

Impianto pilota AG2S: progetto di massima

C. Frau, E. Loria, F. Poggi

Politecnico di Milano - CMIC Dept."Giulio Natta"

Report RdS/PAR2018/058

IMPIANTO PILOTA AG2S: PROGETTO DI MASSIMA

Caterina FRAU, Eusebio LORIA, Francesca POGGI Politecnico di Milano - CMIC Dept. "Giulio Natta"

Gennaio 2019

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA Piano Annuale di Realizzazione 2018 Progetto: *Tecnologie e metodologie low carbon e Edifici a energia quasi zero (nZEB)* Parte A: Tecnologie per l'impiantistica energetica 'low carbon' Tema A: Impianti ad emissione negativa: Gassificazione e co-gassificazione di biomasse per lo sviluppo di piccoli sistemi energetici e trattamento del syngas e utilizzo della CO₂ Sottotema a.2: Recupero e trattamento di gas e composti provenienti da processi di gassificazione e combustione. Test su impianto da banco per studiare il trattamento dei gas di coda provenienti dalla desolforazione del syngas da carbone e successivo sviluppo Responsabile del Progetto: dott.ssa Franca Rita Picchia, ENEA

Il presente documento descrive le attività di ricerca svolte all'interno dell'Accordo di collaborazione *"Tecnologie e metodologie Low Carbon e Edifici ad energia quasi zero (nZEB)"* Responsabile scientifico ENEA: ing. Paolo Deiana Responsabile scientifico SOTACARBO: ing. Enrico Maggio

Indice

SC	OMMARIO	
1	INTRODUZIONE	5
2	L'IMPIANTO IOSTO	6
	 2.1 TAGLIA E SPECIFICHE DELL'IMPIANTO	
	 2.3.3 Schemi elettrici di base 2.4 DESCRIZIONE DEI SERVIZI AUSILIARI 2.5 SISTEMA DI ANALISI GAS ABB	
3	CONFRONTO TECNICO-ECONOMICO TRA TECNOLOGIA TRADIZIONALE E AG2S	
4	DIMENSIONAMENTO DI MASSIMA DEI COMPONENTI PRINCIPALI DEL PILOTA AG2S 4.1 SIMULAZIONE DELLA CINETICA NELLA SEZIONE DI REAZIONE 4.2 SIMULAZIONE TERMICA DELL'IMPIANTO PILOTA AG2S 4.3 BILANCI DI MASSA ED ENERGIA 4.4 DAT SHEET APPARECCHIATURE	
5	CONCLUSIONI	
6	BIBLIOGRAFIA	
7	ALLEGATO 1 P&I DELL'IMPIANTO IOSTO	
8	ALLEGATO 2 DATA SHEET DELLE APPARECCHIATURE- IOSTO	
9	ALLEGATO 3 SCHEMI DI CONTROLLO -IOSTO	
1(.0 ALLEGATO 4 LAY-OUT CON VISTE -IOSTO	
1:	1 ALLEGATO 5 SCHEMI ELETTRICI DI BASE -IOSTO	67

Sommario

Sotacarbo ha avviato già da diversi anni, in collaborazione con POLIMI – Politecnico di Milano, Dipartimento CMIC "Giulio Natta", un'attività di studio e sperimentazione riguardo la reazione di ossidoriduzione di acido solfidrico e anidride carbonica per la produzione di gas di sintesi, composto essenzialmente da monossido di carbonio, vapore e idrogeno. Lo studio teorico, sviluppato da POLIMI e oggetto di brevetto, propone una reazione ad altissima temperatura in fase gassosa e promette di essere una soluzione particolarmente interessante, vista la possibilità di convertire in H2 e CO (che possono ancora rappresentare un vettore energeticamente valido il cui contributo può essere facilmente estrapolato mediante reazione di combustione) sostanze dannose e/o pericolose per l'ambiente e l'uomo, quali l'H2S e il CO2. I risultati, validati con il contributo sperimentale, potranno rappresentare il punto di partenza per lo sviluppo di una tecnologia di riconversione particolarmente interessante in impianti di gassificazione che prevedono una linea di cattura di H2S e CO2, da cui, attraverso la rigenerazione dell'elemento sequestrante (ad es solventi amminici come MDEA) e l'applicazione di tale processo, ottenere un surplus di gas di sintesi e la contemporanea riduzione di emissioni inquinanti, a fronte di un riuso della CO2.

Nell'ambito del processo di trasferimento della tecnologia AG2S, è fondamentale portare le attività di sperimentazione e simulazione alla scala pilota. A seguito degli studi sperimentali condotti, esiste la possibilità di approfondire le conoscenze scientifiche e tecnologiche relative a questo processo su scala pilota, effettuando un revamping sull'impianto IOSTO, ubicato nella Piattaforma Pilota Sotacarbo.

Sono state in quest'ambito affidate al Politecnico di Milano, Dip. CMIC "Natta" le seguenti attività:

- Bilanci di massa ed energia al fine di definire le dimensioni di massima dei componenti principali;
- Data Sheet dei componenti principali

Esse risultano una prosecuzione delle attività già effettuate nell'ambito del PAR 2017.

1 Introduzione

Questo lavoro si inserisce negli studi svolti in seno all'Accordo di Collaborazione tra ENEA e Sotacarbo fanno parte del Piano Annuale di Realizzazione (PAR) 2018, ripartito in nove Progetti, riferito alla estensione della terza annualità dell'Accordo di Programma MiSE-ENEA 2015-2017, in particolare rivolto allo sviluppo di una ricerca dal titolo "PARTE A: Tecnologie per l'impiantistica energetica Low-Carbon" facente capo al piano annuale di realizzazione 2016 dell'Accordo di Programma MiSE-ENEA sulla Ricerca di Sistema Elettrico, ed in particolare agli ambiti attinenti il Tema di Ricerca "Tecnologie per l'impiantistica energetica Low-Carbon", Progetto A "Impianti ad emissione negativa: gassificazione e co-gassificazione di biomasse per lo sviluppo di piccoli sistemi energetici e trattamento del syngas", Obiettivo a.2 "Recupero e trattamento di gas e composti solforati provenienti da processi di gassificazione e combustione.

I gas di coda provenienti dalla rigenerazione dei solventi utilizzati per la desolforazione sono principalmente costituiti da H2S, oltre che da CO2, CO, COS e altri composti organosolforati. Tali correnti possono essere efficacemente convertite a gas di sintesi in base ad una nuova tecnologia (AG2S[™], Acid Gas to Syngas) sviluppata presso il Politecnico di Milano secondo la reazione di ossido-riduzione:

 $2 H_2S + CO_2 = H_2 + CO + S_2 + H_2O$

Gli studi preliminari di modellazione e sperimentazione svolti in collaborazione con Sotacarbo SpA hanno mostrato l'efficacia di tale reazione a temperature relativamente elevate, tali per cui si ha la decomposizione termica dell'H2S, l'ossidazione dello zolfo ivi contenuto a zolfo elementare e, a seguito dello sviluppo di un pool radicalico, la riduzione di CO2 a CO. Tale processo permette di neutralizzare l'H2S presente nei gas di coda, così come già avviene per alcuni processi di conversione, ma nel contempo valorizza il potenziale di idrogeno contenuto in questa molecola. Inoltre, il carattere innovativo del processo è nell'utilizzo di CO2 come agente ossidante e non di aria o ossigeno come comunemente avviene. Ciò permette di convertire porzioni significative di CO2 in gas sintesi.

L'interazione tra Politecnico di Milano e Centro Ricerche Sotacarbo è fortemente sinergica. L'attività sperimentale del Centro di Ricerca di Carbonia ha permesso di estendere e convalidare i modelli cinetici e matematici sviluppati presso il Politecnico, caratterizzando quindi in maggior dettaglio i meccanismi di reazione coinvolti nella reazione complessiva di ossido-riduzione per la produzione di gas di sintesi e, quindi, di ottimizzarne la resa.

A fronte degli studi preliminari, esiste la necessità di approfondire le conoscenze scientifiche e tecnologiche relative a questo processo, nonché di dimostrarne fattibilità e impatto su scale dimostrative ed industriali con forti ricadute in diverse aree tecnologiche come la gassificazione del carbone, la desolforazione di gas naturale e greggi, la produzione a impatto zero di metanolo e ammoniaca per citarne alcune.

Di recente è stato effettuato uno studio di fattibilità tecnica e economica del processo per la produzione di gas di sintesi con riferimento ad una scala tecnologica paragonabile a quella industriale. In particolare è stato eseguito un confronto tecno-economico comparativo tra la tecnologia tradizionale (Traditional Technology, TT) per le unità di recupero zolfo e la nuova tecnologia AG2S e, al fine di istruire le attività di revamping per l'impianto IOSTO, sono stati effettuati studi di Grassroots e Refurbishing che risultano parte del confronto. I risultati ottenuti hanno evidenziato che la tecnologia AG2S risulta economicamente più appetibile della tecnologia tradizionale sia in termini di CapEx che di OpEx per impianti chiavi in mano, mentre il Refurbishing, d'altro canto, è decisamente più sensibile agli aspetti di ottimizzazione non ancora implementati.

Grazie a tali strumenti, è stato possibile, durante la presente fase, effettuare il dimensionamento di massima delle le principali unità che intervengono nella tecnologia AG2S, permettendo di limitare al minimo i rischi costruttivi e operativi nelle fasi di commissioning e refurbishing.

2 L'impianto IOSTO

2.1 Taglia e specifiche dell'impianto

L'impianto pilota (denominato *IOSTO Innovative Oxyflue SO2 Treatment and Oxydation*) è nato con l'obiettivo di studiare sperimentalmente le efficienze di conversione della reazione di ossidazione catalitica SO2+1/2 O2 \rightarrow SO3 e le rese di produzione di acido solforico commerciale dalla SO2 contenuta nei fumi di un ossi-combustore flameless. L'impianto è caratterizzato da una portata dei fumi in ingresso da trattare pari a 3 Nm³/h (circa 3.7 kg/h in condizioni di progetto) ed è composto da due unità principali ovvero la sezione di reazione costituita da un reattore catalitico ad alta temperatura per la conversione dell'anidride solforosa in anidride solforica (che lavora in continuo) e la sezione di assorbimento in H₂O dell'anidride solforica e produzione di acido solforico concentrato (che lavora in modalità semi-batch).

L'impianto ha un duplice scopo: consentire la rimozione degli ossidi di zolfo dalla corrente di gas esausti in ingresso e produrre contemporaneamente acido solforico di grado commerciale. In questo modo vengono abbattuti i costi di smaltimento dei reflui prodotti dai tradizionali processi di desolforazione a freddo (tipo Desox) e nello stesso tempo la corrente gassosa di CO₂ concentrata in uscita dalla sezione di assorbimento può essere inviata tal quale allo stoccaggio.

Figura 1 Vista frontale dell'impianto IOSTO

Figura 2 Viste laterali dell'impianto IOSTO

I fumi di combustione ovvero la corrente gassosa in alimentazione all'impianto rappresentano gli effluenti tipici prodotti da un ossi-combustore pressurizzato di tipo flameless ad alta efficienza alimentato con slurry di carbone di basso rango (lignitico ad alto tenore di zolfo) e provengono da una caldaia di recupero termico (GVR) di tipo VELOX.

Su una base di servizio di 330 giorni annui (35 giorni di fermo programmato annuo, non necessariamente continuativi), l'impianto ha un fattore di servizio di 0,90; pari a 7.920 ore annue non necessariamente continuative.

In condizioni di progetto, la corrente gassosa spillata a valle di un turbo-espansore posizionato dopo la caldaia a recupero (GVR) ha le seguenti caratteristiche:

"Fumi di combustione di ingresso reattore Stream Exhausted gas					
Portata totale	4.5 kg/h (3 Nm3/h)				
Temperatura 450°					
Pressione 0,2 barg					
Co	omposizione [%vol]				
Particolato	assente				
Metalli pesanti e alcalini	assenti				
NOx	assenti				
CO2	56%				
SO2 2					
H2O 39					
O2 3%					

Tabella 1 Composizione gas esausti da ossicombustore

Al fine di verificare le prestazioni dell'impianto, la corrente in alimentazione può anche essere costituita da un gas sintetico prodotto da bombole con caratteristiche analoghe ai fumi.

"Fumi sintetici di ingresso reattore Stream Simulated gas					
Portata totale	3,7 kg/h (3 Nm3/h)				
Temperatura	25°C				
Pressione	0,2 barg				
Co	mposizione [%vol]				
Particolato	assente				
Metalli pesanti e alcalini	assenti				
NOx	assenti				
CO2	88%				
SO2	3,15				
N2	3,5				
02	4,75%				

Tabella 2 Composizione gas sintetici disisdratati

In particolare i valori di temperatura e pressione della corrente sono le condizioni tipiche della corrente in uscita dal turbo espansore posizionato a valle della caldaia.

In termini di prestazioni nominali, l'impianto è caratterizzato da una efficienza di conversione SO₂-SO₃ pari a 99.7 % mol e un grado di purezza della corrente di CO₂ in uscita dalla colonna di assorbimento pari a 97% mol.

Fumi di combustione uscita reattore						
Portata totale	3,7 kg/h (1,8 Nm3/h)					
Temperatura	350					
Pressione	0,2					
Composizione [%vol]						
Compos						
Particolato	assente					
Particolato Metalli pesanti e alcalini	assente assenti					
Particolato Metalli pesanti e alcalini CO2	assente assenti 90%					
Particolato Metalli pesanti e alcalini CO2 SO2 –SO3	assente assenti 90% 0,01 % -3,20 %					
Particolato Metalli pesanti e alcalini CO2 SO2 –SO3 H2O	assente assenti 90% 0,01 % -3,20 % 3,54%					

Tabella 3 Composizione fumi uscita reattore

Fumi uscita colonna ricchi in CO2					
Portata totale	3,4 kg/h 1,8 Nm3/h				
Temperatura	40				
Pressione	0,2 barg				
Comp	osizione [%vol]				
Particolato	assente				
Metalli pesanti e alcalini	assenti				
NOx	assenti				
CO2	96%				
SO2	0,01%				
H2O	0				
02	3,48				

Tabella 4 Composizione

fumi uscita colonna

2.2 Descrizione del processo

2.2.1 Principali fasi del processo

Il processo complessivo consta delle fasi seguenti:

- Disidratazione dei fumi di combustione;
- Riscaldamento dei fumi disidratati in ingresso al reattore alla temperatura di 350°C;
- Reazione catalitica (ossidazione da SO₂ a SO₃);

 $SO_{2(g)} + \frac{1}{2} O_{2(g)} \leftrightarrow SO_{3(g)} \Delta H^{\circ}r = -198.3 \text{ KJ/mol}$

- Assorbimento della SO₃ in H₂O per formare H₂SO₄.

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 $\Delta H^\circ r = -130 \text{ KJ/mol } SO_3$

Durante la fase di start-up è necessario scaldare tramite un riscaldatore elettrico l'alimentazione disidratata fino a una temperatura idonea per l'inizio della reazione di ossidazione. A tal fine è anche previsto il recupero termico del calore dei fumi di combustione tramite uno scambiatore di calore che riscalda l'alimentazione disidratata. Nel caso di alimentazione costituita da gas sintetico, il riscaldatore elettrico dovrà funzionare per l'intera durata del processo.

Tutte le reazioni che avvengono all'interno del processo sono esotermiche.

L'ossidazione da SO₂ a SO₃ è una reazione catalitica e prevede l'utilizzo di un catalizzatore al Pt o V2O5 con temperatura di soglia <300°C o <500. La temperatura media della reazione è di circa 350 °C nel caso del platino e 450°C nel caso del vanadio.

Il reattore a due stadi catalitici è dotato di due riscaldatori elettrici (uno per ciascuno stadio) al fine di mantenere costante la temperatura della reazione.

Tra i due stadi catalitici è inoltre previsto un raffreddamento intermedio vista l'esotermicità delle reazione.

Lo stadio di inter-refrigerazione potrà essere coibentato con coppelle in lana di roccia in relazione alle rese di conversione della reazione catalitica in modo da spingere la reazione di ossidazione verso l'equilibrio.

Figura 3 Coibentazione intercooler tra i due stadi del reattore

La colonna di assorbimento, a differenza delle altre apparecchiature, è esercita in modalità discontinua. In particolare all'inizio del ciclo di lavoro dell'impianto, il fondo-colonna viene riempito con acqua o una soluzione acida di H₂SO₄ a una concentrazione inferiore rispetto a quella commerciale.

I cicli di produzione di acido solforico prevedono le seguenti fasi:

- Riempimento fondo colonna con 10 kg di H_2O pura con produzione di 140 kg di H_2SO_4 al 98% in circa 700 h;
- Riempimento fondo colonna inizialmente con 10 kg di H₂O fino alla produzione di H₂SO₄ al 50% in circa 48 h e successivamente riempimento fondo colonna con 10 kg di H₂SO₄ al 50 % con produzione di 75 kg di H₂SO₄ al 98% in circa 347 h.

I fumi in uscita dal reattore, che attraversano la colonna in controcorrente con l'acqua, producono l'acido solforico che viene ricircolato continuamente in testa alla colonna dopo essere stato raffreddato in uno scambiatore sulla linea di ricircolo. L'acido prodotto viene raccolto sul fondo della colonna. I fumi ricchi di CO₂ e contenenti O₂ vengono spurgati dall'alto della colonna e inviati al camino.

La corrente gassosa e la corrente liquida escono dalla colonna a circa 40°C.

Uno schema che evidenzia le diverse fasi del processo è riportato in Figura 4.

Alimentazione Exhausted gas ad alta T (350 -450 °C) Alimentazione Simulated Gas - Tamb Corrente in ingresso ricca in CO₂ con basse concentrazioni di SO₂ dell'ordine del 2 % vol Figura 4 Schema a blocchi dell'impianto

2.2.2 Sezioni principali dell'impianto

L'impianto pilota consta di due sezioni principali (cosiddette Package Units e indicate nel seguito con P.U.):

- P.U. 01 comprendente
 - Sezione di disidratazione e riscaldamento dei fumi (in continuo);
 - Sezione di Reazione (in continuo);
- P.U. 02 comprendente
 - Sezione di Assorbimento (in semi-batch).

Nella prima avviene la conversione catalitica dell'anidride solforosa SO₂ in anidride solforica SO₃. Nella seconda avviene la produzione di acido solforico concentrato (al 98%) per assorbimento dell'anidride solforica SO₃ in acqua.

L'impianto è dotato di sistema di supervisione e controllo così come riportato nel P&I dell'impianto allegato.

Figura 5 P&I della configurazione finale dell'unità

2.2.3 Sezione di disidratazione dei fumi

La sezione di disidratazione (Figura 6, i cui dati di progetto sono riportati in Tabella 5) è costituita dai due scambiatore E-101 e E-102.

Lo scambiatore di calore rigenerativo gas-gas E-101 a doppio tubo ha la funzione di recupero termico del calore dei fumi di combustione (Temperatura operativa_{latocaldoIN}= 400, Temperatura operativa_{latocaldoOUT}= 190 °C). Il calore scambiato è circa 1 kW. Il materiale del mantello esterno e del tubo interno è AISI 316. Le guarnizioni sono in mica.

Lo scambiatore di calore gas-liquido E-102 a doppio tubo ha la funzione di condensatore per la disidratazione dei fumi di combustione utilizzando acqua di raffreddamento a circa 20°C (Temperatura operativa_{latocaldo}UT = 30 °C). Il calore scambiato è pari a 1,5 kW. Il materiale del mantello e delle piastre è AISI 316 mentre le guarnizioni sono in mica.

Tabella 5 Dati di progetto sezione disidratazione

TAG	Descrizione	Servizio					
E-101	Scambiatore rigenerativo	Recupero calore fumi caldi					
	Dati geometrici						
-							
	Condizioni operative e propriet	à dei fluidi					
Pressione operativa	nominale 0.2 barg						
Temperatura di ese	rcizio lato caldo da 400°C a 190°C						
Temperatura di ese	rcizio lato freddo da 30°C a 300°C						
Portata gas lato cal	do						
3 Nm3/h							
6 m3/h							
4.5 kg/h							
Portata gas lato freddo 1.9 Nm3/h							
Materiale							
AISI 316/AISI316/mica							

E-101 Scambiatore rigenerativo E-102 Condensatore S-101 Separatore condense V-101 Serbatoio condensa

Figura 6 Sezione di disidratazione –exhausted gas

2.2.4 Sezione di Reazione

All'ingresso del reattore di conversione è installato un riscaldatore elettrico in materiale ceramico rivestito in AISI 316, con la funzione di preriscaldamento della corrente gassosa disidratata al reattore. La

temperatura di progetto del riscaldatore è di 1500 °C con una temperatura operativa di 250/350 °C. Il calore scambiato è pari a 1.5 kW_{th} per una potenza elettrica installata pari a 2,1 kW.

Il reattore catalitico R-101 a pressione atmosferica (0.2 barg) (Figura 7, i cui dati di progetto sono riportati in Tabella 6)) è costituito da due stadi per la conversione dell'SO2 in anidride solforica SO3 e H2SO4 (in tracce). Costruito in Hastelloy per le parti interne, e in AISI 310/316 per le altre. Il reattore ha le seguenti caratteristiche geometriche principali: Diametro interno = 83 mm, Lunghezza = 960 mm, spessore della parete = 3 mm. La reazione esotermica (con costante della velocità di reazione 0.2 s^{-1}) avviene in due strati di catalizzatore di Pt (temperatura di soglia 300°C) o vanadio (temperatura di soglia 400°C) opportunamente coibentati tra i quali è posto il sistema di raffreddamento intermedio E-103. La temperatura operativa dello stadio di reazione è compresa tra 350 e 450 °C. La temperatura di progetto è di 600 °C. In ciascuno dei due stadi di reazione è presente un riscaldatore elettrico (i cui dati di progetto sono riportati in Tabella 6) in materiale ceramico con la funzione di garantire il mantenimento della temperatura dello stadio (range di temperatura = 350/450 °C, Temperatura di progetto = 1500°C, Calore scambiato =1.5 kW_{th}, Potenza installata = 2,1 kW).

Tra i due stadi è previsto un raffreddamento intermedio della corrente di gas attraverso uno scambiatore di calore per garantire il controllo della temperatura nel reattore. E' prevista la possibilità di coibentare lo stadio di intercooling con coppelle di lana di roccia.

Figura 7 Reattore catalitico - R101

Tabella 6 Dati di progetto del reattore e dei riscaldatori

TAG	Descrizione	Servizio				
R101	Reattore	Ossidazione catalitica				
	Dati geometrici					
Diametro intern	io 83 mm					
Altezza 960 mm						
Volume nomina	le 0.005 m ³					
	Condizioni operative e propri	età dei fluidi				
Pressione operation	tiva nominale 0.2 barg (-0.001 bar)					
Temperatura di	esercizio 350°C (max 450 °C)					
Temperatura di	parete 350°C					
Temperatura pr	ogetto 600°C					
Portata gas 3.65 kg/h						
Superficie di scambio totale 0.097 m ²						
Materiale						

AISI 316/AISI 310

TAG	Descrizione	Servizio						
F-101	Riscaldatore	Riscaldamento fumi						
	elettrico start up	secchi						
	Dati geometrici							
-								
Сог	ndizioni operative e p	proprietà dei fluidi						
Potenza i	installata 2.1 kW (24	0 V, 50 Hz)						
Tempera	tura di progetto 150	0°C						
Portata g	gas da riscaldare 1.9	m³/h@ 0.2 barg						
Riscalda	mento da 30 a 300 °C							
	Materia	le						
Fibra cer	ramica e AISI 316							
TAG	Descrizione	Servizio						
F -	Riscaldatore	Mantenimento						
102/103	elettrico reattore	temperatura						
	Dati geom	etrici						
-								
Co	ndizioni operative e p	proprietà dei fluidi						
Potenza	installata 2.1 kW (24	0 V, 50 Hz)						
Tempera	tura di progetto 150	0°C						
Portata gas da riscaldare 1.9 m³/h@ 0.15 barg								
Mantenimento temperatura a 350°C								
Materiale								
Fibra ceramica e AISI 316								

2.2.5 Sezione di Assorbimento

La produzione di acido solforico avviene nella colonna di assorbimento liquido-gas C-201(Figura 8 i cui dati di progetto sono riportati in Tabella 7) nella quale si produce l'acido solforico concentrato per assorbimento con reazione chimica esotermica fra SO3 e acqua o acido a concentrazione minore di 98%. La colonna ha le seguenti caratteristiche geometriche principali: Diametro interno =54 mm, Lunghezza = 2000 mm, spessore della parete = 3 mm. La temperatura di progetto è 200°C. La colonna è realizzata in PVDF: le guarnizioni sono in teflon. Il gas alimentato in colonna viene raffreddato da uno scambiatore a fascio tubiero (Figura 9) ad acqua per abbattere la temperatura da 350/450°C a circa 50°C.

E' previsto un serbatoio di accumulo dell' H_2SO_4 concentrato T-201 (Figura 11) con la funzione di raccogliere l'acido prodotto e scaricato in modalità discontinua. Il diametro interno è di 500 mm, la lunghezza di 500 mm e lo spessore è pari a 3 mm. La temperatura operativa massima è di 70 °C (40 °C in condizioni normali). La temperatura di progetto è di 200 °C. il serbatoio è coibentato ed è realizzato in PVDF, le guarnizioni sono in teflon;

Attraverso lo scambiatore E-201 liquido-liquido (Figura 10) si raffredda la corrente liquida di ricircolo della colonna (Calore scambiato = 2,5 kW, Duty 2.5).

Il ricircolo alla colonna avviene tramite una pompa centrifuga con una portata caratteristica di 100 l/h in Hastelloy.

Figura 8 Colonna di assorbimento -C201

Figura 9 Scambiatore gas –liquido ingresso colonna

Figura 10 Scambiatore a piastre e pompe rilancio soluzione

TAG	Descrizione	Servizio				
C201	Colonna assorbimento	Produzione H2SO4				
	Dati geometric	i				
Diametro int	erno 90 mm					
Altezza 4000	mm					
Spessore dell	e pareti 3 mm					
Volume nom	inale colonna 0.0048 m ³					
	Condizioni operative e prop	rietà dei fluidi				
Pressione op	erativa nominale 0.2 barg (ma	ax 0.25 barg)				
Temperatura	a di esercizio 40°C (max 70 °	C)				
Temperatura	a di progetto 200°C					
Portata del li	iquido ricircolato 180 kg/h					
Portata gas 3	8.65 kg/h					
Densità del liquido da 993 kg/m ³ (acqua) a 1810 kg/m ³ (H2SO4 al 98						
%)						
Viscosità dinamica da 0.8 (acqua) a 17 cP (H2SO4 al 98 %)						
Materiale						

Tabella 7 dati di progetto della colonna e dello scambiatore a piastre

PVDF

TAG	Descrizione	Servizio				
E-201	Raffredda mento liquido colonna					
	Dati geometrici					
-						
Condiz	zioni operative e proprietà dei fluid	li				
Pressione operativa nominale 0.15 barg Temperatura di esercizio lato caldo da 40°C a 30°C Temperatura di esercizio lato freddo da 20°C a 35°C Portata liquido da raffreddare 0.1 m ³ /h						
Materiale						
Hastelloy/Hastelloy/teflon						

Figura 11 Stoccaggio acido -V201 (1000 l)

2.2.6 Descrizione delle apparecchiature

L'impianto è montato su skid ed è costituito da varie apparecchiature appartenenti alle due sezioni: reazione e assorbimento. Le apparecchiature che compongono le due unità con alcune della loro caratteristiche son riportate in Tabella 8 e descritte nel seguito più dettagliatamente.

Tag	Sezione	Q.tà	Descrizione	Servizio	Dimensione caratteristica	Note
E-101	Reazione	1	Scambiatore di calore	Recupero termico fumi combustione	1 kW	AISI 316
E-102	Reazione	1	Scambiatore di calore	Condensatore H ₂ O	1.5 kW	AISI 316
E-103	Reazione	1	Scambiatore di calore	Raffreddamento intermedio	1 kW	Hastelloy acciao rivestito
F-101	Reazione	1	Riscaldatore elettrico	Start up riscaldamento fumi		
F-102	Reazione	1	Riscaldatore elettrico	Riscaldamento 1° letto catalitico		
F-103	Reazione	1	Riscaldatore elettrico	Riscaldamento 2° letto catalitico		
R-101	Reazione	1	Reattore catalitico	Conversione SO_2 in SO_3	0.2 s ⁻¹	Hastelloy acciao rivestito
S-101	Reazione	1	Separatore condensa	Separazione acqua da fumi		AISI 316
D-101	Reazione	1	Scaricatore condensa	Scarico condensa		AISI 316
C-201	Assorbimento	1	Colonna assorbimento	Produzione H ₂ SO ₄		PVDF
P-201	Assorbimento	1	Pompa ricircolo	Pompa di ricircolo H ₂ SO ₄	100 l/h	Hastelloy acciao rivestito
M-201	Assorbimento	1	Motore pompa	-		
E-201	Assorbimento	1	Scambiatore di calore	Raffreddamento ricircolo	2.5 kW	Hastelloy acciao rivestito

Tabella 8 Equipment list

Altre apparecchiature:

- Ventilatore centrifugo a pale rovesce in materiale plastico –cassa a spirale in PE, girante a semplice aspirazione in PP con pale rovesce e mozzo in alluminio, motore asincrono per funzionamento continuo a carico costante
- Pompe di carico e scarico acido pneumatiche a doppio membrana sede in PP/PVDF e membrana in santoprene/teflon
- Separatore condense AISI 316
- Serbatoio condense materiale plastico HDPE (100 litri)
- Pompe a membrana di ricircolo soluzione corpo in PP/PP+CF/ECTFE organi interni in PTFE Viton

2.2.7 Caratteristiche del piping

Le caratteristiche delle tubazioni (tra cui il diametro nominale, tipo di fluido etc) sono riportate per ciascuna linea sul P&I in allegato.

Tutti i materiali (tubazioni, giunti, raccordi, flange, valvole ed altri accessori), a contatto con i fluidi di processo sono realizzati in materiale compatibile con le condizioni di lavoro e il fluido come specificato nella Tabella 9.

Tabella 9 Compatibilità materiali piping

Sostanza			Condizioni di progetto meccanico			Costruzione			
Fase	Servizio	composizione	tipo	T progetto °C	T Minima ℃	P Progetto barg	P minima barg	piping	Guarnizione
liquido	Acqua di raffreddamento	H2O	neutro	20/35°C		2		AISI 304	
Liquido	Reintegro soluzione acquosa in colonna	_{H2O} o acido diluito	Neutro o acido	20		0		AISI 316	teflon
Gas	Fumi alimentati ingresso reattore	CO2, O2 , N2 ,SO2, H2O	Sostanze che producono gas infiammabili o fluidi aggressivi	20/450°C		0,2		AISI 316	
Gas	Fumi raffreddati e disidratati	CO2, O2 , N2 ,SO2, H2O	Sostanze che producono gas infiammabili o fluidi aggressivi	30°C				AISI 316	
Gas	Fumi ossidati caldi	CO2, O2 , N2 ,SO2, SO3, H2O	Sostanze che producono gas infiammabili o fluidi aggressivi	350				AISI310S	
Liquido	Acido concentrato ricircolato	H2SO4	Acido corrosivo	40		0		Materiale plastico	
Liquido	Acido concentrato stoccato	H2SO4	Acido corrosivo	40		0		PVDF	
Gas	Fumi di scarico	CO2	neutro		40	<0.5		AISI 316	teflon

In sintesi, i materiali scelti in quanto giudicati compatibili sono stati:

- acciai austenitici AISI-316 per le componenti impiantistiche e il piping a monte del reattore R-101;
- leghe resistenti alla corrosione Hastelloy per le componenti impiantistiche e il piping a valle del reattore R-101, esso compreso;
- PVDF e teflon, in alternativa alle leghe Hastelloy per le componenti impiantistiche e il piping a valle del reattore R-101.
- E' stato escluso l'utilizzo di acciaio al carbonio, alluminio, ottone e bronzo.

L'utilizzo dell'acciaio al carbonio o ottone è consentito per l'impiego di fluidi relativi ai servizi ausiliari.

2.2.8 Prese di campionamento

Vista la natura sperimentale dell'impianto, sono state predisposte adeguate prese di campionamento (A.C.) al fine di procedere all'analisi della composizione delle correnti e valutare l'efficienza delle singole apparecchiature.

I punti di campionamento principali predisposti sono:

Lato Liquido

- A.C. sulla linea dell'acqua reflua USCITA 8 proveniente dal processo di disidratazione dei fumi di combustione;
 - A.C. sulla linea di ricircolo dell'acido concentrato USCITA 5 dalla colonna di assorbimento C-201.

Lato Gas

- A.C. sulla linea dei fumi di combustione INGRESSO1 in alimentazione all'impianto;
- A.C. sulla linea dei fumi di combustione CORRENTE 1.1 all'ingresso del reattore R-101;
- A.C. tra i due stati di reazione catalitici del reattore R-101;
- A.C. sulla linea dei fumi di combustione ossidati CORRENTE 3 in uscita al reattore R-101
- A.C. sulla linea dei fumi di scarico USCITA 2.5 in uscita dalla colonna di assorbimento C-201.

2.2.9 Guarnizioni e tenute

Per quanto riguarda le guarnizioni e tenute, sul lato processo sono risultati utilizzati i seguenti materiali (in ordine di preferenza) :

- PTFE (Teflon)
- Kynar, Polifluoruro di vinilidene (PVDF)
- Noryl
- Kalrez
- Polychlorotrifluoroethylene (PTCFE) Neoflon
- Viton

Invece sono stati esclusi i seguenti:

- EPDM, elastomero etilene propilene
- FPM o FKM, elastomero fluorurato (Viton)
- PEEK
- NBR, gomma nitrilica
- Silicone
- SBR

2.3 Sistema di controllo e gestione degli allarmi

Per la gestione operativa del processo è installato un Quadro di Controllo posizionato a bordo dello skid che garantisce:

- la conduzione (anche in modalità manuale) delle unità attraverso il monitoraggio delle principali variabili di processo;
- l'archiviazione dei dati;
- l'intervento dell'operatore sulle variabili manipolabili, sui set-point o direttamente sull'apertura delle valvole (in manuale).

E' costituito da due sistemi che permettono il controllo dell'impianto, la gestione delle operazioni in sicurezza e la comunicazione attraverso l'impianto:

- Sistema di controllo compresi i moduli di acquisizione (PLC);
- Sistema di Spegnimento d'Emergenza (ESD).

Il Quadro di Controllo (Figura 12) è il centro principale di controllo sia durante le normali operazioni che durante le fasi di emergenza. Le principali azioni per il normale funzionamento in sicurezza dell'impianto sono effettuate dal Quadro di Controllo attraverso un software di controllo con interfaccia touch sceen fronte quadro, dove sono implementate tutte le operazioni logiche e le sequenze. In caso di emergenza gli interblocchi implementati nell'ESD eseguono le azioni di protezione. Il sistema registra, rende visibili e gestisce gli allarmi provenienti dal processo per garantire l'intervento dell'operatore.

Il quadro di controllo dell'impianto è integrato con un PLC di tipo "High Performance" in grado di garantire la massima affidabilità di comunicazione e sicurezza. Il sistema hardware e software di controllo è stato sviluppato per permettere future espansioni. Sono stati integrati tutti i moduli di acquisizione e controllo necessari a gestire il maggiore numero di segnali rispetto a quelli predisposti inizialmente.

Figura 12 Quadro elettrico di controllo

Le variabili di controllo e le misure principali (ad es. temperature, pressioni) sono visualizzate e rese disponibili per la ripetizione dei segnali prevalentemente del tipo:

- 4..20 mA (uscita di regolazione in continuo di tipo proporzionale);
- Digitali input/output (0..24VDC;0..115 VAC; 0..230 VAC) predisposti per l'uscita ON/OFF.

Il Quadro di Controllo è collocato in zona sicura (zona non classificata ai sensi della normativa ATEX) ed è predisposto per il funzionamento all'aperto (IP55) opportunamente riparato al fine di proteggere gli schermi dei controllori dalla luce solare.

Tutti i loop di controllo possono essere comandati, impostati e monitorati sul quadro attraverso i diversi moduli di controllo, interruttori, pulsanti e spie luminose poste su di esso. Gli allarmi di malfunzionamento sono visualizzati tramite apposite spie applicate sul quadro.

L'impianto è dotato di opportuni strumenti e componenti di sicurezza che permettono di identificare condizioni anomale di funzionamento.

2.3.1 Anelli di regolazione

Di seguito vengono riportati i loop di controllo principali relativi alle due sezioni (reazione e assorbimento) dell'impianto:

P.U. 01 Reazione

- LOOP 101 Misura e indicazione di temperatura e pressione sulla linea dei fumi di combustione in ingresso;
- LOOP 102 controllo della temperatura dei fumi di combustione nella sezione di disidratazione (variabile controllata temperatura dei fumi TT-102 variabile manipolata portata acqua di raffreddamento tramite la valvola TCV-102;
- LOOP 103 controllo della temperatura dei fumi di combustione in ingresso al reattore R-101 (variabile controllata temperatura dei fumi TT-103 variabile manipolata potenza erogata dal riscaldatore elettrico F-101 tramite solid state relè);
- LOOP 104 controllo della temperatura dei fumi di combustione all'interno del primo letto catalitico R-101 (variabile controllata temperatura dei fumi TT-104 variabile manipolata potenza erogata dal riscaldatore elettrico F-102 tramite solid state relè); Allarme di alta temperatura TAHH-104 per attivazione di spegnimento di emergenza impianto;
- LOOP 105 controllo della temperatura dei fumi di combustione all'interno del secondo letto catalitico R-101 (variabile controllata temperatura dei fumi TT-105 variabile manipolata potenza erogata dal riscaldatore elettrico F-103 tramite solid state relè); Allarme di alta temperatura TAHH-105 per attivazione di spegnimento di emergenza impianto;
- LOOP 106 controllo della temperatura dei fumi di combustione tra i due letti catalitici del reattore R-101 (variabile controllata temperatura dei fumi TT-106 variabile manipolata potenza di aria di raffreddamento tramite solid state relè che agisce su E-103);
- LOOP 107 misura e indicazione di pressione sulla linea dei fumi di combustione in uscita da S-101;
- LOOP 108 misura e indicazione di pressione sulla linea dei fumi di combustione in ingresso al reattore R-101;
- LOOP 109 misura e indicazione di pressione sulla linea dei fumi ossidati in uscita dal reattore R-101.

P.U. 02 Assorbimento

 LOOP 201 Controllo del livello di liquido nel serbatoio di accumulo T-201 della colonna C-201 ; presenza di Level Switch LSH-201 (alto livello manda sistema in ESD); presenza Level Switch LSL-201 (basso livello ferma la pompa di ricircolo P-201); controllo di concentrazione di acido sulla linea di ricircolo tramite l'analizzatore AE-201; presenza di allarme di alta concentrazione AAHH-201 che ferma la pompa P-201 da PLC; misura e indicazione di temperatura sulla linea di ricircolo in uscita dalla colonna;

- LOOP 202 controllo della temperatura del ricircolo da raffreddare per il reintegro in colonna (variabile controllata temperatura del ricircolo con termocoppia TT-202 variabile manipolata portata acqua di raffreddamento tramite valvola TCV-202
- LOOP 203 controllo della pressione dell'impianto tramite soffiante

2.3.2 Strumentazione e sensoristica

I sensori presenti sulle linee delle due unità P.U, con le principali caratteristiche sono riportati in Tabella 10**Errore. L'origine riferimento non è stata trovata.** e descritte dettagliatamente nel seguito:

PU	TAG	1/0	q.ty q.tà	Description Descrizione	M	leasur Misura	e		Power Alimen	Supply tazione		Ar Ar	nalog nalog	I/O ico
					From Da	To a	[uom] [udm]	Volt age	Colonna1	Power Potenza	[uom] [udm]	From Da3	To a4	[uom] [udm]
101	PT-101	Input	1	PT ingresso Fumi di combustione	0	1	barg	24	DC	1	W	4	20	mA
101	TT-101	Input	1	TT ingresso Fumi di combustione	-270	1370	°C							
101	TT-102	Input	1	TT Fumi di combustione freddi	-270	1370	°C	1	Contraction of the second	Provide States	1000	1911-11	200	1482.85
101	TCV-102	Output	1	Regolazione portata d'acqua di raffreddamento (E-102)								4	20	mA
101	TT-103	Input	1	TT ingresso al Reattore del Fumi di combustione	-270	1370	°C		Contraction in	10.00	1.1.1.2.2.	331233	1.00	
101	TX-103	Output	1	Solid State Relè riscaldatore F-101								4	20	mA
101	TT-104	Input	1	TT primo letto catalitico Reattore	-270	1370	°C		Section Strength	1.200	Section 20		1000	
101	TX-104	Output	1	Solid State Relè riscaldatore F-102								4	20	mA
101	TT-105	Input	1	TT secondo letto catalitico Reattore	-270	1370	°C		Constanting of the		1000			
101	TX-105	Output	1	Relé riscaldatore F-103								4	20	mA
101	TT-106	Input	1	TT secondo ingresso al Reattore	-270	1370	°C		All the second second	1	1.1.2.2.45		Sec. 1	
101	TX-106	Output	1	Solid State Relè riscaldatore E-103					and the second second			4	20	mA
101	PT-107	Input	1	PT Fumi di combustione freddi	0	1	barg	24	DC	1	W	4	20	mA
101	PT-108	Input	1	PT ingresso al Reattore del Fumi di combustione	0	1	barg	24	DC	1	W	4	20	mA
101	PT-109	Input	1	PT ingresso Fumi nella Colonna	0	1	barg	24	DC	1	W	4	20	mA
102	AT-201	Input	1	Composizione Soluzione in uscita dalla Colonna	C	0.78	kg/h	24	DC			4	20	mA
102	ALHH-201	Output	1	Stop sulla pompa P-201	STREET.	Statist.			1000 C	14491238	AND ROLL		New York	
102	TT-201	Input	1	Temperatura Soluzione in uscita dalla Colonna	-270	1370	°C							
102	LSH-201	Input	1	Livellostato di alto del Serbatoio		100.33	12016		CONSTRUCTION OF	1.2.2.3.5	100008	1000	21.52	
102	LSL-201	Input	1	Livellostato di basso del Serbatoio										
102	LAL-201	Output	1	Stop sulla pompa P-201	200		0.00		State - State	Storages			in the second second	Constant of
102	TT-202	Input	1	TT ingresso del Reintegro in Colonna	-270	1370	°C							
102	TCV-202	Outout	1	Regolazione portata d'acqua di raffreddamento (E-201)	Seconder	100000			Same and the second	2018/2017	1000	4	20	mA

Tabella 10: I/O summary

P.U. 01 Reazione

- TT-101 (Q.tà 1) Misuratore della temperatura dei fumi di combustione in ingresso allo scambiatore E-101, Type K (-200 / 1398 °C);
- PT-101 (Q.tà 1) Misuratore di pressione dei fumi di combustione prima della loro disidratazione (0-1 bar, Potenza fornita 12 V);
- TT-102 (Q.tà 1) Misuratore della temperatura dei fumi di combustione raffreddati, Type K (-200 / 1398 °C);
- TT-103 (Q.tà 1) Misuratore della temperatura dei fumi di combustione in ingresso a R-101 (controllo F-101), Type K (-200 / 1398 °C);
- TT-104 (Q.tà 1) Misuratore della temperatura del primo letto catalitico (Controllo F-102), Type K (-200 / 1398 °C);
- TT-105 (Q.tà 1) Misuratore della temperatura del secondo letto catalitico (Controllo F-103), Type K (-200 / 1398 °C);
- TT-106 (Q.tà 1) Misuratore della temperatura dell'aria di raffreddamento (Controllo E-103), Type K (-200 / 1398 °C);
- PT-107 (Q.tà 1) Misuratore di pressione dei fumi di combustione dopo la separazione della condensa (0-1 bar, Potenza fornita 12 V);
- PT-108 (Q.tà 1) Misuratore di pressione dei fumi di combustione riscaldati dopo la separazione della condensa (0-1 bar, Potenza fornita 12 V);
- PT-109 (Q.tà 1) Misuratore di pressione dei fumi ossidati in ingresso alla colonna (0-1 bar, Potenza fornita 12 V);
- TX-103 (Q.tà 1) Relè on-off del riscaldatore F-101 al fine di mantenere la temperatura costante sul reattore (Potenza fornita 230 V);
- TX-104 (Q.tà 1) Relè on-off del riscaldatore F-102 al fine di mantenere la temperatura costante sul reattore (Potenza fornita 230 V);

- TX-105 (Q.tà 1) Relè on-off del riscaldatore F-103 al fine di mantenere la temperatura costante sul reattore (Potenza fornita 230 V);
- SC-106 (Q.tà 1) Inverter, controllo della portata d'aria di raffreddamento al reattore R-101 (Potenza fornita 230 V)

P.U. 02 Assorbimento

- TT-201 (Q.tà 1) Misuratore della temperatura della soluzione acida (ricircolo/acido concentrato) in uscita alla colonna C-201, Type K (-200 / 1398 °C);
- TT-202 (Q.tà 1) Misuratore della temperatura del ricircolo della soluzione acida in colonna, Type K (-200 / 1398 °C);
- PT-203 (Q.tà 1) Misuratore di pressione dei fumi di scarico in uscita dalla colonna (0-1 bar, Potenza fornita 12 V);
- LSH-201 (Q.tà 1) Controllo del livello di liquido (alto) nella colonna C-201(Potenza fornita 24 V);
- LSL-201 (Q.tà 1) Controllo del livello di liquido (basso) nella colonna C-201 (Potenza fornita 24 V);
- AE-201 (Q.tà 1) Sensore per l'analisi della composizione della soluzione acida (ricircolo/acido), (Potenza fornita 24 V);
- AT-201 (Q.tà 1) Trasmettitore della composizione per il sensore AE-201

2.3.3 Schemi elettrici di base

L'impianto assorbe una potenza elettrica massima pari a 6.5 kW.

Di seguito (Figura 13 e Figura 14) sono riportati gli schemi elettrici di base.

Figura 13 Schema elettrico di base dell'unità di reazione e assorbimento

Figura 14 Schema elettrico di base dei riscaldatori elettrici, degli organi di movimentazione e della strumentazione

2.4 Descrizione dei servizi ausiliari

I servizi di base necessari al funzionamento dell'impianto sono: <u>Aria strumenti</u>

- Pressione di alimentazione 6 barg (min.)
- Filtrata e senza olio (contenuto di olio max 0.003 ppm; polveri max 0.01 μm)
- Deumidificata con punto di rugiada 20°C (max)

<u>Azoto</u>

-	Pressione di alimentazione		8 barg	g (max.	
-	Specifica minima		grado	tecnico	2.5
<u>Acqua di l</u>	raffreddamento a servizio di utenza E-102 e E201				
-	Portata totale¹_(max/nor/min)		circa 2	200/-/-	g/h
	 Ingresso E-102 		circa 5	50 kg/h	
	 Ingresso E-201 		circa 5	50 kg/h	
-	Disponibile in ingresso a				
	- <u>T(</u> max/nor/min)	-/20/-	0		С
	 <u>Pressione (max/nor/min)</u> 	4.0/2.	5/2.0	barg	
-	Ritorna a				
	- <u>T (</u> max/nor/min)	-/35/-	0		С
	 <u>Pressione (max/nor/min)</u> 	4.0/2.	5/2.0	barg	
-	Massimo Delta T di ritorno	≤ 20°C	2		
-	Caratteristiche tipiche:				
	- рН	9,0-10),0		

¹ Valori arrotondati e maggiorati del 10 % rispetto ai valori di processo

- Conduttività
- Chloride
- Total iron (Fe)
- Corrosione
- Nitrite
- Bacteri

- < 4.500 µS/cm < 100 ppm < 1 ppm 1 mm/yr 250-300 ppm < 1.000 colonies/ml
- Altre: trattamento con inibitori per la corrosione e biocidi.

2.5 Sistema di analisi gas ABB

L'analisi in composizione del flusso gassoso in ingresso e in uscita potrà essere effettuata mediante analisi gascromatografiche eseguite tramite il sistema analitico ABB. Opportuni collegamenti verranno realizzati per mettere in comunicazione i punti di campionamento (tbd) con l'analizzatore.

Il sistema di analisi gas installato nella piattaforma pilota Sotacarbo permette il campionamento e l'analisi immediata di un massimo di 15 stream gassosi costituiti da specie ridotte. È costituito da un armadio carrellato mobile ABB, avente dimensioni 800 x 800 x 2000 mm, dotato di condizionatore e di segnalatore acustico luminoso per la segnalazione della presenza di gas esplosivo. In tale armadio sono installati sia un'unità di trattamento gas che gli analizzatori per la misura delle concentrazioni di sei gas, ovvero:

- CO, CO2 e CH4 tramite modulo URAS26 di tipo IR (raggi infrarossi), con i seguenti campi di misura:
 - ✓ CO2: 0-45% in volume;
 - ✓ CH4: 0-5% in volume;
 - ✓ CO: 0-30% in volume;
- H2 tramite modulo CALDOS 25 a conducibilità termica, con campo di misura tra lo 0 e il 100% in volume;
- O2 tramite modulo MAGNOS 206 di tipo paramagnetico, con campo di misura tra lo 0 e il 25% in volume;
- H2S tramite modulo LIMAS 11 a raggi ultravioletti, con campo di misura tra lo 0 e il 2% in volume.

Il sistema di analisi (in figura 15) è completato da un sistema di acquisizione e registrazione dati. In particolare tutta la strumentazione di analisi è collegata ad un sistema di gestione della scansione dei punti di misura, ad un PLC per la gestione automatica delle sequenze di misura e ad un sistema per la gestione e archiviazione dati.

Figura 15 Sistema di analisi ABB.

3 Confronto tecnico-economico tra tecnologia tradizionale e AG2S

Nel corso del precedente PAR2017 l'aspetto approfondito con la collaborazione del Politecnico di Milano ha riguardato la valutazione preliminare del processo AG2S su scala maggiori di quella pilota; è stato fatto confronto tecno-economico fra l'impianto AG2S e un tipico impianto di raffineria (tecnologia tradizionale) per il recupero di H2 dalla corrente ricca in H2S con recupero dello zolfo. La tecnologia tradizionale selezionata è quella di Tecnimont-KT, utilizzata per la progettazione di diverse unità di recupero zolfo (SRU) mentre l'innovativa tecnologia AG2S[™] consente di produrre gas di sintesi convertendo anche una certa quantità di CO2 rispetto al tradizionale processo Claus.

In questa fase sono stati stimati i bilanci di massa ed energia per la tecnologia AG2S[™] senza alcun tipo di ottimizzazione di processo. E' selezionato l'idrogeno come unico vero prodotto a discapito del potenziale (più elevato) in termini di syngas come prodotto complessivo della tecnologia AG2S[™].

Anche in questo contesto ristretto, la tecnologia AG2S[™] risulta economicamente più appetibile della tecnologia tradizionale sia in termini di CapEx che di OpEx per impianti chiavi-in-mano. Il Refurbishing, al contrario, è risultato decisamente più sensibile ad aspetti di ottimizzazione ancora da implementare e rientranti nei potenziali sviluppi futuri.

Inoltre, al fine di avviare le attività di revamping per l'impianto IOSTO, sono stati effettuati gli studi di Grassroots e Refurbishing.

4 Dimensionamento di massima dei componenti principali del pilota AG2S

Al fine di istruire le attività di revamping per l'impianto IOSTO, il presente report fa riferimento esplicito alle attività di studio di processi Grassroots and Refurbishing illustrati nel precedente report (PAR 2017), dove il confronto è strutturato per una taglia industriale d'impianto, in modo da sfruttare appieno le competenze del gruppo di ricerca nella definizione preliminare dei carichi relativi (bilanci) delle varie operazioni unitarie e sezioni di processo.

Lo studio di revamping dell'impianto IOSTO comprende in particolar modo il dimensionamento della sezione di reazione costituita da un Reattore Termico Rigenerativo (RTR) tipico della tecnologia AG2S e riportato in Figura 16.

Figura 16 Reattore Termico Rigenerativo (RTR) per la tecnologia AG2S

Si tratta di un reattore non ideale che include una camera termica, un waste heat boiler e uno scambiatore gas/gas di tipo feed/effluent per recupero energetico.

- Il dimensionamento di massima è stato realizzato nei seguenti step:
 - 1. Simulazione cinetica dell'impianto IOSTO basato sul nuovo reattore RTR;

- 2. Simulazione termica dell'impianto IOSTO basato sul nuovo reattore RTR;
- 3. Bilanci di massa e energia dell'impianto;
- 4. Data sheet dei componenti.

Il reattore RTR è stato simulato mediante la Suite Dsmoke che permette di sviluppare simulazioni costituite da una serie più o meno complessa di reattori ideali, ognuna contenente specifiche cinetiche, in modo da caratterizzare al meglio il comportamento di reattori non ideali, quindi, industriali.

Per il dimensionamento di massima del processo AG2S™ci si è avvalsi di diversi strumenti tra cui:

- Una libreria cinetica sviluppata presso il Centre for SuPER (POLIMI) con circa 30'000 reazioni,
- una suite di simulazione di Reti di Reattori (DSmoke 7.0),
- una libreria numerica per la simulazione e l'ottimizzazione dei processi (BzzMath 7.1)
- diverse soluzioni CAPE (Computer Aided Process Engineering) per l'integrazione dei modelli dettagliati di simulazione del Regenerative Thermal Reactor (RTR) all'interno del software di simulazione commerciale **AspenHysys** (by AspenTech) e **PRO/II** (by Schneider-Electric).

4.1 Simulazione della cinetica nella sezione di reazione

Il reattore RTR (non ideale) è stato simulato mediante una rete di reattori costituita da un PFR adiabatico (camera termica RTR) e un PFR non isotermo (Waste Heat Boiler). Lo scambiatore di calore gas/gas a valle del PFR non isotermo è stato direttamente simulato con pacchetti commerciali di simulazione di processo.

Figura 17 Struttura di simulazione per il reattore RTR

Sono stati ottenuti gli andamenti di conversione per i reagenti H2S e CO2 in funzione del tempo di residenza e della temperatura d'esercizio.

Figura 18.a Conversione H2S

60%

50%

30%

20%

10%

0%

Conversion [%] 40%

Risulta che:

- Per temperature superiori a 1400 K, tipiche dei processi di recupero zolfo, la specie H2S raggiunge conversioni prossime all'equilibrio in tempi ragionevolmente ridotti; al contrario a temperature inferiori le cinetiche risultano essere più lente e i tempi di residenza per raggiungere buone conversioni nella configurazione once-through sono inevitabilmente dilatati. Occorre un buon compromesso tra le temperature di esercizio e i volumi della camera termica.
- La specie CO2, termicamente stabile fino a temperature dell'ordine di 1700 K, viene convertita con valori di conversione oltre il 50% con bassi tempi di residenza e temperature relativamente ridotte.

La libreria cinetica utilizzata è stata sviluppata presso il Centre for SuPER dal 19691. La parte della libreria che comprende i meccanismi di pirolisi è il nucleo del programma SPYRO, per la simulazione dei forni di cracking, commercializzato da Technip-Pyrotec (NL) da diverse decadi. La parte di libreria cinetica adottata per gli studi relativi alla tecnologia AG2S™ comprende i meccanismi per l'ossidazione parziale del carbonio2, i meccanismi per le specie solforate e i meccanismi per le specie azotate. La libreria è convalidata attraverso un vasto database che include sperimentazioni ad hoc, esperimenti di letteratura e campagne sperimentali pilota (test run) e industriali.

La libreria numerica denominata BzzMath è utilizzata in oltre 70 paesi per il calcolo scientifico e l'industria di processo. Essa include classi per la risoluzione di sistemi algebrici lineari/non-lineari, sistemi differenziali ed algebrico-differenziali, ottimizzazioni on/off-line, riconciliazione dati, design of experiments, regressioni e stima di parametri. La libreria risolve in maniera efficiente e performante rete di reattori sviluppate in DSmoke e permette una rapida convergenza dei calcoli di progettazione e di gestione per la tecnologia AG2S™.

I modelli cinetici e la libreria numerica sono pienamente integrati e interagenti nella Suite DSMoke, in modo da ottenere una simulazione "friendly" del reattore RTR. Tale pacchetto integrato (RTR Simulation Package) è a sua volta implementato all'interno dei principali software commerciali di simulazione dettagliata di processo (AspenTech® and PRO/II®) utilizzati a livello mondiale per le attività di ingegneria di base, di fattibilità economica e processistica e di convalida dei processi.

4.2 Simulazione termica dell'impianto pilota AG2S

I bilanci termici e materiali sono stati svolti con l'ausilio del software commerciale PRO/II (Schneider-Electric). Per le valutazioni preliminari e alla luce dei risultati del precedente paragrafo, il reattore è stato simulato come un reattore all'equilibrio termodinamico.

La simulazione della zona termica del processo AG2S su base IOSTO (Figura 19) comprende: il reattore RTR, rappresentato dal reattore di equilibrio R-101 (comprensivo dei preriscaldatori preesistenti F-101, F-102 ed F-103 del PFD del processo IOSTO), lo scambiatore rigenerativo E-101, il condensatore E-102, il separatore di condensa S-101 e da due nuove unità E-105 ed S-102, rappresentative rispettivamente del waste heat boiler e del separatore per il recupero dello zolfo.

Figura 15. Flowsheet preliminare revamping IOSTO ad AG2S

4.3 Bilanci di massa ed energia

Nella tabella seguente sono riportati bilanci di massa e di energia della nuova configurazione dell'impianto losto.

Stream Name		ACID-GAS	S2	83	S4	S5	SG	25	SULPHUR	S 9	WATER	02
Description									SULPHUR STREAM		WATER STREAM	oxygen stream
Total Stream Pronerties												
Rate	KG-MOL/HR	0.134	0.134	0.147	0.147	0.147	0.147	0.147	0.000	0.147	0.000	0.008
	KG/HR	4.960	4.960	5.217	5.217	5.217	5.217	5.217	n/a	5.217	n/a	0.257
Std. Liquid Rate	M3/HR	0.008	0.006	0.008	0.006	0.006	0.006	0.006	n/a	0.006	n/a	0.000
Total Adj.Liq.Vol.Rate	M3/HR	0.008	0.006	0.006	0.006	0.006	0.006	0.006	n/a	0.006	n/a	n/a
Total Adj.Vap.Vol. Rate	M3/HR	2.974	2.974	3.272	3.272	3.272	3.272	3.272	n/a	3.272	n/a	0.180
Temperature	0	20.000	700.000	1300.000	850.000	239.565	220.000	150.000	-273.150	50.000	-273.150	20.000
Pressure	BAR(GA)	4.000	4.000	4.000	4.000	4.000	4.000	1.000	-1.013	0.000	-1.013	4.000
Molecular Weight		37.060	37.080	35.450	35.450	35.450	35.450	35.450	n/a	35.450	18.015	31.999
Enthalpy	M*KJ/HR	0.002	0.006	0.011	0.007	0.004	0.004	0.003	0.000	0.003	0.000	0.000
	KJ/KG	428.106	1202.944	2052.474	1434.116	697.442	676.435	604.473	n/a	504.446	n/a	42.957
Total Liquid Fraction		0.000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000
Reduced Temp.		0.8311	2.7589	4.5453	3.2451	1.4814	1.4249	1.2226	n/a	0.9337	0.0000	1.8964
Pres.		0.0591	0.0591	0.0584	0.0584	0.0584	0.0584	0.0235	n/a	0.0118	0.0000	0.0994
Acentric Factor		0.1330	0.1330	0.1281	0.1281	0.1281	0.1281	0.1281	n/a	0.1281	0.3448	0.0222
Watson K (UOPK)		8.908	8.908	8.202	8.202	8.202	8.202	8.202	n/a	8.202	n/a	4.773
Standard Liquid Density	KG/M3	806.070	806.070	855.255	855.255	855.255	855.255	855.255	n/a	855.255	999.014	1141.912
Specific Gravity		0.8069	0.8069	0.8561	0.8561	0.8561	0.8561	0.8561	n/a	0.8561	1.0000	1.1430
API Gravity		43.870	43.870	33.785	33.785	33.785	33.785	33.785	n/a	33.785	10.000	-7.707
Total Adi. Lia. Density	KG/M3	853.004	853.004	909.186	909.186	909.186	909.186	909.186	n/a	909.186	n/a	n/a
Latent Heat	KJIKG	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Vapor Phase Properties												
Rate	KG.MOL/HR	0.134	0.134	0 147	0 147	0 147	0 147	0 147	e/u	0 147	e/u	0.008
	KG/HR	4.960	4.960	5.217	5.217	5.217	5.217	5.217	n/a	5.217	n/a	0.257
Actual	M3/HR	0.627	2.161	3.843	2.743	1.246	1.197	2.562	n/a	3.886	n/a	0.039
Std. Vapor Rate	M3/HR	3,000	3.000	3.299	3.299	3.299	3.299	3.299	n/a	3.299	n/a	0.180
Adi.Vap.Vol. Rate	M3/HR	2.974	2.974	3.272	3.272	3.272	3.272	3.272	n/a	3.272	n/a	0.180
Specific Gravity (Air=1.0)		1.280	1.280	1.224	1.224	1.224	1.224	1.224	n/a	1.224	n/a	1.105
Molecular Weight		37.060	37.060	35.450	35.450	35.450	35.450	35.450	n/a	35.450	n/a	31.999
Enthalpy	KJIKG	428.106	1202.944	2052.474	1434.116	697.442	676.435	604.473	n/a	504.446	n/a	42.957
CP	KJ/KG-C	0.978	1.296	1.411	1.319	1.078	1.069	1.032	n/a	0.984	n/a	0.926
Actual Density	KG/M3	7.910	2.295	1.358	1.902	4.189	4.358	2.036	n/a	1.343	n/a	6.614
Adj.Vap.Density	KG/M3	1.008	1.668	1.595	1.585	1.595	1.595	1.595	n/a	1.595	n/a	1.430
Thermal Conductivity	KCAL/HR-M-C	0.01268	0.05186	0.07909	0.05772	0.02722	0.02608	0.02207	n/a	0.01639	n/a	0.02240
Viscosity	Ъ	0.01317	0.04380	0.06343	0.04847	0.02287	0.02199	0.01886	n/a	0.01452	n/a	0.02034
Liquid Phase Properties												
Rate	KG-MOL/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	KG/HR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Actual	M3/HR	E/U	n/a	E/U	n/a	E/U	n/a	n/a	n/a	E/U	n/a	n/a
Std. Liquid Rate	M3/HR	E/U	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Adj.Liq.Vol.Rate	M3/HR	107.297	140.659	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Specific Gravity (H2O (2)	80 F)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Molecular Weight		E/L	eyu .	D/a	e, l	n/a	D/a	e/u	n/a	n/a	n/a	n/a
Enthalpy	KUKG	n/a	e/u	E/L	evu	ц/а	n/a	e/u	n/a	n/a		п/а - /-
	NJNG-C	E/L		D/3	L'A	E/1				EV.B		
Actual Density	NG/MS		D/E 820	E/L	e d	п/а - (-	e/-			EVE 2/2		
Surface Tension	DYNEICM	000.000 D/A	e/u	6/L		6/L	e/u	e/u	6/0	en Na	67 9439	e/u
Thermal Conductivity	KCAL/HR-M-C	e)L	e/u	e/u	e/u	e/u	e/u	e/u	D/3	n/a	0.55340	n/a
Viscosity	CP	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.54685	n/a

Tabella 11 Heat & Material Balance- revamping IOSTO ad AG2S

4.4 Dat sheet apparecchiature

Di seguito sono riportati i data sheet relativi al dimensionamento di:

- E-101 (GAS-GAS HX) -scambiatore rigenerativo gas gas
- E-105 caldaia con recupero del calore HP steam (waste heat boiler)
- S-102 separatore zolfo

Simple Hx	Name	E101	E105
	Description	GAS-GAS HX	Wasted Heat Boiler
Hx Data			
Duty	M*KJ/HR	0.0038	0.0032
Hot out - cold in delta T	С	219.5645	550.0000
Hot in - cold out delta T	С	150.0000	900.0000
Minimum of HOCI or HICO	С	150.0000	550.0000
Hot side product temperature	С	239.5645	850.0000
Cold side product temperature	С	700.0000	400.0000
Hot side liquid fraction		0.0000	0.0000
Cold side liquid fraction		0.0000	1.0000
Value of exchanger U*A	KCAL/HR-C	50279.6986	1.1010
Effective exchanger area	M2	116.9506	0.0012
FT factor (LMTD correction)		0.0001	0.9848
Overall exchanger LMTD	С	182.5789	710.6938
Overall exchanger LMTD from zones	С	N/A	N/A
Hotside pressure drop	BAR	0.0000	0.0000
Coldside pressure drop	BAR	0.0000	0.0000
Convergence tolerence		0.0001	0.0001
Utility inlet or satn. temp.	С	N/A	300.0000
Utility saturation pressure	BAR(GA)	N/A	N/A
Utility outlet temp.	С	N/A	400.0000
Utility flow rate	KG-MOL/HR	N/A	0.4277

Tabella 12. Datasheet E101/E105- revamping IOSTO ad AG2S

Tabella 13 Datasheet S-102- revamping IOSTO ad AG2S

	Description Phase	S102 Sulphur separation Vapor
	Flash Type	Isothermal
Total Stream		
Temperature	C	150.000
Pressure	BAR(GA)	1.000
Mole Fraction Liquid		0.0000
Total Molar Rate	KG-MOL/HR	0.147
Total Mass Rate	KG/HR	5.217
Liquid		
Liquid Mass Rate	KG/HR	
Liquid Actual Volume Rate	M3/HR	
Liquid Density	KG/M3	0.000
Vapor		
Vapour Mass Rate	KG/HR	5.217
Vapour Actual Volume Rate	M3/HR	2.562
Vapor Viscosity	CP	0.019
Vapor Density	KG/M3	2.036

5 Conclusioni

I gas di coda provenienti dalla rigenerazione dei solventi utilizzati per la desolforazione sono principalmente costituiti da H₂S, oltre che da CO₂, CO, COS e altri composti organosolforati. Tali correnti possono essere efficacemente convertite a gas di sintesi in base ad una nuova tecnologia sviluppata presso il Politecnico di Milano.

Gli studi preliminari di modellazione e sperimentazione hanno mostrato l'efficacia di tale reazione a temperature relativamente elevate. Inoltre, il carattere innovativo del processo è nell'utilizzo di CO₂ come agente ossidante e non di aria o ossigeno come comunemente avviene. Ciò permette di convertire porzioni significative di CO₂ in gas sintesi.

L'impianto IOSTO si presta molto bene al revamping per la tecnologia AG2S dal momento che un buon numero di unità, anche primarie, può essere riutilizzato "as is". In questo contesto, l'attività ha permesso di effettuare un pre-dimensionamento delle unità mancanti in modo da completare le attività di revamping nel rispetto delle condizioni operative e dei carichi delle unità esistenti.

In particolare, si conclude che da una prima analisi d'ingegneria di base, il revamping richiede l'acquisto ex novo dello scambiatore di calore gas-gas e del waste heat boiler, nonché un'adeguata strumentazione.

È comunque necessaria un'analisi di dettaglio del processo IOSTO per acquisire direttamente i dettagli morfologici e operativi per effettuare lo scale-down di dettaglio a partire dal deliverable della presente attività. Appare sempre più evidente, inoltre, la necessità di studiare le reazioni di ricombinazione dell'H₂S nel primo tratto del Waste Heat Boiler; tale fenomeno può impattare anche del 20% la produzione di syngas/idrogeno della tecnologia AG2S. Lo studio necessita, pertanto, di un'ottimizzazione robusta CapEx/OpEx che consideri con la dovuta attenzione anche agli aspetti di ricerca operativa di cui sopra.

6 Bibliografia

Bassani, A., Pirola, C., Maggio, E., Pettinau, A., Frau, C., Bozzano, G., Pierucci, S., Ranzi, E., Manenti, F. (2016). Acid Gas to Syngas (AG2S[™]) technology applied to solid fuel gasification: cutting H2S and CO2 emissions by improving syngas production. Applied Energy. DOI: http://dx.doi.org/10.1016/j.apenergy.2016.06.040.

7 Allegato 1 P&I dell'impianto IOSTO

8 Allegato 2 Data sheet delle apparecchiature- IOSTO

ITE	M F-10 F-10	2 3	RISCALDAT	DA ORE	TA SHEET ELETTRICO REATTORE		-					
SE	RVICE: Mantenime	nto temperatura	di reazione	QUA	NTITY: 2		SO		RBO			
	FLUID ALLOC	ATION	1	HO.	[SIDE		COLD	SIDE				
			INPUT		OUTPUT	INP	UT	TUO	PUT			
1	FLUID					Fumi s	secchi	Fumi o	ssidati			
2	FLUID CONDITION					Vap	ore	Vap	oore			
3	LIQUID CRITICAL PRE	SSURE							-			
4	LIQUID VAPOR PRESS	SURE				3	1		-			
5	LIQ. DENSITY ACTUAL	/ BASE (@20°C)				121	520		(1 2)			
6	VAPOR DENSITY	(kg/m3)	¢.			1,0	01	1,	02			
7	VISCOSITY	cP	a			0,0	03	0,	03			
8	BACK PRESSURE	barg							-			
9	MOL. WEIGHT / COMP	RESS.	·			43,1	0,99	43,8	0,99			
10	FLOW RATE	MIN	×			s	S0	2	5			
11	m3/h	NORM				1,	9	1	,9			
12	65	MAX	ř – – – – – – – – – – – – – – – – – – –		1	8 <u>.</u>		2	-			
13	PRESS./TEMP.	MIN				0,1		0,1				
14	barg / °C	NORM	2		· · · · · · · · · · · · · · · · · · ·	0,15	350	0,15	350			
15	<u>s</u>	MAX	2			0,2	4	0,2	400			
16	SPECIFIC HEAT	kJ / kg K	/ 			0	1,(8				
17	THERMAL CONDUCT	W/mK		11 (1	V/cm2)	8	0,0)4				
18	LATENT HEAT	kJ/kg	J			8	2					
19	PRESSURE DROP	barg	2			8	2					
20	FOULING RESIST.	m2°C / W			and the second s	0		3	-			
21	HEAT EXCHANGED	kW	1,5		1,5	1,	5	1	,5			
22	TRANSF RATE SERVIC	CE	×		a second a s	3			-			
23	INSTALLED POWER		· · · · · · · · · · · · · · · · · · ·	2,	1 kW	2		A				
24	ELECTRICAL POWER	SUPPLY		240	/, 50 Hz	2		5				
25				a a mai		xō.		Sec.				
1			<u> </u>	CONS	TRUCTION CARACTERISTICS		0010	0105				
26		Ĩ.		но	1 SIDE	COLD SIDE						
20	DESIGN PRESSURE	barg			U	6	0,4	49 7.4				
21		pag 20		15	- 00°C	~	0,1	10				
20	CORR ALLOW DES	C pum		10	-		0.0	15				
30	CONNECTION	0.000				2 2 2						
31	NOZZI E		- C									
32	N° PASSES											
			•		MATERIAL	- 1 						
33												
34	SHELL	MATERIAL		Ceran	nic Fiber	<i>(</i> 4	<u>5</u> 1	[]				
35	PLATE	MATERIAL			S	0	12					
36	GASKET	MATERIAL			2	<i>w</i>	12	a1				
37	CODE REQUIREMENT		~		2	10 (d)	() ()	80				
38	PARTITION PLATE		2		2	45	(0	20				
39	WEIGHT	KG			9		1	5				

ITE	EM F-10	1	RISCALDAT	DA ORE E	TA SHEET ELETTRICO DI START-UP							
SE	RVICE: Riscalda me	nto dei fumi sec	chi	QUAI	NTITY: 1							
	FLUID ALLOC	ATION		нот	I SIDE		COLD	SIDE				
			INPUT		OUTPUT	INP	UT	OUT	PUT			
1	FLUID					Fumis	secchi	Fumi	secchi			
2	FLUID CONDITION					Vap	ore	Vap	ore			
3	LIQUID CRITICAL PRE	SSURE					6					
4	LIQUID VAPOR PRESS	SURE				0.						
5	LIQ. DENSITY ACTUAL	/ BASE (@20°C)				2	8.2	1.21	1.29			
6	VAPOR DENSITY	(kg/m3)				2,	1	1	0			
7	VISCOSITY	cP				0,0)2	0,	03			
8	BACK PRESSURE	barg							-			
9	MOL. WEIGHT / COMP	RESS.				43	0,99	43	0,99			
10	FLOW RATE	MIN				1	3					
11	m3/h	NORM			-	1,	9	1,	9			
12		MAX	21						-			
13	PRESS./TEMP.	MIN				0,15	20	0,15	250			
14	barg / °C	NORM				0,2	30	0,2	300			
15		MAX				0,25	40	0,25	350			
16	SPECIFIC HEAT	kJ / kg K	•		•		0,9)7				
17	THERMAL CONDUCT	W/mK		11 (V	V/cm2)		0,)3				
18	LATENT HEAT	kJ/kg					1.5	2				
19	PRESSURE DROP	barg					13	3				
20	FOULING RESIST.	m2°C / W							-			
21	HEAT EXCHANGED	kW	1,5		1,5	1,	5	1,	5			
22	TRANSF RATE SERVIC	CE					9					
23	INSTALLED POWER			2,	1 kW							
24	ELECTRICAL POWER	SUPPLY		240 V	/, 50 Hz							
25	Street concerns											
	1.		φ.	CONS	TRUCTION CARACTERISTICS							
				НОТ	I SIDE		COLD	SIDE				
26	DESIGN PRESSURE	barg			0	0,49						
27	TEST PRESSURE	barg			-		0,	74				
28	DESIGN TEMPER.	°C		15	00°C		50	0				
29	CORR. ALLOW. DES	mm			-		0,0)5				
30	CONNECTION				-		68					
31	NOZZLE											
32	N° PASSES											
	3				MATERIAL							
33												
34	SHELL	MATERIAL		Ceran	nic Fiber		AISI	316				
35	PLATE	MATERIAL			2 ¹⁰¹			19				
36	GASKET	MATERIAL			с		Mi	ca				
37	CODE REQUIREMENT											
38	PARTITION PLATE				2		12	1				
39	WEIGHT	KG			9			8				

BETVICE Concentrations defined to solution methants assorithments of SOI QUARTY 1 Image: Concentration of Soil Definition of Soil Definion of Soil Definition of Soil Definition of Soil Def		C-201 T-201		COLONNA	DI ASSO	DA RBIME	NTO e	HEET e SEF	RBATOIO DI A	CCUMULO				000
Imman duranser tody Column rmm 54 Internat duranser tody Varied (mm) 500 Heads machines (mm) 500 Reads machines (mm) 3 Total length Operation parameters Column Total Site (mm) Column Total Site (mm) Events Fluido di assoch/immeto (mm) Total length Fluido di assoch/immeto (mm) 10 Fluido di assoch/immeto (mm) Column Comma (machine) Column Comma (machine) Fluido di assoch/immeto (mm) 10 0,056 0,082 Immeto (mm) 10 0,056 0,082 Immeto (mm) 10 0,056 0,03 Immeto (mm) 10<	SERVICE	Concentrazione	e dell'acido solf	orico mediante	assorbim	iento di	S O3	QL	JANTITY 1			SCIINA TIE		
Langiti between tangent ines (m) 200 sengit i between tangent ines (m) 50 col trabutoss (m) (m) 3 Generation parameters (m) 500 col trabutos (m) (m) 3 Generation parameters (m) (m) 200 col trabutos (m) (m) 200 col trabutos (m) (m) 3 Generation parameters (m) (m) (m) 200 col trabutos (m)	Internal di	ameter body Colum	n (mm)	54	Internal d	iameter t	oody Ve	essel	(mm)	500	Heads thickne	ss	(mm)	1
Total lengti (mm) 200 Total lengti (mm) 500 Body wath tickness (mm) (mm) 3 Trud Fluido di assorbinento Fluido di assorbinento Fluido di assorbinento Image di assorbinento	Lenght be	tween tangent lines	(mm)	2000	Lenght be	etween ta	angent l	lines	(mm)	500	Coil thickness			1
Operation parameters Colume Tink Site Colume Tink Site Verset Verset Full calls of assorbing to forger Upuid Value	Total leng	ht	(mm)	2000	Total leng	pht			(mm)	500	Body wall thick	kness (min)	(mm)	3
Piud Piud do di assorbinento Piud do di assorbinento Uguid Uguid Uguid Uguid Volume sommaligionetricazendi (m) 0.006 0.022 0.22 0.23 0.006 0.002 Presure Min Alor. In operation (0.001 0.22 0.22 0.2 0.1 0.2 0.25 Commity (0.001 40 10 40 10 0.001		Operation	parameters		Col	umn Flui	id Side		Column (Gas Side	Ve	essel		
Liquid Vapor Liquid Vapor Owner nonnulgvonteritikatedu (m) 0.0046 0.0056 0.025 0.2 0.1 0.024 0.25 0.27 0.25 0.027 0.25 0.27 0.25 0.27 0.25 0.0066 0.0022 0.25 0.27 0.27 0.25 0.0066 0.0022 0.25 0.0066 0.0022 0.25 0.0066 0.0022 0.0066 0.0022 0.006 0.0066 0.002 0.006 0.002	Fluid				Fluido	di asso	orbim	ento	Fumi ca	aldi (3)	Fluido di a	ssorbimento		
Volume nonvalues metric Luendi (m) 0.0048 Image: Construction of the con	Fluid Caté	gory & Group			1	Liqui	d		Vap	oor	Li	quid		
Pressue fin. Max: in operation (brain) Temperature Min, Max: in operation (C) 40 70 70 40 70 70 40 70 70 40 70 70 40 70 70 40 70 70 40 70 70 40 70 70 40 70 70 70 70 70 70 70 70 70 70 70 70 70	Volume no	ominal/geometric/us	eful	(m ³)		0,004	8			2	0,	096 0,082	1	
Temperature Mn. Mox. In operation (*C) 40 170 40 450 40 170 Fluid physical properties at temperature indoct (*C) 40 (1) 40 (2) 350 40 40 (1) 40 (2) - Average temperature indoct (*C) 40 (1) 40 (2) 350 40 40 (1) 40 (2) - Average temperature indoct (*C) 40 (1) 40 (2) 350 40 40 (1) 40 (2) - Average temperature indoct (*C) 40 (1) 6, 0, 3 0, 0, 40 0, 0, 2 0, 6 0, 3 (1) - Average temperature indoct (*C) 40 (1) 0, 0, 0, 0, 3 0, 0, 40 0, 0, 2 0, 6 0, 3 (1) - Average temperature indoct (*C) 40 (1) 4, 18 1, 14 (1) 1, 1	Pressure I	Min./ Max. In operati	on	(barg)	0,2		0,2	5	0,2	0,1	0,2	0,25	100	10 NO
Full of youths at temperature invote: (c) 40 (1) 40 (2) 356 40 40 (1) 40 (2) -Density (0,Jm) 993 1810 1,03 2,03 993 1810 . -Average specific heat (0,Jm) 0,6 0,3 0,04 0,02 0,6 0,3 -Average fumme conductiny (Wm*2) 0,8 17 0,30 0,015 0,8 17 -Namese fumme conductiny (Wm*2) 0,8 17 0,30 0,015 0,8 17 -Namese fumme viscomity (Wm*2) - - - - - - -Namese fumme viscomity (Wm*2) - </td <td>Temperati</td> <td>ure Min. Max. In ope</td> <td>ration</td> <td>(0°)</td> <td>40</td> <td>81</td> <td>70</td> <td>ùi.</td> <td>40</td> <td>450</td> <td>40</td> <td>70</td> <td></td> <td>1</td>	Temperati	ure Min. Max. In ope	ration	(0°)	40	81	70	ùi.	40	450	40	70		1
-0em/ty 0pm/t 993 1810 1.03 2.03 993 1810 - Average specific heat (0,4%) °C) 4,18 1,45 1,08 1,11 4,18 1,45 - Average tymamic viscosity (0/m = 5, - 0) 0,3 0,04 0,02 0,05 0,3	Fluid phys	sical properties at te	mperature in/ou	it: (°C)	40 (*	1)	40 (2	2)	350	40	40 (1)	40 (2)		
	-Den	isity		(ka/m ³)	993	Í	181	0	1,03	2.03	993	1810		
- Average thermal conductivity (Wm.*C) 0.6 0.3 0.04 0.02 0.6 0.3 - Average dynamic viscolary (mm.a.s. c/p) 0.8 17 0.03 0.015 0.8 17 - Head of vagorization (licality) - - - - - - Flow rate 0.8 (gh) 100 3.65 -	- Ave	erage specific heat		(kJ/kg.°C)	4.18	3	1.4	5	1,08	1,11	4.18	1.45		1
Average dynamic viscosity (mPa s = cP) 0,8 17 0,03 0,015 0,8 17 - Nerage dynamic viscosity (kc)N(c) - <td>- Ave</td> <td>erage thermal condu</td> <td>ctivity</td> <td>(W/m.°C)</td> <td>0.6</td> <td>8</td> <td>0.3</td> <td></td> <td>0.04</td> <td>0.02</td> <td>0.6</td> <td>0.3</td> <td></td> <td>3</td>	- Ave	erage thermal condu	ctivity	(W/m.°C)	0.6	8	0.3		0.04	0.02	0.6	0.3		3
Heat of vaporization (kcalkg) ·<	- Ave	erage dynamic visco	sity	(mPa.s = cP)	0.8		17	0	0.03	0.015	0.8	17		
Flow rate 000h 100 3,65 Allowable pressure drop (0,ar) 0,1 0,1 0,1 Allowable valt transfer certificient (W/M)*C 60 60 60 Chan heat stransfer certificient (W/M)*C 60 60 60 Chan heat stransfer certificient (W/M)*C 60 60 60 Chan heat stransfer certificient (W/M)*C 60 60 60 Cols (P) Stamp required (yes 2) no Internal surface finish Ra Minor finiting (S pars) yes 0 no Stamp required (yes 2) no Internal surface finish Ra Material of construction Operating conditiones Material allow finiting (S pars) yes 0 no Material of construction Design Temperature (C) 200 200 Estemal support Carbon Steel Hastelloy / Vetro Vacuum resistence (Iran) 4 Heads Hys 0 no Hastelloy / Vetro Antworks taffing carbo(1) yes 0 no Hea	- Hea	at of vaporization		(kcal/kg)			1	-	-,		-,-			1
Operating configure	Flow rate			(ka/h)		100			36	35	1	1		1
Name Construction Fit Fit Fit Fit Fit Clean heat transfer coefficient (W/m/*/C) 60 60 60 60 Clean heat suchange surface (m/) (M/m/*/C) Immemai load (M/m/*/C) Total heat exchange surface (m/) (MAterial Hastelloy / Vetro Total heat exchange surface (m/) (Material Material Posting Condet: /2 Stamp required yes no Internal support Code: (20) Operating conditions Material Positing (CS parts) yes no Pesign Temperature (0) 200 200 Edemail support Material construction Remarks Design Temperature (0 arg) 0.49 0.49 Shell Hastelloy / Vetro Hastelloy / Vetro Heads (1) Baffes Nozzie pipes Hastelloy / Vetro Hastelloy / Vetro Vacuum resistence (0 arg) yes no Internal support Hastelloy / Vetro Natev	Allowable	pressure drop		(bar)		0.1	-	-	0	1	1			
Columnext transfer coefficient (N/P'C) Columnext transfer coefficient (N/P'C) Thermal load (N/V) CONSTRUCTION Construction Code: (P) Stamp required yes Initiation (P) (stading) yes Initiation (P) (stading) yes Initiation (P) (stading) yes Initiation (P) (stading) Initiation (P) (stading) Initiation (P) (stading) yes Initiation (P) (stading) Initiatia	Allowable	wall temperature		(°C)		60			6	0	-	60		
Terminal load (i,W) Image: construction Total head sexcharge surface (im) Image: construction Code: ////////////////////////////////////	Clean hea	t transfer coefficient		(W/m²/°C)				(U.	9.R	-			
Construction Construction Code : (P) Rtamp required	Thermal Id	had	50 50	(kW)				,			10			
Construction CONSTRUCTION Code : P) Stamp required yes no Internal mining / cladding yes no Heads previountic 10:1 ethility 2:1 design for wind : yes no Internal surface finish: Ra Mirror finitis yes no Special Contail ongle design for wind : yes no Internal surface finish: Ra Mirror finitis yes no Operating conditions Equipment component Material of construction Material dentification Certificate Remarks Design Temperature (C) 200 External support Carbon Steel Hastelloy / Vetro Hyric: restremes (harg) 0.49	Total heat	avchange surface		(m ²)										
Code: P2 Stamp required yes Inc Interior Ining / Clading yes No Material Hastellary / Verro Heads	Total field	exchange surface		(117)			00	NST	RUCTION		7			
Code Description Descrin <thdescrin< th=""> Descrin<!--</td--><td>Code :</td><td>(2)</td><td></td><td>Stamp required</td><td></td><td>Ves</td><td></td><td>00</td><td>Interior lining / c</td><td>ladding</td><td>1 1/05 2 100</td><td>Material</td><td>Hastellov</td><td>/ Vetro</td></thdescrin<>	Code :	(2)		Stamp required		Ves		00	Interior lining / c	ladding	1 1/05 2 100	Material	Hastellov	/ Vetro
retub Payber and in the initial solutate initial. Nat Paintor initials Paintori initials Paintori initials	Lloado	polycontria 10:1		design for wind		100		- 110	Internal aurface	finish: Dr	yes [] 110	Material Mirror finiho		
Operating configuration Operating configuration Material density (big and big	enhorical			design for part		yes		10	Exterior surface	finish Dr		Painting (CS pad		
Operating Continuous Vessel Equipment component Material identification Certificate Remarks Design Temperature (*C) 200 200 External support Carbon Steel Hastelloy / Vetro Design Temperature (harg) 0.49 0.49 Shell Hastelloy / Vetro Vacuum resistence (harg) 0.49 0.49 Shell Hastelloy / Vetro Hydr. test pressure (harg)	spherical		Operating	design for early		yes	<u> </u>	- 110	Exterior surface		Matarial of	Failting (CS pail		
Column Column <td>6</td> <td></td> <td>Column</td> <td>Conditions</td> <td>and</td> <td></td> <td></td> <td>-</td> <td>Equipment cor</td> <td>monont</td> <td>Material identi</td> <td>fication Cor</td> <td>tificato</td> <td>Domorko</td>	6		Column	Conditions	and			-	Equipment cor	monont	Material identi	fication Cor	tificato	Domorko
Design Pressure (b) 200 200 External support: Cataboli seen Design Pressure (b) arg 0,49 Shell Hastelloy / Vetro Vacuum resistence (b) arg - Jacket Hastelloy / Vetro Hydr. test pressure (b) arg - Jacket Hastelloy / Vetro Thermal treatment yes no yes no Jess Pressure Nozzle pipes Vacan veiding yes no yes no External haltcoil Hastelloy / Vetro Vary veiding yes no yes no Itematistic outbundle Hastelloy / Vetro Vorsitor barlies (n* & angular placement) yes no Finanges Hastelloy / Vetro Thermal insulation yes no Heastelloy Vetro Hastelloy / Vetro Davit arm (n* & kitting capacity) yes no Sports Hastelloy / Vetro Davit arm (n* & kitting capacity) yes no Start for meal boits TEFLON Thermal insulation yes no Insulation cover Skitt for weided insulation Skitt for pas	Decign To	mporatura (°C	2	00	-		-	Equipment con		Carbon St		uncate	Rellians	
Uesign friessure (barg) 0,49 0,49 Shell Indicetory (verto) Vacuum residence (barg)	Design Te	emperature (C	2	40			_	External support	L 2	Lastellaw /	latra			
Vacuum resisterice (bara) reads reads Hydr. test pressure (bara) acket Thermai treatment yes (no) yes (no) yes (no) Xray weldings yes (no) yes (no) yes (no) Accessories supplied with vessel Nozzle pipes Vessel support (type) // yes (no) Pise (no) instaliation on load cells (n' and load) yes (no) Pise (no) Accessories supplied with vessel Nozzle pipes Vessel support (type) // yes (no) Flanges Instaliation on load cells (n' and load) yes (no) Pise (no) Antivortex baffles (n' & angular placement) yes (no) Notzle pipes Vortexbeaker on liquid outlet(s) (n') yes (no) Supports Fail prevention protection for manoble (n') yes (no) Supports Teall prevention protection for manoble (n') yes (no) Internal bolts Insulation cover yes (no) Internal bolts TEFLON Skirt for floor passage sealing yes (no) Skirt for welded insulation Skirt for floor passage sealing Sight glass(es) (n' & size) yes (no) Skirt for floor pass.	Design Pr	essure (barg	0,	49			_	Snell		Hastelloy	/etro			
Hydr. test pressure (orang) yes Z no yes Z no yes Z no yes Z no internal treatment yes Z no yes Z no yes Z no internal treatment internal coll/bundle Corrosion allow. (mm) 1 1 Baffles Nozzle pipes Vessel support (type) Z yes Z no Lap joint Hastelloy / Vetro Installation on load cells (n' and load) yes Z no Other connections Hastelloy / Vetro Norzie pipes yes Z no Ves Z no Supports Hastelloy / Vetro Antivortex baffles (n' & angular placement) yes Z no Supports Hastelloy / Vetro Fall prevention protection for manhole (n') yes Z no Esterior bolts TEFLON Insulation Yes Z no Esterior gaskets TEFLON Skirt for for passage sealing yes Z no Skirt for weided insulator Skirt for for passage sealing yes Z no Skirt for weided insulator Skirt for for passage sealing yes Z no Skirt for for pass	vacuum re	esistence (bara					_	Heads		Hastelloy / V	Vetro			
Internative attreatment Upsic No	Hyar. test	pressure (barg					-	Jacket	8					
Xray weldings yes no yes no yes no wes no	Thermal tr	reatment					no	External halfcoil						
Corrosion allow. (mm) 1 1 Baffes Accessories supplied with vessel Nozzle pipes Vessel support (type) 2 yes no Lap joint Installation on load cells (n° and load) yes no Other connections Antivortex baffies (n° & angular placement) yes no Other connections Hastelloy / Vetro Vortexbreaker on liquid outlet(s) (n°) yes no Supports Hastelloy / Vetro Prain and vent cocks on jacket/coll(s) (n° & size) yes no Supports Hastelloy / Vetro Pail prevention protection for manhole (n°) yes no Manhole protection Hastelloy / Vetro Insulation yes no Internal solts Hastelloy / Vetro Insulation yes no Internal solts Hastelloy / Vetro Insulation cover yes no Internal solts TEFLON Skirt for welded insulation yes no Insulation cover Skirt for welded insulation Insul. fixation plates yes no Insul fixation plates TEFLON Skirt for foor passage sealing yes <	Xray weld	ings	no 🗌 yes	res <u>└/ no</u> <u>/ yes / no</u> 1			no	Internal coil/bun	dle					
Accessories supplied with vessel Nozzle pipes Vessel support (type) yesno Lap joint Installation on load cells (n° and load) yesno Flanges Antivortex baffles (n° & angular placement) yesno Other connections Vortexbreaker on liquid outlet(s) (n°) yesno Internals Drain and vent cocks on jacket/coil(s) (n° & size) yesno Manhole protection Davit arm (n° & lifting capacity) yesno Internal boilts Thermal insulation yesno Internal boilts Insul. fixation plates yes	Corrosion	allow. (mm)		1			_	Baffles						
Vessel support (type) iv yes no Lap joint Installation on load cells (n° and load) ives ives in no Flanges Hastelloy / Vetro Antivortex baffies (n° & angular placement) ives ives in no Other connections Hastelloy / Vetro Antivortex baffies (n° & angular placement) ives ives in no Other connections Hastelloy / Vetro Drain and vent cocks on jacket/coll(s) (n°) ives ives in no Supports Hastelloy / Vetro Fail prevention protection for manhole (n°) ives ives in no Manhole protection Hastelloy / Vetro Davit arm (n° & lifting capacity) ives in no Internal bolts TEFLON Skirt for welded insulation ives in no Insulation cover Insulation cover Skirt for floor passage sealing ives in no Insulation plates TEFLON Skirt for floor passage sealing ives in no Insulation cover Skirt for molocy passels in tor welded insulation Sight glass(es) (n° & size) ives in no Insulatin floor pass. seal. Earthing lugs Lighting fixture for sight glass(es) (n° & power) ives in no Earthing lugs Earthing lugs Stainless steel Nameplate ives in no Electr. Con		1	Accessories sup	oplied with ves	sel	1		_	Nozzle pipes					
Installation on load cells (n° and load) yes in no Flanges Hastelloy / Vetro Antivortex baffies (n° & angular placement) yes in no Other connections Hastelloy / Vetro Vortexbreaker on liquid outlet(s) (n°) yes in no Internals Hastelloy / Vetro Drain and vent cocks on jacket/coil(s) (n° & size) yes in no Supports Hastelloy / Vetro Fall prevention protection for manhole (n°) yes in no Manhole protection Hastelloy / Vetro Davit arm (n° & lifting capacity) yes in no Manhole protection Hastelloy / Vetro Insulation cover yes in no Internal bolts Esterior bolts Insulation cover yes in no Insulation cover Flanges TEFLON Skirt for welded insulation yes in no Insulation cover Insulation cover Skirt for floor passage sealing yes in no Insulation cover Skirt for welded insulation Skirt for floor passage sealing yes in no Insul. fixation plates TEFLON Stight glass(es) (n° & size) yes in no Skirt for floor pass. seal. Earthing lugs Lighting fixture for sight glass(es) (n° & spower) yes in no Earthing lugs <td< td=""><td>Vessel su</td><td>pport (type)</td><td></td><td>⊥ yes</td><td>l no</td><td colspan="3"></td><td colspan="2">Lap joint</td><td></td><td></td><td></td><td></td></td<>	Vessel su	pport (type)		⊥ yes	l no				Lap joint					
Antivortex baffles (n* & angular placement) yes no Other connections Hastelloy / Vetro Vortexbreaker on liquid outlet(s) (n*) yes no Supports Hastelloy / Vetro Drain and vent cocks on jacket/coll(s) (n* & size) yes no Supports Hastelloy / Vetro Fail prevention protection for manhole (n*) yes no Manhole protection Davit arm (n* & lifting capacity) yes no Internal bolts Thermal insulation // yes no Esterior bolts Insulation cover Skirt for welded insulation // yes no Insulation cover TEFLON Skirt for floor passage sealing // yes no Insulation cover Skirt for welded insulation Sight glass(es) (n* & size) // yes no Insul. fixation plates TEFLON Starting lugs (n*) // yes no Insul. fixation plates TEFLON Starting lugs (n*) // yes no Skirt for floor pass. seal. Earthing lugs Electr. Conn. Plates. // yes // no // yes // no Ele	Installation	n on load cells (n°	and load)	yes	⊻ no				Flanges		Hastelloy / \	/etro		
Vortexbreaker on liquid outlet(s) (n*) yes no Internals Hastelloy / Vetro Drain and vent cocks on jacket/coil(s) (n* & size) yes no Supports Fall prevention protection for manhole (n*) yes no Manhole protection Davit arm (n* & lifting capacity) yes no Internal bolts Thermal insulation ///yes no Esterior bolts Insulation cover ///yes no Exterior gaskets TEFLON Skirt for welded insulation //yes no Insulation cover Insulation cover Insul. fixation plates //yes no Insulation cover Skirt for welded insulation Skirt for floor passage sealing //yes no Insul. fixation plates Issuistion plates Lighting fixture for sight glass(es) (n* & size) //yes no Skirt for floor pass.seal. Earthing lugs (n*) //yes no Earthing lugs Electr. Conn. Plates. Stainless steel Nameplate //yes //no Electr. Conn. Plates. Stainless test Electr. Conn. Plates. Empty 40	Antivortex	baffles (n° & ang	jular placement)) yes	⊻ no				Other connectio	ns	Hastelloy / \	/etro		
Drain and vent cocks on jacket/coil(s) (n* & size) yes no Supports Fail prevention protection for manhole (n*) yes no Manhole protection Davit arm (n* & lifting capacity) yes no Internal bolts Thermal insulation	Vortexbrea	aker on liquid outlet	(s) (n°)	yes	√ no				Internals		Hastelloy / \	/etro		
Fail prevention protection for manhole (n*) yes no Manhole protection Davit arm (n* & lifting capacity) yes no Internal bolts Thermal insulation ////////////////////////////////////	Drain and	vent cocks on jacke	t/coil(s) (n° & siz	te) U yes	√ no				Supports					
Davit arm (n° & lifting capacity)	Fall preve	ntion protection for i	manhole (n°)	yes	✓ no				Manhole protect	tion				
Thermal insulation	Davit arm	in and vent cocks on jacket/coil(s) (n* & size) prevention protection for manhole (n*) it arm (n* & lifting capacity)							Internal bolts					
Insulation cover ✓ yes no Interior gaskets TEFLON Skirt for welded insulation ✓ yes no Exterior gaskets TEFLON Insul. fixation plates ✓ yes no Insulation cover Insulation cover Skirt for floor passage sealing ✓ yes no Skirt for welded insulation Insulation cover Sight glass(es) (n* & size) ✓ yes no Skirt for welded insulation Insul. fixation plates Lighting fixture for sight glass(es) (n* & size) ✓ yes no Skirt for floor pass. seal. Earthing lugs (n*) ✓ yes no Earthing lugs Electr. Conn. Plates. Stainless steel Nameplate ✓ yes no Electr. Conn. Plates. Electr. Conn. Plates. Empty 40 (kg) In service 190 (kg) Test (kg)	Thermal ir	nsulation		✓ yes	no				Esterior bolts					
Skirt for welded insulation	Insulation	cover		⊡ yes	no no				Interior gaskets		TEFLON	4		
Insul. fixation plates ✓ yes no Insulation cover Skirt for floor passage sealing ✓ yes no Skirt for welded insulation Sight glass(es) (n° & size) ✓ yes no Insul. fixation plates Lighting fixture for sight glass(es) (n° & power) ✓ yes no Skirt for floor pass. seal. Earthing lugs (n°) ✓ yes no Earthing lugs Electr. Conn. Plates. ✓ yes no Electr. Conn. Plates. Stainless steel Nameplate ✓ yes no Electr. Conn. Plates. Empty 40 (kg) In service 190 (kg) Test (kg)	Skirt for w	elded insulation		yes	√ no				Exterior gaskets	1	TEFLON	a		
Skirt for floor passage sealing yes no Sight glass(es) (n* & size) yes no Lighting fixture for sight glass(es) (n* & period yes no Lighting fixture for sight glass(es) (n* & period yes no Earthing lugs (n*) yes no Earthing lugs Electr. Conn. Plates. yes no Electr. Conn. Plates. Stainless steel Nameplate yes no Electr. Conn. Plates. WEIGHTS (Reactor complete with accessories) Empty 40 (kg) In service 190 (kg) Test (kg)	Insul. fixat	kirt for welded insulation				γes no yes √_ no yes no			Insulation cover					
Sight glass(es) (n° & size)	Skirt for flo	kirt for welded insulation							Skirt for welded	insulation				
Lighting fixture for sight glass(es) (n° & power) yes v no Earthing lugs (n°) yes v no Electr. Conn. Plates. Stainless steel Nameplate yes v no Empty 40 (kg) In service 190 (kg) Test (kg)	Sight glas	s(es) (n° & size	e)	yes	🗸 no				Insul. fixation pla	ates				
Earthing lugs (n*)	Lighting fi	xture for sight glass(es) (n° & pow	ver) 🗌 yes	🗸 no				Skirt for floor pa	ss. seal.				
Electr. Conn. Plates. Stainless steel Nameplate yes v no Electr. Conn. Plates. Stainless steel Nameplate WEIGHT \$ (Reactor complete with accessories) Empty 40 (kg) In service 190 (kg) Test (kg) Remarks	Earthing I	ugs (n°)		🗌 yes	√ no				Earthing lugs					
Stainless steel Nameplate yes I no WEIGHT'S (Reactor complete with accessories) Empty 40 (kg) In service 190 (kg) Test (kg) Remarks	Electr. Co	nn. Plates.		yes	√ no				Electr. Conn. Pla	ates.				
WEIGHT'S (Reactor complete with accessories) Empty 40 (kg) In service 190 (kg) Test (kg) Remarks	Stainless	steel Nameplate		yes	√ no									
Empty 40 (kg) In service 190 (kg) Test (kg) Remarks		<i>0</i>			WE	IGHTS (Reacto	or con	nplete with acce	essories)				
Remarks	Empty	40 (ka)	In service	190	(kg)			Test	(k	g)			
				2000 - Barrier Hanner VI (1990) - St		- overall -		Ren	narks	(8)		80		

(1) Condizioni di ingresso del fluido considerate: composizione 100% H2O

(2) Condizioni di ingresso del fluido considerate: composizione 98% H2SO4, 2% H2O

(3) Composizione molare: SO3 3,2%, H2O 3,5%, O2 3,2%, CO2 90,1%.

ITE	EM E-10	2		E	DATA SHEET			-				
	L-10	2		Conde	ensatore fumi caldi							
SEI	RVICE: Separazion	e della conden	sa dai fumi	QI	UANTITY:	1		50°				
	FLUID ALLOC	ATION		L.	IOT SIDE			COLD	SIDE			
c.			1	NPUT	OUT	PUT	INP	UT	OUT	PUT		
1	FLUID		Fumi	di scarico	Fumi di	scarico	Acc	lua	Acc	qua		
2	FLUID CONDITION		v	apore	Vapore +	Condensa	Liqu	iido	Liqu	iido		
3	LIQUID CRITICAL PRE	SSURE						8	2			
4	LIQUID VAPOR PRESS	URE				-		8				
5	LIQ. DENSITY ACTUAL	/ BASE (@20°C)	к, 12	2	990	995	995	995	982	995		
6	VAPOR DENSITY	(kg/m	3)	0,68	0,	95	8		1			
7	VISCOSITY	cF	6	0,03	0,	02	1,0	00	0,	73		
8	BACK PRESSURE	ba	9	_12			8	i .				
9	MOL. WEIGHT / COMP	RESS.	33,9	0,99	43,1	0,99	18	125	18	2		
10	FLOW RATE	MIN		12								
11	m3/h	NORM		3	1	9	0,0	05	0,	05		
12		MAX		-		_						
13	PRESS./TEMP.	MIN	0,15	140	0,15	25	1		1	-		
14	barg / °C	NORM	0,2	190	0,2	30	2	20	2	35		
15	1	MAX	0,25	250	0,25	40	4	s (1 3 2) s	4	-		
16	SPECIFIC HEAT	kJ / kg	к		1,04		8	4,1	8			
17	THERMAL CONDUCT	W/m	ĸ		0,026			0,6	1			
18		kJ/k	g		-		6	17	5			
19	PRESSURE DROP	ba	g		-		0		9			
20	FOULING RESIST.	m2°C / \	N	15			12	1	2	-		
21	HEAT EXCHANGED	k)	N	1,5	1	,5	1,	5	1,	5		
22	TRANSF RATE SERVIC	Œ						1		-		
23							. C	~				
24	- K							~				
25								4				
	2). 2).			co	NSTRUCTION CARAC	TERISTICS		2				
				F	IOT SIDE		COLD SIDE					
26	DESIGN PRESSURE	ba	9		0,49			4				
27	TEST PRESSURE	bar	g		0,74			6,0	0			
28	DESIGN TEMPER.	°C			300			40)			
29	CORR. ALLOW. DES	m	n		0,05			0,0	5			
30	CONNECTION		1/2	2" NPT	1/2"	NPT	1/2"	NPT	1/2"	NPT		
31	NOZZLE											
32	N° PASSES											
	20		20 -		MATERIAL							
33												
34	SHELL	MATERIA	L		AISI-316		n	AISI-	316			
35	PLATE	MATERIA	L		AISI-316			AISI-	316			
36	GASKET	MATERIA	L		Mica			Mic	a			
37	CODE REQUIREMENT		-									
38	PARTITION PLATE			2	AISI-316			AISI-	316			
39	WEIGHT	K	G					-				

ITE	м Е-10	1	20	RAFFRED	TA SHEET DAMENTO FUMI			-					
SEF	RVICE: Recupero c	alore da fumi cald	li	QUA	NTITY:	1	<u></u>		TACAF				
-	FLUID ALLOC	ATION		HO.	T SIDE			COLD	SIDE				
			IN	PUT	OUT	PUT	INP	UT	OUT	PUT			
1	FLUID		Fumi d	i scarico	Fumi di	scarico	Fumi s	ecchi	Fumi s	ecchi			
2	FLUID CONDITION		Va	pore	Vap	ore	Vap	ore	Vap	ore			
3	LIQUID CRITICAL PRE	SSURE		<u>.</u>	-		5- 5-	8	-				
4	LIQUID VAPOR PRESS	SURE		50 2			÷.		-				
5	LIQ. DENSITY ACTUAL	. / BASE (@20°C)	2	12	2	22	2		1.25	1.25			
6	VAPOR DENSITY	(kg/m3)	0	,68	0,9	5	2,	1	1,	0			
7	VISCOSITY	cP	0	,03	0,0	2	0,0)2	0,0)3			
8	BACK PRESSURE	barg		2			6-						
9	MOL. WEIGHT / COMP	RESS.	33,9	0,99	33,9	0,99	43	0,99	43	0,99			
10	FLOW RATE	MIN		8	-	2	2	ii -	1				
11	m3/h	NORM		3	. 3		1,	9	1,	9			
12	2	MAX		2			2		-				
13	PRESS./TEMP.	MIN	0,15	350	0,15	140	0,15	20	0,15	250			
14	barg / °C	NORM	0,2	400	0,2	190	0,2	30	0,2	300			
15	u. 6	MAX	0,25	450	0,25	250	0,25	40	0,25	350			
16	SPECIFIC HEAT	kJ / kg K		1	1,26			0,9)7				
17	THERMAL CONDUCT	W/mK		(0,04			0,0)3				
18	LATENT HEAT	kJ/kg						53	8				
19	PRESSURE DROP	barg						63					
20	FOULING RESIST.	m2°C / W		ā		5	12	8	8				
21	HEAT EXCHANGED	kW		1	1	3	1	1	1				
22	TRANSF RATE SERVIC	CE		π	-		e .	8	-				
23													
24													
25													
				CONS	TRUCTION CARAC	TERISTICS							
				HO	TSIDE	-	COLD	SIDE					
26	DESIGN PRESSURE	barg		(),49		0,49						
27	TEST PRESSURE	barg		(),74			0,7	74				
28	DESIGN TEMPER.	°C			500			50	0				
29	CORR. ALLOW. DES	mm		(0,05	100.00		0,0	05	1907-000			
30	CONNECTION		1/2'	'NPT	1/2"	NPT	1/2"	NPT	1/2"	NPT			
31	NOZZLE												
32	N° PASSES												
i sere		Y			MATERIAL								
33													
34	SHELL	MATERIAL		Als	51-316		-	AISI	316				
35	PLATE	MATERIAL		Als	51-316		ş	AISI	316				
36	GASKET	MATERIAL		N	Aica		ş	Mi	ca				
37	CODE REQUIREMENT						9.						
38	PARTITION PLATE			Als	51-316		0.	AISI	316				
39	WEIGHT	KG			-		l.	-					

ITE	M E-20	1	DAI		DA		DRIMENTO		att)		
SEI	RVICE: RAFFREDD	AMENTO LIQU			QUA	NTITY:	RBIMENTO		so'	TACA	RBO
]				5.617174					SOCIETATIO	CNOU(GIE AWA SZATE	CAREON E S.7.A.
	FLUID ALLOC	ATION			HO	T SIDE			COLD	SIDE	
				INPUT		OUTF	PUT	INF	TUT	OU	TPUT
1	FLUID		Liquido d	i assorbimento)	Liquido di as	sorbimento	Ac	qua	Ac	qua
2	FLUID CONDITION		L	iquido		Liqu	ido	Liq	uido	Liq	uido
3	LIQUID CRITICAL PRE	SSURE		R		-	i.	12	•1		-
4	LIQUID VAPOR PRESS	SURE		-			1000		-		-
5	LIQ. DENSITY ACTUAL	. / BASE (@20°C)	1800	1820		1810	1820	995	995	982	995
7		٥D		-		17	7	1	0	0	-
8	BACK PRESSURE	bar		-					-		-
9	MOL. WEIGHT / COMP	RESS.	94	_		94	<u>~</u>	18	-	18	-
10	FLOW RATE	MIN		56			Der-		-0		-
11	m3/h	NORM		0,1		0,	1	0,	05	0	,05
12		MAX						0	,1	C	,1
13	PRESS./TEMP.	MIN	0,05	30		0,05	25	1		1	
14	barg / °C	NORM	0,15	40		0,15	30	2	20	2	35
15		MAX	0,2	60		0,2	50	4		4	
16	SPECIFIC HEAT	kJ / kg ł	(1	1,45		6	4,1	86	
17	THERMAL CONDUCT	W/mł	(0,3		2	0,	6	
18	LATENT HEAT	kJ/kg				-			12	17	
19	PRESSURE DROP	bar			-	2			12		
20	FOULING RESIST.	m2°C / V	/						-		
21	HEAT EXCHANGED	kV	/	2,5		2,	5	2	,5	2	,5
22	TRANSF RATE SERVIC	JE .				÷					
23						3					
25						2					
20			1	(CONS	TRUCTION CARAC					
3					HO	TSIDE		COLD	SIDE		
26	DESIGN PRESSURE	bar	9		(),49		2	4	1	
27	TEST PRESSURE	barg	3		(),74			6		
28	DESIGN TEMPER.	°C			6	60°C			40	°C	
29	CORR. ALLOW. DES	nın			1	0,5	the second s		0,0)5	
30	CONNECTION		1/	2" NPT		1/2"	NPT	1/2"	NPT	1/2"	NPT
31	NOZZLE			8		-		10	- 11		-
32	N" PASSES		ļ			MATERIAL		I,	-	92	
32	1		1			MATERIAL		1			,
34	SHELL	MATERIA			Has	stellov			Hast	ellov	
35	PLATE	MATERIA			Has	stelloy			Haste	elloy	
36	GASKET	MATERIA	-		T	eflon			Tef	lon	
37	CODE REQUIREMENT					12			6.	8	
38	PARTITION PLATE				Has	stelloy			Haste	elloy	
39	WEIGHT	K				-			-		

									D	AT/	SHI	SET						_	*				
ITEM	R	1-101								DEA	TTO	DE						A					I
			Peatto	ore di os	eidazi	ione cat	alitic	~~~		(EA	110		NTITY	1					50	TA		PE	2 D
SERVICE	<i>6</i>		Reallo	Jie ur us.	Sluazi	One care	linere	.0			-	104	NIIIT	1					DOCILITATI	UCNOU(GH	AWA SZATE	CARDON	11.5.7.4.
Internal d	inmeter bo	dy		(mm)		83	Cc	-il diam	otor	—			(mm)	1	21.3	н	loads thickne	00			(mm)		22
l enght br	tween tang	ent lines		(mm)		480	Cc	sil nitch	5101				()	+	2	c	oil thickness	50			(mm)		1.7
Total lend	theon tang	on mos		(mm)		960	Bo	dv wal	I thickne	ass (I	min)		(mm)		3	C	oil lenght				(m)		1.8
1 oran tang	0	neration	parame	eters			-	u,	Reatto	ore	hinay	-	Ext. jacket	Half	coil		xt. Coil 🗸	bund	lle 🗌	Other			11-
Fluid							+	Fu	imi ca	Idi ((2)			1		-	Fumi f	redd	i (1)				
Fluid Cate	égory & Gro	qup					1		Vap	or							Va	apor	1.1				
Volume n	ominal/geor	metric/use	eful			(m ³)	0.	.0052	0,00	52	0,00	47			ľ –		0,0	0003		+		Ĩ	
Pressure	Mini./ Maxi.	In operat	tion		()	barg)	-	0	-,-	1	0.2			Ť			0	T	0.2	+	<u> </u>		
Temperat	ure Min. Ma	ax. In oper	ration		1	(°C)	+	350	J	1	450			+		+	30	+	450	+			
Fluid phy	sical proper	ties at ter	mperatu	ure in/ou	it ((°C)		350)	;	350						30		350	-			-
-Der	isity				(k	(g/m ³)		1,0*	1	C),93						2,09		1,01				-
- Av	erage specif	fic heat			(kJ	/kg.°C)	+	1,01	8	1	1,11			\top			0,86		1,08				
- Av	erage therm	al conduc	ctivity		(W	/m.°C)		0,0	3	C),03			\square			0,02		0,03				
- Av	erage dynar	mic viscos	aity		(mPa	a.s = cP)	t –	0,02	8	0,	0305	5		\top			0,015	(0,028	1			
- He	at of vaporiz	zation			(kc	cal/kg)		-			-								-				
Flow rate	1				(kg/h	/ kmol/h)	3,6	5	0,	0832	2					3,65	0	,0846				
Allowable	pressure d	rop			(bar)						No.					0,	001					
Allowable	wall temper	rature			1	(°C)											3	350					
Clean her	at transfer c	oefficient	1		(W/	/m²/°C)											3	0,4					
Thermal I	oad				C	(kW)	L			_				_			(0,6					
Total heat	t exchange	surface			((m²)											0,	097					
							_				CON	ISTR	RUCTION										
Code :					Stamp) require	d		yes	; [·	2	no	Interior lining	cladd	ling [ју	/es 🖌 no	Mate	rial	н	ASTEL	OY	
Heads	polycentric	: 10:1	elliptic	2:1	design	n for win	d :		yes	; [-	7	no	Internal surface	e finis	sh: Ra	а		Mirro	r finihs	L	yes	🗹 n	10
spherical	conica	al 🗌 a	angle)	design	n for eart	thqua	ake 🔄	yes	; [·	2	no	Exterior surfa	e finis	sh Ra	а		Paint	ing (CS pa	arts) L	yes	🗸 n	10
			Op	perating	condit	tions			-								Material of	const	ruction				
				Vessel		Hal	lf-Co	vil	E	Ext. C	Coil		Equipment of	ompor	nent	Mate	rial identifica	tion	C	ertificate		Rema	irks
Design Te	amperature	(°C)		600			(1 2)			450	0		External supp	ort			Carbon St	eel					
Design Pr	essure	(barg)		0,49	\rightarrow		1949		_	0,4	9		Shell		35		AISI 310	1			1.7.2	1000 C	
Vacuum n	esistence	(bara)		0					-	0	<u> </u>		Heads				AISI 310	1.5			В	lind Fla	anges
Hydr. test	pressure	(barg)	1	_ []	-			1	1	-			Jacket				-						
Thermal to	reatment			/es 🗹	ПО		<u>- </u>			es l	- - -	0	External coll		- 2		AISI 316	;					
Xray weldings yes no y Corrosion allowance (mm) 0,5							<u></u>	<u>i no i yes</u> ⊡ 0,5				10	Internal coll/p	undie	12		- 20						
Corrosion allowance (mm) 0,5							isel				,		Battles		0		-						
Vessel et	most (h/po)	A	CCesso	mes sup	ipneu i	Will yes							Nozzie pipes		12		-						
Vesser su	pport (type)	-lle (nº a	and load	-1	-							1					AISI 310						
Antivorto	n on loau ce	alls (II a	inu ioau	1)			s √ no s √ no				1	Flanges Other connections			AISI 310								
Vortexbre	Dames ((I) & ally		cement ;	1		s I no				23	Unternals	10115			HASTELL	ov						
Drain and	aker on inga	on jacket	5) (ii	(n° & siz	(0)		s ✓ no s ✓ no				24	Cupports				IIAGTEEL.	0.						
Fall preve	antion proter	ction for m	ranhole	(II 0 012)	e)		1	1 10				3	Manhole prot	ection			_						
Davit arm	(n° &	lifting cap	pacity)	46.7	-	□ ver	- 7	1 10				1	Internal bolts	Cuo	10		-						
Thermal i	nsulation in	stalled in	shop		-		- 7	lno				4	Esterior bolts				Galvanized !	Steel					
Insulation	cover insta	alled in sho	OD			□ ver		lno				1	Interior gaske	ts	-		MICA						
Skirt for y	velded insul	ation	of-		-	□ ver		lno				23	Exterior gask	ets			1 20						
Insul, fixa	tion plates					□ ver	- 7	lno				3	Insulation cov	er			-						
Skirt for f	oor passage	e sealing				U yes	5 2	1 no				8	Skirt for weld	ed insu	lation								
Sight glas	ss(es)	(n° & size	e)			☐ yes	s 🗹	l no				2	Insul. fixation	plates			-						
Lighting f	ixture for sic	oht glass(e	es) (r	n° & pow	ver)	yes	s 🗸	1 no				1	Skirt for floor	oass. s	seal.		-						
Earthing I	ugs	(n°)	-		-	yes	s 🗹	no				1	Earthing lugs										
Electr. Co	onn. Plates.	- Contra				yes	s 🗹	no				2,5	Electr. Conn.	Plates			1.23						
Stainless	steel Name	plate				yes	5 1	no				3		100000000									
		·····						WE	EIGHTS	(Rea	actor	con	nplete with ac	cesso	ries)								
Empty	30	(kg)			In ser	vice			(kg)				Test		(k	(g)							
							_				I	Rem	narks										
(1) Com	posizione m	nolare: SC	02 3,2%	6, H2O 3,	,5%, O	2 4,7%,	CO2	2 88,6%	ó.		_												
(2) Com	iposizione m	nolare: SC	03 3,2%	6, H2O 3,	,5%, O	2 3,2%,	CO2	2 90,1%	<i>b</i> .														
(3) To b	e confirmed	l by Manu	facturer	ar i																			
(4) Info/	data by Mar	nufacturer	r																				

9 Allegato 3 Schemi di controllo -IOSTO

		CONTRO	LSCHEME	
ID Loop:		202	Plant:	Produzione di acido solforico da fumi di combustione
Service:	Co	lonna di assorbimento		
Descriprion:	Controllo di ter	mperatura liquido di assorbimento	Section	2
	1. LOOP EL	EMENTS		
TT-202: misuratore di t TI-202: indicazione di t TC-202: controllore di t TCV-202: valvola di co	temperatura a termoco temperatura visualizza temperatura ntrollo della temperatu	oppia ta da software Irra		
	2. MEASURED	VARIABLE	- 1202/ C	202/ 202/
TEMPERATURA	DI USCITA DEL LIQU SCAMBIATOR	IDO DI ASSORBIMENTO DALLO E E-201		
	3. CONTROLLE	VARIABLE		E-201
TEMPERATURA	DI USCITA DEL LIQU SCAMBIATOR	IDO DI ASSORBIMENTO DALLO E E-201		
	4. MANIPOLATE	DVARIABLE		
PORTATA DI ACC	QUA FREDDA IN INGR	ESSO ALLO SCAMBIATORE E-201		
	5. DISTURE	ANCES		
	N/A			
		5. MEASURI	NG INSTRUME	NT:
		TERMOO	COPPIA (TT-202)	
		6. MEASURED	VARIABLE RA	NGE:
		2	25 - 90°C	
		7. CON	TROL TYPE	
ACTION:			RETROAZIO	INE
PARAMETERS	L [0/].	N/Δ +: Γ.	DIRETTA	td [s]• N/A
av inc i cito.	K [70].	8.8		a [a]. Inva
		IMPOSTABILE MANUALMENT	E DA SOFTWARE - RA	ANGE: 25 - 90°C
		9. FINAL CO	NTROL ELEME	NT:
			TCV-102	
Fail Closed	. 🗸	Fail Open:	102	
		10. CONTROL LOC	OP JUSTIFICATI	ION:
MANTIENE LA TEMPER	ATURA DEL LIQUIDO	DI ASSORBIMENTO IN INGRESSO AI	LLA COLONNA C-201	

ID Loop:	202	P	lant:	Produzione di acido solforico da fumi di combustione		
Service:	Colonna di assorbimen	to				
Descriprion:	Controllo di livello liquido di ass	orbimento S	ection	2		
	1. LOOP ELEMENTS					
LSH-201: switch di alto LSL-201: switch di bass LAH-201: visualizzazior LAL-201: visualizzazion	livello so livello ne software dell'allarme di alto livello le software dell'allarme di basso livello 2 MEASURED VARIABLE		C-	-201		
	N/A					
3	B. CONTROLLED VARIABLE					
ALT	EZZA DEL LIQUIDO DI ASSORBIMENTO			201/		
4	MANIPOLATED VARIABLE					
	N/A					
	5. DISTURBANCES					
	N/A					
		5. MEASURING	INSTRUME	ENT:		
		LSH-201 E	LSL-201			
	6.	MEASURED VA	RIABLE RA	ANGE:		
	20%	- 85% DELL'ALTEZZ	A DEL SERBATC	OIO T-201		
		7. CONTR	OL TYPE			
TYPE:			ON-OFF	F		
ACTION:	L Fox 1	200 - 1-	DIRETTA			
FARAINE LEKS:	k [%]: N/A	ti [s]:		ta [s]: N/A		
		0. 3E1	A			
	(9. FINAL CONT		ENT:		
Fail Closed:	Fail Open:	N/	A			
	10.00		USTIFICAT	TION		
IL SUPERAMENTO DELLA SOGLIA DI ALLARME DI ALTO LIVELLO (LAH) PROVOCA LO SPEGNIMENTO DI EMERGENZA DELL'IMPIANTO IL SUPERAMENTO DELLA SOGLIA DI ALLARME DI BASSO LIVELLO (LAL) PROVOCA LO SPEGNIMENTO DELLA POMPA DI RICIRCOLO (P-201) DEL LIQUIDO DI ASSORBIMENTO						

	CONTROL	SCHEME	
ID Loop:	202	Plant:	Produzione di acido solforico da fumi di combustione
Service:	Colonna di assorbimento		
Descriprio	on: Monitoraggio di composizione liquido di assorbimento	Section	2
	1. LOOP ELEMENTS		
AE-201: el AT-201: tra AI-201: inc AAHH-201	lemento di misura della composizione asmettitore del segnale di coposizione dicazione di composizione visualizzata da software l: visualizzazione software dell'allarme di altissima composizione		
	2. MEASURED VARIABLE		201/201/
COMPOSIZ	ZIONE DI USCITA DEL LIQUIDO DI ASSORBIMENTO DALLA COLONNA C- 201		
	3. CONTROLLED VARIABLE	201/20	
	N/A		
	4. MANIPOLATED VARIABLE		
	N/A		
2	5 DISTURBANCES		
	N/A		
	5. MEASURIN	g instrument:	
		TRO (AE-201)	-
	6. MEASURED) - 8	
	7. CONT	ROL TYPE	
TYPE:		N/A	
ACTION:		N/A	
PARAMET	TERS: k [%]: N/A ti [s]:	N/A	td [s]: N/A
2			
	VALORE ALLARME DI ALTISSIMA COMPOSIZIONE	(AAHH) IMPOSTABILE M	IANUALMENTE DA SOFTWARE
	9. FINAL CON	TROL ELEMENT:	
	Fail Closed: Eail Onen		
MONITOP			
TEMPO	OCO NI OTILIOTI OSTICUE DEL ELQUIDO DI ADDOMINIMO IN OC	IL DALLA COLUNNA, IL	A NEWLE DEET TO DEE ELQUINO SOLINDE CON IL FASSARE DEL
IL SUPERA ASSORBIM	IMENTO DELLA SOGLIA DI ALLARME DI ALTISSIMA COMPOSIZIONE (AHI IENTO (P-201)	H) PROVOCA LO SPEGNI	MENTO DELLA POMPA DI RICIRCOLO DEL LIQUIDO DI

		CONTRO	DL SCHEME		
ID Loop:	10	1	Plant:	Produzione di acido solfori	co da fumi di combustione
Service:	Alimentazione fum	i di conbustione			
Descriprion:	Monitoraggio temperatur	a fumi di combustione	Section	1	
	1. LOOP ELEMENTS	3			
TT-101: misuratore di TI-101: indicazione di	i temperatura a termocoppia temperatura visualizzata da softw	rare			
5	2. MEASURED VARIAE	BLE			
	TEMPERATURA DEI FUMI		(TT 101)		
	3. CONTROLLED VARIA	BLE			
	N/A				
	4. MANIPOLATED VARIA	ABLE	1		
	N/A				
	5 DISTURBANCES		1		
	N/A				
		5. MEASURIN	G INSTRUMENT		
		TERMOCO	PPIA (TT-101)		
7		6. MEASURED	ARIABLE RANG	GE:	
2		350	- 450°C		
TYPE		7. CON			
ACTION:			N/A		
PARAMETERS:	k [%]: N/A	ti [s]	: N/A	td [s]:	N/A
		8. SE			
			N/A		
		9. FINAL CON	TROL ELEMENT	r:	
			-		
Fail Close	d: 🗌 Fai	I Open:			
		10. CONTROL LOOP	JUSTIFICATIO	N:	
MONITORAGGIO DEL	LA TEMPERATURA IN INGRESSO	DEI FUMI DI COMBUSTIONE	Ē		

ID Loop: 102	Plant: Produzione di acido solforico da fumi di combustione					
Service: Alimentazione fumi di conbustione						
Descriprion: Controllo di temperatura fumi di combustione	Section 1					
1. LOOP ELEMENTS						
TT-102: misuratore di temperatura a termocoppia TI-102: indicazione di temperatura visualizzata da software TC-102: controllore di temperatura TCV-102: valvola di controllo della temperatura	E-102					
2. MEASURED VARIABLE	TCV-102					
TEMPERATURA DI USCITA DEI FUMI DI COMBUSIOTNE DALLO SCAMBIATORE E- 102						
3. CONTROLLED VARIABLE						
TEMPERATURA DI USCITA DEI FUMI DI COMBUSIOTNE DALLO SCAMBIATORE E- 102	\rightarrow					
4. MANIPOLATED VARIABLE						
PORTATA DI ACQUA FREDDA IN INGRESSO ALLO SCAMBIATORE E-102	0					
5. DISTURBANCES						
N/A						
5. MEASURIN	G INSTRUMENT:					
TERMOCO	PPIA (TT-102)					
6. MEASURED V	ARIABLE RANGE:					
25	450°C					
TYPE	RETROAZIONE					
ACTION:	DIRETTA					
PARAMETERS: k [%]: N/A ti [s]:	N/A td [s]: N/A					
8. SE	TPOINT					
IMPOSTABILE MANUALMENTE	DA SOFTWARE - RANGE: 25 - 90°C					
9. FINAL CON	TROL ELEMENT:					
тс	V-102					
Fail Closed: 🗹 Fail Open:						
10. CONTROL LOOF	JUSTIFICATION:					
MANTIENE LA TEMPERATURA DEI FUMI DI COMBUSTIONE TALE DA CONSENTIRE LA CONDENSAZIONE DEL VEPORE ACQUEO IN ECCESSO						

		c	ONTR	OL SCHEME		
ID Loop:		103		Plant:	Produzione	di acido solforico da fumi di combustione
Service:	Alim	entazione reattore R-101				
Descriprion:	Controllo di	emperatura fumi di combustio	ne	Section		1
	1. LOOP EL	EMENTS				
TT-103: misuratore di te TI-103: indicazione di te TC-103: controllore di te TX-103: solid state relay	emperatura a termoc emperatura visualizza emperatura y	oppia ata da software				↓
	2. MEASURED	VARIABLE	-			SSR
TEMPERATURA DI ING 3 TEMPERATURA DI ING	RESSO DEI FUMI DI B. CONTROLLE RESSO DEI FUMI DI	COMBUSIOTNE NEL REATTOF	RE R-101 RE R-101	Manual Setpoint TI 103	- <u>-</u>	
4	. MANIPOLATE	D VARIABLE				
CORRENTE ELETTRI	CA ALIMENTATA ALI	O SCAMBIATORE ELETTRICO	E-103			
	5. DISTURE	ANCES				
	N/A	Here I.				
		5. MEA	SURIN	G INSTRUMEN	T:	
		т	ERMOCO	PPIA (TT-103)		
		6. MEASU	JRED \	ARIABLE RAN	IGE:	
			25	• 450°C		
		7	. CONT	ROL TYPE	200	
TYPE:				RETROAZION	E	
ACTION:	L For 1	51/6		INVERSA	24.10	F=1. N/A
ARVAINETERO.	K [%]:	N/A			td	[5]• IN/A
		IMPOSTABILE MANUAL	MENTE D	A SOFTWARE - RAN	GE: 300 - 500°C	
		9 FINA	LCON		IT:	
		v. 1 III.				
Fail Closed:		Fail Open: 🗌	1X-1	J3 (SSR)		
		10. CONTROL	LOOF	JUSTIFICATIO	ON:	
ALZARE LA TEMPERATU DURANTE LO START-UF	URA DEI FUMI DI CO P PORTARE IL REATT	MBUSTIONE FREDDI ALLA TEN ORE R-101 ALLA TEMPERATU	MPERATU IRA DI RE	RA DI REAZIONE AZIONE		

							D		
ID Loop:		104		Plant:	P	roduzione di ac	cido solforico da	fumi di combustione	
Service:	Inter-raffredda	amento reattore di ossida	azione						
Descriprion:	Controllo di	temperatura del gas ossi	idato	Section			1		
	1. LOOP ELE	MENTS						-	
TT-104: misuratore di TI-104: indicazione di TC-104: controllore di SC-104: controllore di	temperatura a termocop temperatura visualizzat temperatura velocità del motore dell	opia a da software 'aeroraffreddatore E-104			SC 104	' ۶	104 		
	2. MEASURED	ARIABLE				0			1
TEMPERAT	'URA DEI GAS ALL'INTER	NO DEL REATTORE R-10	01				⇒ ∣		
-	3 CONTROLLED				TC		(T	Ē \	
TEMP	ERATURA DI REAZIONE	DEL REATTORE R-101			104		(10	4)	
	4. MANIPOLATED	VARIABLE			0				
8	NUMERO DI GIRI D	EL MOTORE			\square	-0-{			
	5. DISTURB	ANCES					104/		
	N/A			12. 12.					
		5. M	EASURIN	G INSTR	RUMENT:				
			TERMOCO	PIA (TT-1	04)				
		6. MEA	ASURED V	ARIABL	E RANGE:				;
			350	- 500°C					
			7. CONT	ROL TY	PE				2
TYPE:				RET	ROAZIONE				
ACTION:		11/40		D				N //A	
FARAMETERS.	K [%]:	N/A	ti [s]:		· •	ta [s]:		IN/A	-
		IMPOSTABILE MANU	UALMENTE D	A SOFTWA	RE - RANGE: 300 -	500°C			
		9. FI	NAL CON	ROL E	LEMENT:				_
			SC	-104					
Fail Close	d: 🕅	Fail Open: 🗌							
5 5		10. CONTR	ROL LOOP	JUSTIF	ICATION:				
MANTENIMENTO DELI OSSIDAZIONE	LA TEMPERATURA DEI C	SAS ALL'INTERNO DEL RE	EATTORE R-1	01 PER MA	NTENERE ALTO IL	LIVELLO DI CO	ONVERSIONE D	ELLA REAZIONE DI	

ID Loop:	105	Plant:	Produzione di acido solforico da fumi di combustione			
Service:	Reattore di ossidazione					
Descriprion:	Monitoraggio della temperatura nella sezione catalitica	Section	1			
	1. LOOP ELEMENTS					
TT-105: misuratore TI-105: indicazione TAHH-105: visualiz	di temperatura a termocoppia di temperatura visualizzata da software zazione software dell'allarme di altissima temperatura		TAHH 105 TI 105			
	2. MEASURED VARIABLE	-				
TEMPER.	ATURA DEI GAS ALL'INTERNO DEL REATTORE R-101					
	3. CONTROLLED VARIABLE	4				
	N/A		TC			
	4. MANIPOLATED VARIABLE		105			
	N/A					
	5. DISTURBANCES					
	N/A		105			
	5. MEASURI	NG INSTRUMENT				
	TERMOC	OPPIA (TT-105)				
	6. MEASURED	VARIABLE RANG	SE:			
	35	0 - 500°C				
TYPE	7. CON					
ACTION:		N/A N/A				
PARAMETERS:	k [%]: N/A ti [s	s]: N/A	td [s]: N/A			
	8. S	ET POINT				
č.	VALORE ALLARME DI ALTISSIMA TEMPERATUR	A (TAHH) IMPOSTABILE	MANUALMENTE DA SOFTWARE			
	9. FINAL CO					
		N/A				
Fail Clo	sed: Fail Open:					
	10. CONTROL LOOP JUSTIFICATION:					
MONITORAGGIO DELLA TEMPERATURA DEI GAS ALL'INTERNO DELLA PRIMA SEZIONE CATALITICA DEL REATTORE R-101 IL SUPERAMENTO DELLA SOGLIA DI ALLARME DI ALTISSIMA TEMPERATURA (TAHH) PROVOCA LO SPEGNIMENTO DI EMERGENZA DELL'IMPIANTO						

ID Loop:	106	Plant:	Produzione di acido solforico da fumi di combustione			
Service:	Reattore di ossidazione					
Descriprion:	Monitoraggio della temperatura nella sezione catalitica	Section	1			
	1. LOOP ELEMENTS					
TT-106: misuratore (TI-106: indicazione (TAHH-106: visualizz	di temperatura a termocoppia di temperatura visualizzata da software azione software dell'allarme di altissima temperatura		7AHH 106 TI 106			
	2. MEASURED VARIABLE	1				
TEMPERA	TURA DEI GAS ALL'INTERNO DEL REATTORE R-101					
	3. CONTROLLED VARIABLE					
		4	Ò I			
	4. MANIPOLATED VARIABLE	4				
	N/A		TT			
	5. DISTURBANCES	145	106 106			
	N/A					
	5. MEASURIN	G INSTRUMENT				
	TERMOCO	PPIA (TT-106)				
	6. MEASURED	ARIABLE RAN	GE:			
	350	- 500°C				
TYPE	7. CON	KOL TYPE				
ACTION:		N/A				
PARAMETERS:	k [%]: N/A ti [s]	N/A	td [s]: N/A			
	8. SE	T POINT				
	VALORE ALLARME DI ALTISSIMA TEMPERATURA	(TAHH) IMPOSTABILE	MANUALMENTE DA SOFTWARE			
	9. FINAL CON	TROL ELEMEN	Г:			
Fail Clos	ed: 🗌 Fail Open: 🗌	N/A				
	10. CONTROL LOOP	JUSTIFICATIO	N:			
MONITORAGGIO DELLA TEMPERATURA DEI GAS ALL'INTERNO DELLA SECONDA SEZIONE CATALITICA DEL REATTORE R-101 IL SUPERAMENTO DELLA SOGLIA DI ALLARME DI ALTISSIMA TEMPERATURA (TAHH) PROVOCA LO SPEGNIMENTO DI EMERGENZA DELL'IMPIANTO						

CONTR	OL SCHEME	SOTACARBO SOCITA TECNOLOGIE NYANZATE CARBONE 5.7.4.
ID Loop: 201	Plant:	Produzione di acido solforico da fumi di combustione
Service: Colonna di assorbimento		
Descriprion: Monitoraggio temperatura liquido di assorbimento	Section	2
1. LOOP ELEMENTS		
TT-201: misuratore di temperatura a termocoppia TI-201: indicazione di temperatura visualizzata da software		
2. MEASURED VARIABLE		
TEMPERATURA LIQUIDO DI ASSORBIMENTO		$-\overline{10}$ $-\overline{10}$ $-\overline{11}$ $-\overline{10}$
3. CONTROLLED VARIABLE		
N/A		
4. MANIPOLATED VARIABLE		
N/A		
5. DISTURBANCES	-	
N/A		
5. MEASUR	NG INSTRUMENT:	
TERMO	COPPIA (TT-201)	
6. MEASUREL	VARIABLE RANGE:	
7.00		
TYPE:	N/A	
ACTION:	N/A	
PARAMETERS: k [%]: N/A ti [s]: N/A	td [s]: N/A
8. 5	ET POINT	
	N/A	
9. FINAL CO	NTROL ELEMENT:	
Fail Closed: Fail Open:	-	
10. CONTROL LOG	OP JUSTIFICATION:	
MONITORAGGIO DELLA TEMPERATURA DEL LIQUIDO DI ASSORBIMENTO IN US	CITA DALLA COLONNA C-20	

		CONTRO	L SCHEME		SOTACARBO
ID Loop:	201		Plant:	Produzione di acido solfori	co da fumi di combustione
Service:	Colonna di assorbimento	0			
Descriprion:	Monitoraggio temperatura liquido di a	assorbimento	Section	2	
	1. LOOP ELEMENTS				6
TT-201: misuratore di tempe TI-201: indicazione di tempe	eratura a termocoppia eratura visualizzata da software				
2					
Ζ.	WEASURED VARIABLE		5		2
TEMPER	ATURA LIQUIDO DI ASSORBIMENTO		(TT 201)		0 TI 201
3. C	ONTROLLED VARIABLE				
	N/A				
4. M	ANIPOLATED VARIABLE		1		
			1		
	N/A				
2			4		
	5. DISTURBANCES				
	-	MEACUDIN			
		TERMOCO	PPIA (TT-201)	•	
	6. N	MEASURED	ARIABLE RAN	GE:	
		25	- 90°C		
TYPE		7. CON	N/A		
ACTION:			N/A		
PARAMETERS:	k [%]: N/A	ti [s]	: N/A	td [s]:	N/A
		8. SE	T POINT	11 (Andread Merry 11)	
			N/A		
	9	FINAL CON	TROL ELEMENT	Γ:	
Fail Closed: 🗌	Fail Open:	ĺ.	8		
	10. COM	NTROL LOOP	JUSTIFICATIO	N:	
MONITORAGGIO DELLA TEI	MPERATURA DEL LIQUIDO DI ASSORB	IMENTO IN USCI	TA DALLA COLONNA	C-201	

10 Allegato 4 Lay-out con viste -IOSTO

11 Allegato 5 Schemi elettrici di base -IOSTO

Accordo di Programma MSE-ENEA

