

Analisi LSA preliminare applicata ad una Smart Road Sperimentale

Fabio Leccese, Enrico Petritoli

ANALISI LSA PRELIMINARE APPLICATA AD UNA SMART ROAD SPERIMENTALE

Fabio Leccese (UniRoma3), Enrico Petritoli (UniRoma3)

Aprile 2021

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA

Piano Triennale di Realizzazione 2019-2021 - Il annualità

Obiettivo: Tecnologie

Progetto: Tecnologie per la penetrazione efficiente del vettore elettrico negli usi finali

Work package: Local Energy District

Linea di attività: attività: 30 - Ampliamento del PELL in relazione agli edifici pubblici scolastici e analisi affidabilistica di Smart Road

Responsabile del Progetto: Claudia Meloni, ENEA Responsabile del Work package: Claudia Meloni, ENEA

Il presente documento descrive le attività di ricerca svolte all'interno dell'Accordo di collaborazione "Smart Energy in Sistemi Pubblici: analisi di affidabilità e qualificazione dei dati per ridurre le incertezze di sistema"

Responsabile scientifico ENEA: Dott. Francesco Pieroni.

Responsabile scientifico Università degli Studi "Roma Tre": Prof.re Fabio Leccese

INDICE

1	SOM	IMARIO	5
	1.1	Attività Smart Road	5
2	INTR	RODUZIONE	7
	2.1	ANALISI DI SUPPORTO LOGISTICO: GENERALITÀ E PARTICOLARIZZAZIONE	9
	2.2	LSA: Attività e prestazioni	11
	2.3	GLI OBIETTIVI DELLA LSA	11
	2.3.1	1 Obiettivi di gestione logistica	11
3	DESC	CRIZIONE DELLE ATTIVITÀ SVOLTE E RISULTATI	13
	3.1	Analisi di Supporto Logistico operativa	13
	3.1.1	1 Analisi di Affidabilità	13
	3.1.2	2 Disponibilità	14
	3.1.3	3 Analisi dei Guasti e di Criticità (FMECA)	14
	3.2	DESCRIZIONE SUCCINTA DEL PROGETTO "SMART ROAD"	16
	3.2.1	1 Opere civili principali del progetto	17
	3.2.2	2 L'alimentazione dell'Impianto di Illuminazione	17
	3.2.3	3 Impianto di illuminazione a LED	18
	3.2.4	4 La sensoristica	18
	3.2.5	5 Cablaggi	19
	3.3	Analisi di affidabilità Del Sistema	20
	3.3.1	1 Generalità	20
	3.3.2	2 La probabilità di guasto	20
	3.3.3	3 II MIL-HDBK-217	20
	3.3.4	4 L'affermazione di uno standard	21
	3.3.5	5 Due metodi di predizione e valutazione	22
	3.3.6	6 Componenti COTS e loro qualità	24
	3.3.7	7 II fattore correttivo π_{cf}	24
	3.3.8	3 Incertezza e degrado dei componenti	26
	3.3.9	9 Affidabilità di k-su-n elementi	28
	3.4	TABELLA DEI RISULTATI	29
	3.5	Disponibilità (Availability) Del Sistema	31
	3.5.1	1 Introduzione	31
	3.5.2	2 Definizione di Disponibilità	31
	3.5.3	3 Disponibilità a regime	31
	3.5.4	4 Composizione del Down Time	32
	3.6	Dati di disponibilità	
	3.7	Analisi dei Guasti e di Criticità (FMECA)	39
	3.7.1	1 Criteri	39
	3.7.2	2 Assunzioni	39
	3.7.3	3 Formato delle tabelle	40
	3.7.4	4 Analisi FMECA	41
4	CON	CLUSIONI	63
	4.1	Affidabilità	63
	4.2	Disponibilità	
	4.3	FMECA	
5	RIFF	RIMENTI BIBLIOGRAFICI	
	5.1	DOCUMENTI DI RIFERIMENTO	
	5.1	BIBLIOGRAFIA	
	J.Z	DIDLIUGRAFIA	55
6	ARR	REVIAZIONI ED ACRONIMI	67

Appendice: Laboratorio di Misure Elettriche ed Elettroniche dell'Università degli Studi "Roma Tre":

Curriculum Scientifico 69

1 Sommario

1.1 Attività Smart Road

L'attività denominata *Smart Road* è incentrata sulla progettazione e realizzazione di una "strada intelligente" che consenta "l'integrazione" di veicoli elettrici a guida autonoma col sistema stradale di illuminazione pubblica. In questa architettura stradale, il veicolo elettrico è concepito come il nodo di una rete più vasta con la quale scambia informazioni sullo stato del suo environment (stato della strada, densità del traffico, possibili incidenti o interruzioni, meteo ecc.) oppure sullo stato stesso del veicolo.

L'attività di competenza del Laboratorio di Misure Elettriche ed Elettroniche del Dipartimento di Scienze dell'Università degli Studi "Roma Tre" è iniziata quest'anno e, per l'anno in corso è stata rivolta, a produrre un'analisi RAMS che accompagnasse ed integrasse l'attività progettuale di competenza ENEA, per la realizzazione, presso il Centro di Ricerca ENEA-Casaccia, di una smart road prototipale.

Il nostro studio è stato condotto sulla base del progetto di realizzazione fornitoci da ENEA e gli output della nostra indagine sono stati sia l'analisi affidabilistica che l'analisi FMECA svolte entrambe a livello di sistema e sottosistema.

Per implementare lo studio abbiamo applicato le discipline della Qualità e, in particolare, l'analisi di affidabilità, manutenibilità, disponibilità e sicurezza detta RAMS (Reliability, Availability, Maintainability and Safety) al sistema di alimentazione della smart road esaminato dal punto di vista della problematica logistica della quantizzazione numerica dell'affidabilità e della manutenibilità (e dei relativi margini di tolleranza) che impattano sulla disponibilità del sistema.

L'analisi applicata al sistema è stata di due sottotipi, il primo prettamente affidabilistico, il secondo di tipo logico/funzionale.

La prima, detta "analisi di affidabilità", mira sia a stabilire la figura di affidabilità del sistema (ovvero l'intervallo tra due guasti) sia ad individuare quale siano i componenti o sottosistemi più proni al guasto.

La seconda è l'analisi di tipo FMECA (Failure Mode, Effects, and Criticality Analysis - Analisi dei modi, degli effetti e della criticità dei guasti) con la quale siamo riusciti invece a stabilire, tramite successioni logiche di funzionamento, l'effetto di un eventuale guasto al livello di sottosistema o di componente al fine di mitigarne la gravità.

L'output delle due diverse metodologie si sono concretizzate in una analisi affidabilistica in cui viene misurata l'occorrenza di guasto delle singole parti (valutandone opportunamente l'incertezza), dei sistemi e dei sottosistemi, al fine di evidenziare gli elementi dalla vita utile più breve e per aiutare la modulazione dei pezzi

di ricambio. Il secondo output, l'analisi FMECA, ha evidenziato le criticità architetturali (single point failures) e ha suggerito metodi di mitigazione del rischio di malfunzionamento.

2 Introduzione

L'attività denominata Smart Road verte sull'integrazione di veicoli elettrici a guida autonoma (di diversi livelli di autonomia) col sistema stradale di illuminazione pubblica. Per Smart Road, si intende una "strada intelligente" che implementa funzionalità innovative rispetto a quanto compete ad una strada classica che è un'area ad uso pubblico concepita per la circolazione dei pedoni, dei veicoli e degli animali sovente dotata di illuminazione pubblica. Le tecnologie elettroniche ed informatiche oggi disponibili rendono possibile l'estensione delle funzioni associabili ad una strada e nell' architettura stradale proposta da ENEA, il veicolo è concepito come il nodo di una rete più vasta con la quale scambia informazioni sullo stato del suo environment (stato della strada, densità del traffico, possibili incidenti o interruzioni, meteo ecc.) oppure sullo stato stesso del veicolo. Per esempio, in linea teorica, in funzione dello stato delle sue riserve energetiche (stato di carica delle batterie) sarebbe possibile predisporre l'energia ed ottimizzare gli slot fisici di ricarica. Il veicolo è dunque considerato come un nodo mobile e quindi, la *smart grid* complessiva non è più vista come un oggetto statico ma come un "tappeto" dinamico che può assumere una configurazione variabile.

All'interno di questa quadro progettuale di competenza ENEA che mira alla realizzazione di una smart road prototipale presso il Centro di Ricerca ENEA-Casaccia, il Laboratorio di Misure Elettriche ed Elettroniche del Dipartimento di Scienze dell'Università degli Studi "Roma Tre" si è impegnata a produrre un'analisi che ha coinvolto le discipline della Qualità e che accompagna e integra l'attività progettuale.

- a) L'analisi è basata su documentazione di progetto fornitoci da ENEA ed in particolare sui file denominati [RD01-RD-07]: Quadro Smart Road Cabina 19-T21 (Unifilare di Progetto e Fronte Quadro) Committente ENEA.
- b) Realizzazione di un impianto di illuminazione e altri servizi per la sperimentazione di una smart road nel C.R. Casaccia ROMA (Computo Metrico Estimativo Elettrotecnico) Committente ENEA.
- c) Progetto definitivo Impianto Elettrico Smart Road Planimetria Progetto a cura del Dipartimento Infrastrutture e Servizi Ufficio Tecnico del Centro Ricerche ENEA "Casaccia".
- d) Considerazioni e Precisazioni Progetto Elettrotecnico Smart Road con Dettaglio progetto elettrotecnico realizzato.
- e) Gazzetta Ufficiale (G.U. 8-4-2018) Criteri Ambientali Minimi Per Servizio Di Illuminazione Pubblica
- f) Gazzetta Ufficiale (G.U. 18-10-2017) Criteri Ambientali Minimi Per L'acquisizione Di Sorgenti Luminose Per Illuminazione Pubblica
- g) Algorab srl offerta "Fornitura Hardware Progetto Smart Road".

La documentazione ci è stata presentata come Report ad uso interno ENEA.

Gli output della nostra indagine sono stati sia l'analisi affidabilistica che l'analisi FMECA svolte entrambe a livello di sistema e sottosistema.

L'attività è completamente innovativa in quanto, sebbene nella letteratura si parli di *smart road*, la realizzazione ancora pioneristica di queste strade non è mai stata accompagnata da uno studio di affidabilità ed al termine del triennio, l'output finale del nostro studio sarà la valutazione della disponibilità operativa e l'individuazione dei sistemi o dei componenti più critici sui quali si ragionerà per eventualmente prevederne una loro ridondanza.

Nel nostro studio, la valutazione della sensibilità e della sensitività del sistema sono sempre oggetto di indagine.

L'analisi svolta questo anno ha riguardato l'applicazione delle discipline della Qualità al sistema di alimentazione della smart road esaminato dal punto di vista della problematica logistica della quantizzazione numerica dell'affidabilità e della manutenibilità (e dei relativi margini di tolleranza) che impattano sulla disponibilità del sistema.

L'analisi applicata al sistema è stata di due sottotipi, il primo prettamente affidabilistico, il secondo di tipo logico/funzionale.

La prima, detta "analisi di affidabilità" o analisi RAMS (analisi di affidabilità, manutenibilità, disponibilità e sicurezza; è un acronimo che deriva dalla composizione di quattro parole inglesi: Reliability, Availability, Maintainability and Safety) che mira a stabilire sia la figura di affidabilità del sistema (ovvero l'intervallo tra due guasti) sia ad individuare quale siano i componenti o sottosistemi più proni al guasto.

La seconda è l'analisi di tipo FMECA (Failure Mode, Effects, and Criticality Analysis - Analisi dei modi, degli effetti e della criticità dei guasti) con la quale siamo riusciti invece a stabilire, tramite successioni logiche di funzionamento, l'effetto di un eventuale guasto al livello di sottosistema o di componente al fine di mitigarne la gravità. Queste metodologie, al momento, raramente sono applicate a sistemi complessi come questi e i risultati ottenuti promettono ulteriori sviluppi interessanti.

L'output delle due diverse metodologie si sono concretizzate in una analisi affidabilistica in cui viene misurata l'occorrenza di guasto delle singole parti (valutandone opportunamente l'incertezza), di sistemi e di sottosistemi, al fine di evidenziarne gli elementi dalla vita utile più breve e per aiutare la modulazione dei pezzi di ricambio. Il secondo output, l'analisi FMECA, ha evidenziato le criticità architetturali (single point failures) e ha suggerito metodi di mitigazione del rischio di malfunzionamento.

Il Documento prevede un'inquadratura teorica rintracciabile nel Capitolo 2 (Analisi del Supporto Logistico) seguita dal Capitolo 3 dove la teoria sarà applicata al caso di studio (Analisi del Supporto Logistico per la

Smart Road con richiami alle sottoanalisi che verranno effettuate). Conclusioni e richiami bibliografici chiuderanno il Report.

2.1 Analisi di supporto logistico: generalità e particolarizzazione

L'Analisi di Supporto Logistico [1-8] è un processo che fa parte del concetto molto più ampio di logistica integrata, e serve a pianificare di tutte le attività di supporto ai fini dell'espletamento di un servizio o una missione. Si occupa quindi della determinazione delle esigenze di integrazione e della razionalizzazione delle risorse disponibili finalizzata al raggiungimento di obiettivi di sostenibilità il tutto attraverso processi continui di massimizzazione dei benefici e minimizzazione dei rischi. L'approccio permette quindi di accompagnare qualsiasi progettazione di missione pianificando in modo più o meno dettagliato tutte le risorse disponibili e necessarie affinché la missione possa non solo essere portata a compimento ma possa protrarsi nel tempo previsto dal progetto. Temporalmente queste analisi possono essere fatte insieme alla fase progettuale con il vantaggio di collaborare con il progettista ai fini della scelta migliore della componentistica da usare, o ex post rispetto al progetto valutando a posteriori quando potrebbe accadere un guasto e suggerendo tutte le strategie per risolverlo (es. scorte di magazzino, ma anche posizionamento del magazzino rispetto all'oggetto da manutenere). Un esempio banale di comune esperienza dell'analisi di supporto logistico è il cambio olio delle automobili, per il quale è necessario conoscere l'intervallo temporale di manutenzione. L'esempio è chiaramente fortemente riduttivo delle possibilità offerte da questa analisi, cosa accadrebbe infatti se invece di un'automobile avessimo una portaerei magari in missione? Si evince che questo tipo di analisi assume particolare rilevanza in settori altamente tecnologici e per processi complessi per i quali è divenuta indispensabile. E' infatti impossibile immaginare la gestione di forze armate, la gestione di qualunque attività nel settore aerospazio o di settori industriali critici (ad es. la produzione di energia elettrica da fonte nucleare) non accompagnati da analisi di supporto logistico. Recentemente però, complici gli indubbi vantaggi a medio e lungo termine che questo approccio restituisce, inizia a diffondersi a settori civili meno critici come il settore automobilistico o elettrico dove i tempi sempre più dilatati o dilatabili di uso dei dispositivi incidono sulla variabile qualità del prodotto declinata attraverso il concetto di affidabilità del prodotto. Un esempio calzante con il lavoro svolto per ENEA, è quello dei LED si intuisce che se da una parte oggi è possibile usare la tecnologia LED per le lampade dei lampioni stradali, con indubbi vantaggi in termini di risparmio energetico, siccome la tecnologia è in continua evoluzione un tipo di lampada acquistata oggi potrebbe non essere più in commercio fra un anno. Quando la lampada dovesse rompersi è conveniente sostituirla con una di scorta in magazzino o con una di nuova concezione? In entrambe le scelte vi son pro e contro che l'analisi del supporto logistico valuta.

La nostra indagine è stata di tipo ex post a partire dai documenti di progetto fornitici da ENEA.

Tradizionalmente si ragionava in termini di unità organizzative separate affidando ad ogni comparto tecnico la gestione di una ben definita attività, ad esempio, suddividendo in maniera inequivocabile i settori adibiti all'approvvigionamento da quelli per l'elaborazione degli ordini o lo stoccaggio dai trasporti, oggi, una visione così nettamente ripartita è superata in favore di un approccio trasversale e complessivo.

Non più distinta nelle sue singole funzioni, con il concetto di *logistica integrata* si intende un processo articolato dove tutte le attività gestionali risultano interdipendenti e fra loro correlate.

Come detto, l'LSA (*Logistic Support Analysis*) è considerata formalmente un sottoinsieme dell'ILS (*Integrated Logistic Support*): quest'ultima appunto ha la responsabilità dello sviluppo delle informazioni tecniche e dell'ambiente di supporto che verrà utilizzato poi per supportare un prodotto (o sistema) nel corso di tutto il ciclo di vita previsto e definisce il processo gestionale che governa l'intero flusso di materiali e informazioni, dal loro punto di origine al consumatore/utilizzo finale.

Le diverse discipline presenti nella branca del supporto logistico (per es.: produzione e gestione della documentazione tecnica, gestione dei pezzi di ricambio, delle attrezzature di supporto, addestramento del personale) richiedono una forte integrazione ed armonizzazione.

Le principali discipline infatti sono:

- Interfaccia di progettazione
- Fornire supporto logistico
- Apparati di test e controllo
- Gestione dei dati tecnici e/o documentazione tecnica
- Gestione personale e manodopera
- Supporto IT / software
- Facilities
- Pianificazione della manutenzione e/o manutenzione programmata
- Imballaggio, trattamento, stoccaggio e trasporto (PHST Packing Handling Storage & Transporting)
- Addestramento e sistemi di addestramento

Il programma LSA è la principale fonte di dati tecnici per la pianificazione e la gestione dell'ILS. In particolare l'LSA viene quindi utilizzato per:

- Collegare il design del prodotto e i requisiti ILS ai livelli richiesti di disponibilità (Availability) del sistema e definire dettagliatamente i requisiti degli elementi di supporto logistico.
- Durante tutto il ciclo di acquisizione dati, è utilizzato per valutare e modificare la progettazione del prodotto e stabilire e aggiornare i requisiti degli elementi del supporto logistico

• E' fonte importante di dati relativi alla progettazione per determinare e integrare tutti i requisiti di supporto logistico, è necessario per analizzare concetti di progettazione, operativi e di supporto alternativi e per condurre *trade-off* tra progettazione e vari elementi di supporto logistico e per la pianificazione e le decisioni sulle risorse dell'ILS

2.2 LSA: Attività e prestazioni

Il processo LSA include l'applicazione di metodi quantitativi per:

- la determinazione iniziale e la definizione dei criteri logistici come input alla progettazione del sistema
- la valutazione di varie alternative di progettazione
- l'identificazione e la fornitura di elementi di supporto logistico
- la valutazione finale della capacità di supporto del sistema durante l'esercizio operativo

Il programma LSA fondamentalmente si basa sul concetto di definizione del prodotto integrato e può essere basato sui seguenti elementi principali:

- Un piano del programma LSA che identifica tutte le attività LSA richieste che, a loro volta, devono
 essere eseguite al fine di influenzare la progettazione per la supportabilità e determina le risorse
 logistiche appropriate.
- Una pianificazione che identifichi i tempi dei requisiti LSA. I programmi LSA sono definiti in base alle esigenze della fase del progetto per essere reciprocamente vantaggiosi e ci aiuta ad altri requisiti del progetto.
- L'assegnazione delle responsabilità per l'esecuzione delle attività LSA alla progettazione, supportabilità e personale ILS qualificato per l'attività.
- La gestione efficace di una vasta gamma di discipline ILS, di progettazione e di supportabilità.

2.3 Gli Obiettivi della LSA

2.3.1 Obiettivi di gestione logistica

L'integrazione della logistica e della supportabilità nell'organizzazione del programma di sviluppo prodotto integrato assicura che:

- Il design rifletta la valutazione dei dati di test, valuti le alternative di supportabilità e le valutazioni di compromesso
- I requisiti siano dettagliati nelle specifiche
- La pianificazione delle risorse logistiche che venga regolata secondo necessità

- Siano soddisfatte le soglie di disponibilità e prontezza operativa
- L'articolo sia supportato nell'ambiente operativo previsto
- Gli ambienti operativi siano accuratamente valutati
- Il sistema di supporto raggiunga le prestazioni previste

Un obiettivo del programma logistico è appunto identificare e risolvere i problemi di rischio tecnico di supportabilità in anticipo, prima di iniziare la produzione e l'implementazione del prodotto.

3 Descrizione delle attività svolte e risultati

3.1 Analisi di Supporto Logistico operativa

L'Analisi di Supporto Logistico, applicata in particolare al sistema "Smart Road" (dove per sistema, da questo punto in poi, intenderemo l'insieme di componenti logico-funzionali connessi tra di loro), ha i seguenti compiti:

- La caratterizzazione del sistema e del suo *environment*.
- Influenzare lo sviluppo ulteriore (feedback) del sistema per realizzare e garantire le caratteristiche necessarie del sistema (nel nostro caso una fornitura di servizi multipli)
- Determinare il personale necessario ed ottimizzare le risorse (logistiche, tecniche, di budget).

Gli Input per l'LSA sono:

- Documentazione tecnica (Data package), come ad esempio i documenti di ingegneria meccanica ed elettrica (diagrammi circuitali, PCB, cablaggi interno e schemi di montaggio).
- Dati inerenti i Materiali e Processi: informazioni sulle parti sia d'acquisto che costruite, tempi e modalità di procurement delle parti.
- I prezzi di tutte le parti e i costi di tutti i servizi (ed eventuali rilavorazioni).
- Se necessario, aggiuntivi richiedibili sono relativi a utensili speciali per la produzione, strumentazioni
 e fasi di test, risoluzione dei problemi e per la riparazione, informazioni sullo smontaggio ed il
 montaggio.
- In ultimo (ma non per importanza) le risultanze dalle seguenti
 - Analisi di affidabilità (MTBF)
 - o Analisi dei guasti e di criticità (FMECA).
 - o Analisi di disponibilità

3.1.1 Analisi di Affidabilità

Per "affidabilità" si intende quella parte della statistica che studia le leggi di guasto di componenti, macchine e sistemi. L'analisi dell'affidabilità del sistema "Smart Building" è necessaria al fine di stimare od ottimizzare:

- La durata di vita (del componente o del sottosistema) tramite il calcolo del tasso di guasto
- La disponibilità operativa del sistema
- Il costo del ciclo di vita

Per tasso di guasto (failure rate λ) si intende la probabilità che il componente o sistema, che abbia funzionato fino ad un istante prefissato, si guasti nel periodo di tempo (ora, giorno) immediatamente successivo. Il tasso di guasto, di fatto, è una misura del rischio immediato di guasto di un componente o sistema che ha già "vissuto" per un determinato tempo. Da questo si trae il tempo medio di funzionamento tra due guasti successivi chiamato:

MTBF (Mean Time Between Failures)

Poiché il sistema "Smart Building" di fatto deve assicurare un servizio (o una serie di servizi) al cittadino, è necessario che sia garantita quindi la massima Disponibilità del servizio stesso.

3.1.2 Disponibilità

La Disponibilità (Availability) si definisce come rapporto tra il tempo per cui il componente o sistema può funzionare ed il tempo totale per cui è richiesto il servizio:

$$Availability = \frac{UpTime}{UpTime + DownTime}$$

- Nel caso in cui sia prevalente o richiesto il costo del guasto "in sé" (sostituzione di componenti, danni, ecc.) è più significativa l'affidabilità
- Nel caso in cui sia prevalente o richiesto il costo "connesso" col guasto (mancata produzione, mancato servizio, ...) è più significativa la disponibilità

3.1.3 Analisi dei Guasti e di Criticità (FMECA)

L'analisi FMECA (acronimo dell'inglese Failure Mode, Effects, and Criticality Analysis - Analisi dei modi, degli effetti e della criticità dei guasti) è una estensione della FMEA (Failure Mode and Effects Analysis), in aggiunta

alla quale include un'analisi di criticità usata per valutare, mediante opportuni diagrammi, la gravità delle conseguenze di un guasto correlata con la probabilità del suo verificarsi.

Ha i seguenti obbiettivi:

- a) Individuare le aree critiche del sistema (componenti o sottosistemi)
- b) Individuare i componenti critici il cui guasto può avere conseguenze gravi (danneggiamenti, sicurezza, funzionalità)
- c) Fornire indicazioni per sviluppare programmi di manutenzione preventiva.

Si attua in accordo a questi passi:

- i. Scomposizione del sistema nelle sue parti funzionali e preparazione di una griglia di valutazione della criticità
- ii. Identificazione ed analisi dei modi tipici di guasto di ogni singola parte
- iii. Valutazione della gravità degli effetti del guasto e della frequenza
- iv. Ricerca delle cause e dei sintomi premonitori (segnale precursore) dei guasti
- v. Formulazione di un piano di intervento preventivo o migliorativo

3.2 Descrizione succinta del progetto "Smart Road"

Al fine di chiarire la nostra attività, per comodità del lettore, riportiamo una brevissima sintesi puramente descrittiva del progetto della "smart road" in capo ad ENEA. Questo paragrafo non riporta il progetto della "smart road" e non ha lo scopo di commentarlo, ma vuole mostrare i tratti essenziali del progetto utili ai fini della nostra elaborazione. Il progetto e la descrizione dei componenti che riportiamo succintamente nei successivi sotto paragrafi (da 3.2.1 a 3.2.5) sono rintracciabili nei documenti di progetto a noi forniti e richiamati nei Documenti di Riferimento (paragrafo 5.1) che fissano la configurazione di progetto al 28 aprile 2020 da cui discende la nostra analisi. Ai fini della nostra analisi, non è critica la realizzazione della smart road ma, per le nostra attività e la nostra relazione, ci siamo basati esclusivamente sul progetto fornitoci.

Nel sedime del Centro Ricerche ENEA "Casaccia" si voleva realizzare una "Smart Road" cioè, come già accennato, una "strada intelligente" che consenta "l'integrazione" di veicoli elettrici a guida autonoma col sistema stradale di illuminazione pubblica. La figura 1 mostra la planimetria esterna del progetto "Smart Road" all'interno del C.R. Casaccia. Ai nostri fini, gli aspetti di ingegneria civile del progetto (scavi, trincee, pozzetti, plinti, ecc.), anche se succintamente richiamati a beneficio del lettore, non sono rilevanti, al contrario, hanno importanza quelli elettrotecnici ed in particolare i componenti elettrotecnici usati rintracciabili sul computo metrico. Da un punto vista elettrico, il progetto prevede la posa e messa in opera di 18 pali per l'illuminazione della strada alimentati da filo elettrico connesso ad un quadro elettrico dotato di interruttori magnetoelettrici opportunamente dimensionati posto nell'edificio denominato T21.

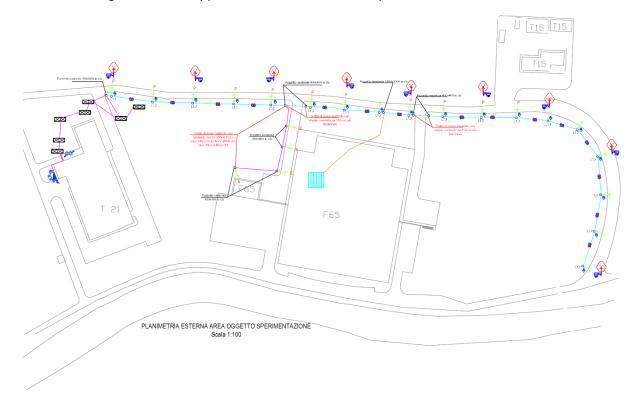


Figura 1 – Planimetria esterna del progetto "Smart Road".

Segue una breve descrizione del progetto suddivisa nei tratti più essenziali ed in particolare, le principali opere civili previste dal progetto, l'alimentazione dell'impianto di illuminazione, l'impianto di illuminazione, la sensoristica utilizzata ed i cablaggi.

3.2.1 Opere civili principali del progetto

Come riportato nella planimetria di progetto, questo prevede uno scavo su terreno agricolo e vegetale al fianco della via che collega due Edifici del centro di ricerca (gli edifici T21 e F65 come riportato in figura 1) fino al congiungimento con la via perimetrale che porta al fosso della Casaccia. Lo scavo serve alla posa dei cavidotti e dei plinti di fondazione rispettivamente per l'alimentazione e la posa dei pali di illuminazione con tutti i vari servizi a loro connessi (TVcc, sensori ecc.).

3.2.2 L'alimentazione dell'Impianto di Illuminazione

In accordo al progetto ricevuto, l'alimentazione dell'intero apparato impiantistico ha origine dall'edificio T21. A tal fine, nell'edificio T21 è stato individuato, nel quadro generale, un interruttore disponibile da 100 A sotto alimentazione privilegiata da cui derivare la linea al nuovo quadro dedicato alla sperimentazione "Smart Road" chiamato QE_SR. La posizione del quadro è stata ipotizzata cercando di soddisfare l'esigenza di posizione baricentrica rispetto ai carichi e quella di massima possibile vicinanza sia al quadro generale che ai pozzetti esterni per la derivazione delle linee di alimentazione (si veda la Figura 1). In questa fase, sono state computate le vie cave interne (canalizzazioni e tubazioni) per raggiungere il posizionamento di tale nuovo quadro nel raggio di 50 m dalla posizione del quadro generale T21 ed è stata computata una linea maggiorata di alimentazione (sezione di fase 95 mm², con neutro e terra di 50 mm²). Qualora in fase di realizzazione, si riscontrasse la necessità di una potenza maggiore, è stato individuato un altro interruttore libero da 250 A al posto di quello da 100 A sempre sotto sezione privilegiata. Il quadro dedicato all'impianto è stato progettato in carpenteria metallica, IP55 con portella trasparente ecc.. All'interno del nuovo quadro QE_SR è previsto l'alloggiamento, oltre al sezionatore generale, i seguenti dispositivi:

- Un multimetro digitale di ultima generazione;
- Uno scaricatore di sovratensione:
- Un interruttore quadripolare magnetotermico differenziale da 32 A 0,03 A 10 kA a protezione della linea trifase con neutro sezione 10 mm² che alimenta i corpi illuminanti. Questo interruttore è affiancato da un relè crepuscolare con relativo contattore di potenza e da un interruttore di bypass automatico-manuale al fine di consentire il funzionamento dell'impianto di illuminazione stesso in caso di avaria dell'impianto sperimentale;
- Un interruttore bipolare magnetotermico differenziale da 16 A 0.03 A 10 kA a protezione della linea monofase sezione 6 mm^2 che alimenterà le telecamere IP, WI-FI previste nel progetto sperimentale;

- Un interruttore bipolare magnetotermico differenziale da 40 A 0,03 A 10 kA a protezione della linea monofase sezione 10 mm² che alimenterà la colonnina di ricarica auto per una potenza massima fino a 8 kW (nel caso la sperimentazione richieda una potenza superiore e/o un'alimentazione trifase bisognerà utilizzare uno degli interruttori messi come riserva);
- Quattro interruttori bipolari magnetotermici differenziali da 10 A 0.03 A 10 kA a protezione delle quattro linee monofase sezione 2.5 mm^2 che alimenteranno gli eventuali sensori previste a progetto la cui natura e tipologia è demandata ai responsabili della sperimentazione;
- Un interruttore bipolare magnetotermico differenziale da 16 A 0.03 A 10 kA a protezione della linea monofase sezione 4 mm² che alimenterà un eventuale sistema di telecontrollo previsto nel progetto sperimentale;
- Due interruttori di riserva monofase da 16 e 25 A e due trifase da 16 e 32 A.

Si evidenzia che tutti gli interruttori previsti nello schema unifilare del quadro sono dotati di ausiliari elettrici predisposti per un sistema di segnalazione e telecontrollo remoto nell'eventualità che si dovesse implementare questa possibilità. Inoltre, si sottolinea che nel quadro sono state lasciate ampie riserve di interruttori e piastre modulari al fine di ospitare eventuali apparecchiature modulari che si dovessero rendere necessarie introdurre nel quadro stesso.

3.2.3 Impianto di illuminazione a LED

L'impianto di illuminazione previsto nel progetto prevede 18 pali, alti circa 7 m fuori terra (con ulteriori 80 cm interrati) con braccio curvo fino a 1,5 m, intervallati a una distanza media di 22 metri l'uno dall'altro, con un plinto di fondazione debolmente armato di circa un metro cubo con pozzetto 40x40 cm annesso in grado di sopportare carichi aggiuntivi relativi da eventuali apparati (pannelli fotovoltaici, alimentatori stabilizzati, telecamere con antenne ecc.) che si dovessero ritenere opportuni inserire sui pali stessi. Il calcolo illuminotecnico è stato eseguito riportando un'armatura da 60 W circa con efficienza illuminotecnica di circa 120/130 lm/W. Rientrano nella fornitura ulteriori quattro corpi illuminanti da inserire sui pali esistenti adiacenti l'edificio F65 sui quali dovranno essere sostituite le armature SAP (sorgenti al Sodio Alta Pressione) esistenti con quelle previste dal progetto come riportati nella tavola di progetto e nel computo metrico estimativo.

3.2.4 La sensoristica

Da progetto, sui pali sono stati previste postazioni per l'allaccio di sensori (in numero massimo di quattro) e telecamere dedicate alla videosorveglianza (per un massimo di nove, un palo sì ed uno no). Sebbene le telecamere siano Wi-Fi con tecnologia IP e l'alimentazione elettrica sia derivata dal nuovo quadro, il progetto prevede anche una linea di segnale in fibra ottica derivata dal pannello e rack ottico esistente nell'edificio

F65. Dalla linea dorsale di segnale in fibra ottica, da convertitori ottici/LAN installati in apposita cassetta stagna sui pali scelti per ospitare le telecamere, saranno derivate le linee di segnale per ogni singola telecamera realizzate con cavi FTP cat. 6.

3.2.5 Cablaggi

La tipologia dei cavi utilizzati nel progetto è rispondente al nuovo regolamento CPR adatti per posa interrata, a doppio isolamento. È stato previsto un cavo addizionale 2x1,5 mm² lungo tutto il percorso oggetto della sperimentazione come linea aggiuntiva per un eventuale sistema a onde convogliate e/o ausiliari elettrici qualora non fosse possibile o non si voglia utilizzare una fase o il neutro della linea di illuminazione come conduttore dedicato. La dorsale di terra è stata prevista in corda di rame nudo da 35 mm² a cui verranno collegati i pali dell'illuminazione, ma senza dispersori a picchetto verticale di tipo intenzionale vista la natura del sistema (TN-S). A questa linea di terra faranno riferimento gli eventuali utilizzatori (eventualmente le telecamere, i sensori e i corpi illuminanti) che non risultassero in classe II di isolamento o che non abbiano un'alimentazione SELV o PELV come conformità alla normativa vigente.

3.3 Analisi di affidabilità Del Sistema

3.3.1 Generalità

L'analisi di affidabilità è uno strumento importante per prendere decisioni di compromesso di progettazione e stimare l'affidabilità del progetto del sistema smart road. Applichiamo teorie a metodologia dell'analisi di affidabilità a questo specifico progetto. Sono spesso utilizzati per prendere decisioni iniziali sul supporto del prodotto (ad esempio quante parti di ricambio sono necessarie per supportare i sistemi). Previsioni imprecise possono portare a progetti eccessivamente conservativi e/o all'acquisto di pezzi di ricambio eccessivi, con un conseguente aumento dei costi del ciclo di vita.

3.3.2 La probabilità di guasto

Il guasto di un componente o di un sistema è un evento la cui occorrenza può essere esaminata in due modi differenti:

- a) Un evento casuale, le cui cause rimangono sostanzialmente sconosciute e la cui frequenza è empiricamente osservata;
- b) I risultati dei processi di degrado chimico-fisico che si evolvono durante l'operazione.

Nel primo caso, la probabilità di guasto è considerata come il rapporto tra il verificarsi dei guasti osservati e tutti i test eseguiti.

La probabilità di guasto è calcolata in funzione dei guasti osservati, rappresentati dal rapporto:

$$\lambda(t) = \frac{-\frac{dR(t)}{dt}}{R(t)};$$

quindi, l'espressione dell'affidabilità è:

$$R(t) = e^{\int_0^\infty \lambda(t)dt}$$

Il vantaggio è che l'affidabilità di ogni articolo è facilmente studiata e facilmente applicabile. Lo svantaggio è che non viene fornita alcuna informazione sulla modalità di guasto e quindi sul prognostico per ogni singolo item.

Nel secondo caso, la probabilità di fallimento è realizzata come misura dell'incertezza delle previsioni; pertanto, l'affidabilità può essere calcolata in funzione delle relazioni stress-forza, inclusa l'incertezza in cui i processi possono essere realizzati. In questo caso, è necessaria una grande quantità di dati e/o studi.

Valutiamo prima l'affidabilità utilizzando il metodo del manuale MIL-HDBK-217, ma i risultati sono mitigati da fattori che tengono conto dei processi di degrado e dei fattori ambientali.

3.3.3 II MIL-HDBK-217

Il MIL-HDBK-217 è il manuale per la valutazione dell'affidabilità di apparati elettrici ed elettronici. È stato sviluppato nel 1961 ed è stato aggiornato frequentemente, con l'ultimo aggiornamento nel 1995 (vedi Tabella 1). Lo scopo del MIL-HDBK-217 è stabilire metodi coerenti e uniformi per stimare l'affidabilità intrinseca di apparecchiature e sistemi. Per intrinseca, intendiamo l'affidabilità di un progetto maturo e compiuto.

MIL-HDBK-217 è uno standard mondiale per l'esecuzione di previsioni di affidabilità. Comprende una serie di modelli di guasto che coprono virtualmente tutte le parti elettriche/elettroniche basate su studi empirici. Stima anche 14 ambienti operativi separati.

Nome	Campo di applicazione	Ultimo aggiornamento		
MIL-HDBK-217	Mil/Commercial	1995		
Bellcore / Telcordia	Telecom	2006		
RDF 2000	Telecom	2000		
SAE Rel. Pred. Meth.	Automotive	1987		
NTT Procedure	Telecom	1985		
Siemens SN29500	Siemens Prop.	1999		
China 299B	Chinese Mil	1998		
PRISM	Mil/Commercial	2000		

Tabella 1 – confronto tra diversi manuali di affidabilità

3.3.4 L'affermazione di uno standard

Il primo manuale sulla previsione dell'affidabilità, "Reliability Stress Analysis for Electronic Equipment" o TR-1100, è stato pubblicato dalla Radio Corporation of America (RCA), all'epoca uno dei più importanti produttori di componenti elettronici (in particolare le valvole).

Il manuale presenta alcuni importanti modelli matematici per la stima dei tassi di guasto dei componenti elettronici ed è stato il predecessore di quello che sarebbe diventato lo standard e un requisito obbligatorio per la previsione dell'affidabilità nei decenni a venire, MIL-HDBK-217.

Il primo approccio matematico utilizzato nel MIL-HDBK-217 è stimare il tasso di guasto adattando una linea attraverso i dati di guasto sul campo. Subito dopo la sua introduzione, tutte le previsioni di affidabilità si basavano su questo manuale e tutte le altre fonti di tassi di fallimento, come quelle da esperimenti indipendenti, sono gradualmente scomparse. Il mancato utilizzo di queste altre fonti (vedi Tabella 1) era dovuto ad un fatto molto importante: MIL-HDBK-217 veniva solitamente citato come documento contrattuale, impedendo agli appaltatori di utilizzare altri modelli o manuali. In questo senso, MIL-HDBK-217

è fortemente legato agli aspetti pratici e attivi del mondo industriale e fa parte del filone Industria 4.0, perché le aziende coinvolte nella progettazione e installazione di lampade efficienti gestite da un telecomando attingono le ultime e più innovative tecnologie dell'Internet of Things (IoT) attraverso un processo di monitoraggio e / o controllo e feedback completamente integrato nell'IoT stesso.

3.3.5 Due metodi di predizione e valutazione

Nel MIL-HDBK-217, ci sono due importanti approcci di previsione: la tecnica del *part stress* e la tecnica *parts count*. Come implicano i nomi, il metodo Part Stress richiede la conoscenza dei livelli di stress di ciascun componente per determinarne i tassi di guasto, mentre la tecnica del Parts Count presuppone livelli di stress medi come mezzo per fornire una stima iniziale dei tassi di guasto. In questo articolo, utilizziamo solo questo secondo metodo per l'analisi.

Nel MIL-HDBK-217, l'affidabilità è solitamente espressa in guasti nel tempo (Failures In Time - FiT): il numero di guasti che ci si può aspettare in un miliardo (10⁹) di ore di funzionamento del dispositivo.

I fattori tipici utilizzati per determinare il tasso di guasto di una parte includono un fattore di temperatura (π_T) , un fattore di potenza (π_F) , un fattore di stress di potenza (π_S) , un fattore di qualità (π_Q) e un fattore ambientale (π_E) oltre al tasso di guasto di base (λ_b) metodo. Ad esempio, il modello di tasso di guasto per un resistore è il seguente:

$$\lambda_{q} = \lambda_{b} \cdot \pi_{T} \cdot \pi_{P} \cdot \pi_{S} \cdot \pi_{Q} \cdot \pi_{E}$$

Idealmente, la tecnica del conteggio delle parti viene applicata all'inizio della fase di progettazione per determinare che l'affidabilità prevista è nello stesso "recinto" dei requisiti di affidabilità. Man mano che diventano disponibili informazioni di progettazione più dettagliate, come schemi di circuiti dettagliati, le previsioni dovrebbero essere raffinate per riflettere i livelli di stress dei componenti applicati effettivi.

Ciò richiede il passaggio alla metodologia di previsione dell'affidabilità della sollecitazione della parte più dettagliata, che può comportare un numero significativamente maggiore di ore di lavoro per l'analisi del circuito per calcolare i livelli di sollecitazione effettivi per ciascuna applicazione della parte. In alcuni casi, i risultati del conteggio delle parti vengono utilizzati come stimatore del tempo medio tra guasti (MTBF) finale, nonostante i risultati possano essere conservativi a causa dei livelli di stress predefiniti assunti nella metodologia. Questa situazione a volte porta a un eccesso di componenti di ricambio.

Nella nostra analisi, utilizziamo il metodo di conteggio delle parti in quanto fornisce risultati più conservativi rispetto al metodo Part Stress e presuppone le condizioni operative tipiche di complessità della parte, temperatura ambientale, condizioni elettriche generali e condizioni operative (chiamate condizioni di riferimento).

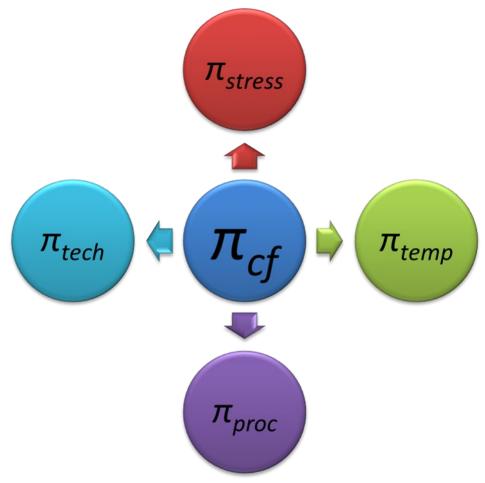


Figure 2 - Composizione del fattore correttivo π_{cf}

Il tasso di guasto viene calcolato in base al metodo di parts count:

$$\lambda_{TOT} = \sum_{i=1}^{n} N_i \cdot (\lambda_g \cdot \pi_Q)_i$$

dove:

 λ_g è il tasso di guasto della parte generica in condizioni ambientali N_i è la quantità della i-esima parte π_Q è il fattore di qualità i è il numero di parti

Come sopradetto, il metodo del Parts Count fornisce dati fisicamente incoerenti, quindi è necessario superare l'approccio tradizionale all'analisi di affidabilità basata sul tasso di guasto o tasso di rischio, che è attualmente maturo ed è stato consolidato a livello internazionale letteratura tecnica.

Come accennato, a causa della caratteristica estremamente conservativa del metodo Parts Count, abbiamo aggiunto il fattore correttivo π cf, quindi la versione finale dell'equazione precedente è ora

$$\lambda_{TOT} = \sum_{i=1}^{n} N_i \cdot (\lambda_g \cdot \pi_Q \cdot \pi_{cf})_i$$

3.3.6 Componenti COTS e loro qualità

Il fattore qualità e il fattore correttivo sono fondamentali per stabilire l'affidabilità del sistema. La Smart Street in esame è composta interamente da componenti elettronici di livello di qualità commerciale (commercial off-the-shelf - COTS).

L'approccio per stabilire la qualità del componente non può quindi essere quello canonico del MIL-HDBK-217 e richiede quindi altre considerazioni sull'evoluzione del guasto e sull'ambiente.

Il termine "componente COTS" è definito dalla Society of Automotive Engineers (SAE) come "un componente elettronico sviluppato da un fornitore per più clienti, il cui design e configurazione sono controllati dalle specifiche del fornitore o del settore".

L'uso di parti COTS richiede un approccio tecnico speciale a causa della mancanza di fiducia nella tracciabilità, prestazioni a lungo termine e nuovi problemi che interessano tali parti, tra cui conformità, contraffazione, ecc.

Un'analisi completa dell'affidabilità di queste parti che valuti adeguatamente il rischio e le contromisure dipende da una conoscenza tecnologica sufficiente derivante dall'uso precedente, dalle lezioni apprese, dalle schede tecniche, dalle tecniche di modellazione e dalle informazioni del produttore.

Dovrebbero essere effettuati studi specifici per valutare il fattore di qualità, con le preoccupazioni primarie:

- Monitoraggio del ciclo di vita e dell'obsolescenza delle parti, in particolare per le linee di prodotti standard
- Utilizzo di dati storici sulle prestazioni, prestazioni a lungo termine e risultati ripetibili;
- Lezioni apprese riguardanti un particolare tipo di parte, numero di parte o produttore;
- I vincoli di temperatura specifici della parte;
- Omogeneità del lotto;
- Tecnica di procurement, ovvero specifica di un produttore controllato; e
- Lotta alla contraffazione.

3.3.7 Il fattore correttivo π_{cf}

Il Fattore Correttivo π_{cf} tiene conto di diversi parametri, tra cui il fattore tecnologico, il fattore procedurale, il fattore di stress e il fattore di temperatura. L'espressione completa è Nello specifico, abbiamo:

$$\pi_{cf} = \pi_{tech} \cdot \pi_{proc} \cdot \pi_{temp} \cdot \pi_{stress}$$

 π_{tech} - **Fattore tecnologico**: MIL-HDBK-217 è rimasto finora indietro per quanto riguarda le capacità tecnologiche dei singoli componenti elettronici poiché, al momento dell'ultima edizione, non si immaginava il rapido sviluppo di molte tecniche di produzione e integrazione di circuiti.

 π_{proc} - Fattore procedurale: la filosofia generale del manuale è esaminare "tutti i possibili tipi di componenti elettronici in tutte le condizioni possibili in tutti gli ambienti immaginabili". Per questo motivo, MIL-HDBK-217 è molto rigido e schematico. In altre parole, per funzionare bene, il metodo deve "congelare" o meglio fornire un quadro dell'attuale tecnologia elettronica, studiare tutti i dettagli; e quindi, dopo un'attenta valutazione e verifica, fornire l'algoritmo di calcolo dell'affidabilità.

 π_{temp} · π_{stress} - **Fattore di stress e fattore di temperatura**: nella sua accezione più ampia, definire lo stress elettrico e termico del componente, l'ambiente in cui si inserisce (e altre sollecitazioni locali) non è sufficiente per stabilirne l'affidabilità. D'altra parte, è fondamentale per il numero e il tipo di componenti da cui è circondato. È in grado di influenzare fortemente il valore dell'affidabilità finale.

Il fattore tecnologico π_{tech} si compone a sua volta di tre altri fattori:

$$\pi_{tech} = F_{complex} + F_{confidence} + F_{homog}$$
,

Dove:

 $F_{complex}$ - Fattore di complessità: questo parametro tiene conto della classe di complessità tecnologica del componente o sottosistema.

 $F_{confidence}$ - Fattore di fiducia: questo parametro tiene conto della durata del periodo di produzione del componente o sottosistema e della sua durata di servizio.

 F_{homog} - Fattore di omogeneità: questo parametro tiene conto delle differenze di produzione e del livello di differenza tra i diversi lotti di produzione.

Il Fattore Procedurale π_{proc} si compone a sua volta di tre altri fattori:

$$\pi_{proc} = F_{hum} + F_{manufact}$$
.

Dove:

F_{hum} - Fattore umano: questo parametro tiene conto di eventuali errori o imperfezioni di assemblaggio causati dall'uomo.

F_{manufact} - Manufacturer Factor: questo parametro tiene conto di eventuali errori o imperfezioni dovute a tecniche di lavorazione secondarie.

Il fattore di temperatura π_{temp} è espresso come:

$$\pi_{temp} = \int_{T_0}^{T_t} f_{T_{degr}} (T) dT$$

La funzione $f_{T_{degr}}$ esprime la modalità di degradazione del componente o sottosistema che evolve dalla temperatura T_0 fino alla temperatura finale T_t , registrando l'andamento e tutte le possibili variazioni.

Il fattore di stress π_{stress} è espresso come:

$$\pi_{stress} = \int_{t_0}^{t} f_{Stress} (t) dt$$

La funzione f_{Stress} esprime il modo in cui viene sollecitato il componente o il sottosistema o quanto e come il suo funzionamento si sposta dal modo ideale e si avvicina al suo limite critico.

Il fattore correttivo totale è ora espresso come:

$$\pi_{cf} = \left(F_{complex} + F_{confidence} + F_{homog}\right) \cdot \left(F_{hum} + F_{manufact}\right) \cdot \left[\int_{T_0}^{T_t} f_{T_{degr}}\right] \cdot \left[\int_{t_0}^{t} f_{Stress}\right] \cdot \left[\int_{t_0}^{t$$

Si noti che alcuni elementi della funzione non sono lineari e comunque non sono correlati tra loro nel tempo. Da un punto di vista fisico, possiamo vedere la funzione matematica come se molti processi di degrado agissero sui vari componenti del sistema in modo del tutto indipendente.

3.3.8 Incertezza e degrado dei componenti

In questa sezione, partendo dal modello di degrado dei componenti, definiamo i limiti ed i criteri di incertezza per determinare il valore ottimale che soddisfa o supera la soglia di vita massima (vita attesa). Valutiamo il livello di degrado del i^{esimo} campione nel periodo $\hat{t} \in [0, \infty)$ in un ciclo di fatica $\Psi i = \{ \Psi i, 1, ..., \Psi i, Q \}, Q \in \mathbb{N}$, quindi poniamo un insieme di variabili campione casuali $\Omega i = \{ \omega i, 1, ..., \omega i, V \}, V \in \mathbb{N}$ che definisce lo stato di salute (stato di degrado) della parte, seguendo una distribuzione normale (Laplace – Gauss).

Ora, definiamo l'incertezza della vita utile attesa (affidabilità) come la probabilità che il degrado nel tempo T_n raggiunga la soglia di guasto teorica η prima del tempo \hat{t} che è:

$$P_r\{T_n < \hat{t}\} = P_r\{H(\hat{t}; \Psi_i, \Omega_i) > \eta\}, \quad \forall i \in I.$$

Consideriamo un componente con il seguente percorso di degradazione (che è stato scelto perché tipico di tali componenti):

$$H_i(t, \Psi_i, \Omega_i) = \psi_{i,1} + \omega_{i,1} \cdot \hat{t}^{\psi_{i,2}},$$

Dove $\Psi_i = \{ \psi_{i,1}, \psi_{i,2} \}$ e $\Omega_i = \{ \omega_{i,1} \}$ quindi:

$$\begin{split} P_r \big\{ T_{\eta} < \hat{t} \big\} &= P_r \big\{ \psi_{i,1} + \omega_{i,1} \cdot \hat{t}^{\psi_{i,2}} > \eta \big\} \\ P_r \big\{ T_{\eta} < \hat{t} \big\} &= P_r \left\{ \omega_{i,1} > \frac{\chi - \psi_{i,1}}{\hat{t}^{\psi_{i,2}}} \right\} \end{split}$$

Per la variabile della "salute" di un campione, $\omega_{i,1} \geq 0$, valutiamo la funzione di densità cumulativa $F_{\omega_{i,1}}$:

$$P_r\{T_{\eta} < \hat{t}\} = 1 - F_{\omega_{i,1}}\left(\frac{\eta - \psi_{i,1}}{\hat{t}\psi_{i,2}}\right)$$

Definiamo i punti temporali di controllo come un intervallo di tempo in cui vengono verificate (testate) le prestazioni del componente. Ovviamente, il componente non può essere monitorato continuamente durante il processo di degradazione. Piuttosto, viene controllato a intervalli regolari.

Ora, valutiamo la probabilità in base alla quale, tra i due punti temporali di controllo $(n-1)\tau$ e $n\tau$, la vita attesa E_L è raggiunta quando:

$$P_r\{T_{\eta} < \hat{t}\} = P_r\{\omega_{i,1} > \frac{\chi - \psi_{i,1}}{\hat{t}^{\psi_{i,2}}}\}$$

quindi, è uguale a:

$$P_r\{(n-1)\tau\} \le T_{E_L} < n\tau, \quad \forall n \in \mathbb{N}$$

La vera soglia di guasto H_i viene raggiunta prima del punto temporale n_{τ} solo se viene soddisfatta la seguente condizione:

$$P_r\{H_i(n\tau; \Psi_i, \Omega_i) > \eta_i\} = P_r\{T_{H_i} < n\tau\}, i \in I$$

Inoltre, supponendo che il percorso di degradazione sia monotono (tipico di questo tipo di sistemi complessi), abbiamo $E_L < H_i$ e $T_{E_L} \le T_H$.

La probabilità che si verifichi un guasto nel momento specifico n_{τ} dopo che il livello di degradazione del i^{esimo} componente ha raggiunto il limite di guasto:

$$(n-1) \cdot \tau \leq E_L < n\tau$$

è:

$$P_r\{PM \ at \ n\tau\} = P_r\big\{T_{H_i} > n\tau, (n-1)\tau \leq T_{E_L} < n\tau\big\}$$

Quindi, definiamo l'incertezza nella valutazione dell'affidabilità del componente U_{λ} come:

$$U_{\lambda} = H_i - E_L$$

3.3.9 Affidabilità di k-su-n elementi

Essendo la Smart Road una strada sperimentale interna al CR, non è necessariamente obbligata a rispettare le normative vigenti per le strade ad accesso pubblico. Dovendo noi effettuare uno studio di affidabilità accettiamo come caso studio che il sistema di illuminazione considerato ammetta la perdita di uno dei suoi elementi senza che la missione finale (ovvero illuminare la strada indicata nello schema) ne risulti compromessa. In questo caso possiamo fare una serie di considerazioni di tipo analitico: ipotizziamo che su 18 pali installati, 1 non funzioni è possibile affermare che i 17 rimanenti siano in grado di illuminare la strada (anche se non garantendo i requisiti illuminotecnici prescritti dalla normativa vigente) e quindi l'apparecchio di illuminazione non funzionate possa essere considerato uno spare ovvero un elemento di ridondanza attiva in parallelo che comunque andrà sostituto quanto prima. Per chiarezza specifichiamo che qualora si spenga una lampada ovvero che sia cagionato un guasto al sistema di illuminazione, i parametri illuminotecnici si abbassano ma comunque il resto della linea continua a funzionare (a differenza, ad esempio, del sistema di illuminazione aeroportuale) per cui la *mission* del sistema, seppur degradata, si mantiene.

L'espressione dell'affidabilità di k-su-n elementi in ridondanza è:

$$R_{k/n} = \sum_{i=k}^{n} {n \choose i} p^{i} (1-p)^{n-i}$$

Dove:

n = 18 è il numero totale degli elementi (luci)

k = 17 è il minimo numero necessario per portare a termine la missione

p = è l'affidabilità del singolo impianto luci

Quindi abbiamo:

$$R_{17/18} = 0.99758$$

Ben sopra l'affidabilità richiesta pari a R_{required} = 0.955.

La Tabella 2 riporta i risultati dell'Analisi di Affidabilità del sistema "Smart Road" presso CR Casaccia. In particolare, nella prima colonna abbiamo l'environment in cui viene considerata l'affidabilità, nella seconda colonna abbiamo il valore affidabilistico del singolo componente o sottosistema, nella terza la quantità e nella quarta, in ottemperanza al metodo del part count, il contributo complessivo dato da quella tipologia in funzione della quantità. Di seguito c'è l'MTBF complessivo relativo ordinatamente alla colonna alla sua destra. L'ultima colonna ci dà il senso percentuale di quanto incida complessivamente sulla figura di affidabilità totale (Tabella 2).

Analisi di Affidabilità del sistema "Smart Road" presso CR Casaccia

Descrizione	πQ (Environment)	λ_P Singolo (F/10 6 hrs)	Quantità	λ _P TOTALE (F/10 ⁶ hrs)	MTBF (hours)	Incidenza (%)
Sezionatore generale	Ground, Unsheltered	7,5511	1	7,55	132.431,0	1,79%
Multimetro PM 3200	Ground, Fixed	0,5117	1	0,51	1.954.270,1	0,12%
Scaricatore	Ground, Benign	0,9839	1	0,98	1.016.363,5	0,23%
Interruttore generale linea illuminazione	Ground, Benign	4,9636	1	4,96	201.466,7	1,17%
Contattore	Ground, Benign	1,7009	1	1,70	587.924,0	0,40%
Crepuscolare e orologio illuminazione IC2000P+	Ground, Unsheltered	0,0345	1	0,03	28.985.507,2	0,01%
Interruttore Selezione Automatico manuale bypass crepuscolare	Ground, Benign	0,6837	1	0,68	1.462.671,4	0,16%
Interruttore Linea Telecamere	Ground, Benign	3,3430	1	3,34	299.132,5	0,79%
Interruttore Linea colonnina carica auto	Ground, Benign	3,5686	1	3,57	280.221,9	0,84%
Interruttore Sensore 1	Ground, Benign	2,6577	1	2,66	376.265,2	0,63%
Interruttore Sensore 2	Ground, Benign	2,6577	1	2,66	376.265,2	0,63%
Interruttore Sensore 3	Ground, Benign	2,6577	1	2,66	376.265,2	0,63%
Interruttore Sensore 4	Ground, Benign	2,6577	1	2,66	376.265,2	0,63%
Interruttore Linea Telecontrollo	Ground, Benign	2,1150	1	2,12	472.813,2	0,50%
Interruttore Riserva 1	Ground, Benign	1,9562	1	1,96	511.195,2	0,46%
Interruttore Riserva 2	Ground, Benign	1,9562	1	1,96	511.195,2	0,46%
Interruttore Riserva 3	Ground, Benign	1,9562	1	1,96	511.195,2	0,46%

Descrizione	πQ (Environment)	λ _P Singolo (F/10 ⁶ hrs)	Quantità	λ _P TOTALE (F/10 ⁶ hrs)	MTBF (hours)	Incidenza (%)
Interruttore Riserva 4	Ground, Benign	1,9562	1	1,96	511.195,2	0,46%
P5-ZS2 + Dualband +SEN	Ground, Unsheltered	4,9540	18	89,17	11.214,3	21,10%
ITALO	Ground, Unsheltered	n/a¹	18	49,56	20.177,8	11,73%
RIO-ETH +4G	Ground, Benign	2,3456	1	2,35	426.330,2	0,55%
RIO-CRDS2 Dualband	Ground, Benign	4,7890	1	4,79	208.811,9	1,13%
Antenna CRD Dualband	Ground, Unsheltered	0,0965	1	0,10	10.359.473,7	0,02%
Antenna GSM magnetica	Ground, Unsheltered	0,0769	1	0,08	13.003.901,2	0,02%
RIO-IOA	Ground, Unsheltered	5,5550	1	5,56	180.018,0	1,31%
Alimentatore 24vdc	Ground, Fixed	0,1960	1	0,20	5.102.301,1	0,05%
P5-FAI +4G	Ground, Unsheltered	6,1844	2	12,37	80.848,6	2,93%
P5-PM10	Ground, Unsheltered	4,3335	2	8,67	115.380,2	2,05%
P5-NOISE	Ground, Unsheltered	4,9970	3	14,99	66.706,7	3,55%
P5-NO2	Ground, Unsheltered	5,0010	2	10,00	99.980,0	2,37%
P5-CO2	Ground, Unsheltered	5,7433	2	11,49	87.058,0	2,72%
Outdoor Access Point	Ground, Benign	2,1743	3	6,52	153.306,0	1,54%
Smart cameras	Ground, Unsheltered	18,1003	9	162,90	6.138,6	38,54%
			TOTALE			
			MTBF (R _{Total}) =	2.366,06	Ore	
				98,59	Giorni	
				3,52	Mesi	

Tabella 2 – Analisi di Affidabilità del sistema "Smart Road" presso CR Casaccia

¹ Vedi paragrafo 3.4.9 "Affidabilità di k-su-n elementi"

3.5 Disponibilità (Availability) Del Sistema

3.5.1 Introduzione

I calcoli di affidabilità visti precedentemente sono particolarmente significativi per i componenti ed i sistemi non riparabili, ossia per quei casi in cui l'accadimento del guasto comporta la sostituzione del componente o del sistema: un caso classico di applicazione non riparabile è appunto un sistema satellitare, in quanto è posto in un "environment" che ne impedisce questo tipo di operazione.

Nella maggior parte dei casi impiantistici di terra però, si ha a che fare con sistemi e componenti riparabili, ossia componenti sui quali, al momento del verificarsi del guasto, possono essere apportati interventi di manutenzione atti a riportare il sistema in condizioni di buon funzionamento.

Apparecchiature e sistemi riparabili quindi nella loro vita compiono numerosi cicli; i parametri di affidabilità sono ancora calcolabili, sebbene con maggiori difficoltà matematiche, tuttavia in questo caso assume maggiore importanza un altro parametro, nel quale confluiscono due termini, che tengono conto l'uno della frequenza dei guasti e l'altro dei tempi di riparazione: questo parametro è detto disponibilità (*Availability*).

3.5.2 Definizione di Disponibilità

La disponibilità è direttamente correlata con la capacità di utilizzazione degli impianti, vista sotto l'aspetto tecnico, escludendo cioè cause di fermata di natura organizzativa generale o di politica aziendale. Alla disponibilità può essere attribuito un duplice significato: essa, infatti, da una parte rappresenta la percentuale di tempo di buon funzionamento del sistema produttivo, calcolata su un lungo periodo di tempo; essa è quindi espressa dal rapporto tra il tempo produttivo lordo e il tempo di utilizzo netto:

$$A = \frac{T_{UN} - T_{gm}}{T_{UN}} = \frac{T_{PL}}{T_{UN}}$$

Dall'altra parte può essere interpretata come probabilità, e precisamente come la probabilità che, in un istante di tempo generico, il sistema (riparabile) sia funzionante. Tale probabilità è in generale funzione del tempo trascorso a partire dal momento in cui il sistema è "nuovo"; il calcolo di tale funzione è possibile anche se complicato analiticamente.

3.5.3 Disponibilità a regime

In genere è però sufficiente riferirsi ad un valore "a regime" cioè quando è trascorso un certo tempo dall'istante iniziale della vita. In questo caso il valore della disponibilità è costante nel tempo ed ha lo stesso valore del rapporto percentuale del tempo di funzionamento rispetto al tempo globale. In termini analitici la disponibilità è quindi data da:

$$A = \frac{UT}{UT + DT}$$

Dove:

- UT (up-time) rappresenta il tempo in cui il sistema è realmente disponibile per il funzionamento, cioè il tempo in cui il sistema potrebbe essere in esercizio (indipendentemente dal fatto che si decida di farlo funzionare o meno) ottenuto come somma dei tempi di effettivo funzionamento e dei tempi di attesa.
- DT (down-time) rappresenta il tempo di fuori servizio imputabile a cause tecniche, quali guasti e
 manutenzioni, in cui quindi non vengono conteggiate le fermate per politiche organizzative del lavoro.
 Il tempo di fuori servizio DT di un impianto dovuto ai guasti è la risultante di numerosi fattori concorrenti.

3.5.4 Composizione del Down Time

In una prima classificazione, è possibile suddividere il tempo di fuori servizio imputabile a cause tecniche distinguendo tempi di manutenzione preventiva ed i tempi per manutenzione in seguito a guasto. In particolare, mentre nel caso di manutenzione preventiva non è possibile identificare dei tempi standard di riferimento, dal momento che le operazioni di manutenzione preventiva dipendono fortemente dall'impianto considerato. Invece, nel caso di manutenzione in seguito a guasto, è possibile identificare una serie di tempi componenti, la cui somma fornisce il valore complessivo del tempo di fermata in seguito al guasto. Questi tempi sono:

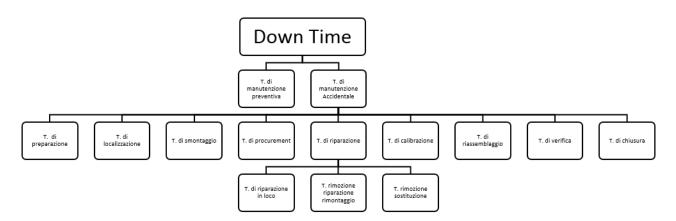


Figura 3 - Composizione del Down time

- Il tempo di preparazione: tempo di manutenzione necessario per ottenere le apparecchiature, gli strumenti per i controlli, i manuali di manutenzione e per la fornitura degli strumenti necessari per iniziare l'operazione di localizzazione del guasto.
- Il tempo di localizzazione: tempo durante il quale il guasto deve essere individuato; si fanno test ed analisi sulla macchina al fine di isolare la causa del guasto.

- Il tempo di smontaggio: tempo necessario per accedere alle parti guaste e decidere il da farsi (riparazione o sostituzione).
- Il tempo di procurement: parte di tempo di manutenzione durante la quale i pezzi di ricambio per i componenti da sostituire sono ordinati al magazzino, e da questo vengono forniti.
- Il tempo di riparazione: parte di tempo di manutenzione durante il quale la rottura è riparata o mediante riparazione in loco, oppure con rimozione, riparazione non in loco e ricollocazione, oppure ancora mediante rimozione e sostituzione con pezzo di ricambio.
- Il tempo di aggiustaggio e calibrazione: parte del tempo di manutenzione durante il quale vengono effettuate le operazioni di aggiustaggio e calibrazione del componente riparato.
- Il tempo di riassemblaggio è quello necessario per rimontare la macchina.
- Il tempo di verifica: parte del tempo di manutenzione durante il quale ci si accerta che l'apparecchiatura riparata funzioni correttamente.
- Il tempo di pulizia e chiusura è quella parte di tempo di manutenzione necessario a riassegnare la macchina all'esercizio, in cui cioè la squadra di manutenzione allontana materiali estranei, compie operazioni di pulizia, ecc.

Ovviamente esistono numerosi fattori che influenzano la durata totale della riparazione: alcuni sono fattori di progetto, altri di natura organizzativa, altri connessi alla pratica operativa. Tra i fattori di progetto si possono elencare:

- la complessità del macchinario;
- la configurazione dei componenti;
- il peso dei componenti;
- la modularizzazione dei componenti;
- la miniaturizzazione dei componenti;
- la visibilità dei componenti;
- l'accessibilità dei componenti;
- la standardizzazione dei componenti;
- l'intercambiabilità dei componenti;
- la facilità di smontaggio dei componenti;
- la facilità di rimontaggio dei componenti.

Tra i fattori di natura organizzativa:

- l'addestramento della manodopera;
- la direzione della manodopera;
- la disponibilità (dimensionamento) delle squadre;

- l'efficienza del magazzino ricambi;
- la logistica degli impianti e dei servizi ed il grado di decentramento del servizio manutenzione;
- la disponibilità di documentazione (schede macchina, disegni ecc.).

Tra i fattori operativi infine si possono citare:

- l'abilita della manodopera;
- gli attrezzi in dotazione;
- gli strumenti di misura in dotazione;
- le procedure per la preparazione del lavoro o per interventi di emergenza.

Nel caso più generale quindi, il tempo di fuori servizio di un sistema in un certo periodo risulta dalla somma del tempo dovuto agli interventi di manutenzione preventiva o periodica e del tempo dovuto alle operazioni di manutenzione accidentale.

Se allora si indica con:

 N_g il numero delle operazioni di manutenzione accidentale nel periodo esaminato.

 N_p il numero delle operazioni di manutenzione preventiva nello stesso periodo.

MTTR_q il tempo medio di riparazione correttiva.

 $MTTR_p$ il tempo medio per le operazioni di manutenzione preventiva.

Il tempo totale di fermata è dato allora da:

$$MTTR_g \cdot N_g + MTTR_p \cdot N_p$$

I tempi di riparazione in seguito a guasto sulla stessa apparecchiatura presentano una grande variabilità in relazione alle componenti appena elencate che intervengono. Si parlerà quindi, come per i tempi di guasto, di una distribuzione di probabilità dei tempi di riparazione t_r .

La funzione di densità di probabilità che più generalmente viene usata per la descrizione del fenomeno è di tipo lognormale. L'utilizzo di tale distribuzione non ha alcun fondamento teorico, ma si vede come nella maggior parte dei casi permetta di ben fittare l'andamento dei tempi di riparazione rilevato sperimentalmente.

La funzione di densità di probabilità dei tempi di riparazione viene espressa dalla seguente relazione:

$$f(t_r) = \frac{1}{\sqrt{2\pi} \cdot \sigma \cdot t_r} \cdot e^{\frac{(\ln t_r - m)^2}{2 \cdot \sigma^2}}$$

dove m è la media dei logaritmi dei tempi di riparazione:

$$m = \frac{\sum_{i} \ln t_{ri}}{N} \cdot$$

e la relativa varianza è:

$$\sigma^2 = \frac{\sum_i (\ln t_{ri} - m)^2}{N - 1}.$$

La funzione cumulata $F(t_r)$ é detta *manutenibilità* ed esprime il valore della probabilità che la riparazione venga portata a termine entro un certo tempo:

$$F(t_r) = \int_{0}^{t_r} f(t_r) \cdot dt_r$$

In particolare, il tempo medio di riparazione MTTR è allora dato da

$$MTTR = \int_{0}^{\infty} t_r \cdot f(t_r) \cdot dt_r = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi} \cdot \sigma \cdot t_r} \cdot e^{-\frac{(\ln t_r - m)^2}{2 \cdot \sigma^2}} \cdot dt_r$$

Per la valutazione pratica della disponibilità dell'impianto, a causa dell'estrema aleatorietà del tempo di riparazione e del tempo di funzionamento, è necessario assumere un tempo di riferimento sufficientemente ampio. Si valutano a questo punto i tempi di funzionamento, ciascuno di durata T_i , ed i tempi di riparazione, ciascuno con durata t_i .

Il tempo complessivo di funzionamento UT è dato da:

$$UT = \sum_{i=1}^{N} T_i$$

Mentre il tempo complessivo di fermata per cause tecniche DT (guasto o manutenzione preventiva) sarà dato da:

$$DT = \sum_{i=1}^{N} t_i$$

le sommatorie sono estese agli N intervalli di Up time - Down time e, considerata la disponibilità, vale:

$$A = \frac{UT}{UT + DT} = \frac{\sum_{i=1}^{N} T_i}{\sum_{i=1}^{N} T_i + \sum_{i=1}^{N} t_i}$$

$$A = \frac{\frac{\sum_{i=1}^{N} T_i}{N}}{\frac{\sum_{i=1}^{N} T_i}{N} + \frac{\sum_{i=1}^{N} t_i}{N}}$$

$$A = \frac{MTTF}{MTTF + MTTR}$$

Nel caso di un'apparecchiatura complessa, il valore del MTTR può essere espresso come segue. Se si immagina che l'apparecchiatura sia costituita da n tipologie di componenti e che l'apparecchiatura venga riparata nel momento in cui uno dei componenti si guasta (caso a cui ci si può quasi sempre ricondurre, suddividendo opportunamente i componenti dell'apparecchiatura), detti C_i il numero di componenti di tipo i-esimo, con tempo di riparazione medio per il componente di tipo i-esimo pari a t_i , e detto λ_i il rateo di guasto del componente di tipo i-esimo, si ha che il MTTR in caso di solo guasto vale:

$$MTTR = \frac{\sum_{i=1}^{n} C_i \cdot \lambda_i \cdot t_i}{\sum_{i=1}^{n} C_i \cdot \lambda_i}$$

dove il termine a denominatore rappresenta il numero di guasti per i componenti di tipo i^{esimo} . Considerando anche k_p fermate per manutenzione preventiva di durata media t_p , si ottiene infine

$$MTTR = \frac{\sum_{i=1}^{n} C_i \cdot \lambda_i \cdot t_i + k_p \cdot t_p}{\sum_{i=1}^{n} C_i \cdot \lambda_i + k_p}$$

3.6 Dati di disponibilità

Di seguito la Tabella 3 riassuntiva che riporta la disponibilità del sistema "Smart Road" presso CR Casaccia. Ricordiamo che la tabella riporta il tempo stimato di fermo del sistema dovuto a manutenzione correttiva in accordo alle definizioni del paragrafo 3.4.5.

	Qty	Preparazione [min]	Localizzazione [min]	Smontaggio [min]	Procurement [min]	riparazione o sostituzione [min]	aggiustaggio e calibrazione [min]	Riassemblaggio [min]	Verifica [min]	Chiusura [min]	Tot singolo [min]	Tot gruppo [min]	Tot gruppo [h]	Inciden %]a
Sezionatore generale	1	7	3	5	21	15	3	5	5	5	69	69	1,2	0,8%
Multimetro PM 3200	1	7	3	5	21	5	3	5	5	5	59	59	1,0	0,7%
Scaricatore	1	7	3	5	21	8	3	5	5	5	62	62	1.0	0,7%
Interruttore generale linea illuminazione	1	7	3	5	21	15	1	5	5	9	71	71	1,2	0,8%
Contattore	1	7	3	5	16	15	1	5	5	5	62	62	1,0	0,7%
Crepuscolare e orologio illuminazione IC2000P+	1	9	5	5	16	15	5	15	5	5	80	80	1,3	0,9%
Interruttore Selezione Automatico manuale bypass crepuscolare	1	7	5	5	16	15	1	5	5	5	64	64	1,1	0,7%
Interruttore Linea Telecamere	1	7	5	5	16	15	3	5	5	5	66	66	1,1	0,7%
Interruttore Linea colonnina carica auto	1	7	5	5	16	15	1	5	5	3	62	62	1,0	0,7%
Interruttore Sensore 1	1	7	3	5	21	15	1	5	5	3	65	65	1,1	0,7%
Interruttore Sensore 2	1	7	3	5	21	15	1	5	5	9	71	71	1,2	0,8%
Interruttore Sensore 3	1	7	3	5	21	15	3	5	5	3	67	67	1,1	0,8%
Interruttore Sensore 4	1	7	3	5	21	15	1	5	5	3	65	65	1,1	0,7%
Interruttore Linea Telecontrollo	1	7	3	5	16	15	1	5	5	3	60	60	1,0	0,7%
Interruttore Riserva 1	1	7	3	5	21	15	3	5	5	3	67	67	1,1	0,8%
Interruttore Riserva 2	1	7	3	5	21	15	1	5	5	5	67	67	1,1	0,8%
Interruttore Riserva 3	1	7	3	5	16	15	3	5	5	5	64	64	1,1	0,7%
Interruttore Riserva 4	1	7	3	5	21	15	3	5	5	5	69	69	1,2	0,8%
P5-ZS2 + Dualband +SEN	18	1	5	15	21	15	3	15	25	5	105	1890	31,5	21,2%
ITALO	18	1	5	15	21	15	1	15	20	5	98	1764	29,4	19,8%

ACCORDO DI PROGRAMMA MISE-ENEA

	Qty	Preparazione [min]	Localizzazione [min]	Smontaggio [min]	Procurement [min]	riparazione o sostituzione [min]	aggiustaggio e calibrazione [min]	Riassemblaggio [min]	Verifica [min]	Chiusura [min]	Tot singolo [min]	Tot gruppo [min]	Tot gruppo [h]	Incidenz %]a
RIO-ETH +4G	1	4	5	15	21	15	30	15	15	5	125	125	2,1	1,4%
RIO-CRDS2 Dualband	1	1	5	7	21	15	5	7	15	5	81	81	1,4	0,9%
Antenna CRD Dualband	1	1	5	5	21	3	5	5	15	5	65	65	1,1	0,7%
Antenna GSM magnetica	1	1	5	5	21	15	5	5	15	5	77	77	1,3	0,9%
RIO-IOA	1	4	5	9	21	15	15	9	15	5	98	98	1,6	1,1%
Alimentatore 24vdc	1	3	5	5	21	15	1	5	5	5	65	65	1,1	0,7%
P5-FAI +4G	2	3	5	5	21	15	15	5	25	9	103	206	3,4	2,3%
P5-PM10	2	1	5	4	21	15	15	4	25	5	95	190	3,2	2,1%
P5-NOISE	3	4	5	5	21	15	3	5	25	5	88	264	4,4	3,0%
P5-NO2	2	1	5	9	21	15	15	9	25	5	105	210	3,5	2,4%
P5-CO2	2	1	5	5	21	15	15	5	25	5	97	194	3,2	2,2%
Outdoor Access Point	3	4	5	5	21	15	30	5	35	5	125	375	6,3	4,2%
Smart cameras	9	1	5	45	21	15	30	45	60	15	237	2133	35,6	23,9%
										Downtim e Totale		8927	148,78	

Tabella 3 - Analisi di disponibilità del sistema "Smart Road" presso CR Casaccia

3.7 Analisi dei Guasti e di Criticità (FMECA)

3.7.1 Criteri

Nell'analisi FMECA (Failure Mode Effect and Criticality Analysis) l'intero sistema viene esaminato a livello funzionale e vengono determinati gli effetti dei guasti e dei malfunzionamenti sulle prestazioni dell'apparecchiatura. I circuiti di interfaccia delle varie unità, invece, vengono analizzati a livello di componente. Per ogni modalità di guasto, viene studiato:

- il suo effetto;
- la sua causa;
- i modi per ovviare al guasto, con particolare attenzione alle eventuali raccomandazioni per la modifica del progetto o ai metodi di prevenzione, se possibile;
- la frequenza con la quale viene osservata la modalità di guasto.

Questi risultati vengono utilizzate per:

- identificare i guasti "singolari";
- individuare elementi critici;
- identificare gli errori e le sottovalutazioni del progetto;
- verificare, per quanto possibile, che tutte le modalità di guasto critico possano essere completamente testate a livello di sottosistema in sede di assemblaggio.

3.7.2 Assunzioni

Nella successiva analisi FMECA vengono fatte le seguenti ipotesi:

- si presume il totale guasto della funzione esaminata;
- viene considerata una solo la modalità di guasto per volta (ovvero non sono presi in considerazione guasti correlati, se non come raccomandazione);
- l'analisi F.M.E.A. viene eseguita a livello di funzione e di unità, ad eccezione dei circuiti I/F che sono analizzati a livello dei componenti (ove mai sia possibile ed opportuno);
- non vengono considerate le probabilità di guasto, oggetto di analisi apposita.

Il modo di guasto presunto riportato nelle tabelle FMEA è segnalato in funzione del guasto peggiore, cioè la perdita della funzione dell'unità principale.

La categoria di criticità viene sempre assegnata prima di segnalare i modi di compensazione e, per ciascuna modalità di errore, le categorie di criticità vengono assegnate come segue (Tabella 4)

Cat.	Descrizione
1	La modalità di guasto presunta provoca presumibilmente distruzione o degrado delle funzioni di altri apparati.
2	La modalità di guasto presunta provoca il guasto totale ed irreversibile degli apparati in esame.
3	La modalità di guasto presunta provoca il degrado grave delle funzioni degli apparati in esame.
4	La modalità di guasto presunta provoca il degrado lieve delle funzioni degli apparati in esame.
5	La modalità di guasto presunta provoca il degrado minimo o trascurabile delle funzioni degli apparati in esame.

Tabella 4 - Categorie di Criticità

N.B.: nessun sistema interno o sottosistema è ridondato.

3.7.3 Formato delle tabelle

Le seguenti informazioni sono riportate nelle colonne della tabella 5:

Nome	Descrizione
Numero Colonna	Numero progressivo riferito alla funzione in esame.
Item	Blocco funzionale principale nell'ambito dell'analisi, riferito allo schema a blocchi funzionali.
Sub item	Blocco funzionale secondario nell'ambito dell'analisi, riferito allo schema a blocchi funzionali.
Descrizione e funzionamento	Descrizione del funzionamento blocco funzionale in esame.
Modalità di Guasto	Modalità di guasto presunta della funzione in esame.
Sintomi Osservabili	L'effetto osservabile (dall'esterno del sistema) della modalità di guasto.
Metodi di Prevenzione o Compensazione	Operazioni anche preventive da intraprendere per mitigare gli effetti del guasto.
Criticità	La categoria di criticità secondo la tabella di cui al punto precedente.
Raccomandazioni e commenti	Raccomandazioni per mitigare gli effetti del guasto e commenti a latere.

Tabella 5 – Descrizione dei campi delle tabelle FMECA

Seguono le tabelle di FMECA. Si precisa che, anche se la rappresentazione di un'analisi FMECA è tabellare, non si può parlare di una semplice tabella, ma di una griglia che riporta i dati ed i risultati dell'analisi e quindi non è numerata. Si deve fare riferimento alle tabelle 4 e 5 per l'interpretazione delle singole colonne.

QE_SR

Scaricatore

Sistema: "Smart Road" presso CR Casaccia

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1	Quadro Smart Road QE_SR	n/a	Quadro elettrico di distribuzione e gestione Cabina 19 T1					
1.1		S1 Sezionatore	Sezionatore					
1.1.1				Bloccato chiuso	Impossibile sezionare la linea elettrica		1	Critico in caso di guasto secondario: possibile diffusione del guasto secondario
1.1.2				Bloccato aperto	Impossibile alimentare la linea elettrica		2	
1.2		Multimetro PM 3200	Fornisce la misura di corrente e tensione istantanea					
1.2.1				Guasto unità multimetro	Display non disponibile (spento o guasto)		5	
1.2.2				Guasto loop corrente	Misura di corrente non corretta o discontinua		5	

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.2.3				Guasto sensing tensione	Misura di tensione non corretta o discontinua		5	
1.3		QE_SR Scaricatore	Protegge la linea dalle sovratensioni esterne					
1.3.1				Limitatore di sovratensione Guasto	Nessuno		4	Sostituzione preventiva
1.3.2				Limitatore di sovratensione In C.C.	Azionamento del Q1		3	
1.4		Q1.1.3 Generale linea illuminazione	Alimenta la linea di illuminazione					
1.4.1				Bloccato chiuso	Impossibilità di aprire la linea	Azionare Q1	3	Sostituzione preventiva
1.4.2				Bloccato aperto	Impossibilità di chiudere la linea		3	Sostituzione preventiva
1.4.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.4.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.4.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.5		Ct1.2.1 Contattore	Aziona i coltelli di linea					
1.5.1				Bloccato chiuso	Impossibilità di aprire la linea	Azionare Q1	3	Sostituzione preventiva
1.5.2				Bloccato aperto	Impossibilità di chiudere la linea		3	Sostituzione preventiva
1.6		Crepuscolare e orologio illuminazione	Il sistema si accende/spegne all'imbrunire/all' alba o a un'ora prestabilita					
1.6.1				Unità sensore crepuscolare non funzionante	Il sistema non si accende/spegne all'imbrunire/all'alba	Switch on/off affidato al timer	5	
1.6.2				Unità orologio- timer non funzionante	Il sistema non si accende/spegne alle ore prefissate	Switch on/off affidato al crepuscolare	5	
1.7		Q1.2.3 Selezione Automatico manuale bypass crepuscolare	Premette di passare dal controllo automatico dell'accensione al manuale e viceversa					
1.7.1				Bloccato chiuso	Impossibilità di aprire la linea bypass	Azionare Q1	3	Sostituzione preventiva

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.7.2				Bloccato aperto	Impossibilità di chiudere la linea bypass		3	Sostituzione preventiva
1.7.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.7.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.8		Q1.1.4 Linea Telecamere	Alimenta la linea delle telecamere intelligenti					
1.8.1				Bloccato chiuso	Impossibilità di aprire la linea Telecamere	Azionare Q1	3	Sostituzione preventiva
1.8.2				Bloccato aperto	Impossibilità di avere le telecamere alimentate Nessun segnale dalle telecamere		3	Sostituzione preventiva
1.8.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.8.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.8.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.9		Q1.1.5 Linea colonnina carica auto	Alimenta la linea preposta alla ricarica delle auto elettriche					
1.9.1				Bloccato chiuso	Impossibilità di aprire la linea colonnina carica auto	Azionare Q1	3	Sostituzione preventiva
1.9.2				Bloccato aperto	Impossibilità di avere la colonnina alimentata		3	Sostituzione preventiva
1.9.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.9.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.9.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.10		Q1.1.6 Sensore 1	Alimenta Sensore 1					
1.10.1				Bloccato chiuso	Impossibilità di aprire la linea Sensore 1	Azionare Q1	3	Sostituzione preventiva
1.10.2				Bloccato aperto	Impossibilità di avere l'alimentazione al Sensore 1		3	Sostituzione preventiva

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.10.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.10.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.10.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.11		Q1.1.7 Sensore 2	Alimenta Sensore 2					
1.11.1				Bloccato chiuso	Impossibilità di aprire la linea Sensore 2	Azionare Q1	3	Sostituzione preventiva
1.11.2				Bloccato aperto	Impossibilità di avere l'alimentazione al Sensore 2		3	Sostituzione preventiva
1.11.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.11.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.11.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.12		Q1.1.8 Sensore 3	Alimenta Sensore 3					

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.12.1				Bloccato chiuso	Impossibilità di aprire la linea Sensore 3	Azionare Q1	3	Sostituzione preventiva
1.12.2				Bloccato aperto	Impossibilità di avere l'alimentazione al Sensore 3		3	Sostituzione preventiva
1.12.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.12.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.12.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.13		Q1.1.9 Sensore 4	Alimenta Sensore 4					
1.13.1				Bloccato chiuso	Impossibilità di aprire la linea Sensore 4	Azionare Q1	3	Sostituzione preventiva
1.13.2				Bloccato aperto	Impossibilità di avere l'alimentazione al Sensore 4		3	Sostituzione preventiva
1.13.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.13.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.13.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.14		Q1.1.10 Linea Telecontrollo	Alimenta linea telecontrollo					
1.14.1				Bloccato chiuso	Impossibilità di aprire la linea Telecontrollo	Azionare Q1	3	Sostituzione preventiva
1.14.2				Bloccato aperto	Impossibilità di avere l'alimentazione alla linea telecontrollo		3	Sostituzione preventiva
1.14.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.14.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.14.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.15		Q1.1.11 Riserva 1	Interruttore di riserva (Libero)					
1.15.1				Bloccato chiuso	Impossibilità di aprire la linea Riserva 1	Azionare Q1	3	Sostituzione preventiva
1.15.2				Bloccato aperto	Impossibilità di avere l'alimentazione alla linea Riserva 1		3	Sostituzione preventiva

		1	1		UNIVERSITA DEGLI STUDI			
N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.15.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.15.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.15.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.16		Q1.1.12 Riserva 2	Interruttore di riserva (Libero)					
1.16.1				Bloccato chiuso	Impossibilità di aprire la linea Riserva 2	Azionare Q1	3	Sostituzione preventiva
1.16.2				Bloccato aperto	Impossibilità di avere l'alimentazione alla linea Riserva 2		3	Sostituzione preventiva
1.16.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.16.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.16.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.17		Q1.1.13 Riserva 3	Interruttore di riserva (Libero)					

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.17.1				Bloccato chiuso	Impossibilità di aprire la linea Riserva 3	Azionare Q1	3	Sostituzione preventiva
1.17.2				Bloccato aperto	Impossibilità di avere l'alimentazione alla linea Riserva 3		3	Sostituzione preventiva
1.17.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.17.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.17.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
1.18		Q1.1.14 Riserva 4	Interruttore di riserva (Libero)					
1.18.1				Bloccato chiuso	Impossibilità di aprire la linea Riserva 4	Azionare Q1	3	Sostituzione preventiva
1.18.2				Bloccato aperto	Impossibilità di avere l'alimentazione alla linea Riserva 4		3	Sostituzione preventiva
1.18.3				Protezione termica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva
1.18.4				Protezione magnetica Guasta	In caso di sovracorrente scatta il Q1		4	Sostituzione preventiva

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
1.18.5				Protezione differenziale Guasta		Built In Test Periodico	3	Sostituzione preventiva
2	P5-ZS2 + Dualband +SEN	n/a	Dispositivo WSN per il controllo di un punto luce.					
2				Degradazione lieve delle prestazioni	Rilevazione di anomalie	Controllo periodico dell'apparato	5	Sostituire quando le prestazioni divengono marginali
2				Degradazione grave delle prestazioni	Funzionamento discontinuo	Nessuno	4	Sostituire
2				Guasto grave	Nodo spento	Nessuno	3	
3	ITALO	n/a	Corpo illuminante					
3.1		LED Driver	Regola l'alimentazione e il dimming della lampada a LED					
3.1.1				Degradazione lieve delle prestazioni	Impossibile controllare il dimmer	Nessuno	5	Sostituire
3.1.2				Degradazione grave delle prestazioni	Lampada mostra bassa intensità	Nessuno	4	Sostituire

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
3.1.3				Guasto grave	Lampada spenta	Nessuno	3	
3.2		LED Matrix Lamp	Parte illuminante					
3.2.1				Degradazione lieve delle prestazioni	Un numero basso di LED sono spenti	Nessuno	5	Sostituire quando le prestazioni divengono marginali
3.2.2				Degradazione grave delle prestazioni	Un numero elevato di LED sono spenti	Nessuno	4	Sostituire
3.2.3				Guasto grave	Lampada spenta	Nessuno	3	
3.2.4				Degradazione lieve delle prestazioni	Impossibile controllare il dimmer	Nessuno	5	Sostituire
3.3		Filtro di rete	Filtra la rete ed elimina il ripple					
3.3.1				Degradazione lieve delle prestazioni	Alimentazione rumorosa	Nessuno	5	Sostituire quando le prestazioni divengono marginali
3.3.2				Degradazione grave delle prestazioni	Alimentazione rumorosa	Nessuno	4	Sostituire

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
3.3.3				Guasto grave	Lampada spenta	Nessuno	3	
4	RIO-ETH +4G	n/a	Modulo CPU Embedded PC con Sistema Operativo Linux per il telecontrollo ed automazione del quadro elettrico.					
4.1				Degradazione lieve delle prestazioni	Prestazioni lievemente degradate		5	Sostituire quando le prestazioni divengono marginali
4.2				Degradazione grave delle prestazioni	Prestazioni degradate sensibilmente		4	Sostituire
4.3				Guasto grave	Unità non funzionante		3	

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
5	RIO-CRDS2 Dualband	n/a	Modulo coordinatore da barra DIN, radio 2.4 GHz e 868 MHz, 2 connettori SMA maschio, seriale RS485 isolata. Alimentazione 24 Vcc, resettabile via I2C bus.					
5.1				Degradazione lieve delle prestazioni	Prestazioni lievemente degradate		5	Sostituire quando le prestazioni divengono marginali
5.2				Degradazione grave delle prestazioni	Prestazioni degradate sensibilmente		4	Sostituire
5.3				Guasto grave	Unità non funzionante		3	
5.4				Perdita alimentazione	Alimentazione assente	Nessuno	4	Sostituire

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
6	Antenna CRD Dualband	n/a	Antenna omnidirezionale a basso profilo con doppio connettore supporta le bande 2.4 GHz e 868 MHz.					
6.1				Degradazione delle prestazioni Perdita della taratura (accordo)	Funzionamento discontinuo, degradazione della qualità del segnale	Controllo periodico dell'antenna	4	Sostituire quando le prestazioni divengono marginali
6.2				Guasto grave	Il segnale è assente malgrado sia inviato	Nessuno	3	Perdita della funzionalità
7	Antenna GSM magnetica	n/a	Antenna stiletto bi-banda con base magnetica e cavo RG174 lunghezza 3m con SMA maschio per modem telefonico M2M					
7.1				Degradazione delle prestazioni Perdita della taratura (accordo)	Funzionamento discontinuo, degradazione della qualità del segnale	Controllo periodico dell'antenna	4	Sostituire quando le prestazioni divengono marginali

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
7.2				Guasto grave	Il segnale è assente malgrado sia inviato	Nessuno	3	Perdita della funzionalità
8	RIO-IOA	n/a	Modulo di espansione SLAVE con: - 1 uscita a relè con contatti a scambio (4 morsetti) - 2 uscite a relè con contatti NA (2+2 morsetti) - 1 ingresso corrente 0/4-20mA (2 morsetti) - 5 ingressi digitali (5x2 morsetti). Si collega sempre ad un modulo CPU MASTER. Alimentazione v4 VDC					
8.1				Degradazione delle prestazioni	Modulo malfunzionante	Controllo periodico dell'apparato	3	
8.2				Guasto grave	Modulo spento	Nessuno	2	

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
9	Alimentato re 24vdc	n/a	Alimentatore da barra DIN AC/DC 220Vac/24Vdc, 60W per gateway					
9.1			. 3	Degradazione delle prestazioni	Alimentazione rumorosa	Controllo periodico dell'apparato	3	
9.2				Guasto grave	Nodo spento	Nessuno	2	
10	P5-FAI +4G	n/a	Versione P5-FAI con modem M2M 4G					
10.1				Perdita della taratura	Il sensore fornisce misure non corrette	nessuna	5	Ricalibrazione del sensore
10.2				Lieve degradazione dell'HW	Il sensore fornisce misure non corrette		4	Ricalibrazione del sensore Se non funziona Sostituire
10.3				Degradazione delle prestazioni	Funzionamento discontinuo, degradazione delle misure fornite		5	Sostituire quando le prestazioni divengono marginali
10.4				Guasto grave	Il nodo non fornisce le misure		4	Perdita della funzionalità

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
10.5				Guasto catastrofico	Impossibile accedere in remoto alle funzionalità di		3	Perdita della funzionalità
12	P5-PM10	n/a	Dispositivo WSN end device per la misura di PM1.0/PM4/PM2 .5/PM10					
12.1				Perdita della taratura	Il sensore fornisce misure non corrette	nessuna	5	Ricalibrazione del sensore
12.2				Lieve degradazione dell'HW	Il sensore fornisce misure non corrette		4	Ricalibrazione del sensore Se non funziona Sostituire
12.3				Degradazione delle prestazioni	Funzionamento discontinuo, degradazione delle misure fornite		5	Sostituire quando le prestazioni divengono marginali
12.4				Guasto grave	Il nodo non fornisce le misure		4	Perdita della funzionalità
12.5				Guasto catastrofico	Impossibile accedere in remoto alle funzionalità di		3	Perdita della funzionalità
13	P5-NOISE	n/a	Sensore WSN per la misura del rumore ambientale.					

					UNIVERSITA DEGLI STUDI			
N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
13.1				Perdita della taratura	Il sensore fornisce misure non corrette	nessuna	5	Ricalibrazione del sensore
13.2				Lieve degradazione dell'HW	Il sensore fornisce misure non corrette		4	Ricalibrazione del sensore Se non funziona Sostituire
13.3				Degradazione delle prestazioni	Funzionamento discontinuo, degradazione delle misure fornite		5	Sostituire quando le prestazioni divengono marginali
13.4				Guasto grave	Il nodo non fornisce le misure		4	Perdita della funzionalità
13.5				Guasto catastrofico	Impossibile accedere in remoto alle funzionalità di		3	Perdita della funzionalità
14	P5-NO2	n/a	Dispositivo WSN End Device per la misura della temperatura/umi dità/VOC (volatile organic compounds) da interno. Alimentazione a batteria					
14.1				Perdita della taratura	Il sensore fornisce misure non corrette	nessuna	5	Ricalibrazione del sensore

N°	ltem	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
14.2				Lieve degradazione dell'HW	Il sensore fornisce misure non corrette		4	Ricalibrazione del sensore Se non funziona Sostituire
14.3				Degradazione delle prestazioni	Funzionamento discontinuo, degradazione delle misure fornite		5	Sostituire quando le prestazioni divengono marginali
14.4				Guasto grave	Il nodo non fornisce le misure		4	Perdita della funzionalità
14.5				Guasto catastrofico	Impossibile accedere in remoto alle funzionalità di		3	Perdita della funzionalità
15	P5-CO2	n/a	Dispositivo WSN End Device per la misura CO2 400 ppm to 2000 ppm, up to 10000 ppm Extended Range					
15.1				Perdita della taratura	Il sensore fornisce misure non corrette	nessuna	5	Ricalibrazione del sensore
15.2				Lieve degradazione dell'HW	Il sensore fornisce misure non corrette		4	Ricalibrazione del sensore Se non funziona Sostituire

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
15.3				Degradazione delle prestazioni	Funzionamento discontinuo, degradazione delle misure fornite		5	Sostituire quando le prestazioni divengono marginali
15.4				Guasto grave	Il nodo non fornisce le misure		4	Perdita della funzionalità
15.5				Guasto catastrofico	Impossibile accedere in remoto alle funzionalità di		3	Perdita della funzionalità
16	Outdoor Access Point	n/a	Accesso esterno al sistema					
16.1				Degradazione delle prestazioni	Funzionamento discontinuo	Controllo periodico dell'apparato	4	
16.2				Guasto grave	Impossibilità di accesso via SW	Nessuno	3	
17	Smart Cameras	n/a	Sovrintende al controllo attivo del sistema					
17.1				Degradazione delle prestazioni	Funzionamento discontinuo, degradazione della qualità dell'immagine	Controllo periodico dell'apparato	4	Sostituire quando le prestazioni divengono marginali

ACCORDO DI PROGRAMMA MISE-ENEA

N°	Item	Sub-item	Descrizione e funzionamento	Modalità di Guasto	Sintomi Osservabili	Metodi di Prevenzione o Compensazione	Criticità	Raccomand azioni e commenti
17.2				Guasto grave	Il nodo non fornisce le misure di traffico	Nessuno	3	Perdita della funzionalità

4 Conclusioni

È stata effettuata l'Analisi di Supporto Logistico (LSA) Analisi LSA preliminare del sistema "Smart Road" presso CR Casaccia. Per questo sistema è stato effettuato un approccio analitico che tiene conto di diversi fattori contribuendo quindi all'effettuazione di un'analisi più accurata e consistente.

4.1 Affidabilità

Poiché il sistema è basato principalmente su componenti di qualità COTS (*Commercial Off The Shelf*) l'approccio numerico non può essere basato solo sul sistema del part count in quanto darebbe risultati troppo conservativi in rapporto alla durata reale dei componenti, per questo ci si è basato su un approccio di più ampio respiro che tiene conto anche di altri parametri che includono un fattore di temperatura (π_T), un fattore di potenza (π_P), un fattore di stress di potenza (π_S), un fattore di qualità (π_Q) e un fattore ambientale (π_E) oltre al tasso di guasto di base (λ_b) del componente. Questi fungono da fattore correttivo rispetto ai nudi numeri forniti dal MIL-STD-217 che, come si è detto, fornisce parametri troppo conservativi che poi si rivelerebbero irrealistici.

Si noti bene che nessuna parte del sistema è ridondata in senso stretto ovvero che nessun componente è stato espressamente pensato per essere posto in stand-by in attesa di poter entrare in linea sostituendo un suo omologo guasto però, abbiamo posto per ipotesi reale che, su diciotto punti luce, uno sia sacrificabile senza degradare eccessivamente le performances del sistema.

L'analisi del tasso di guasto del sistema complessivo ha restituito un MTBF $_{TOT}$ del sistema pari a 2.366,06 ore il che equivale a circa 3,52 mesi di funzionamento. Se si accetta la failure di una lampada guasta, considerando il sistema come una ridondanza calda, la figura di affidabilità sale ulteriormente arrivando ad un coefficiente di *reliability* pari a $R_{17/18} = 0.99758$ estremamente elevato per un sistema così complesso e composto da componenti COTS.

4.2 Disponibilità

Nel nostro caso, non essendosi verificati disservizi reali, sono stati valutati solo i tempi di manutenzione; per stabilire l'eventuale disponibilità è stata posta come base dei tempi proprio l'MTBF precedente partendo dal principio per cui uno qualsiasi dei guasti determina il tempo di vita ponendoci, al contempo, nella condizione peggiore possibile per cui viene richiesta la manutenzione di ognuna delle parti.

E' stata quindi stabilita una disponibilità A = 0.937117765567343 (corrispondente a circa 149 ore complessive nell'arco di tempo predetto ovvero il 93.71% del tempo complessivo). In numero, pur ponendoci in condizioni estremamente conservative, appare molto positivo e promettente.

4.3 FMECA

Il nostro sistema non ha unità o componenti in ridondanza, né calda (hot redudancy) né fredda (cold redudancy): solo il sistema di illuminazione ammette lo spegnimento di un punto luce ma quello, com'è stato trattato in precedenza, non è da considerarsi una vera e propria ridondanza in quanto al venir meno dell'elemento le prestazioni del sistema non sono ripristinate bensì risultano degradate, anche se si mantengono ben all'interno delle tolleranze previste di progetto.

Ogni componente del sistema è un SPF (single point failure) ovvero il suo guasto porta ad una degradazione più o meno grave del sistema: dalle nude cifre parrebbe che sia prono ad ogni guasto, in realtà non è così. Una stima conservativa dell'affidabilità (vedi 4.1 sopra) ci porta un'occorrenza di guasto di più di tre mesi ovvero ben al di sopra dell'intervallo della normale manutenzione ispettiva del sistema.

Il FMECA individua, in accordo con le due altre precedenti analisi, come principale componente tutto il pannello elettrico. Ogni componente è, ovviamente una single point failure, ma anche una sua degradazione porta ad uno scadimento delle prestazioni di tutto il sistema in quanto si riflette immediatamente sull'alimentazione del sistema. Il guasto, se opportunamente individuato, potrebbe dare tempo alla squadra manutenzione di provvedere alla sua sostituzione minimizzando il tempo di off-line del sistema. Per via della modularità e dell'estrema semplicità tecnologica del pannello stesso non è difficile né antieconomico ipotizzare una ragionevole scorta di subparti di prossimità.

5 Riferimenti bibliografici

5.1 Documenti di Riferimento

#	Numero Documento	Rev.	Titolo
RD01	G.U. 8-4-2018	N/A	Criteri Ambientali Minimi Per Servizio Di Illuminazione Pubblica
RD02	G.U. 18-10-2017	N/A	Criteri Ambientali Minimi Per L'acquisizione Di Sorgenti Luminose Per Illuminazione Pubblica L'acquisizione Di Apparecchi Per Illuminazione Pubblica L'affidamento Del Servizio Di Progettazione Di Impianti Per Illuminazione Pubblica
RD03	OF 191/20 del 28/04/2020	1	Algorab srl - offerta "Fornitura Hardware – Progetto Smart Road".
RD04	N/A	MAG-20	AEC Illuminazione S.r.l. Scheda prodotto Italo 1
RD05			Quadro smart road Cabina 19-T21
RD06	IEO1		Inpianto elettrico Smart Road Planimetria
RD07		05/11/2019	Calcolo IlluminotecnicoNiteko Srl ICONA-S-60W-4070-A4 ICONA-S-60W- 4070-A4 1xHl power LED

5.2 Bibliografia

- [1] S3000L-B6865-03000-00 International Procedure specification for Logistic Support Analysis
- [2] MIL-STD-1388 Logistic Support Analysis
- [3] MIL-STD-1629 Procedures For Performing A Failure Mode, Effects, And Criticality Analysis
- [4] MIL-HDBK-217 Reliability Prediction of Electronic Equipment
- [5] E.Petritoli, E.De Francesco, R.De Francesco, 'Obsolescence of the MIL-HDBK-217: a critical review', Proc. of the 4th IEEE International Workshop on Metrology for Aerospace (MetroAeroSpace 2017), Padua, Italy.
- [6] R.De Francesco, E.De Francesco, F.Leccese, A.Paggi, 'The ASD S3000L for the enhancement of "in field" avionic measurements,' Proc. of the IEEE International Workshop on Metrology for Aerospace, 29-30 May, 2014, Benevento, Italy, pp. 174-179. doi: 10.1109/MetroAeroSpace.2014.6865915.
- [7] B.Foucher, J.Boullie, B.Meslet, D.Das, A review of reliability prediction methods for electronic devices, Microelectron. Wearout., 42(8) (2002), pp. 1155-1162.

[8] E.Petritoli, et al. 'A new reliability approach for additive layers manufactured components: a preliminary investigation', Proc. of the 4th IEEE International Workshop on Metrology for Aerospace (MetroAeroSpace 2017) Padua, Italy.

6 Abbreviazioni ed acronimi

AD Applicable Document AOR Annual Operating Rate BE Breakdown Element Identifier BEI Breakdown Element Revision BIT Built in Test BITE Built in Test BITE Built in Test Equipment CDR Critical Design Review CMS Central Management Software COTS Commercial Off The Shelf CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause FITE Failure Mode Analysis FMEA Failure Mode Analysis FMEA Failure Mode Ratio FTA Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis IRU Line Replaceable Unit LSA Logistic Support Analysis MAC Medium Access Control		
BE Breakdown Element Identifier BER Breakdown Element Revision BIT Built in Test BITE Built in Test BITE Built in Test Equipment CDR Critical Design Review CMS Central Management Software COTS Commercial Off The Shelf CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause FIT Failure In time FFF Fit Form and Function FMA Failure Mode Analysis FMECA Failure Mode and Effects Analysis FMECA Failure Mode and Effects, and Criticality Analysis FMECA Failure Mode Ratio FTA Failure Mode Ratio FTA Failure Mode Ratio FTA Failure Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LU Light Emitting Diode LORA Level of Repair Analysis LU Light Emitting Diode LORA Logistic Support Analysis	AD	Applicable Document
BEI Breakdown Element Revision BER Breakdown Element Revision BIT Built in Test BITE Built in Test Equipment CDR Critical Design Review CMS Central Management Software COTS Commercial Off The Shelf CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand Side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause FIT Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode Analysis FMEA Failure Mode Ratio FTA Failure Mode Ratio FTA Failure Mode Ratio FTA Failure Mode Ratio FTA Failure Mode Ratio	AOR	Annual Operating Rate
BER Breakdown Element Revision BIT Built in Test BITE Built in Test Equipment CDR Critical Design Review CMS Central Management Software COTS Commercial Off The Shelf CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMECA Failure Mode and Effects Analysis FMECA Failure Mode And Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	BE	Breakdown Element
BITE Built in Test Equipment CDR Critical Design Review CMS Central Management Software COTS Commercial Off The Shelf CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Gause Fit Failure Mode Analysis FFF Fit Form and Function FMA Failure Mode and Effects Analysis FMECA Failure Mode and Effects Analysis FMECA Failure Mode Ratio FTA Faultr Free Analysis GVI General Visual Inspection HMI Human-Machine Interface ID International Document I/F Integrated Logistic Support ISO In	BEI	Breakdown Element Identifier
BITE Built in Test Equipment CDR Critical Design Review CMS Central Management Software COTS Commercial Off The Shelf CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMECA Failure Mode Analysis FMECA Failure Mode Ratio FTA Failure Mode Ratio FTA Failure Mode Ratio HUMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	BER	Breakdown Element Revision
CDR Critical Design Review CMS Central Management Software COTS Commercial Off The Shelf CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMECA Failure Mode and Effects Analysis FMECA Failure Mode Ratio FTA Failure Mode Ratio HIMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis LRU Line Replaceable Unit	BIT	Built in Test
CMSCentral Management SoftwareCOTSCommercial Off The ShelfCRDCustomer Requirements DocumentDELData Element ListDLMDepot Level MaintenanceDRDemand ResponseDSMDemand side ManagementDSODistribution System OperatorEBEnergy BoxEEEfficienza EnergeticaENEAAgenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibileFCFailure CauseFitFailure Mode AnalysisFMAFailure Mode AnalysisFMEAFailure Mode and Effects AnalysisFMEAFailure Mode RetioFTAFailure Mode RatioFTAFailure Mode RatioFITAFault Tree AnalysisGVIGeneral Visual InspectionHMIHuman-Machine InterfaceIDInternal DocumentI/FInterfaceILSIntegrated Logistic SupportISOInternational Standards OrganizationITInformation TechnologyIUAItem Under AnalysisLANLocal Area NetworkLEDLight Emitting DiodeLORALevel of Repair AnalysisLRULine Replaceable UnitLSALogistic Support Analysis	BITE	Built in Test Equipment
COTS Commercial Off The Shelf CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMEA Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis LRU Line Replaceable Unit	CDR	Critical Design Review
CRD Customer Requirements Document DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMEA Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	CMS	Central Management Software
DEL Data Element List DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode, Effects, and Criticality Analysis FMR Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED <td>COTS</td> <td>Commercial Off The Shelf</td>	COTS	Commercial Off The Shelf
DLM Depot Level Maintenance DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure Cause Fit Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode <td>CRD</td> <td>Customer Requirements Document</td>	CRD	Customer Requirements Document
DR Demand Response DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode and Effects Analysis FMI Failure Mode Ratio FTA Failure Hode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	DEL	Data Element List
DSM Demand side Management DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode and Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replac	DLM	Depot Level Maintenance
DSO Distribution System Operator EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	DR	Demand Response
EB Energy Box EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	DSM	Demand side Management
EE Efficienza Energetica ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FME Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	DSO	Distribution System Operator
ENEA Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	EB	Energy Box
FC Failure Cause Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	EE	Efficienza Energetica
Fit Failure in time FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	ENEA	Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile
FFF Fit Form and Function FMA Failure Mode Analysis FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	FC	Failure Cause
FMA Failure Mode Analysis FMECA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	Fit	Failure in time
FMEA Failure Mode and Effects Analysis FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	FFF	Fit Form and Function
FMECA Failure Mode, Effects, and Criticality Analysis FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	FMA	Failure Mode Analysis
FMR Failure Mode Ratio FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	FMEA	Failure Mode and Effects Analysis
FTA Fault Tree Analysis GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	FMECA	Failure Mode, Effects, and Criticality Analysis
GVI General Visual Inspection HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	FMR	Failure Mode Ratio
HMI Human-Machine Interface ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	FTA	Fault Tree Analysis
ID Internal Document I/F Interface ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	GVI	General Visual Inspection
ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	НМІ	Human-Machine Interface
ILS Integrated Logistic Support ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	ID	Internal Document
ISO International Standards Organization IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	I/F	Interface
IT Information Technology IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	ILS	Integrated Logistic Support
IUA Item Under Analysis LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	ISO	International Standards Organization
LAN Local Area Network LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	IT	Information Technology
LED Light Emitting Diode LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	IUA	Item Under Analysis
LORA Level of Repair Analysis LRU Line Replaceable Unit LSA Logistic Support Analysis	LAN	Local Area Network
LRU Line Replaceable Unit LSA Logistic Support Analysis	LED	Light Emitting Diode
LSA Logistic Support Analysis	LORA	Level of Repair Analysis
- ' '	LRU	Line Replaceable Unit
MAC Medium Access Control	LSA	Logistic Support Analysis
	MAC	Medium Access Control

AD	Applicable Document			
MC	Maintenance Concept			
MDT	Maintenance Down Time			
MET	Mean Elapsed Time			
MIL-STD	Military Standard (US DoD)			
ML	Maintenance Level			
MRO	Maintenance, Repair & Overhaul			
MTA	Maintenance Task Analysis			
MTBF	Mean Time Between Failures			
MTBM	Mean Time Between Maintenance			
MTTR	Mean Time to Repair			
N/A	Not Applicable			
o/c	Open Circuit			
PBS	Product Breakdown Structure			
РСВ	Printed Circuit Board			
PDR	Preliminary Design Review			
PDM	Product Data Management			
PELL	Progetto Public Energy Living Lab			
PHST	Packaging, Handling, Storage and Transportation			
PLC	Power Line Communication			
P/N	Part Number			
PN				
PNR				
RD .	Reference Document			
s/c	Short Circuit			
SHN	Smart Homes Network			
SI	Structural Item			
SMA	Scheduled Maintenance Analysis			
SOW	Statement of Work			
SW	Software			
TBC	To Be Confirmed			
TBD	To Be Defined			
ТВІ	To Be Issued			
TLM	Telemetry			
TSO	Trasmission System Operator – Gestore della rete			
TWT	Travelling Wave Tube			
WAN	Wide Area Network			
WBS	Work Breakdown Structure			

Appendice: Laboratorio di Misure Elettriche ed Elettroniche dell'Università degli Studi "Roma Tre": Curriculum Scientifico

Responsabile: Dott. Ing. Ph.D. RTI Fabio Leccese
Collaboratori: Dott. Enrico Petritoli (Assegnista di Ricerca), Dott.sa Mariagrazia Leccisi (Borsista)

Il laboratorio fa parte del Gruppo Nazionale delle Misure Elettriche ed Elettroniche (GMEE) i cui scopi principali sono lo studio delle misure o "metrologia", l'analisi di qualità fisiche e la realizzazione di campioni di misura con particolare attenzione allo studio dell'incertezza di misura.

In questo quadro generale, il nostro laboratorio segue diverse linee di ricerca tra le quali la qualità dell'energia (dal 2004), l'analisi informativa dei segnali (2002), i controlli di apparati locali e remoti ed in particolare di sistemi di risparmio energetico applicati ad illuminazione e riscaldamento (2008), la sensoristica distribuita incluse le WSN (2008) e le analisi affidabilistiche di sistemi complessi (2013) trova ampia utilità e complementarità con le attività svolte in ENEA dal gruppo del Laboratorio Smart Cities and Communities.

Ciascuna linea presenta peculiarità proprie che coinvolgono non solo il campo specifico delle misure, ma anche settori ad esso correlati quali l'elettronica, l'elettrotecnica, le telecomunicazioni, l'informatica e l'automazione. Il Laboratorio progetta e sviluppa sistemi di misura avvalendosi dei software più moderni come Orcad o Protel e programmando microcontrollori di varie famiglie come Microchip o Siemens, processori ARM, avendo confidenza anche con la progettazione di FPGA. I linguaggi di programmazione più usati sono il C, la piattaforma .NET e vari linguaggi "WEB oriented".

Il nostro team, avvalendosi anche di professionalità esterne, spazia anche in altri settori come la progettazione e realizzazione di impianti di energie alternative, l'illuminotecnica, la realizzazione e gestione di database, la progettazione e realizzazione di droni per attività subacquee e terrestri.

Nel campo della Didattica abbiamo nel tempo sviluppato dei percorsi all'interno dei nostri Dipartimenti rivolti al mondo dell'ambiente e dell'energia con materie come Qualità Ambientale, Qualità dell'Energia, Elementi di Misure per l'Analisi Ambientale, Alimentazione da Fonti Rinnovabili e Strumentazione Avanzata di Misura che, nel tempo, sono state apprezzate da un numero crescente di studenti.

Il nostro lavoro ha permesso la creazione di link importanti come quelli con gruppi di ricerca dell'ENEA, con l'Istituto di Microsistemi e Microelettronica del CNR di Roma e con il Dipartimento di Mineralogia de La Sapienza e con molte Aziende del Territorio.

A testimonianza dell'esperienza maturata, il nostro lavoro ha portato ad oltre 200 pubblicazioni scientifiche per la maggior parte presentate su Riviste Scientifiche o Congressi Scientifici Internazionali, come riscontrabile dalle 143 riportate sul Database Scopus. Di queste, 7 sono state scritte insieme ad ENEA e sempre con ENEA sono stati affrontati insieme 7 progetti di ricerca.

Si segnalano i premi nazionali/internazionali vinti dal Laboratorio

- 1) 2016 PUBLONS The sentinels of Science Awards 2016 The top 10 percent of reviewers- Certified Sentinel of Science award recipient: As one of the top 10 per cent of researchers contributing to the peer review of the field of Chemistry
- 2) 2018 II Forum Nazionale Delle Misure Sezione GMEE Padova, 17-19 Settembre 2018: Miglior Poster per l'articolo: "Measurements of Q factor in microwave resonators: relevance of the calibration".
- 3) 2018 IEEE International Workshop on Metrology for the Sea, October 08-10, Bari, Italy: Miglior Demo per il drone di nuova concezione con movimentazione a pendolo vincolato.
- 4) 2019 WEB OF SCIENCE PUBLONS -TOP PEER REVIEWER 2019 -For placing in the top 1% of reviewers in Cross-Field on Publons global reviewer database.

Elenco di partecipazioni a progetti scientifici

Progetti Internazionali:

"PROGETTO DI GRANDE RILEVANZA ITALIA - SERBIA 2016-2018 sul tema di Agriculture and Food Technologies dal titolo **SMART MONITORING OF PESTICIDES IN FARMING AREAS**" Finanziato dal Ministero degli Affari Esteri e della Cooperazione Internazionale. **Ruolo: Responsabile Scientifico**. Durata 3 anni.

Progetti Nazionali:

- 2) Bando PROGRAMMI DI RICERCA SCIENTIFICA DI RILEVANTE INTERESSE NAZIONALE RICHIESTA DI COFINANZIAMENTO PRIN 2010-2011 dal titolo: "Interazione fra minerali e biosfera: conseguenze per l'ambiente e la salute umana"- sottosezione "Emissioni antropogeniche di CO2: immobilizzazione per carbonatazione e discriminazione isotopica della componente fossile e non fossile". PRIN 2010-2011, Area 04, Durata 36 mesi, Protocollo 2010 MKHT9B 007
- 3) Progetto **Co-Research POR FESR LAZIO 2007-2013 Titolo SIMPLFEX** Progetti di R&S in collaborazione presentati dalle PMI del Lazio con Numero di protocollo assegnato: FILAS-CR-2011-1076 dal 09/01/2012 al 08/01/2014. **Ruolo: Responsabile Scientifico di Sede.** Durata 2 anni.
- 4) Progetto di ricerca: "Sviluppo e implementazione di algoritmi per applicazioni di Smart Lighting" per conto di ENEA Roma, 2014. Ruolo: Responsabile Scientifico. Durata 1 anno.
- 5) Progetto di ricerca: "Sviluppo e implementazione di indicatori di prestazione e diagnostica energetica per impianti di illuminazione pubblica" per conto di ENEA Roma, 2014. Ruolo: Responsabile Scientifico. Durata 5 mesi.

I seguenti progetti sono stati sviluppati all'interno del piano Piano Triennale della Ricerca nell'ambito del Sistema Elettrico Nazionale 2015-2017 finanziato dal Ministero dello Sviluppo Economico (MiSE) e gestito da ENEA all'interno dell'Accordo di Programma MiSE-ENEA 2015-2017.

- 6) **Progettazione e sviluppo prototipale di strumenti per la gestione del PELL**, per conto di ENEA Roma, 2015. **Ruolo: Responsabile Scientifico di Sede**. Durata 5 mesi.
- 7) Analisi di affidabilità e analisi dei guasti e delle criticità (FMECA) del sistema smart street, per conto di ENEA Roma, 2016. Ruolo: Responsabile Scientifico di Sede. Durata 5 mesi.
- 8) Studio affidabilistico dei componenti di una linea di illuminazione "smart" stradale pubblica operativa in contesto urbano: vantaggi e criticità, per conto di ENEA Roma, 2017. Ruolo: Responsabile Scientifico di Sede. Durata 5 mesi.
- 9) Studio affidabilistico preliminare dei componenti fondamentali del sistema di termoregolazione dell'edificio F-40 ENEA (Casaccia): vantaggi e criticità, per conto di ENEA – Roma, 2018. Ruolo di Responsabile Scientifico di Sede. Durata 3 mesi.
- 10) Smart Energy in Sistemi Pubblici: analisi di affidabilità e qualificazione dei dati per ridurre le incertezze di sistema, per conto di ENEA – Roma, 2019-2021. Ruolo di Responsabile Scientifico di Sede. Durata 3 anni.

Progetti Conto Terzi:

- Progetto di ricerca: **"Studio delle criticità delle PowerLine su Navi da guerra"** per conto della Se.Te.L. group di Roma, 2012. **Ruolo: Responsabile Scientifico**. Durata 1 mese.
- 12) Progetto di ricerca: "Valutazione del Processo di Rivitalizzazione degli Accumulatori al Piombo-Acido e del Relativo Liquido Additivo" per conto della Battery Equalizer Italia s.r.l. di Fiumicino, 2012, Ruolo: Responsabile Scientifico. Durata 3 mesi.
- 13) Progetto di ricerca: **"Evoluzioni del supporto logistico delle power line di unità navali"** per conto della Se.Te.L. group di Roma, 2013. **Ruolo: Responsabile Scientifico**. Durata 1 mese.
- 14) Progetto di ricerca: **"Sistema di gestione delle telecamere di guida a bordo del Rover SETEL"** per conto della Se.Te.L. group di Roma, 2020-2021. **Ruolo: Responsabile Scientifico**. Durata 7 mesi.