

Valutazione delle prestazioni del sistema MINISTERO DELLA TRANSIZIONE ECOLOGICA Operativo delle correnti marine e mantenimento della sua operatività

E. Napolitano, R. Iacono, M. Palma, A. Carillo. E. Lombardi, G. Sannino

Report RdS/PTR2020/103

VALUTAZIONE DELLE PRESTAZIONI DEL SISTEMA OPERATIVO DELLE CORRENTI MARINE E MANTENIMENTO DELLA SUA OPERATIVITÀ

E. Napolitano, R. Iacono, M. Palma, A. Carillo. E. Lombardi, G. Sannino

Aprile 2021

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA Piano Triennale di Realizzazione 2019-2021 - II annualità Obiettivo: *Tecnologie* Progetto: 1.8 Energia elettrica dal mare Work package: (*Energia elettrica dal mare* Linea di attività: Valutazione delle prestazioni del sistema operativo delle correnti marine e mantenimento della sua operatività (1.9) Responsabile del Progetto: Gianmaria Sannino ENEA Responsabile del Work package: Gianmaria Sannino ENEA

Il presente documento descrive le attività di ricerca svolte all'interno dell'Accordo di collaborazione "Piano triennale di realizzazione 2019-2021 della ricerca di sistema elettrico nazionale" Responsabile scientifico ENEA: Gianmaria Sannino Responsabile scientifico Politecnico di Torino: Giuliana Mattiazzo

Indice

SOMM	IARIO	4
1 IN	NTRODUZIONE	5
2 D	PESCRIZIONE DELLE ATTIVITÀ SVOLTE E RISULTATI	5
2.1	La catena operativa di MITo	6
2.2	Validazione della SST	8
2.3	Validazione della SSH (sea surface height)	9
2.4	Validazione dei parametri idrologici (Profili di temperatura e salinità)	11
2.5	VALIDAZIONE DELLA MAREA: MAREOGRAFI E COMPONENTI SPETTRALI DELL'ENERGIA	15
2.6	VALIDAZIONE DELLA CIRCOLAZIONE E CONSIDERAZIONI SUGLI EFFETTI DELLA RISOLUZIONE	22
3 C	ONCLUSIONI	26
4 R	IFERIMENTI BIBLIOGRAFICI	27

Sommario

Le attività di questa seconda annualità hanno riguardato la validazione di un sistema operativo per la previsione della circolazione del Mar Mediterraneo e del Mar Nero, basato su un modello numerico tridimensionale che include i principali effetti delle maree; lo sviluppo del modello di circolazione e la sua implementazione operativa è stata già descritta nel rapporto ...

Il sistema operativo produce previsioni a cinque giorni delle principali caratteristiche fisiche (corrente, temperatura, salinità, ed elevazione della superficie) con dati di output orari. Si è provveduto dunque a validare gli output previsionali mediante i data set osservativi disponibili tramite il portale CMEMS (**C**opernicus **M**arine **E**nvironment **M**onitoring **S**ervice) e cioè: dati satellitari di temperatura superficiale, dati satellitari di elevazione del livello del mare, dati idrologici (temperatura e salinità) ottenuti da profili ARGO, e mediante i dati di livello del mare ottenuti da mareografi costieri. Infine si è verificata la qualità della circolazione superficiale confrontandola con la ricostruzione geostrofica ottenuta dal data set AVISO e si sono valutati alcuni effetti della risoluzione del modello.

1 Introduzione

In questo documento si descrivono le attività del secondo anno della linea LA1.9 dell'accordo di programma MiSE-ENEA, finalizzate alla validazione del sistema operativo per la previsione della circolazione del Mar Mediterraneo e del mar Nero, con particolare riferimento ai risultati sul bacino mediterraneo.

Il sistema è basato su un modello numerico tridimensionale della circolazione marina estremamente innovativo che include i principali effetti delle maree, sia prodotti da forzanti locali che provenienti dall'Atlantico. Oltre all'inclusione degli effetti della marea, il modello ha altre caratteristiche fortemente innovative, tra cui l'alta risoluzione spaziale, con un dettaglio orizzontale di 1/48° (circa 2 km) - due volte più` alto degli attuali modelli operativi disponibili del Mediterraneo (CMEMS-Copernicus) - che aumenta ulteriormente fino ad alcune centinaia di metri, sia nella regione dello Stretto di Gibilterra che nello Stretto dei Dardanelli. A Gibilterra, in particolare la risoluzione particolarmente alta (circa 200 m) permette di risolvere adeguatamente il trasferimento del segnale della componente di marea atlantica nel Mediterraneo e la complessa dinamica locale. Per tutti i dettagli sull'implementazione del modello e della catena operativa si fa riferimento al rapporto tecnico PAR (...). Va ricordato che questa versione del modello non contiene nessun tipo di assimilazione dati.

La procedura di validazione del sistema operativo è consistita nell'adottare lo stesso metodo applicato in ambito CMEMS per la validazione del sistema previsionale, e nello specifico si sono utilizzate le stesse metriche statistiche per quanto riguarda i parametri fisici di base, e cioè il *Bias* (deviazione) tra le variabili previste ed osservate, l'RMSD che rappresenta la *root-mean-square deviation*.

2 Descrizione delle attività svolte e risultati

Il sistema operativo Mito è stato valutato sulla base dei risultati ottenuti durante l'anno 2020, nello specifico si fa riferimento a tutti i *forecast* realizzati dal 1 gennaio al 31 dicembre su base giornaliera. Si sono costruite così le serie temporali giornaliere di temperatura, salinità e superficie del mare scegliendo il primo giorno di *forecast* per ogni variabile considerata. Si sottolinea che il primo giorno di forecast è considerato la *best quality* delle singole previsioni a cinque giorni.

Per quanto riguarda gli aspetti sull'implementazione della catena operativa, si ribadisce che i dettagli sono stati forniti nel rapporto LA ..., tuttavia nella sezione 2.1 si richiamano brevemente le caratteristiche generali del ciclo operativo. Nelle sezioni 2.2 e 2.3 si presentano i confronti della temperatura superficiale (SST) e della superficie libera (SSH, Sea Surface Height) in otto regioni, scelte sulla base di una certa coerenza dinamica (fig. 1), ed in modo simile a quelle utilizzate per la validazione dei modelli operativi CMEMS. Nella sezione 2.4 è poi descritta la validazione dei parametri idrologici e nella sezione 2.5 è descritto il confronto tra i dati di elevazione della superficie libera ed i mareografi (*tide gauge*) costieri; in quest'ultima sezione è presente la discussione sugli effetti della marea. Infine la sezione 2.6 include il confronto tra la circolazione superficiale riprodotta da Mito (media annuale dei dati giornalieri) e la ricostruzione geostrofica fornita da AVISO; in questa sezione sono discussi anche gli effetti della risoluzione del modello di circolazione.

Fig. 1- Regioni su cui sono state realizzate le analisi statistiche per la SST, SSH e per i dati idrologici

2.1 La catena operativa di MITo

Il sistema previsionale, denominato MITO, è costituito da un complesso set di codici, implementato su computers che fanno parte delle infrastrutture HPC (High Perfomance Computing) dell'ENEA. Il modello è inizializzato e forzato al bordo atlantico dai dati di temperatura e salinità del modello NEMO-CMEMS, ed in superficie utilizza forzanti atmosferici calcolati mediante *bulk formulae* che fanno uso di dati ottenuti dal modello atmosferico Skiron.

La catena operazionale è descritta schematicamente in fig. 2. Ogni martedì il modello viene inizializzato con i dati CMEMS e produce un run di 14 gg, che comprende i nove giorni precedenti e i cinque giorni di forecasts; i nove giorni precedenti sono considerati come fase di inizializzazione. Successivamente, dal giovedì al martedì il modello funziona solo in modalità previsionale producendo i 5 gg successivi, partendo dal *restart* del giorno precedente.

Ogni giorno i dati di output orari vengono convertiti da file binari a file *netcdf* ed appositamente archiviati sul server dedicato. Nello schema in figura 2 sono indicati l'utilizzo dei dati di inizializzazione (INIT), funzioni esterne (EXT) e dati per le condizioni al bordo (BC)

Come già discusso nel rapporto precedente, Mito non contiene nessun tipo di assimilazione dati, tuttavia va ricordato che il modello "padre" CMEMS assimila dati altimetrici, di temperatura e salinità mediante tecniche 3D-4D var, dunque Mito acquisisce quelle informazioni mediante l'inizializzazione e le condizioni al bordo.

La produzione dei dati MITO è un complesso processo che richiede molte risorse in termini di potenza di calcolo, di tempo macchina e di memoria di massa. Anche la rete è una risorsa necessaria poiché i dati iniziali sono prelevati via rete dal sito ftp di CMEMS (dati Nemo) e dal sito FTP dell'università di Atene (dati Skiron).

La catena di elaborazione è stata automatizzata in modo che ogni giorno parte non appena sono disponibili tutti i dati di iniziali. L'esperienza dimostra che non è possibile definire a priori un orario fisso nei quali tali dati siano sempre disponibili, quindi l'orario di partenza della catena è variabile.

Un primo processamento dei dati avviene su un server dipartimentale (Giotto) che trasforma i dati Nemo e Skiron in file binari leggibili dal MITgcm che sarà eseguito su un secondo server massicciamente parallelo

(Cresco) . I dati prodotti da MITgcm vengono prima trasformati in formato netcdf e quindi rispediti al primo server per essere plottati e visualizzati sul Web e anche resi disponibili via FTP.

Figura 2 - Schema della catena operativa Mito

	Tempi	elaborazione	Core u	utilizzati	Dati prodotti (GB)		
	<u>GIOTTO</u>	CRESCO	<u>GIOTTO</u>	<u>CRESCO</u>	<u>GIOTTO</u>	<u>CRESCO</u>	
Preprocessamento dati	35' / 15'		250		25 / 8		
Esecuzione MITgcm		13h45' / 4h30'		800 / 400		295 / 114	
						(*)	
Core per esecuzione		800 / 400					
MITgcm							
Creazione NC		1h10' / <i>45'</i>		400			
Creazione plot e animazioni	40' / 40'		250		5 (**)		

Tabella 1- Il numero in grasseto si riferisce a run con inizializzazione (martedì) e quello in corsivo si riferisce agli altri giorni della settimana. (*) Al fine di risparmiare spazio i file prodotti da MITgcm vengono trasformati in netcdf. I valori indicati comprendono i file già trasformati in netcdf. (**) Vengono giornalmente prodotti oltre 10700 file grafici che rappresentano le 120 ore simulate per le variabili Temperatura, Salinità e Corrente per l'intero bacino del Mediterraneo e per i seguenti 11 sotto bacini: Nord Tirrreno, Sud Tirreno, Egeo, Levantino, Sicilia, Gibilterra, Messina, Adriatico, Sardegna, Dardanelli e Mar Nero. Dell'intero mediterraneo e di ogni sottobacino vengono anche prodotte le animazioni per il periodo di 120 ore di ciascuna delle tre variabili. Lo spazio utilizzato per ciascun giorno per grafici e filmati è di circa 5Gb.

I dati prodotti ogni giorno da MITO, limitandosi ai primi due giorni di *forecast* per minimizzare lo spazio usato, occupano 80 GB. Pertanto un mese necessita do 2.4 TB e un anno 27TB.

2.2 Validazione della SST

Le figure 3a,b mostrano il confronto della SST di MITO (primo livello del modello) con la SST satellitare, il confronto si è fatto uso del prodotto per ogni regione. Per satellitare CMEMS SST MED SST L4 NRT OBSERVATIONS 010 004, in particolare si è usato il prodotto restituito su una griglia regolare a 1/16° che rappresenta la ricostruzione del dato giornaliero sulla base dei dati misurati alle 0:00 UTC e che è l'unione di vari sensori (Buongiono Nardelli et al. 2013). Le figure 3a e 3b mostrano gli andamenti della SST del modello e del dato satellitare riferiti alle differenti regioni, mentre i valori di bias e rmsd complessivi sono riportati in tabella 1. Si noti che il bias medio è, in valore assoluto ed in generale, sempre al di sotto del grado, inoltre il modello riproduce una SST quasi sempre leggermente più bassa rispetto al dato osservato (bias negativo). La regione 3 (Tirreno-Ligure) presenta il bias maggiore mentre le regioni dove il confronto è migliore sono la 7 e la 8, e cioè, il mar Egeo e il bacino levantino. Dal punto di vista stagionale poi le differenze maggiori si riscontrano nel periodo estivo ed autunnale mentre in inverno ed in primavera il confronto è molto buono. Le differenze tra il dato previsionale ed il dato osservato sono riconducibili a vari tipi di cause, la prima è che il dato L4 satellitare usa climatologie per riempire le zone influenzate da copertura nuvolosa, inoltre il modello stesso può introdurre degli errori dovuti a vari fattori come, ad esempio, il tipo di parametrizzazioni utilizzate per i coefficienti di mixing verticali, oppure ad errori nei dati del modello Skiron che è usato per i flussi all'interfaccia aria mare. Nelle conclusioni si discute nel dettaglio questo aspetto.

Va sottolineato che questi risultati sono confrontabili con le stime statistiche ottenute dai confronti con il modello operativo Copernicus riportate nel rapporto tecnico relativo al controllo di qualità del prodotto (E. Clementi, A. Grandi, V. Lyubartsev, R. Escudier, J. Pistoia, 2020).

Figura 3a - Confronto tra la temperatura superficiale di Mito e quella satellitare (regioni 1-4)

Figura 3b- Confronto tra la temperatura superficiale di Mito e quella satellitare (regioni 5-8)

SST MITO-SST SAT		
REGION	Mean	RMSD
REGION 1	-0.46	0.71
REGION 2	-0.31	0.51
REGION 3	-0.51	0.68
REGION 4	-0.19	0.42
REGION 5	-0.37	0.55
REGION 6	-0.06	0.55
REGION 7	0.01	0.42
REGION 8	-0.3	0.45

SST MITO-SAT

Tabella 2 - Bias e RMSD della SST (Mito-dati)

2.3 Validazione della SSH (sea surface height)

I dati di elevazione prodotti dal modello sono stati confrontati con dati altimetrici NRT (Near Real Time) relativi al 2020, non essendo ancora disponibili per tutto l'anno i dati completamente riprocessati. Il prodotto utilizzato è il SEALEVEL_EUR_PHY_L4_NRT_OBSERVATIONS_008_060 di CMEMS, ed in particolare le mappe di ADT (Absolute Dynamic Topography), ottenute attraverso l'integrazione dei dati che derivano

da tutti gli altimetri disponibili, da differenti satelliti. Queste mappe ora coprono il Mediterraneo, parte dell'Atlantico, e i mari del Nord Europa, con una risoluzione spaziale uniforme di 1/8° (circa 14 km), sia in latitudine che longitudine.

Sono state confrontate serie settimanali di anomalie medie di ADT (anomalie rispetto alla media annuale) con corrispondenti serie di anomalie di elevazione ottenute dal modello, per le differenti regioni. Le serie sono mostrate nella Figura 4, dove le curve in rosso (nero) corrispondono alle osservazioni (modello). Il motivo per cui si è scelto di confrontare le medie settimanali è che, benchè siano disponibili dati di ADT giornalieri, è stato verificato, tramite un'analisi spettrale, che le serie di valori osservati non contengono componenti significative con periodo al di sotto dei 7-10 giorni.

Le serie da modello e da osservazioni sono ben correlate; i valori corrispondenti di RMSD, mostrati nella Tabella 2, sono in linea con i valori ottenuti nella validazione del modello operativo Copernicus, confrontando valori osservati e simulati lungo le tracce satellitari.

Figura 4 – Confronto tra la superficie libera di Mito con il dato di elevazione fornito da AVISO

SSH anomaly MITO-SSH anomaly SAT	
REGION	RMSD
REGION 1	3.1
REGION 2	4.07
REGION 3	4.65
REGION 4	4.33
REGION 5	4.50
REGION 6	5.47
REGION 7	5.31
REGION 8	4.57

Tabella 3 – RMSD tra la superficie libera di Mito e dato di Aviso

2.4 Validazione dei parametri idrologici (Profili di temperatura e salinità)

La variabili idrologiche del modello, sono state confrontate utilizzando tutti i profili Argo disponibili nel portale CMEMS (il prodotto <u>INSITU MED NRT OBSERVATIONS 013 035</u>) per l'anno 2020, e la figura 5 mostra la distribuzione del dati da marzo a dicembre; i mesi di gennaio e febbraio non sono stati considerati poiché nel portale non sono stati resi disponibili. Si sono analizzati dunque 2993 profili di temperatura e salinità e la distribuzione mensile è riportata in tabella 3.

I profili del modello sono scelti sulla base di quelli che corrispondono sia al punto di griglia più vicino all'osservazione che nello stesso istante temporale.

Dal punto di vista generale la tabella 4 mostra che nei primi 30 mt Mito ha una temperatura più bassa rispetto al dato osservato, e questo è in accordo con i risultati della sezione 2.2 per ciò che riguarda la sst. Tra i 60 m ed i 150 m il bias cambia di segno per invertirsi di nuovo negli strati profondi. Si noti tuttavia che anche se negli strati superficiali il bias è più elevato, rimane comunque dell'ordine di 0.2-0.3 gradi. Nelle tabelle 5a,b invece vi è la suddivisione mensile sia del *bias* che per l'*rmsd*, si noti che tra la primavera e l'estate i valori assoluti sia di *bias* che di *rmsd* aumentano per raggiungere poi valori molto bassi durante il periodo invernale (dicembre- marzo). Discorso simile per la salinità, infatti la tabella 6 mostra che il modello ha valori più bassi rispetto alle osservazioni e soprattutto negli strati superficiali. Il dato statistico stagionale per la salinità invece non indica variazioni significative. Questo risultato non è inaspettato poiché la salinità è meno soggetta al ciclo stagionale. Le figure xxx mostrano una sintesi in strati rappresentativi della variabilità del *bias* e dell'*rmsd* sia per la temperatura che per la salinità.

L'ultima tabella riporta le metriche statistiche calcolate per alcune regioni (fig.1), dove è stato possibile mettere insieme del cluster di dati significativi. Si noti che per la temperatura non ci sono variazioni rilevanti sia negli strati superficiali che profondi, invece per la salinità emerge una caratteristica interessante, infatti nella regione 1 (Gibilterra) e 8 (Levantino) abbiamo i valori minimi di bias e rmsd, che al contrario assumono i valori massimi nelle regioni 2 e 3 cioè complessivamente il mediterraneo occidentale. Il fatto che nella regione di Gibilterra il modello previsionale riproduca molto bene il contenuto di sale ci dice che nella regione la dinamica, e dunque gli scambi tra Mediterraneo e Atlantico sono ben riprodotti. Per quanto riguarda le regioni 2 e 3 (bacino occidentale e Tyrreno-Ligure) la questione è complessa e richiederà un approfondimento dedicato. Le probabili cause sono negli input di sale, che escludendo Gibilterra che importa acqua meno salata dall'Atlantico che sembra funzioni correttamente, sono da ricercarsi nel forcing E-P-R, dove E è l'evaporazione, P la precipitazione ed R il run-off.

Figura 5 – Posizioni dei profili Argo nel periodo marzo-dicembre 2020

	Mar	Apr	Mag	Giug	Lug	Ago	Sett	Ott	Nov	Dic	Totali
Num profili TS	142	324	314	305	306	285	324	323	337	333	2993

Tabella 4 – Numero di profili disponibili su base mensile

DIAS (IMILO-IODS	/	
Layer	BIAS	RMSD
0-10	-0.224	1.049
10-30	-0.079	1.573
30-60	0.363	1.795
60-100	0.275	1.067
100-150	0.132	0.586
150-300	-0.006	0.390
300-600	-0.112	0.240
600-1000	-0.098	0.175
1000-2000	-0.188	0.202

BIAS (Tmito-Tobs)

Tabella 5 – Bias e RMSD complessivo relativo alla Temperatura (in °C)

BIAS (Tmito-Tobs)

Layer	Mar	Apr	Mag	Giug	Lug	Ago	Sett	Ott	Nov	Dic
0-10	-0.044	-0.246	-0.369	-0.347	-0.165	-0.205	-0.451	0.084	-0.299	-0.093
10-30	-0.007	-0.134	-0.118	-0.166	0.080	0.245	-0.339	0.102	-0.272	-0.085
30-60	0.117	0.063	0.311	0.711	0.670	1.009	0.404	0.523	-0.170	0.007
60-100	0.166	0.117	0.288	0.411	0.401	0.573	0.367	0.364	-0.051	0.140
100-150	0.136	0.094	0.217	0.214	0.199	0.246	0.222	0.116	-0.089	0.0381
150-300	0.032	0.008	0.027	0.021	-0.017	-0.007	0.057	-0.0008	-0.098	-0.044
300-600	-0.089	-0.098	-0.085	-0.104	-0.099	-0.115	-0.099	-0.128	-0.139	-0.138
600-1000	-0.079	-0.082	-0.086	-0.100	-0.079	-0.098	-0.088	-0.124	-0.101	-0.123
1000-2000	-0.191	-0.185	-0.182	-0.193	-0.181	-0.193	-0.187	-0.188	-0.188	-0.195

RMSD

Layer	Mar	Apr	Mag	Giug	Lug	Ago	Sett	Ott	Nov	Dic
0-10	0.391	0.490	0.708	0.943	1.298	1.194	1.321	1.335	1.153	0.916
10-30	0.363	0.432	0.752	1.259	1.974	2.622	2.388	1.658	1.232	0.951
30-60	0.376	0.389	0.802	1.237	1.741	2.578	2.729	2.448	1.934	1.117
60-100	0.436	0.396	0.661	0.699	0.821	1.083	1.472	1.349	1.431	1.179
100-150	0.413	0.366	0.584	0.497	0.494	0.578	0.729	0.613	0.6283	0.724
150-300	0.401	0.378	0.458	0.402	0.399	0.439	0.388	0.343	0.3435	0.367
300-600	0.255	0.241	0.243	0.233	0.231	0.254	0.257	0.250	0.230	0.213
600-1000	0.202	0.159	0.136	0.152	0.158	0.169	0.187	0.224	0.172	0.181
1000-2000	0.206	0.200	0.195	0.204	0.195	0.207	0.200	0.202	0.202	0.208

Tabelle 6a,b - Bias e RMSD complessivo relativo alla Temperatura (in °C) su base mensile

BIAS (SMILO-SODS)		
Layer	BIAS	RMSD
0-10	-0.154	0.316
10-30	-0.138	0.301
30-60	-0.140	0.297
60-100	-0.137	0.298
100-150	0.051	0.217
150-300	0.020	0.173
300-600	0.017	0.095
600-1000	0.020	0.096
1000-2000	0.014	0.090

BIAS (Smito-Sobs)

Tabella 7 - Bias e RMSD complessivo relativo alla Salinità (in psu)

BIAS (Smito-Sobs)

Layer	Mar	Apr	Mag	Giug	Lug	Ago	Sett	Ott	Nov	Dic		
0-10	-0.155	-0.162	-0.122	-0.172	-0.166	-0.176	-0.128	-0.126	-0.087	-0.168		
10-30	-0.141	-0.153	-0.135	-0.164	-0.159	-0.157	-0.137	-0.127	-0.091	-0.145		
30-60	-0.146	-0.158	-0.170	-0.159	-0.150	-0.153	-0.092	-0.096	-0.083	-0.127		
60-100	-0.139	-0.145	-0.147	-0.134	-0.118	-0.159	-0.084	-0.103	-0.016	-0.083		
100-150	-0.047	-0.058	-0.092	-0.048	-0.020	-0.052	-0.030	-0.007	0.059	0.001		
150-300	0.028	0.015	0.001	0.033	0.019	0.031	0.047	0.054	0.060	0.019		
300-600	-0.013	0.013	0.027	0.033	0.0216	0.014	0.022	0.012	0.014	0.011		
600-1000	0.016	0.014	0.022	0.025	0.020	0.013	0.018	0.004	0.013	0.007		
1000-2000	0.004	0.014	0.027	0.037	0.032	0.025	0.026	0.020	0.028	0.026		

RMSD

Layer	Mar	Apr	Mag	Giug	Lug	Ago	Sett	Ott	Nov	Dic
0-10	0.309	0.335	0.419	0.442	0.355	0.385	0.364	0.342	0.283	0.376
10-30	0.292	0.325	0.435	0.456	0.363	0.370	0.395	0.347	0.285	0.362
30-60	0.295	0.312	0.477	0.461	0.395	0.426	0.422	0.368	0.320	0.375
60-100	0.297	0.296	0.465	0.428	0.332	0.405	0.357	0.330	0.303	0.384
100-150	0.225	0.195	0.307	0.266	0.206	0.249	0.246	0.266	0.275	0.335
150-300	0.172	0.171	0.215	0.244	0.208	0.234	0.206	0.224	0.216	0.200
300-600	0.085	0.085	0.181	0.212	0.114	0.107	0.109	0.093	0.096	0.094
600-1000	0.090	0.081	0.156	0.199	0.101	0.091	0.099	0.089	0.091	0.090
1000-2000	0.026	0.085	0.151	0.177	0.119	0.111	0.109	0.102	0.114	0.116

Tabella 8a,b - Bias e RMSD complessivo relativo alla Salinità (in psu) su base mensile

MITO

Figura 6 - Variazione stagionale del Bias e Rmsd su strati significativi della colonna d'acqua

	REGIONE 1		REGIONE 2		REGIONE 3		REGIONE 5		REGIONE 8	
STRATI (m)	BIAS	RMSD								
0-10	-0.284	1.082	0.085	1.220	-0.276	0.910	-0.447	0.969	-0.446	0.947
10-30	-0.185	1.247	0.211	1.630	0.225	1.837	-0.415	1.271	-0.500	1.440
30-60	0.027	1.327	1.039	1.962	0.570	1.925	-0.149	1.496	-0.142	1.719
60-100	0.060	1.096	0.810	1.146	0.241	0.964	0.035	0.836	-0.030	1.218
100-150	-0.073	0.837	0.385	0.628	0.114	0.378	-0.045	0.448	0.008	0.696
150-300	0.154	0.393	-0.019	0.229	0.070	0.274	-0.030	0.334	-0.065	0.568
300-600	0.016	0.101	-0.136	0.169	-0.170	0.293	-0.096	0.253	-0.087	0.290
600-1000	-0.024	0.052	-0.114	0.132	-0.186	0.361	-0.072	0.194	-0.083	0.158
1000-2000	-0.098	0.108	-0.188	0.200	-0.242	0.281	-0.192	0.205	-0.175	0.185

Temperatura

Salinità

	REGIONE 1		REGION	E 2	REGIONE 3		REGIONE 5		REGIONE 8	
STRATI (m)	BIAS	RMSD	BIAS	RMSD	BIAS	RMSD	BIAS	RMSD	BIAS	RMSD
0-10	-0.0277	0.118	-0.264	0.379	-0.341	0.458	-0.035	0.382	0.083	0.236
10-30	-0.017	0.080	-0.296	0.412	-0.313	0.424	-0.037	0.424	0.071	0.236
30-60	-0.008	0.095	-0.357	0.483	-0.279	0.405	-0.007	0.422	0.112	0.287
60-100	0.044	0.153	-0.337	0.482	-0.206	0.387	0.014	0.363	0.082	0.223
100-150	0.284	0.386	-0.197	0.319	0.019	0.289	0.041	0.238	0.043	0.161
150-300	0.021	0.243	-0.052	0.118	0.176	0.363	0.039	0.210	0.030	0.151
300-600	0.017	0.026	-0.007	0.027	-0.0006	0.078	0.002	0.168	0.069	0.171
600-1000	0.017	0.019	-0.004	0.018	-0.024	0.073	-0.002	0.149	0.060	0.156
1000-2000	0.021	0.023	-0.0009	0.013	-0.015	0.035	-0.009	0.100	0.113	0.212

Tabella 9a, b – Bias e RMSD relativi a singole regioni specifiche

2.5 Validazione della marea: mareografi e componenti spettrali dell'energia

I dati di altezza del livello del mare lungo le coste, ottenuti dalle previsioni con il modello operativo, sono stati confrontati con i valori misurati dai mareografi. In particolare sono stati utilizzati i dati raccolti all'interno del Progetto di monitoraggio Copernicus che sono relativi a 55 mareografi (Figura 7). I dati disponibili sono concentrati nel Mediterraneo occidentale e lungo tutte le coste italiane, la risoluzione temporale varia da stazione a stazione, ed il confronto è stato effettuato utilizzando il tempo del modello più vicino a quello misurato, senza effettuare interpolazioni.

Come per i dati idrologici, non è stata effettuata nessuna interpolazione spaziale ed è stato scelto il punto del modello più vicino al dato osservato. I dati relativi a ciascun mese sono stati elaborati separatamente, le serie temporali sia dei mareografi che del modello sono riferite alla rispettiva media mensile.

Stazione	n. stazione	coordinate		gennaio		febbraio		marzo	
		longitudine	latitudine	n. valori	correlazione	n. valori	correlazione	n. valori	correlazione
SANT-ANTONI	1	1,29878	38,9771	698	0,859	672	0,814		
ANDRATX	2	2,37846	39,5442	744	0,916	672	0,780		
SA-RAPITA	3	2,95326	39,3603	744	0,927	672	0,784		
PortLaNouvelle	4	3,06410	43,0147	660	0,502				
Pollensa	5	3,08847	39,9046	200	0,868				
PortVendres	6	3,10730	42,5201	737	0,880	672	0,801	698	0,789
Colonia	7	3,27335	39,7373	742	0,916	672	0,814		
PORTO-CRISTO	8	3,33509	39,5392			599	0,790		
Sete	9	3,70170	43,4000	741	0,849	672	0,804	720	0,765
FosSurMer	10	4,89294	43.4049	586	0.825	672	0.774	720	0,797
Marseille	11	5,35370	43.2785	744	0.815	672	0.795	720	0.811
Toulon	12	5.91460	43,1228	744	0.906	672	0.815	720	0.852
PortFerreol	13	6.71761	43.3591	744	0,886	672	0.833	720	0.893
LaFiqueirette	14	6.93377	43.4835	741	0.906	672	0.826	720	0.888
Nice	15	7.28550	43.6956	741	0.934	672	0.869	720	0.913
Monaco	16	7 42370	43 7330	737	0,001	672	0.886	608	0.011
Imperia	17	8.01880	43.8769	744	0,831	672	0,000	790	0.874
Carloforte	10	8 20810	30 1494	744	0.021	672	0,007	607	0,074
PortoTorree	10	8,40300	40 8499	744	0,821	670	0,000	790	0,010
Aiaccio	19	8 76909	40,0422	744	0,001	462	0,040	120	0,072
Ajaccio	20	8,76230	41,3227	720	0,928	403	0,869	700	0,090
Genova	21	8,92000	44,4101	744	0,942	072	0,900	720	0,917
nervousse Occutional	22	8,93524	42,0390	741	0,922	072	0,874	710	0,897
Caglian	23	9,11420	39,2101	744	0,928	672	0,825	720	0,837
Centuri	24	9,34983	42,9658	744	0,930	672	0,871	720	0,910
Solenzara	25	9,40383	41,8569	576	0,931	354	0,874	573	0,908
MarinaDiCampo	26	10,2383	42,7426	724	0,932	672	0,887	720	0,905
Livorno	27	10,2993	43,5463	744	0,915	672	0,864	720	0,895
Civitavecchia	28	11,7896	42,0940	744	0,879	672	0,818	720	0,866
Pantelleria	29	11,9366	36,8348					717	0,082
Ravenna	30	12,2829	44,4921	744	0,905	672	0,831	720	0,869
Venice	31	12,4265	45,4182	744	0,911	672	0,856	720	0,873
Lampedusa	32	12,6044	35,4998	744	0,917	672	0,766	720	0,809
Anzio	33	12,6348	41,4469	723	0,937	672	0,853	720	0,883
Ponza	34	12,9656	40,8952	699	0,944	672	0,696	664	0,763
Sciacca	35	13,0765	37,5045	723	0,874	672	0,409	717	0,770
Palermo	36	13,3713	38,1214	744	0,945			720	0,904
ona	37	13,5065	43,6248	744	0,880	672	0,781	720	0,870
PortoEmpedocle	38	13,5268	37,2858	744	0,846	672	0,495	720	0,741
Gaeta	39	13,5897	41,2100	744	0,947	672	0,893	720	0,885
KOPER	40	13,7245	45,5482	742	0,918	665	0,863	719	0,886
Trieste	41	13,7561	45,6544	744	0,917	672	0,864	720	0,886
SBenedettoDelTr onto	42	13,8898	42,9551	724	0,878	672	0,737	720	0,855
Napoli	43	14,2692	40,8397	744	0,947	672	0,880	720	0,894
Ortona	44	14,4149	42,3559	744	0,872	672	0,755	720	0,878
Catania	45	15,0938	37,4980	744	0,930	672	0,746	720	0,859
Portopalo	46	15,1228	36,6691	737	0,914	672	0,725	719	0,834
Ginostra	47	15,1933	38,7840	723	0,694	666	0,587	720	0,698
Palinuro	48	15,2753	40,0299	744	0,951	672	0,884	720	0,894
Messina	49	15,5635	38,1963	744	0,697	672	0,590	720	0,736
ReggioCalabria	50	15,6489	38,1217	744	0,916	672	0,742	720	0,863
Vieste	51	16,1770	41.8881	744	0.905	672	0.818	720	0.895
Bari	52	16,8660	41,1402	744	0,921	672	0,831	720	0.894
Crotone	53	17.1371	39.0836	744	0.921	672	0.774	720	0.870
Taranto	50	17,2238	40.4756	744	0,921	672	0,820	720	0.896
Otranto	55	18.4989	40 1464	744	0.926	670	0.843	790	0.808
		10,4000	40,1404		0,020	512	0,040		9,000

Tabella 10a – Valori mensili di correlazione tra il dato delle stazioni mareografiche e forecast di Mito (in tabella è riportata anche la posizione geografica di ogni singola stazione)

Stazione	n. stazione	coord	inate	aprile		ma	ggio	giugno		
		longitudine	latitudine	n. valori	correlazione	n. valori	correlazione	n. valori	correlazione	
SANT-ANTONI	1	1,29878	38,9771	696	0,737	739	0,811	720	0,818	
ANDRATX	2	2,37846	39,5442	696	0,791	744	0,838	720	0,939	
SA-RAPITA	3	2,95326	39,3603	696	0,765	744	0,817	720	0,919	
PortLaNouvelle	4	3,06410	43,0147			610	0,886	706	0,910	
Pollensa	5	3,08847	39,9046							
PortVendres	6	3,10730	42,5201	641	0,811	388	0,905	674	0,934	
Colonia	7	3,27335	39,7373	696	0,810	744	0,855	720	0,924	
PORTO-CRISTO	8	3,33509	39,5392	696	0,786	744	0,819	720	0,927	
Sete	9	3,70170	43,4000	641	0,807	681	0,877	699	0,921	
FosSurMer	10	4,89294	43,4049	641	0,811	681	0,883	699	0,905	
Marseille	11	5,35370	43,2785							
Toulon	12	5,91460	43,1228	210	0,906	640	0,891	699	0,937	
PortFerreol	13	6,71761	43,3591	219	0,507	673	0,891	706	0,941	
LaFigueirette	14	6,93377	43,4835	641	0,841	681	0,901	699	0,947	
Nice	15	7,28550	43,6956	641	0,857	681	0,913	699	0,948	
Monaco	16	7,42370	43,7330	641	0,857	681	0,917	706	0,958	
Imperia	17	8,01880	43,8769	669	0,656	702	0,837	698	0,882	
Carloforte	18	8,30810	39,1436	592	0,813	699	0,860	690	0,927	
PortoTorres	19	8,40390	40,8422	670	0,841	703	0,885	701	0,943	
Ajaccio	20	8,76290	41,9227	641	0,844	661	0,888	657	0,955	
Genova	21	8,92550	44,4101	668	0,839	699	0,913	696	0,949	
lleRousse	22	8,93524	42,6396	641	0,841	681	0,908	694	0,961	
Cagliari	23	9,11420	39,2101	668	0,827	699	0,817	691	0,889	
Centuri	24	9,34983	42,9658	185	0,871	460	0,897	375	0,957	
Solenzara	25	9,40383	41,8569	641	0,866	681	0,905	699	0,960	
MarinaDiCampo	26	10,2383	42,7426	668	0,849	702	0,865	698	0,895	
Livorno	27	10,2993	43,5463	671	0,838	703	0,892	703	0,934	
Civitavecchia	28	11,7896	42,0940	660	0,840	699	0,902	690	0,929	
Pantelleria	29	11,9366	36,8348	281	0,303					
Ravenna	30	12,2829	44,4921	672	0,897	703	0,924	703	0,934	
Venice	31	12,4265	45,4182	668	0,893	700	0,922	696	0,920	
Lampedusa	32	12,6044	35,4998	670	0,771	703	0,720	701	0,918	
Anzio	33	12,6348	41,4469	668	0,868	699	0,897	692	0,921	
Ponza	34	12,9656	40,8952	668	0,858	699	0,912	694	0,949	
Sciacca	35	13,0765	37,5045	668	0,746	702	0,760	698	0,880	
Palermo	36	13,3713	38,1214	668	0,887	699	0,867	694	0,940	
ona	37	13,5065	43,6248							
PortoEmpedocle	38	13,5268	37,2858	668	0,680	701	0,670	698	0,747	
Gaeta	39	13,5897	41,2100	668	0,869	702	0,912	698	0,923	
KOPER	40	13,7245	45,5482	671	0,909	744	0,927	720	0,937	
Trieste	41	13,7561	45,6544	668	0,899	699	0,922	690	0,935	
SBenedettoDelTr onto	42	13,8898	42,9551	669	0,840	703	0,878	700	0,927	
Napoli	43	14,2692	40,8397	668	0,872	699	0,881	694	0,916	
Ortona	44	14,4149	42,3559	668	0,836	699	0,828	690	0,929	
Catania	45	15,0938	37,4980	669	0,740	702	0,781	700	0,902	
PortopaloDiCap oPassero	46	15,1228	36,6691	684	0,723	692	0,583	689	0,543	
Ginostra	47	15,1933	38,7840	668	0,795	699	0,724	673	0,802	
Palinuro	48	15,2753	40,0299	668	0,866	702	0,899	698	0,938	
Messina	49	15,5635	38,1963	664	0,627	703	0,449	701	0,693	
ReggioCalabria	50	15,6489	38,1217	672	0,736	703	0,764	703	0,889	
Vieste	51	16,1770	41,8881	668	0,822	699	0,841	691	0,934	
Bari	52	16,8660	41,1402	668	0,823	699	0,841	691	0,937	
Crotone	53	17,1371	39,0836	670	0,738	703	0,734	701	0,890	
Taranto	54	17,2238	40,4756	668	0,771	699	0,765	691	0,912	
Otranto	55	18,4969	40,1464	668	0,772	700	0,795	696	0,936	

Tabella 10b – come per tabella 10a

Stazione	n. stazione	coord	inate	əp	orile	ma	ggio	giugno		
		longitudine	latitudine	n. valori	correlazione	n. valori	correlazione	n. valori	correlazione	
SANT-ANTONI	1	1,29878	38,9771	695	0,865	711	0,834	720	0,801	
ANDRATX	2	2,37846	39,5442	610	0,918	582	0,898	204	0,880	
SA-RAPITA	3	2,95326	39,3603	693	0,916	720	0,873	720	0,875	
PortLaNouvelle	4	3,06410	43,0147	729	0,907	717	0,886	671	0,851	
Pollensa	5	3,08847	39,9046							
PortVendres	6	3,10730	42,5201	729	0,925	720	0,919	707	0,919	
Colonia	7	3,27335	39,7373	464	0,910					
PORTO-CRISTO	8	3,33509	39,5392	681	0,903	714	0,887	718	0,860	
Sete	9	3,70170	43,4000	729	0,915	663	0,863	707	0,741	
FosSurMer	10	4,89294	43,4049	571	0,898	720	0,882	705	0,881	
Marseille	11	5,35370	43,2785							
Toulon	12	5,91460	43,1228	729	0,933	719	0,918	563	0,890	
PortFerreol	13	6,71761	43,3591	716	0,942	720	0,925	707	0,921	
LaFigueirette	14	6,93377	43,4835	729	0,942	720	0,857	707	0,867	
Nice	15	7,28550	43,6956	723	0,941	720	0,943	700	0,916	
Monaco	16	7,42370	43,7330	729	0,946	720	0,950	707	0,920	
Imperia	17	8,01880	43,8769	720	0,800	697	0,794	693	0,798	
Carloforte	18	8,30810	39,1436	714	0,929	690	0,891	690	0,826	
PortoTorres	19	8,40390	40,8422	400	0,931	701	0,899	699	0,915	
Ajaccio	20	8,76290	41,9227	692	0,940	720	0,931	662	0,912	
Genova	21	8,92550	44,4101	717	0,935	693	0,912	692	0,920	
lleRousse	22	8,93524	42,6396	729	0,951	720	0,935	707	0,924	
Cagliari	23	9,11420	39,2101	715	0,913	690	0,857	691	0,858	
Centuri	24	9,34983	42,9658	284	0,930	275	0,906	637	0,867	
Solenzara	25	9,40383	41,8569	642	0,938	720	0,928	707	0,925	
MarinaDiCampo	26	10,2383	42,7426	719	0,780	695	0,840	693	0,918	
Livorno	27	10,2993	43,5463	728	0,906	705	0,906	700	0,893	
Civitavecchia	28	11,7896	42,0940	714	0,923	690	0,904	690	0,918	
Pantelleria	29	11,9366	36,8348							
Ravenna	30	12,2829	44,4921	729	0,894	706	0,864	700	0,872	
Venice	31	12,4265	45,4182	717	0,847	694	0,890	692	0,869	
Lampedusa	32	12,6044	35,4998	723	0,907	699	0,813	698	0,746	
Anzio	33	12,6348	41,4469	715	0,945	690	0,934	691	0,925	
Ponza	34	12,9656	40,8952	714	0,942	692	0,909	691	0,902	
Sciacca	35	13,0765	37,5045	720	0,880	696	0,804	693	0,776	
Palermo	36	13,3713	38,1214	716	0,948	692	0,937	691	0,946	
ona	37	13,5065	43,6248							
PortoEmpedocle	38	13,5268	37,2858	718	0,844	694	0,729	693	0,676	
Gaeta	39	13,5897	41,2100	719	0,950	694	0,928	693	0,939	
KOPER	40	13,7245	45,5482	671	0,918	720	0,889	691	0,869	
Trieste	41	13,7561	45,6544	714	0,916	690	0,893	690	0,868	
SBenedettoDelTr onto	42	13,8898	42,9551	722	0,840	697	0,808	695	0,881	
Napoli	43	14,2692	40.8397	716	0.935	692	0.894	691	0.945	
Ortona	44	14,4149	42,3559	714	0,873	690	0,834	690	0,879	
Catania	45	15,0938	37,4980	720	0,838	697	0,868	694	0,856	
PortopaloDiCap	46	15,1228	36,6691	727	0,556	705	0,632	689	0,613	
oPassero										
Ginostra	47	15,1933	38,7840	717	0,895	692	0,805	692	0,723	
Palinuro	48	15,2753	40,0299	720	0,946	696	0,943	692	0,943	
Messina	49	15,5635	38,1963	724	0,551	701	0,584	699	0,743	
ReggioCalabria	50	15,6489	38,1217	729	0,828	706	0,761	700	0,821	
Vieste	51	16,1770	41,8881	714	0,891	690	0,866	690	0,884	
Bari	52	16,8660	41,1402	714	0,903	690	0,895	690	0,876	
Crotone	53	17,1371	39,0836	723	0,893	698	0,874	696	0,834	
Taranto	54	17,2238	40,4756	715	0,917	690	0,883	691	0,885	
Otranto	55	18,4969	40,1464	717	0,901	694	0,887	693	0,847	

Tabella 9c - come per tabella 10a

Stazione	n. stazione	coord	coordinate ottobre novembre		mbre	dicembre			
		longitudine	latitudine	n. valori	correlazione	n. valori	correlazione	n. valori	correlazione
SANT-ANTONI	1	1,29878	38,9771	696		625	0,741	696	0,918
ANDRATX	2	2,37846	39,5442	47	0,852	556	0,782	509	0,934
SA-RAPITA	3	2,95326	39,3603	696	0,810	607	0,788	656	0,944
PortLaNouvelle	4	3,06410	43,0147	691	0,826	693	0,909	696	0,890
Pollensa	5	3,08847	39,9046						
PortVendres	6	3,10730	42,5201	696	0,893	693	0,920	696	0,934
Colonia	7	3.27335	39,7373						
PORTO-CRISTO	8	3.33509	39.5392	696	0.847	625	0.782	696	0.949
Sete	9	3,70170	43,4000	693	0,836	693	0,903	696	0,902
FosSurMer	10	4,89294	43,4049	692	0,773	697	0,868	695	0,910
Marseille	11	5.35370	43.2785						
Toulon	12	5.91460	43.1228	696	0.837	693	0.870	696	0.926
PortFerreol	13	6,71761	43,3591	696	0.667	693	0.434	696	0.929
LaFiqueirette	14	6.93377	43,4835	677	0.864	608	0.712	614	0.923
Nice	15	7 28550	43 6956	696	0,885	682	0.878	696	0.943
Monaco	16	7 42370	43,7330	696	0,886	697	0.848	696	0.941
Imperia	17	8,01990	43,8769	124	0,000	007	0,010	000	0,041
Corleferte	10	9,01000	90,1498	100	0,020				
Carlolorte	10	0,30010	40,0400	122	0,637				
PortoTorres	19	8,40390	40,0922	125	0,952	807	0.000	500	0.040
Ajaccio	20	8,76290	41,9227	664	0,868	697	0,896	529	0,942
Genova	21	8,92550	44,4101	124	0,944				
lleRousse	22	8,93524	42,6396	696	0,882	697	0,883	696	0,949
Cagliari	23	9,11420	39,2101	123	0,925				
Centuri	24	9,34983	42,9658	626	0,878	697	0,874	681	0,940
Solenzara	25	9,40383	41,8569	682	0,915				
MarinaDiCampo	26	10,2383	42,7426	124	0,972				
Livorno	27	10,2993	43,5463	126	0,945				
Civitavecchia	28	11,7896	42,0940	122	0,960				
Pantelleria	29	11,9366	36,8348						
Ravenna	30	12,2829	44,4921	126	0,791				
Venice	31	12,4265	45,4182	124	0,821				
Lampedusa	32	12,6044	35,4998	125	0,832				
Anzio	33	12,6348	41,4469	124	0,967				
Ponza	34	12,9656	40,8952	124	0,976				
Sciacca	35	13,0765	37,5045	124	0,802				
Palermo	36	13,3713	38,1214	124	0,940				
ona	37	13,5065	43,6248						
PortoEmpedocle	38	13,5268	37,2858	124	0,643				
Gaeta	39	13,5897	41,2100	124	0,965				
KOPER	40	13,7245	45,5482	694	0,863	644	0,933	279	0,918
Trieste	41	13,7561	45,6544	122	0,820				
SBenedettoDelTr onto	42	13,8898	42,9551	125	0,654				
Napoli	43	14,2692	40,8397	124	0,956				
Ortona	44	14,4149	42,3559	122	0,654				
Catania	45	15,0938	37,4980	124	0,843				
PortopaloDiCap oPassero	46	15,1228	36,6691	128	0,693				
Ginostra	47	15,1933	38,7840	121	0,727				
Palinuro	48	15,2753	40,0299	124	0,960				
Messina	49	15,5635	38,1963	125	0,463				
ReggioCalabria	50	15,6489	38,1217	126	0,804				
Vieste	51	16,1770	41,8881	122	0,838				
Bari	52	16,8660	41,1402	122	0,879				
Crotone	53	17,1371	39,0836	125	0,834				
Taranto	54	17,2238	40,4756	123	0,869				
Otranto	55	18,4969	40,1464	124	0,920				

Tabella 10c - come per tabella 10a

Nelle tabella 9a,b,c,d sono riportati per ogni stazione di misura, oltre alle coordinate, il numero di dati considerati per il confronto e la correlazione tra misure e modello. Si può osservare un ottimo valore di correlazione, maggiore di 0.9, per quasi tutte le stazioni, sia nei mesi estivi che in autunno e inverno. Valori di correlazione inferiori, ma comunque in gran parte superiori a 0.8 si riscontrano invece nei mesi primaverili, probabilmente legati alla variabilità maggiore delle condizioni meteorologiche simulate non correttamente dal modello atmosferico.

A titolo di esempio è riportato in Figura 8 il confronto tra gli andamenti misurati e previsti in alcune stazioni significative.

Figura 8. Serie temporali di elevazione della superficie del mare. Curva nera osservazioni, curva rossa MITo.

Per quanto riguarda la marea, il modello è stato validato approfonditamente nel rapporto ... e nella pubblicazione scientifica Palma et al. 2020. In questi contesti si è mostrato che il modello riproduce molto bene sia la marea barotropica che quella baroclina. Nello specifico la barotropica è stata validata mediante un software di inversione mareale e dati storici e la baroclina mediante i risultati di un esperimento numerico dedicato. Si è trovato dunque che le maree modulano in modo significativo i trasporti non solo attraverso lo Stretto di Gibilterra ed il Canale di Sicilia, ma anche attraverso il Canale di Corsica e lo Stretto di Otranto. Gli effetti di marea modificano anche alcune caratteristiche della circolazione all'interno del bacino, in alcuni casi infatti vengono eccitate onde topografiche che rimangono intrappolate sulla batimetria producendo rotazioni diurne delle correnti. Esempi di questo fenomeno si sono trovati nel Canale di Sicilia (sul banco dell'Avventura e sul Plateau di Malta), nel Canale di Corsica e nello Stretto di Otranto. Inoltre, in diverse zone del bacino (Canale di Sicilia, Canale di Corsica, Stretto di Messina, Mare Adriatico Settentrionale), l'analisi spettrale dell'energia cinetica media rivela la presenza di picchi spettrali corrispondenti a periodi di circa 8 e 6 h, che possono essere interpretati come armoniche (overtides e composte) delle componenti di marea diurna e semidiurna, generate attraverso interazioni non lineari.

Per quanto riguarda i run operativi si riporta a titolo di esempio la variabilità mensile per due mesi rappresentativi (febbraio e agosto 2020) dell'energia cinetica media (MKE) sui primi cento metri ed il relativo spettro di energia calcolati nella zona del banco dell'Avventura (Canale di Sicilia). Il modello Mito mostra l'oscillazione diurna dominante indotta dalla marea in entrambi i casi, e conferma la presenza delle componenti mareali diurna, semidiurna i picchi a 8h e 6h.

Figura 9 – Serie temporali di MKE (Energia cinetica media sui primi 100m) ed analisi spettrale sul banco dell'Avventura (Canale di Sicilia)

2.6 Validazione della circolazione e considerazioni sugli effetti della risoluzione

In questa sezione si discute la circolazione superficiale. Si è scelto a tal proposito di ricostruire una media annuale dai campi previsionali superficiali (30 mt); ciò è mostrato in figura 10. In figura 10a è mostrata la parte relativa al Mediterraneo occidentale. Si noti che il modello riproduce tutte le caratteristiche a scala di bacino e sottobacino tipiche della regione e cioè: la corrente Algerina, la corrente Liguro-Provenzale, il *gyre* ciclonico nel Golfo del leone, il dipolo ciclone-anticiclone nel nord Tirreno, lo stream atlantico (AIS) che meandra nel canale di Sicilia, la regione anticiclonica nel sud dello Ionio, e il *gyre* ciclonico del sud adriatico. Tutto ciò in ottimo accordo con la ricostruzione geostrofica prodotta da AVISO mostrata in fig 11a. Anche nella regione del mediterraneo orientale (fig. 10b) i risultati sono molto buoni. Anche qui si riconosce la corrente ionica che entra nel bacino Levantino e percorre in senso ciclonico, lungo la costa tutta la regione, formando anche ampi meandri lungo le strutture di mesoscala. Il modello riproduce bene anche la regione ciclonica rappresentata dal gyre di Rodi.

Nella regione del nord Ionio è interessante notare come sia il modello che il dato AVISO indicano che la circolazione media sia di tipo ciclonico. Questa zona del Mediterraneo negli ultimi anni ha suscitato molto interesse da parte della comunità scientifica (eg Borzelli et al. 2009) poiché è una regione (NIG, North Ionian Gyre) soggetta a inversioni più o meno decadale della circolazione, e questo fenomeno, le cui cause sono ancora non del tutto chiare, influenza l'apporto di acqua meno salata (*fresh water*) nel bacino levantino. Attualmente dunque Mito ed Aviso indicano che siamo in presenza di una fase ciclonica.

Figura 10 - Circolazione media annuale superficiale (30m) – Mito (in alto) vs. velocità geostrofica dedotta dalle misure altimetriche

Figura 11 - Come nella Figura 10, ma pe il Bacino Levantino.

Come esempio degli effetti della risoluzione del modello si riporta la figura 12 che mostra la circolazione media di Luglio 2020 a 10 m prodotta da MITO (figura 12 b) confrontata con la medie di Luglio dell'ADT con

sovrapposta la corrispondente circolazione geostrofica (Figura 12 a),. I campi sono molto simili, e mostrano la presenza di diverse strutture di mesoscala e di una parte della corrente che forma il ramo superiore (diretto verso ovest) della grande cella ciclonica presente nel Liguro-Provenzale. Il campo del modello ha maggiori dettagli, con una coppia ciclone anticiclone nella parte interna del Golfo e un piccolo anticiclone a ovest, sottocosta. Essendo questo un mese in cui sono disponibili alcune buone immagini di torbidità (K490; Data set disponibile nel portale CMEMS), mostriamo nel pannello di destra il campo di torbidità del 19 luglio, nel quale si trovano indicazioni sulla struttura della circolazione che sono in accordo con il campo simulato. Limitandoci ai segnali più evidenti, si noti che nella parte ovest dell'interno del Golfo sono presenti due "plumes" costiere che, sono intrappolate nella circolazione ciclonica sottocosta. La plume più occidentale a un certo punto si biforca, con un ramo che vira verso sud, con una tendenza anticiclonica che sembra corrispondere esattamente al bordo est del piccolo anticiclone precedentemente evidenziato. La plume più forte, che corrisponde all'outflow del Rodano, si dirige verso sud e viene intrappolata nella corrente e portata verso sud-ovest, con un altro ramo che si separa, seguendo il ramo più debole verso sudest evidenziato sia dal modello che dalla ricostruzione altimetrica. Il ramo principale mostra invece una forte tendenza anticiclonica più a sud, in accordo con il campo simulato, anche se in quest'ultimo la circolazione anticiclonica nell'ansa della corrente sembra essere un po' spostata verso sud.

Nel complesso, questo è un esempio che mostra che il modello è in grado di catturare strutture di mesoscala della dimensione di poche decine di chilometri.

3 Conclusioni

In questo rapporto si sono descritti i risultati della validazione del sistema operativo Mito. La validazione degli output previsionali ha rivelato che il sistema produce risultati in ottimo accordo con i dati sperimentali sia in termini di *bias* che di *rmsd*.

Uno degli aspetti interessanti che sono emersi dall'analisi, ad esempio è la ottima correlazione che c'è tra il dato di Mito dell'elevazione della superficie libera (livello del mare) ed il dato misurato dai mareografi costieri. Questo sottolinea il fatto che nonostante la risoluzione del modello non sia ottimale per risolvere al meglio processi costieri il modello è capace comunque di simulare in modo soddisfacente l'evoluzione del livello del mare anche sotto costa. Ciò suggerisce anche che l'evoluzione dell'elevazione è soprattutto indotta da fenomeni globali e, dunque, avere un modello ad alta risoluzione e che include la marea rappresenta uno strumento molto utile per simulare fenomeni di tal genere.

Poi sono emersi alcuni aspetti da migliorare e che saranno l'oggetto dello sviluppo futuro del sistema operativo. Essi riguardano soprattutto la temperatura superficiale e la salinità.

La temperatura superficiale mostra un *bias* e *rmsd* più grandi (anche se sempre al di sotto del grado, e dello stesso ordine dei bias che mostra il modello previsionale Copernicus) durante la fase estiva. Questo può essere dovuto a vari problemi, tra cui per esempio la qualità del forcing atmosferico soprattutto per quanto riguarda la radiazione ad onda corta che è la componente del flusso di calore totale che modula la variabilità diurna della SST. Poi altra questione delicata da affrontare sarebbe quella del coefficiente di estinzione della radiazione ad onda corta, che in genere nei modelli di circolazione è impostato costante. Il coefficiente di estinzione è fortemente influenzato dalla torbidità dell'acqua che può avere forti variazioni zonali dovuto a materiale sospeso di vario genere ed oggi alcuni prodotti satellitari forniscono una stima che potrebbe essere utilizzata nei modelli previsionali. Altro aspetto da investigare sarebbe quella di realizzare uno studio di sensitività agli schemi di mixing verticali che controllano il mescolamento superficiale e di conseguenza la SST.

Sulla salinità invece il dato superficiale ha indicato che, mentre nella regione di Gibilterra e nel bacino Levantino, il confronto con le osservazioni è molto buono, nelle regioni centrali (Mediterraneo occidentale e Tirreno) *bias* e *rmsd* sono più alti. L'ipotesi è che in questa regione l'apporto di sale dovuto sia ai flussi evaporativi che all'input laterale siano la causa principale. Va ricordato che in questa versione del modello si è introdotto l'input fluviale climatologico, come nei modelli operativi CMEMS. L'introduzione del runoff climatologico tuttavia ha dei limiti evidenti soprattutto in un contesto operativo poiché la variabilità interannuale dell'input fluviale può essere un fattore determinante nel controllare la salinità superficiale. Ciò pone il problema dell'introduzione di *runoff* interattivo e dunque la necessità di avere dei forzanti atmosferici e modelli ad hoc di *river-routing*.

4 Riferimenti bibliografici

- Borzelli, G., M. Gac[×]ic[′] V. Cardin,G. Civitarese (2009). Eastern Mediterranean Transient and reversal of the Ionian Sea circulation, GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L15108, doi:10.1029/2009GL039261,
- M. Palma, R. Iacono, G. Sannino, A. Bargagli, A. Carillo, BM. Fekete, E. Lombardi, E. Napolitano, G. Pisacane, MV. Struglia (2020), "Short-term, linear and non-linear local effects of the tides on the surface dynamics in a new, high-resolution model of the Mediterranean Sea circulation." Ocean Dyn., https://doi.org/10.1007/s10236-020-01364-6.
- Buongiorno Nardelli B., C. Tronconi, A. Pisano, R. Santoleri (2013): High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project, Rem. Sens. Env., 129, 1-16, doi:10.1016/j.rse.2012.10.012.
- Clementi, E., A. Grandi, V. Lyubartsev, R. Escudier, J. Pistoia, 2020) Mediterranean Sea Production Centre MEDSEA_ANALYSIS_FORECAST_PHY_006_013, release sept 2020, disponibile su http://marine.copernicus.eu/documents/QUID/CMEMS-MED-QUID-006-013.pdf)
- Robinson A.R., Golnaraghi M. (1994) The Physical and Dynamical Oceanography of the Mediterranean Sea. In: Malanotte-Rizzoli P., Robinson A.R. (eds) Ocean Processes in Climate Dynamics: Global and Mediterranean Examples. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 419. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0870-6_12