up numerical scheme applicable for all speeds
(from low to high Mach number flows). It is defined as

fa = M0 · (2 −M0) ∈ [0; 1] (2.16)

M2
0 = Min

[
1; Max

(
M

2
,M2

∞

)]
∈ [0; 1]. (2.17)

1 To exactly resolve a normal shock between two discontinuous states, the author in [26] suggests to define aI = Min [âL; âR], where
âL = a∗

2
/Max [a∗; uL] and âR = a∗

2
/Max [a∗;−uR], a∗ being the critical speed of sound evaluated when the local Mach number is

unity, i.e., a∗
2

= 2 (γ − 1)H/ (γ + 1) (for an ideal gas, γ being the specific heat ratio). With this choice, a stationary shock is exactly
preserved.

2 The minimum value of σ for shock capturing is σmin = 2/
[
1 +

(
MLaL/a∗L

)4
]
.
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• The interface Mach numberMI is then calculated as

MI = M+
(4)(ML) + M−(4)(MR) + Mp. (2.18)

IfML =MR =MI , it is observed that M+
(4)(MI) + M−(4)(MI) =MI .

• Finally, considering Eqns. (2.6) and (2.7), the mass flux at interface I in Eqn. (2.8) is calculated and
implemented as:

ṁI =
aI

2
·
[
MI · (ρL + ρR) + |MI | · (ρL − ρR)

]
(2.19)

2.2.2 The Other Scalar Fluxes

Once calculated the mass flux ṁI by means of Eqn. (2.19), considering Eqns. (2.6) and (2.7) the fluxes of
energy and individual species mass fractions at the interface I are calculated as:

ṁIHI =
1
2
·
[
ṁI · (HL +HR) + |ṁI | · (HL −HR)

]
(2.20)

ṁIYiI =
1
2
·
[
ṁI ·

(
YiL + YiR

)
+ |ṁI | ·

(
YiL − YiR

)]
. (2.21)

2.2.3 The Momentum Flux

Once calculated the mass flux ṁI by means of Eqn. (2.19), considering Eqns. (2.6) and (2.7) the flux of
momentum at the interface I is calculated as

ṁIuI + pI =
1
2
· [ṁI · (uL + uR) + |ṁI | · (uL − uR)] + pI , (2.22)

where the pressure flux pI is calculated through the following procedure.

• The following split functions are computed (M will beML orMR):

P±(5)(M) =

 1
M
·M±(1) if |M| ≥ 1

M±(2) ·
[
±2 −M∓ 16α · M ·M∓(2)

]
otherwise.

(2.23)

The constant α ∈ [−3/4; 3/16] is obtained through

α =
3
16

(
−4 + 5 f 2

a

)
. (2.24)

IfML =MR =MI , it is observed that P+
(5)(MI) + P−(5)(MI) = 1.

• A velocity difference diffusion term Pu is defined to enhance calculations of low Mach number or multi-
phase flows,

Pu = −Ku · P+
(5)(ML) · P−(5)(MR) · (ρL + ρR) · (uR − uL) · faaI , (2.25)

where the constant Ku ∈ [0; 1] is assumed to be 0.75. The coefficient P+
(5)(ML)·P−(5)(MR) simply switches

off Pu as the flow becomes supersonic, resulting in one-sided upwinding. The suffix ”u” in the name of the
scheme comes from including the Pu velocity diffusion term. The fa function is a sound speed scaling
factor, already introduced in the pressure diffusion term Mp, that makes the AUS M+ − up numerical
scheme applicable for all speeds (from low to high Mach number flows).

• The interface pressure flux pI is then calculated as

pI = P+
(5)(ML) · pL + P−(5)(MR) · pR + Pu. (2.26)
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Figura 2.1: Sketch of the variable location in the staggered formulation adopted in the code HeaRT. The control
volumes of scalar quantities (black) and of ρUz momentum component (green) are shown.

Concerning the ”all speed” feature of the scheme, it is reminded that standard methods developed for com-
pressible flows do not work properly in low Mach number simulation, resulting in convergence and accuracy
problems. The convergence problem comes from the disparity of convective and acoustic speeds moving to-
wards low Mach numbers. This problem is commonly solved by modifying the structure of the eigenvalues
through preconditioning of the time derivative term. The accuracy problem comes from the discretization; in
fact, when decreasing the Mach number of the flow, the pressure term dominates (small perturbations in the
pressure field results in zeroth-order changes in the velocity field) and proper scaling of pressure differences
must be reflected in the numerical scheme to avoid inaccuracy and corruption of the solution. By introducing
the sound speed scaling factor fa the current scheme will hold its accuracy consistently for computations of low
Mach number flows, thus exhibiting a ”for all speeds” feature.

2.2.4 Staggered Formulation

When a staggered formulation of the transported quantities is adopted, the scalars are located at the center of the
computational cell, while the velocity components are located at the center of the faces of the cell. Hence, there
will be four different control volumes to be managed. A sketch of the control volumes and variable location is
shown in Fig. 2.1.

When a flux splitting method is adopted in a staggered formulation, the left and right states cannot be calcu-
lated for every quantity at every interfaces, since some quantities are already well known at a specific interface
(depending on the control volume under consideration) due to the staggered formulation. Being more specific:

• For the mass flux, the velocity at the interface is unique, i.e., uL = uR = uI = u, since u is located at
the center of the interface for the scalar control volume. Hence,ML = MR = MI , and this completely
avoids the calculation of the split functions for the mass flux since M+

(4)(MI) + M−(4)(MI) =MI .

• For the normal component of momentum flux, instead, there will be uL and uR, and hence, ML and
MR. In this case, since the pressure is exactly known at the interface of momentum control volume,
pL = pR = pI = p thus resulting in Mp = 0 and a simpler expression for the velocity difference diffusion
term (2.25).
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Here, also some particular solutions adopted in the staggered formulation of the code HeaRT, that increased
accuracy with respect to other alternative solutions, are reported:

1. The stencil of enthalpy calculated from transported quantities (H = U + p/ρ) is passed to the WENO
interpolation routine to calculateHL andHR.

2. In multi-dimension, for the normal flux of each momentum transport equation (e.g., ρUzUz + p for the
z-component momentum equation) the stored velocity (e.g., Uz) is passed to the WENO interpolation
routine (from face to center) to calculate the left and right states (e.g., UzL and UzR). Considering that the
density is already known at the location of the momentum control volume interface, the normal flux is
calculated as

ρIUzI UzI + pI =
ρIaI

2
·
[
MI ·

(
UzL + UzR

)
+ |MI | ·

(
UzL − UzR

)]
+ pI , (2.27)

It is remarked that both ρI and aI come directly from the stored flowfield and not from Eqns. (2.9) and
(2.15). This implies that the term ρL + ρR in Eqn. (2.25) becomes 2 ρI .
For the cross flux ρUzUy, it is observed that the velocity Uy is already known at the center of the interface
normal to y of the scalar control volume. Hence, no left and right states are calculated: Uy at the vertex
ViP jP will be obtained by a simple linear interpolation between the values from two adjacent cells. It
follows that the Mach numberMI = Uy

∣∣∣
ViP jP

/aI , with aI coming from Eqn. (2.9), is unique, i.e., no left
and right states are defined; hence, as it was already observed for the scalars fluxes, also in this case the
calculation of the split functions is completely avoided. The cross flux is thus calculated as

ρIUzI UyI =
aI

2
·
{
MI ·

[
(ρUz)L + (ρUz)R

]
+ |MI | ·

[
(ρUz)L − (ρUz)R

]}
, (2.28)

where the (ρUz)L/R have been obtained passing the ρUz stencil to the WENO routine (from face to vertex,
i.e., from center to face). This choice reduces the number of low order (linear) interpolations and reduces
wiggles.

2.2.5 Numerical Tests

The AUS M+−up numerical scheme implemented in the code HeaRT has been extensively validated and tested.

• The 1D-SOD problem: the SOD shock tube problem [27] is commonly used to test the accuracy of nu-
merical schemes. The test done here consists of a one-dimensional real gas (the Peng-Robinson equation
of state was assumed) Riemann problem having nil velocity, uniform temperature (300 K), uniform O2
concentration, 150 bar and 15 bar on the left and right side of z = 0.05 m, respectively. With this pres-
sure jump, the density is nearly 203 kg/m3 on the left and 19.46 kg/m3 on the right. The computational
domain has 100 grid nodes uniformly distributed over a length of 1 cm. From the initial condition, the
flow evolves experiencing a rarefaction wave (on the left of the initial discontinuity), a contact and a
shock discontinuity moving towards the right of the computational domain. Analytical solution of the
inviscid Euler equations can be obtained and compared to numerical results. Time evolution of pressure
and density are shown in Figs. 2.2 and 2.3; the analitical solution (not shown) is nearly superimposed
to the numerical predictions. It is noted that the pressure correctly does not change across the contanct
discontinuity.

Different implementations of the AUS M+ − up scheme are compared in Fig. 2.4 (it is observed that
these tests were done with the ideal gas equation of state): v5 refers to the version that builds the left
and right states of enthalpy HL/R by using the associated states of total energy UL/R, pressure pL/R and
density ρL/R, i.e.,HL/R = UL/R + pL/R/ρL/R; v5b refers to the version that builds the left and right states
of enthalpyHL/R directly from the WENO routines that receive as input the enthalpy built from the field
quantities, i.e.,H = U+ p/ρ; v5c refers to the version that computes the normal flux of each momentum
transport equation according to Eqn. (2.27), where only the stored primitive variable velocity has been
passed to the WENO routine (not the momentum ρu); v6 refers to a version where the left and right
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states were calculated for every quantities at every interface by using low order interpolations. The best
result is obtained through the implementation v5c. Besides this, it is observed that in general the ideal
gas solution experiences less wiggles than the real gas one.

Figure 2.5 compares the solutions obtained by means of the best implementation of the AUS M+ − up
scheme adopting the WENO (5th − 3rd order) and QUICK (3rd order) interpolation procedures to build
the left and right states of required quantities. The solution obtained with the WENO interpolation is
clearly better.

Figure 2.6 reports the same simulation over a longer (0.5 m vs 0.1 m) computational domain with 500 (vs
100) grid nodes, showing how the discontinuities are correctly transported.

The above simulations were performed with a CFL = 0.25 for both convective and viscous terms. The
robustness of the scheme was also tested and proved by increasing the CFL up to 0.65: solution overlaps
at different time steps with that at CFL = 0.25 without showing additional wiggles. At CFL = 0.75 the
simulation diverges after 38 time steps.

• Still and moving contact discontinuity: the same computational domain of the SOD test was initialized
with uniform temperature (300 K), uniform pressure (150 bar), a jump in the species (CH4 on the left
and O2 on the right). The computational domain has 100 grid nodes uniformly distributed over a length
of 1 cm. Two simulations were performed with the real gas Peng-Robinson equation of state, the first
with initial velocity field u = 0, and the second with u = 10 m/s. For the still contact discontinuity it is
observed that the percent variation of pressure is negligible, as well as temperature and velocity variation
(see Fig. 2.7). Previous versions of the AUS M scheme (the first already implemented in the HeaRT
code) were not able to maintain the constant pressure, temperature and velocity. For the moving contact
discontinuity the percent variation of pressure, as well as temperature and velocity variation are higher
than in the previous case, but rapidly decaying and acceptable (see Fig. 2.8).

• Ideal gas CH4/O2 temporal shear-layer: a shear-layer at 1.5 bar between a central jet of methane
flowing at 100 m/s and a coflowing stream of oxygen at 25 m/s, both being at 300 K, is simulated with
the ideal gas equation of state. The computational domain is two-dimensional with 400 grid nodes
uniformly distributed along the streamwise direction and stretched in the crosswise direction. Periodic
boundary conditions are assumed in the stream direction, while fully non-reflecting (σ = 0) boundaries
are imposed crosswise. Figure 2.9 shows an instantaneous distribution of CH4 mass fraction after the
roll-up was established. In this simulation the density ranges from 0.96 kg/m3 in the methane jet to
1.92 kg/m3 in the oxygen coflow.

Cases Scalars Momentum
1 AUS M/WENO AUS M/QUICK
2 AUS M+ − up/WENO 2nd order centered
3 AUS M+ − up/WENO AUS M+ − up/WENO

Tabella 2.1: Numerical schemes compared through the ideal gas temporal shear-layer.

This test case was assumed as a reference test for comparing different numerical schemes. In particular,
flowfields and transversal profiles of different quantities obtained through the numerical schemes listed
in Table 2.1 were compared. The convective and viscous CFL were 0.2. Results, not reported here,
are overlapped; only the solution with the explicit 2nd order centered scheme exhibits some (negligible)
oscillations. The scheme referred to as Case 3 was also tested with CFL = 0.4: the solution maintained
its stability and was overlapped to the others.

• Real gas LN2/GH2 temporal shear-layer: a shear-layer at 40 bar between a central jet of liquid nitro-
gen at 118 K flowing at 5 m/s and a coflowing stream of gaseous hydrogen at 270 K flowing at 120 m/s,
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c d
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Figura 2.2: Temporal evolution of the pressure in the real gas SOD problem, from its initial field (a) towards
its final state. Solution refers to the best implementation of the AUS M+ − up scheme adopting the
WENO (5th − 3rd order) interpolation.
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a b

c d

e f

Figura 2.3: Temporal evolution of the density in the real gas SOD problem, from its initial field (a) towards its
final state.
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Figura 2.4: Comparison of the ideal gas solutions obtained by means of different implementation of the
AUS M+ − up scheme in the nearby of the rarefafaction wave origin.

Figura 2.5: Comparison of the real gas solutions obtained by means of the best implementation of the AUS M+−

up scheme adopting the WENO (5th − 3rd order) and QUICK (3rd order) interpolations.
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Figura 2.6: Temporal evolution of the density in the real gas SOD problem, obtained by means of the best
implementation of the AUS M+ − up scheme adopting the WENO (5th − 3rd order) interpolation,
from its initial field towards its final state.

Figura 2.7: Simulation of a real gas still contact discontinuity: percent variation of pressure with respect to the
initial 150 bar, temperature, density and velocity profiles after 10000 time steps (dt = 1.3 · 10−7 s).
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Figura 2.8: Simulation of a real gas moving (10 m/s) contact discontinuity: percent variation of pressure with
respect to the initial 150 bar, temperature, density and velocity profiles after 100, 1000, 10000 and
30000 time steps (dt = 1.3 · 10−7 s), from top to bottom.
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Figura 2.9: Instantaneous CH4 mass fraction in the ideal gas temporal shear-layer, obtained by means of the best
implementation of the AUS M+ − up scheme adopting the WENO (5th − 3rd order) interpolation.

is simulated with the Peng-Robinson real gas equation of state. The computational domain is two-
dimensional with 400 grid nodes uniformly distributed along the streamwise direction and stretched in
the crosswise direction. Periodic boundary conditions are assumed in the stream direction, while no-slip
adiabatic wall conditions are imposed crosswise. Figure 2.10 shows two instantaneous distributions of
N2 mass fraction: the mixing-layer does not exhibit a laminar roll-up, but there is a quick transition to
turbulence. In this simulation the density ranges from nearly 3.5 kg/m3 in the gaseous hydrogen coflow
to 560 kg/m3 in the liquid nitrogen central jet. Since this flow is strongly turbulent, the dynamic Smago-
rinsky subgrid scale model was adopted: the subgrid eddy viscosity, additional to that of the numerical
scheme, was found to be critical in reaching a numerically stable solution for this test.

Due to the quick transition to turbulence, it is not possible to compare the temporal evolution obtained
by using different numerical schemes. In particular, two solutions were obtained: one with the old
version of the AUS M scheme (the one also used in Case 1 of Table 2.1), and the second with the best
implementation of the AUS M+−up scheme, both adopting the same WENO interpolation. Starting from
the same initial already perturbed flowfield, the two solutions are very close for nearly 50000 time-steps
(dt ∼ 4.6 · 10−10 s), but then they rapidly and largely deviate; running the code, the first solution exhibits
unphysical temperature undershoots (∼ 103 K, quickly decreasing to 101 K) that cause the divergence of
the simulation, while the second solution does not (the minimum temperature is ∼ 107 K). It is observed
that the real gas mixing of nitrogen and hydrogen at the investigated conditions is expected to produce
adiabatic mixing temperature lower (∼ 108 K) than the initial temperature of N2, as shown in Fig. 2.11.
An instantaneous snapshot of temperature and density is shown in Fig. 2.12.
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Figura 2.10: Two instantaneous snapshots of the N2 mass fraction in the real gas temporal shear-layer, obtained
by means of the best implementation of the AUS M+ − up scheme adopting the WENO (5th − 3rd

order) interpolation.

Figura 2.11: Binary phase-diagram for the N2/H2 mixture from liquid/vapour equilibrium calculations through
REFPROP routines (NIST). The solutions obtained by means of the GERG2008 and the translated-
volume Peng-Robinson equations of state are compared.
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Figura 2.12: Instantaneous snapshot of temperature and density in the real gas temporal shear-layer, obtained
by means of the best implementation of the AUS M+ − up scheme adopting the WENO (5th − 3rd

order) interpolation.
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3 Conclusioni

Upon the work done in this year and described in this report, it is concluded that the AUS M+ − up numerical
scheme, coupled to a robust interpolation procedure (WENO or QUICK in the current implementation in the
code HeaRT), can be adopted for numerical simulations of real gas turbulent mixing also dealing with liquid
injection that may be found in very-high-pressure gas turbine applications. Thanks also to its real gas extension
of the non-reflecting boundary conditions, the ENEA in-house code HeaRT is now an advanced scientific
instrument for numerical simulation in parallel computational frameworks.

As an example, a last simulation performed as exploratory study is here reported to introduce the topics
that will be investigated in details in the next years: it is the combustion at 295 bar of a central methane jet
with a coaxial one of oxygen (strongly diluted in CO2, 88% in mass), injected in a main stream of CO2. Such
simulation highlights critical problems of flame anchoring due to the high CO2 concentration, and a not efficient
combustion characterized by reacting hot pockets (sometimes reaching very high temperature) dangeroulsy
moving towards the turbine downstream of the combustor (see Fig. 3.1). These issues will be investigated by
means of the code HeaRT in the next years with the goals of defining a suitable combustion strategy and the
injection of reactants, to finally draw a ”concept-design” of the CH4/O2/S − CO2 injection plate and of the
combustor of a S − CO2 oxy-combustion cycle.
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Figura 3.1: Distribuzioni istantanee di temperatura e frazione massica di ossigeno per il test esplorativo reagente
metano / ossigeno (fortemente diluito in CO2) gassosi a 295 bar in condizioni di gas reale.
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