

Impianto pilota AG2S:

Dimensionamento di massima

Report Attività

Anna Dell'Angelo Flavio Manenti¹

Caterina Frau² Enrico Maggio Alberto Pettinau POLITECNICO DI MILANO Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" Centrefor Sustainable Process Engineering Research (SuPER) Building 6, Piazza Leonardo da Vinci, 32 - I-20133 Milano, ITALY 1Phone: +39.(0)2.2399.3273; Fax: +39.(0)2.2399.3273; Email: <u>flavio.manenti@polimi.it</u>

SOTACARBO SPA c/o Grande Miniera di Serbariu, 09013 Carbonia, ITALY ¹Phone:+39(0)781 1863071; Fax:+39(0)781 670552; Email: <u>c.frau@sotacarbo.it</u>

Milano, 28 Dicembre 2018

Indice

1.	Introduzione	4				
2.	Strumenti	5				
2.1.	Libreria cinetica	5				
2.2.	Simulatore di reti di reattori	5				
2.3.	Libreria numerica	6				
2.4.	RTR simulation package6					
3.	Simulazione dell'impianto IOSTO					
3.1.	Cinetica	7				
3.2.	Processo (sezione termica)	8				
3.2.1	1. Bilanci di massa ed energia (H&MB)	9				
3.2.2	2. Data sheet per le nuove unità	9				
4.	Conclusioni e sviluppi futuri	10				
5.	Staff e disseminazione	11				
6.	Appendice A – Heat & Material Balances12					
7.	Appendice B – Data Sheet	13				

1. Introduzione

Il report propone ed illustra la sostenibilità e fattibilità del revamping dell'impianto IOSTO ad AG2STM (Acid Gas to SyngasTM). Il confronto svolto permette pertanto di risolvere le attività definite per l'anno in corso, ovvero:

- 1. bilanci di massa ed energia, utili per definire i carichi relativi delle varie operazioni unitarie;
- 2. datasheet delle operazioni.

Al fine di istruire le attività di revamping per l'impianto IOSTO, il presente report fa riferimento esplicito alle attività di studio di processi Grassroots and Refurbishing illustrati nel precedente report (2017-2018), dove il confronto è strutturato per una taglia industriale d'impianto, in modo da sfruttare appieno le competenze del gruppo di ricerca nella definizione preliminare dei carichi relativi (bilanci) delle varie operazioni unitarie e sezioni di processo. Tale studio, permetterà poi di dimensionare in dettaglio il pilota AG2STM assieme a Sotacarbo.

I dati selezionati corrispondono a correnti di processo tipiche di raffineria (Tabella 1).

Description		H2S AMINE			
Description			H25-5W5		
Composition					
H2	kmol/h	8.30	0.00		
H2O	kmol/h	16.20	34.15		
CO2	kmol/h	11.00	0.00		
H2S	kmol/h	403.50	42.05		
NH3	kmol/h	0.00	33.60		
C1	kmol/h	1.40	0.00		
C2	kmol/h	0.70	0.00		
С3	kmol/h	0.90	0.00		
Molar Flow	kmol/h	442.00	109.80		
Mass Flow	kg/h	14627.92	2620.647		
Temperature	°C	40.000	85.000		
Pressure	barg	1.82	1.82		
MW	kg/kmol	33.09	23.87		

Tabella 1.1. Dati selezionati per il dimensionamento di massima.

Il presente report include, pertanto, una breve introduzione degli strumenti utilizzati per lo studio di flowsheeting preliminare (Paragrafo 2), i bilanci di massa ed energia (Paragrafo 3), e le conclusioni e i prossimi sviluppi (Paragrafo 4).

2. Strumenti

Per lo studio di dimensionamento di massima del processo AG2STM ci si è avvalsi delle attività precedentemente sviluppate ed affinate (report 2015-2016, report 2016-2017 e report 2017-2018) attraverso la collaborazione tra il Centro Ricerche SOTACARBO e il Centre for Sustainable Process Engineering Research (SuPER) del Politecnico di Milano.

In particolare, ci si è avvalsi della libreria cinetica con circa 30'000 reazioni, della suite di simulazione di Reti di Reattori (DSmoke 7.0), della libreria numerica per la simulazione e l'ottimizzazione dei processi (BzzMath 7.1) e di diverse soluzioni CAPE (Computer Aided Process Engineering) per l'integrazione dei modelli dettagliati di simulazione del Regenerative Thermal Reactor (RTR) della tecnologia AG2STM all'interno del software di simulazione commerciale AspenHysys[®] (by AspenTech) e PRO/II[®] (by Schneider-Electric).

2.1. Libreria cinetica

La libreria cinetica è sviluppata presso il Centre for SuPER dal 1969¹. La parte della libreria che comprende i meccanismi di pirolisi è il nucleo del programma SPYRO, per la simulazione dei forni di cracking, commercializzato da Technip-Pyrotec (NL) da diverse decadi. La parte di libreria cinetica adottata per gli studi relativi alla tecnologia AG2STM comprende i meccanismi per l'ossidazione parziale del carbonio², i meccanismi per le specie solforate³ e i meccanismi per le specie azotate⁴. La libreria è convalidata attraverso un vasto database che include sperimentazioni ad hoc, esperimenti di letteratura e campagne sperimentali pilota (test run) e industriali.

La libreria cinetica dell'AG2STM non è dischiusa alle comunità scientifica e tecnica.

2.2. Simulatore di reti di reattori

Il Reattore Termico Rigenerativo (RTR)⁵ della tecnologia AG2STM è riportato in Figura 2.1. Si tratta di un reattore non ideale che include una camera termica, un waste heat boiler e uno scambiatore gas/gas di tipo feed/effluent per recupero energetico.

Figura 2.1. Reattore Termico Rigenerativo (RTR) per la tecnologia AG2STM.

¹ Ranzi, E., Faravelli, T., Manenti, F.; Pyrolysis, Gasification, and Combustion of Solid Fuels, Advances in Chemical Engineering. 49, 1-94, 2016.

² Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A. P., & Law, C. K.; Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Progress in Energy and Combustion Science, 38(4), 468-501, 2012.

³ Manenti, F., Papasidero, D., & Ranzi, E.; Revised kinetic scheme for thermal furnace of sulfur recovery units. Chemical Engineering Transactions, 32, 1185-129, 2013.

⁴ Frassoldati, A., Faravelli, T., & Ranzi, E.; Kinetic modeling of the interactions between NO and hydrocarbons at high temperature. Combustion and Flame, 135(1), 97-112, 2003.

⁵ Manenti, F., Pierucci, S., Molinari, L.; Process for reducing CO2 and producing syngas, WO2015/015457A1.

Il reattore RTR è simulato mediante la Suite DSmoke. Tale Suite permette di sviluppare simulazioni costituite da una serie più o meno complessa di reattori ideali, ognuna contenente specifiche cinetiche, in modo da caratterizzare al meglio il comportamento di reattori non ideali, quindi, industriali. DSmoke permette di simulare il reattore RTR con singola o doppia (se in presenza di ammoniaca) camera di combustione, includendo il calcolo degli effetti di ricombinazione tipici della prima parte del fascio tubiero del waste heat boiler. Lo studio di ricombinazione è oggetto di studio del prossimo anno di attività.

La Suite DSmoke è associate alla tecnologia AG2STM, inclusiva di schemi cinetici, per permettere la progettazione e il calcolo preventive delle performance e delle rese. Il codice non è dischiuso alle comunità scientifica e tecnica.

2.3. Libreria numerica

La libreria numerica BzzMath⁶ è utilizzata in oltre 70 paesi per il calcolo scientifico e l'industria di processo. Essa include classi per la risoluzione di sistemi algebrici lineari/non-lineari, sistemi differenziali ed algebrico-differenziali, ottimizzazioni on/off-line, riconciliazione dati, design of experiments, regressioni e stima di parametri, per citarne alcune.

La libreria risolve in maniera efficiente e performante la rete di reattori sviluppata in DSmoke e permette una rapida convergenza dei calcoli di progettazione e di gestione per la tecnologia AG2STM.

Il codice della libreria BzzMath non è dischiuso alle comunità scientifica e tecnica. La libreria è direttamente implementata e operante nella Suite DSmoke.

2.4. RTR simulation package

I modelli cinetici e la libreria numerica son pienamente integrati e interagenti nella Suite DSMoke, in modo da ottenere una simulazione "friendly" del reattore RTR. Tale pacchetto integrato (RTR Simulation Package) è a sua volta implementato all'interno dei principali software commerciali di simulazione dettagliata di processo (AspenTech® and PRO/II®) utilizzati a livello mondiale per le attività di ingegneria di base, di fattibilità economica e processistica e di convalida dei processi.

Il pacchetto RTR Simulation Package include le proprietà termodinamiche delle specie coinvolte e interpreta gli schemi cinetici secondo i formati CHEMKIN, restituendo in continuazione i risultati dei calcoli in file ASCII interpretabili dai simulatori di processo.

⁶ Buzzi-Ferraris, G., Manenti, F., Differential and Differential-Algebraic Systems for the Chemical Engineer: Solving Numerical Problems, WILEY-VCH, Weinheim, Germany, 2015 (VOL. 4).

Buzzi-Ferraris, G., Manenti, F., Nonlinear Systems and Optimization for the Chemical Engineer: Solving Numerical Problems, WILEY-VCH, Weinheim, Germany, 2014 (VOL. 3).

Buzzi-Ferraris, G., Manenti, F., Data Interpretation and Correlation, KIRK-OTHMER ENCYCLOPEDIA of CHEMICAL TECHNOLOGY, JOHN WILEY, 5th Ed., New York, USA, 2011. Online ISBN: 9780471238966.

Buzzi-Ferraris, G., Manenti, F., Interpolation and Regression Models for the Chemical Engineer: Solving Numerical Problems, WILEY-VCH, Weinheim, Germany, 2010 (VOL. 2).

Buzzi-Ferraris, G., Manenti, F., Fundamentals and Linear Algebra for the Chemical Engineer: Solving Numerical Problems, WILEY-VCH, Weinheim, Germany, 2010 (VOL. 1).

3. Simulazione dell'impianto IOSTO

3.1. Cinetica

Nel caso specifico della presente attività, il reattore RTR è simulato mediante la seguente rete di reattori (Figura 3.2):

- 1. PFR adiabatico (camera termica RTR);
- 2. PFR non isotermo (Waste Heat Boiler).

Lo scambiatore di calore gas/gas è direttamente simulato all'interno dei pacchetti commerciali di simulazione di processo.

Gli andamenti di conversione per i reagenti H_2S e CO_2 in funzione del tempo di residenza e della temperatura d'esercizio sono ottenuti dallo studio cinetico effettuato con DSmoke (Figura 3.3 e Figura 3.4).

Per temperature superiori a 1400 K, tipiche dei processi di recupero zolfo, si raggiunge l'equilibrio in tempi ragionevolmente ridotti; al contrario, come atteso, a temperature inferiori le cinetiche risultano essere più lente e i tempi di residenza per raggiungere buone conversioni nel once-through sono inevitabilmente dilatati. Come diretta conseguenza, occorre un buon compromesso tra le temperature di esercizio e i volumi della camera termica.

Si sottolinea come la CO₂, risaputa essere termicamente stabile fino a temperature dell'ordine di 1700 K, sia attaccata e convertita ben oltre il 50% con bassi tempi di residenza e temperature relativamente ridotte.

Figura 3.2. Struttura di simulazione per il reattore RTR.

Figure 3.4. Conversione di CO₂.

3.2. Processo (sezione termica)

Lo studio di revamping dell'impianto IOSTO è stato effettuato con l'ausilio del software commerciale PRO/II[®] (Schneider-Electric). Per le valutazioni preliminari e alla luce dei risultati del precedente paragrafo, si è optato per reattori all'equilibrio termodinamico.

La simulazione della zona termica del processo AG2STM su base IOSTO (Figura 3.5) pertanto comprende: il reattore RTR, rappresentato dal reattore di equilibrio R-101 (comprensivo delle unità preesistenti F-101, F-102 ed F-103 del PFD del processo IOSTO), lo scambiatore rigenerativo E-101, il condensatore E-102, il separatore di condensa S-101 e da due nuove unità E-105 ed S-102, rappresentative rispettivamente del waste heat boiler e del separatore per il recupero dello zolfo.

Figura 2.5. Flowsheet preliminare revamping IOSTO ad AG2STM. I nomi di reattori e operazioni rispecchiano i nomi delle apparecchiature esistenti secondo il PFD dell'impianto IOSTO.

3.2.1. Bilanci di massa ed energia (H&MB)

Vedasi l'Appendice A.

3.2.2. Data sheet per le nuove unità

Vedasi l'Appendice B.

4. Conclusioni e sviluppi futuri

L'impianto IOSTO si presta molto bene al revamping per la tecnologia AG2STM dal momento che un buon numero di unità, anche primarie, può essere riutilizzato "as is". In questo contesto, l'attività ha permesso di effettuare un pre-dimensionamento delle unità mancanti in modo da completare le attività di revamping nel rispetto delle condizioni operative e dei carichi delle unità esistenti.

In particolare, si conclude che da una prima analisi d'ingegneria di base, il revamping richiede l'acquisto ex novo dello scambiatore di calore gas-gas e del waste heat boiler, nonché un'adeguata strumentazione.

È comunque necessaria un'analisi di dettaglio del processo IOSTO, preferibilmente in loco, per acquisire direttamente i dettagli morfologici e operativi per effettuare lo scale-down di dettaglio a partire dal deliverable della presente attività.

Appare sempre più evidente, inoltre, la necessità di studiare le reazioni di ricombinazione dell'H₂S nel primo tratto del Waste Heat Boiler; tale fenomeno può impattare anche del 20% la produzione di syngas/idrogeno della tecnologia AG2S.

Lo studio necessita, pertanto, di un'ottimizzazione robusta CapEx/OpEx che consideri con la dovuta attenzione anche agli aspetti di ricerca operativa di cui sopra.

5. Staff e disseminazione

Grazie alla collaborazione tra SOTACARBO e POLIMI è stato possibile attivare una nuova preziosa risorsa presso il POLIMI. La Dr.ssa Anna Dell'Angelo è ora parte integrante del gruppo di ricerca e sarà il diretto riferimento per le attività scientifiche lato POLIMI, sia per quanto concerne la simulazione ed ottimizzazione di Refurbishing dell'impianto IOSTO, sia per il supporto pratico all'Ing. Frau e il suo team di lavoro per la parte sperimentale.

Si prevede un periodo di visita di durata da definire per la Dr.ssa Dell'Angelo e per il Prof. Manenti per consolidare ed integrare ulteriormente le attività e pianificare la futura disseminazione scientifica, sulla base di quanto già prodotto e accettato in letteratura nel merito:

- Bassani, A., Bozzano, G., Pirola, C., Frau, C., Pettinau, A., Maggio, E., Ranzi, E., Manenti, F., Sulfur rich coal gasification and low impact methanol production (2018), Journal of Sustainable Development of Energy, Water and Environment Systems, 6 (1), pp. 210-226. Cited 2 times. DOI: 10.13044/j.sdewes.d5.0188.
- Bassani, A., Frau, C., Maggio, E., Pettinau, A., Calì, G., Ranzi, E., Manenti, F., Devolatilization of organo-sulfur compounds in coal gasification (2017), Chemical Engineering Transactions, 57, pp. 505-510. Cited 2 times. DOI: 10.3303/CET1757085.
- 3. Bassani, A., Pirola, C., Maggio, E., Pettinau, A., Frau, C., Bozzano, G., Pierucci, S., Ranzi, E., Manenti, F., Acid Gas to Syngas (AG2S[™]) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production (2016), **Applied Energy**, 184, pp. 1284-1291. **Cited 23** times. DOI: 10.1016/j.apenergy.2016.06.040.

APPENDICE A: Bilanci di massa ed energia (H&MB)

Stream Name		ACID-GAS	S2	S3	S4	S5	S6	S7	SULPHUR	S9	WATER	O2
Description									SULPHUR STREAM		WATER STREAM	oxygen stream
Phase												
Total Stream Propertie	IS											
Rate	KG-MOL/HR	0.134	0.134	0.147	0.147	0.147	0.147	0.147	0.000	0.147	0.000	800.0
Std. Liquid Data	KG/HK	4.900	4.960	5.217	5.217	5.217	5.217	5.217	n/a	5.217	n/a	0.257
Total Adi Lig Vol Rate	M3/HR	0.006	0.006	0.006	0.006	0.006	0.006	0.006	n/a	0.006	n/a	0.000 n/a
Total Adi Vap Vol. Rate	M3/HR	2,974	2.974	3.272	3.272	3.272	3,272	3.272	n/a	3.272	n/a	0.180
Temperature	C	20.000	700.000	1300.000	850.000	239,565	220.000	150.000	-273.150	50.000	-273.150	20.000
Pressure	BAR(GA)	4.000	4.000	4.000	4.000	4.000	4.000	1.000	-1.013	0.000	-1.013	4.000
Molecular Weight		37.060	37.060	35.450	35.450	35.450	35.450	35.450	n/a	35.450	18.015	31.999
Enthalpy	M*KJ/HR	0.002	0.006	0.011	0.007	0.004	0.004	0.003	0.000	0.003	0.000	0.000
	KJ/KG	428.106	1202.944	2052.474	1434.116	697.442	676.435	604.473	n/a	504.446	n/a	42.957
Total Liquid Fraction		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Reduced Temp.		0.8311	2.7589	4.5453	3.2451	1.4814	1.4249	1.2226	n/a	0.9337	0.0000	1.8964
Pres. Aceptric Eactor		0.0591	0.0591	0.1281	0.0584	0.0584	0.0584	0.0235	n/a	0.0118	0.0000	0.0994
Watson K (LIOPK)		8 908	8 908	8 202	8 202	8 202	8 202	8 202	n/a	8 202	n/a	4 773
Standard Liquid Density	KG/M3	806.070	806.070	855.255	855.255	855.255	855,255	855,255	n/a	855,255	999.014	1141.912
Specific Gravi	tv	0.8069	0.8069	0.8561	0.8561	0.8561	0.8561	0.8561	n/a	0.8561	1.0000	1,1430
API Gravity		43.870	43.870	33.785	33.785	33.785	33.785	33.785	n/a	33.785	10.000	-7.707
Total Adj. Liq. Density	KG/M3	853.004	853.004	909.186	909.186	909.186	909.186	909.186	n/a	909.186	n/a	n/a
Latent Heat	KJ/KG	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Vapor Phase Propertie	IS											
Rate	KG-MOL/HR	0.134	0.134	0.147	0.147	0.147	0.147	0.147	n/a	0.147	n/a	0.008
	KG/HR	4.960	4.960	5.217	5.217	5.217	5.217	5.217	n/a	5.217	n/a	0.257
Actual	M3/HR	0.627	2.161	3.843	2.743	1.246	1.197	2.562	n/a	3.886	n/a	0.039
Std. Vapor Rate	M3/HR	3.000	3.000	3.299	3.299	3.299	3.299	3.299	n/a	3.299	n/a	0.180
Adj. Vap. Vol. Rate	M3/HK	2.974	2.974	3.272	3.272	3.272	3.272	3.272	n/a	3.272	n/a	0.180
Specific Gravity (Alf=1.0 Molecular Weight)	1.280	1.280	1.224	1.224	1.224	1.224	1.224	n/a	1.224	n/a	1.105
Fotbalov	K I/KG	428 106	1202 944	2052 474	1434 116	697 442	676.435	604 473	n/a	504 446	n/a	42 957
CP	KJ/KG-C	0.978	1.296	1.411	1.319	1.078	1.069	1.032	n/a	0.984	n/a	0.926
Actual Density	KG/M3	7.910	2.295	1.358	1.902	4.189	4.358	2.036	n/a	1.343	n/a	6.614
Adj.Vap.Density	KG/M3	1.668	1.668	1.595	1.595	1.595	1.595	1.595	n/a	1.595	n/a	1.430
Thermal Conductivity	KCAL/HR-M-C	0.01268	0.05186	0.07909	0.05772	0.02722	0.02608	0.02207	n/a	0.01639	n/a	0.02240
Viscosity	CP	0.01317	0.04360	0.06343	0.04847	0.02287	0.02199	0.01886	n/a	0.01452	n/a	0.02034
Liquid Phase Propertie	es -											
Rate	KG-MOL/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	KG/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Actual Std. Liquid Rote	M3/HK	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Adi Lig Vol Rate	M3/HP	107 207	140.659	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Specific Gravity (H2O @	60 F)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Molecular Weight		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Enthalpy	KJ/KG	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
CP	KJ/KG-C	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Actual Density	KG/M3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Adj.Liq.Density	KG/M3	999.850	845.638	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Surface Tension	DYNE/CM	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	67.9439	n/a
Thermal Conductivity	KCAL/HR-M-C	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.55340	n/a
VISCOSITY Solid Rhopp Properties	CP	h∕a	n/a	n/a	n/a	n/a	nva	n/a	hva	n/a	0.54685	n/a
Solid Flidse Floperiles	, 											
Rate	KG-MOL/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	KG/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	M3/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Molecular Weight		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Non-MW Solids												
Rate	KG/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Total Solids												
Rate	KG/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Enthalpy	KJ/KG	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	M*KJ/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
CP	KJ/KG-C	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Density Thermal Conductivity	KG/M3 KCAL/HR-M-C	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a n/a	n/a n/a
		10/d	- IVC	11/0	100	11/61	11/4	11/0	11/0	11/0	11/0	11/0

Appendice B

1.1 Heat Exchangers

Simple Hx	Name	E101	E105
	Description	GAS-GAS HX	Wasted Heat Boiler
Hx Data			
Duty	M*KJ/HR	0.0038	0.0032
Hot out - cold in delta T	С	219.5645	550.0000
Hot in - cold out delta T	С	150.0000	900.0000
Minimum of HOCI or HICO	С	150.0000	550.0000
Hot side product temperature	С	239.5645	850.0000
Cold side product temperature	С	700.0000	400.0000
Hot side liquid fraction		0.0000	0.0000
Cold side liquid fraction		0.0000	1.0000
Value of exchanger U*A	KCAL/HR-C	50279.6986	1.1010
Effective exchanger area	M2	116.9506	0.0012
FT factor (LMTD correction)		0.0001	0.9848
Overall exchanger LMTD	С	182.5789	710.6938
Overall exchanger LMTD from zones	С	N/A	N/A
Hotside pressure drop	BAR	0.0000	0.0000
Coldside pressure drop	BAR	0.0000	0.0000
Convergence tolerence		0.0001	0.0001
Utility inlet or satn. temp.	С	N/A	300.0000
Utility saturation pressure	BAR(GA)	N/A	N/A
Utility outlet temp.	С	N/A	400.0000
Utility flow rate	KG-MOL/HR	N/A	0.4277

1.2.Nuova unità Separatore S-102

Vessel Sizing Calculation						
	Unit Name	S102				
	Description	Sulphur separation				
	Phase	Vapor				
	Flash Type	Isothermal				
Total Stream						
Temperature	C	150.000				
Pressure	BAR(GA)	1.000				
Mole Fraction Liquid		0.0000				
Total Molar Rate	KG-MOL/HR	0.147				
Total Mass Rate	KG/HR	5.217				
Liquid						
Liquid Mass Rate	KG/HR					
Liquid Actual Volume Rate	M3/HR					
Liquid Density	KG/M3	0.000				
Vapor						
Vapour Mass Rate	KG/HR	5.217				
Vapour Actual Volume Rate	M3/HR	2.562				
Vapor Viscosity	CP	0.019				
Vapor Density	KG/M3	2.036				

Flavio Manenti Professor of Chemical Plants and Operations Executive board of EFCE (European Federationof Chemical Engineering) President-elect of the Computer Aided Process Engineering (CAPE), EFCE's Working Party UEFA-licensed and Federal Soccer Coach for FIGC SGS U151talia

POLITECNICO DI MILANO Dipartimento di Chimica, Materiali e Ingegneria Chimica"G. Natta" Sustainable Process Engineering Research (SuPER) team Piazza Leonardo da Vinci, 32, 20133 Milano, ITALY

TECHNISCHE UNIVERSITAET BERLIN Alexander von Humboldt Professor DBTA (Dynamic und Betrieb Technischer Anlagen) Faculty Sekt. KWT 9, Strasse des 17.Juni, 135 - D-10623 Berlin, GERMANY

(Mobile) + 39.338.5665817 (Phone) + 39.(0)2.2399.3273; + 49.(0)30.31423418 (Email) <u>flavio.manenti@polimi.it</u> (Web) <u>http://super.chem.polimi.it</u>