Sommario Appendici

Appendice A: XRD Pattern	2
Appendice B: Analisi XRF	17
Appendice C: FTIR Pattern	22
Appendice D: Analisi BET-BJH	24
Appendice E: SEM-EDX	37
Appendice F: Risultati test di cattura	47
Appendice G: microanalisi (EDX)	63

Appendice A: XRD Pattern

A.1 XRD Pre-test post-essiccati.

Figura A. 1 XRD Pattern HT1 essiccato a 120 °C per 24 h.

Figura A. 2 XRD Pattern HT1 calcinato a 500 °C per 8 h.

Figura A. 3 XRD Pattern HT1 post test a 350 °C 6 bar.

Figura A. 4 XRD Pattern HT1K post essiccato a 120 °C per 24 h.

Figura A. 5 XRD Pattern HT1K calcinato a 500 °C per 8 h.

Figura A. 6 XRD Pattern HT1K post test a 350 °C 3 bar.

Figura A. 7 XRD Pattern HT1K post test a 350 °C 6 bar.

Figura A. 8 XRD Pattern HT1K post test a 600 °C 3 bar.

Figura A. 9 XRD Pattern HT1K post test a 600 °C 6 bar.

Figura A. 10 Pattern HT2 post essiccato a 120 °C per 24h.

Figura A. 11 XRD Pattern HT2 calcinato a 500 °C per 8 h.

Figura A. 12 XRD Pattern HT2 calcinato a 800 °C per 8 h.

Figura A. 13 XRD Pattern HT2 post test a 350 °C 3 bar.

Figura A. 14 XRD Pattern HT2 post test a 350 °C 6 bar.

Figura A. 16 XRD Pattern HT2 post test a 600 °C 6 bar

Figura A. 17 XRD Pattern HT2K essiccato a 120 °C per 24h.

Figura A. 18 XRD Pattern HT2K calcinato a 800 °C per 8h.

Figura A. 20 XRD Pattern HT2K post test 350 °C 6 bar.

Figura A. 21 XRD Pattern HT2K post test 600 °C 3 bar.

Figura A. 22 XRD Pattern HT2K post test 600 °C 6 bar.

Figura A. 23 XRD Pattern HT3 essiccato a120 °C per 24h.

Figura A. 24 XRD Pattern HT3 calcinato a 800 °C per 8h.

Figura A. 26 XRD Pattern HT3 post test 600 °C 6 bar.

Figura A. 28 XRD Pattern HT3K calcinato a 800 °C per 8h.

Figura A. 29 XRD Pattern HT3K post test a 350 °C 6bar.

Figura A. 30 XRD Pattern HT3K post test a 600 °C 6 bar.

Appendice B: Analisi XRF

B.1 XRF Solidi.

- Preset Sample Data

Sample Name	1	Dilution Material		
Description	UMBERTO	Sample Mass (g)	1.1586	
Method	FP-Powder	Dilution Mass (g)	0.0000	
Job Number	Foscolo	Dilution Factor	1.0000	
Sample Type	Powder, 24 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	05/05/2015	
Sample Status	AXXAXXAA	Date of Evaluation	05/05/2015	
92.00 (92.00 mm mm				

- Results -

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentrat	tion	Abs. Erro	pr.
12	Mg	Magnesium	3312.7531	32.41	96	0.03	56
13	AL	Aluminum	4288.3314	13.69	96	0.01	96
14	Si	Silicon	17.6286	0.02315	96	0.00041	%
15	P	Phosphorus	5.8650	0.00300	%	0.00013	%
16	S	Sulfur	15.2261	< 0.00020	96	(0.0)	96
17	CI	Chlorine	254.9233	0.02385	96	0.00007	%
19	ĸ	Potassium	1.5233	0.00181	96	0.00014	%
20	Ca	Calcium	34.6464	< 0.0010	%	(0.0)	%
22	Ti	Titanium	2.2340	0.00068	%	0.00004	%
23	V	Vanadium	1.5832	< 0.00006	96	(0.00003)	%
24	Cr	Chromium	11.6801	0.00109	96	0.00003	%
25	Mn	Manganese	0.0000	< 0.00010	96	(0.0)	%
26	Fe	Iron	58.6169	0.00246	96	0.00003	%
27	Co	Cobalt	0.0000	< 0.00030	96	(0.0)	%
28	Ni	Nickel	19.9417	0.00115	96	0.00003	%
29	Cu	Copper	0.0000	< 0.00005	%	(0.0)	96
30	Zn	Zinc	28.7442	0.00098	96	0.00002	%
			Figura R 1 Risul	tati analisi XR	E HT1		

Figura B. 1 Risultati analisi XRF HT1.

- Preset Sample Data

Sample Name	2	Dilution Material		
Description	UMBERTO	Sample Mass (g)	1.5702	
Method	FP-Powder	Dilution Mass (g)	0.0000	
Job Number	Foscolo	Dilution Factor	1.0000	
Sample Type	Powder, 24 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	05/05/2015	
Sample Status	AXXAXXAA	Date of Evaluation	05/05/2015	

⁻ Results -

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentrat	ion	Abs. Em	or!	_
12	Mg	Magnesium	0.0000	< 0.0020	96	(0.0)	96	
13	AI	Aluminum	9715.5603	23.57	%	0.02	96	
14	Si	Silicon	19.3525	0.02043	96	0.00052	96	
15	P	Phosphorus	19.3786	0.00794	.96	0.00022	%	
16	S	Sulfur	28.4820	< 0.00020	36	(0.0)	%	
17	CI	Chlorine	1003.9696	0.08921	%	0.00014	96	
19	К	Potassium	0.0000	< 0.0010	%	(0.0)	%	
20	Ca	Calcium	25961.5229	19.28	%	0.01	%	
22	Ti	Titanium	0.0000	< 0.00020	%	(0.0)	96	
23	V	Vanadium	1.0966	< 0.00010	96	(0.0)	96	
24	Cr	Chromium	7.2841	0.00119	96	0.00004	%	
25	Mn	Manganese	5.9290	0.00102	96	0.00004	96	
26	Fe	Iron	45.8054	0.00094	%	0.00001	96	
27	Co	Cobalt	0.0000	< 0.00030	96	(0.0)	%	
28	Ni	Nickel	9.2838	0.00094	%	0.00005	%	
29	Cu	Copper	1,6562	0.00016	%	0.00005	%	
30	Zn	Zinc	17.2257	0.00114	%	0.00003	%	

Figura B. 2 Risultati analisi XRF per HT2.

Sample Name	4	Dilution Material		
Description	UMBERTO	Sample Mass (g)	1.3521	
Method	FP-Powder	Dilution Mass (g)	0.0000	
Job Number	Foscolo	Dilution Factor	1.0000	
Sample Type	Powder, 24 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	05/05/2015	
Sample Status	AXXAXXAA	Date of Evaluation	05/05/2015	

- Results ----

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentrat	tion	Abs. Erro	DF
12	Mg	Magnesium	2025.7965	22.58	%	0.03	%
13	AI	Aluminum	5864,5445	19.43	%	0.01	%
14	Si	Silicon	28.0125	0.03728	%	0.00058	%
15	P	Phosphorus	15.5593	0.00806	96	0.00023	%
16	S	Sulfur	23.6967	< 0.00020	%	(0.0)	%
17	CI	Chlorine	67.3903	0.00198	%	0.00002	96
19	к	Potassium	0.0000	< 0.0010	96	(0.0)	%
20	Ca	Calcium	20351.6868	18.37	96	0.01	%
22	Ti	Titanium	0.0000	< 0.00020	96	(0.0)	%
23	V	Vanadium	1.4808	< 0.00012	%	(0.0)	%
24	Cr	Chromium	8.5870	0.00157	96	0.00005	96
25	Mn	Manganese	3.0421	0.00056	%	0.00006	96
26	Fe	Iron	42.8083	< 0.00023	96	(0.00005)	96
27	Co	Cobalt	0.0000	< 0.00030	%	(0.0)	%
28	Ni	Nickel	9.7627	0.00108	96	0.00006	%
29	Cu	Copper	1.9169	0.00020	%	0.00006	%
30	Zn	Zinc	13.0576	0.00098	%	0.00004	%

Figura B. 3 Risultati analisi XRF per HT3.

- Preset Sample Da	ata			
Sample Name	6	Dilution Material		
Description	UMBERTO	Sample Mass (g)	1.8291	
Method	FP-Powder	Dilution Mass (g)	0.0000	
Job Number	Foscolo	Dilution Factor	1.0000	
Sample Type	Powder, 24 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	05/05/2015	
Sample Status	AXXAXXAA	Date of Evaluation	05/05/2015	

- Results -

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentrat	ion	Abs. Err	or
12	Mg	Magnesium	3154.6739	31.45	%	0.03	%
13	AL	Aluminum	4001.2877	12.30	%	0.01	%
14	Si	Silicon	37.2375	0.04775	%	0.00049	%
15	P	Phosphorus	0.0000	< 0.00030	%	(0.0)	%
16	S	Sulfur	36.3614	0.00025	%	0.00001	%
17	CI	Chlorine	116.8550	0.00754	96	0.00004	96
19	ĸ	Potassium	4177.3655	4.977	%	0.005	%
20	Ca	Calcium	57.1022	0.00881	%	0.00025	%
22	Ti	Titanium	2.3311	0.00085	%	0.00005	%
23	V	Vanadium	1.2991	< 0.00010	%	(0.0)	%
24	Cr	Chromium	9.6024	0.00106	96	0.00003	%
25	Mn	Manganese	0.0000	< 0.00010	96	(0.0)	%
26	Fe	Iron	57.1303	0.00274	%	0.00004	%
27	Co	Cobalt	0.0000	< 0.00030	96	(0.0)	%
28	Ni	Nickel	16.5647	0.00116	%	0.00004	%
29	Cu	Copper	3.5706	0.00022	%	0.00004	96
30	Zn	Zinc	24.9893	0.00107	%	0.00003	%
			Elevine D. 4 Di	without one list M			

ita			
7	Dilution Material		
UMBERTO	Sample Mass (g)	1.1146	
FP-Powder	Dilution Mass (g)	0.0000	
Foscolo	Dilution Factor	1.0000	
Powder, 24 mm	Sample rotation	Yes	
Powder	Date of Receipt	05/05/2015	
AXXAXXAA	Date of Evaluation	05/05/2015	
	ta 7 UMBERTO FP-Powder Foscolo Powder, 24 mm Powder A X X A X X A A	ta Dilution Material UMBERTO Sample Mass (g) FP-Powder Dilution Mass (g) Foscolo Dilution Factor Powder, 24 mm Sample rotation Powder Date of Receipt A X X A X X A A Date of Evaluation	7 Dilution Material UMBERTO Sample Mass (g) 1.1146 FP-Powder Dilution Mass (g) 0.0000 Foscolo Dilution Factor 1.0000 Powder, 24 mm Sample rotation Yes Powder Date of Receipt 05/05/2015 A X X A X X A A Date of Evaluation 05/05/2015

-Results-

The error is the statistical error with 1 sigma confidence interval

z	Symbol	Element	Norm. Int.	Concentrat	ion	Abs. Erro	or
12	Mg	Magnesium	0.0000	< 0.0020	%	(0.0)	%
13	AL	Aluminum	11547.1342	29.89	96	0.02	96
14	Si	Silicon	99.1061	0.1155	%	0.0008	96
15	P	Phosphorus	26,9300	0.01219	%	0.00026	96
16	S	Sulfur	59.6353	0.00536	96	0.00005	%
17	CI	Chlorine	278.3817	0.02329	%	0.00008	96
19	к	Potassium	2914.8454	3.342	%	0.005	96
20	Ca	Calcium	29087.7361	27.98	%	0.02	%
22	Ti	Titanium	0.0000	< 0.00020	%	(0.0)	96
23	V	Vanadium	1.6530	< 0.00014	96	(0.00004)	96
24	Cr	Chromium	7.1862	0.00155	%	0.00006	96
25	Mn	Manganese	4.0586	0.00092	%	0.00007	%
26	Fe	Iron	53.1697	0.00423	%	0.00005	96
27	Co	Cobalt	0.0000	< 0.00030	%	(0.0)	%
28	Ni	Nickel	17.0502	0.00258	%	0.00008	%
29	Cu	Copper	5.6530	0.00074	96	0.00006	%
30	Zn	Zinc	16.5840	0.00146	%	0.00004	96

Figura B. 5 Risultati analisi XRF per HT2K.

 Preset Sample Data 	ata			
Sample Name	8	Dilution Material		
Description	UMBERTO	Sample Mass (g)	1,3063	
Method	FP-Powder	Dilution Mass (g)	0.0000	
Job Number	Foscolo	Dilution Factor	1.0000	
Sample Type	Powder, 24 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	05/05/2015	
Sample Status	AXXAXXAA	Date of Evaluation	05/05/2015	

- Results -

The error is the statistical error with 1 sigma confidence interval

z	Symbol	Element	Norm. Int.	Concentrat	tion	Abs. Erro	pr
12	Mg	Magnesium	1416.8817	15.92	%	0.02	%
13	AI	Aluminum	4926.9574	13.76	%	0.01	%
14	Si	Silicon	38.9471	0.04374	96	0.00053	%
15	P	Phosphorus	15.1757	0.00661	%	0.00019	%
16	S	Sulfur	18,4568	< 0.00020	96	(0.0)	%
17	CI	Chlorine	67.2805	0.00165	%	0.00001	%
19	ĸ	Potassium	4847.0499	5.270	%	0.006	%
20	Ca	Calcium	17549.9874	16.38	%	0.01	%
22	Ti	Titanium	0.0000	< 0.00020	%	(0.0)	%
23	V	Vanadium	1.2328	< 0.00010	%	(0.0)	96
24	Cr	Chromium	7.2015	0.00126	%	0.00004	%
25	Mn	Manganese	5.5781	0.00103	%	0.00005	%
26	Fe	Iron	43.6335	0.00032	96	0.00001	%
27	Co	Cobalt	0.0000	< 0.00030	%	(0.0)	96
28	Ni	Nickel	12.3148	0.00142	%	0.00006	%
29	Cu	Copper	3,5586	0.00037	%	0.00005	96
30	Zn	Zinc	13.0925	0.00093	%	0.00003	%

Figura B. 6 Risultati analisi XRF per HT3K.

B.2 XRF Liquidi.

- Preset Sample Data -

Sample Name	1L	Dilution Material		
Description	UMBERTO	Sample Mass (g)	4.9382	
Method	FP-Water	Dilution Mass (g)	0.0000	
Job Number	Foscolo	Dilution Factor	1.0000	
Sample Type	Liquid, 24 mm	Sample rotation	No	
Sample State	Liquid	Date of Receipt	04/05/2015	
Sample Status	AXXAXXAA	Date of Evaluation	04/05/2015	
Results				

The error is the statistical error with 1 sigma confidence interval

z	Symbol	Element	Norm. Int.	Concentrati	on	Abs. Erro	pr
11	Na	Sodium	11.9462	0.1944	%	0.0061	%
12	Mg	Magnesium	48.7177	0.4262	%	0.0035	%
13	AI	Aluminum	96.9590	0.1565	%	0.0008	%
14	Si	Silicon	8.0039	< 0.00051	%	(0.0)	%
15	P	Phosphorus	0.6745	0.00014	%	0.00006	%
16	S	Sulfur	13.7479	0.00126	96	0.00003	96
17	CI	Chlorine	95.3388	< 0.00020	%	(0.0)	96
19	к	Potassium	2.0625	< 0.0010	%	(0.00088)	96
20	Ca	Calcium	9.4984	0.00240	%	0.00006	%
22	Ti	Titanium	1.3543	0.00011	%	0.00002	%
23	V	Vanadium	1.9530	0.00004	%	0.00001	96
24	Cr	Chromium	9.4765	0.00021	96	0.00001	%
25	Mn	Manganese	5.8370	0.00016	%	0.00001	%

Figura B. 7 Risultati analisi XRF per H₂O di lavaggio HT1.

 Preset Sample Data - 				
Sample Name	6L	Dilution Material		
Description	UMBERTO	Sample Mass (g)	4.0788	
Method	FP-Water	Dilution Mass (g)	0.0000	
Job Number	Foscolo	Dilution Factor	1.0000	
Sample Type	Liquid, 24 mm	Sample rotation	No	
Sample State	Liquid	Date of Receipt	04/05/2015	
Sample Status	AXXAXXAA	Date of Evaluation	04/05/2015	

-Results-

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentratio	n	Abs. Erro	or
11	Na	Sodium	48.3858	0.7873 9	%	0.0076	%
12	Mg	Magnesium	0.0000	< 0.010 9	36	(0.0)	%
13	AI	Aluminum	46.2554	0.06313 9	%	0.00054	96
14	Si	Silicon	0.0000	< 0.00051 9	16	(0.0)	%
15	P	Phosphorus	2.9934	0.00064 9	36	0.00006	%
16	S	Sulfur	17,1010	0.00157 9	%	0.00003	%
17	CI	Chlorine	63.3341	< 0.00020 %	%	(0.0)	%
19	к	Potassium	2.1196	0.00090 9	%	0.00015	%
20	Ca	Calcium	2296.8858	0.6460 9	%	0.0009	%
22	Ti	Titanium	0.9363	0.00007 9	%	0.00001	%
23	V	Vanadium	2.1196	0.00005 9	36	0.00001	%
24	Cr	Chromium	9.4518	0.00023 %	%	0.00001	%
25	Mn	Manganese	2.1639	0.00004 9	%	0.00001	%

Figura B. 8 Risultati analisi XRF per H₂O di lavaggio HT2.

- Preset Sample D	ata			
Sample Name	4L	Dilution Material		
Description	UMBERTO	Sample Mass (g)	4.0889	
Method	FP-Water	Dilution Mass (g)	0.0000	
Job Number	Foscolo	Dilution Factor	1.0000	
Sample Type	Liquid, 24 mm	Sample rotation	No	
Sample State	Liquid	Date of Receipt	04/05/2015	
Sample Status	AXXAXXAA	Date of Evaluation	04/05/2015	

-Results-

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentration	on	Abs. Erro	or
11	Na	Sodium	15.8982	0.2591	%	0.0065	%
12	Mg	Magnesium	9.5953	0.0707	%	0.0022	%
13	AI	Aluminum	127.5470	0.2117	%	0.0009	%
14	SI	Silicon	4.5313	< 0.00051	%	(0.0)	96
15	P	Phosphorus	0.0000	< 0.00030	%	(0.0)	%
16	S	Sulfur	15.8982	0.00145	%	0.00003	%
17	CI	Chlorine	67.3388	< 0.00020	%	(0.0)	%
19	к	Potassium	2.1395	0.00091	%	0.00009	%
20	Ca	Calcium	463.2237	0.1282	96	0.0004	%
22	Ti	Titanium	1.9055	0.00017	%	0.00002	%
23	V	Vanadium	3.2111	0.00012	%	0.00001	%
24	Cr	Chromium	11.2243	0.00030	%	0.00001	%
25	Mn	Manganese	5.7603	0.00016	%	0.00001	%

Figura B. 9 Risultati analisi XRF per H₂O di lavaggio HT3.

Appendice C: FTIR Pattern

Figura C. 1 FT-IR spettri di HT2K essiccato, HT1K dopo il test, HT1 calcinato a 700°C post test

Numero d'onda[cm ⁻¹]	Numero d'onda di riferimento[cm ⁻¹]	Letteratura		
711	711 713 v4 di CO ₃ ²⁻ possibile per calcite e aragonite			
871	871 877 v2 di CO ₃ ²⁻ dalla calcite			
1014	Al catione trivalente in ottaedro	(Stuart, 2004)		
2507	2510 v1 di CO ₃ ²⁻ dalla calcite	Andersen & Brecevic, 1991)		
2867	2867 Vibrazione del gruppo idrossido			
3585	3580 Vibrazione dei gruppi idrossido	Jedrasiewicz, 2000)		

Table C. 1 – Picchi identificati di HT2

Figura C. 2 Spettri FT-IR HT3K essiccato, HT3 calcinato a 450°C, HT3 calcinato a 450°C post test, HT1 essiccato, HT1K calcinato a 450°C, HT1 calcinato a 450°C dopo test senza acqua.

Figura C. 3 Spettri FT-IR di HT3K calcinato a 450°C post test, HT3K calcinato a 450°C, HT2K calcinato a 700°C post test, HT1calcinato a 450°C post test, HT3K calcinato a 700°C post test.

Appendice D: Analisi BET-BJH

D.1 BET-BJH pre test.

Figura D. 1 Isoterma di assorbimento/desorbimento HT1 calcinato a 500 °C

Figura D. 2 Volume dei pori di assorbimento/desorbimento HT1 calcinato a 500 °C

Figura D. 3 Isoterma di assorbimento/desorbimento HT2 calcinato a 500 °C

Figura D. 4 Volume dei pori di assorbimento/desorbimento HT2 calcinato a 500 °C

Figura D. 5 Isoterma di assorbimento/desorbimento HT2 calcinato a 800 °C

Figura D. 6 Volume dei pori di assorbimento/desorbimento HT2 calcinato a 800 °C

Figura D. 7 Isoterma di assorbimento/desorbimento HT3 calcinato a 800 °C

Figura D. 8 Volume dei pori di assorbimento/desorbimento HT3 calcinato a 800 °C

Figura D. 9 Isoterma di assorbimento/desorbimento di HT1K calcinato a 500 °C

Figura D. 10 Volume dei pori di assorbimento/desorbimento di HT1K calcinato a 500 °C

Figura D. 11 Isoterma di assorbimento/desorbimento di HT2K calcinato a 800 °C

Figura D. 12 Volume dei pori di assorbimento/desorbimento di HT2K calcinato a 800 °C

Figura D. 13 Isoterma di assorbimento/desorbimento di HT3K calcinato a 800 °C

Figura D. 14 Volume dei pori di assorbimento/desorbimento di HT3K calcinato a 800 °C

D.2 BET-BJH post-test.

Figura D. 15 Isoterma di assorbimento/desorbimento di HT1K post test 350 °C 3bar.

Figura D. 16 Volume dei pori di assorbimento/desorbimento di HT1K post test 350 °C 3bar.

Figura D. 17 Isoterma di assorbimento/desorbimento di HT1K post test 350 °C 6 bar.

Figura D. 18 Volume dei pori di assorbimento/desorbimento di HT1K post test 350 °C 6bar.

Figura D. 19 Isoterma di assorbimento/desorbimento di HT2 post test 600 °C 3 bar.

Figura D. 20 Volume dei pori di assorbimento/desorbimento di HT2 post test 600 °C 3 bar.

Figura D. 21 Isoterma di assorbimento/desorbimento di HT2 post test 600 °C 6 bar.

Figura D. 22 Volume dei pori di assorbimento/desorbimento di HT2 post test 600 °C 6 bar.

Figura D. 23 Isoterma di assorbimento/desorbimento di HT3 post test 600 °C 3 bar.

Figura D. 24 Volume dei pori di assorbimento/desorbimento di HT3 post test 600 °C 3 bar.

Figura D. 25 Isoterma di assorbimento/desorbimento di HT3 post test 600 °C 6 bar.

Figura D. 26 Volume dei pori di assorbimento/desorbimento di HT3 post test 600 °C 6 bar.
Appendice E: SEM-EDX

Figura E.1: Immagine SEM a grande ingrandimento (2000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.3: Immagine SEM a grande ingrandimento (3000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.5: Immagine SEM a grande ingrandimento (5000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.7: Immagine SEM a grande ingrandimento (10000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.2: Immagine SEM a grande ingrandimento (2000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.4: Immagine SEM a grande ingrandimento (5000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.6: Immagine SEM a grande ingrandimento (10000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.8: Immagine SEM a grande ingrandimento (20000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.9: Immagine SEM a grande ingrandimento (20000X) HT1K dopo calcinazione 500°C per 8 h

Figura E.11: Immagine SEM ingrandimento (250X) HT1K dopo calcinazione 500°C per 8 h lappato

Figura E.13: Immagine SEM ingrandimento (500X) HT1K dopo calcinazione 500°C per 8 h lappato

Figura E.15: Immagine SEM ingrandimento (1000X) HT1K dopo calcinazione 500°C per 8 h lappato

Figura E.17: Immagine SEM ingrandimento (125X) HT1K dopo calcinazione 500°C per 8 h lappato per 2 volte

Figura E.10: Immagine SEM ingrandimento (250X) HT1K dopo calcinazione 500°C per 8 h lappato

Figura E.12: Immagine SEM ingrandimento (500X) HT1K dopo calcinazione 500°C per 8 h lappato

Figura E.14: Immagine SEM ingrandimento (1000X) HT1K dopo calcinazione 500°C per 8 h lappato____

Figura E.16: Immagine SEM ingrandimento (2000X) HT1K dopo calcinazione 500°C per 8 h lappato

Figura E.18: Immagine SEM ingrandimento (250X) HT1K dopo calcinazione 500°C per 8 h lappato per 2 volte

Figura E.19: Immagine SEM ingrandimento (500X) HT1K dopo calcinazione 500°C per 8 h lappato per 2 volte

Figura E.21: Immagine SEM ingrandimento (1000X) HT1K dopo calcinazione 500°C per 8 h lappato per 2 volte

Figura E.23: Immagine SEM ingrandimento (2000X) HT1K dopo calcinazione 500°C per 8 h lappato per 2 volte

Figura E. 25: Immagine SEM ingrandimento (100X) HT1K dopo il test a T=350°C:P=3 atm:

Figura E.27: Immagine SEM ingrandimento (3000X) HT1K dopo il test a T=350°C;P=3 atm;

Figura E.20: Immagine SEM ingrandimento (500X) HT1K dopo calcinazione 500°C per 8 h lappato per 2 volte

Figura E.22: Immagine SEM ingrandimento (1000X) HT1K dopo calcinazione 500°C per 8 h lappato per 2 volte

Figura E.24: Immagine SEM ingrandimento (2000X) HT1K dopo calcinazione 500°C per 8 h lappato per 2 volte

Figura E.26: Immagine SEM ingrandimento (2000X) HT1K dopo il test a T=350°C:P=3 atm:

Figura E.28: Immagine SEM ingrandimento (10000X) HT1K dopo il test a T=350°C;P=3 atm;

Figura E.29: Immagine SEM ingrandimento (20000X) HT1K dopo il test a T=350°C;P=3 atm;

Figura E.31: Immagine SEM ingrandimento (125X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.33: Immagine SEM ingrandimento (250X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.35: Immagine SEM ingrandimento (500X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.37: Immagine SEM ingrandimento (1000X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.30: Immagine SEM ingrandimento (20000X) HT1K dopo il test a T=350°C;P=3 atm;

Figura E.32: Immagine SEM ingrandimento (250X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.34: Immagine SEM ingrandimento (250X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.36: Immagine SEM ingrandimento (500X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.38: Immagine SEM ingrandimento (2000X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.39: Immagine SEM ingrandimento (2000X) HT1K dopo il test a T=350°C;P=3 atm lappato;

Figura E.41: Immagine SEM ingrandimento (5000X) HT1K dopo il test a T=350°C;P=6 atm;

Figura E.43: Immagine SEM ingrandimento (250X) HT1K dopo il test a T=350°C;P=6 atm lappato;

Figura E.45: Immagine SEM ingrandimento (500X) HT1K dopo il test a T=350°C;P=6 atm lappato;

Figura E.47: Immagine SEM ingrandimento (2000X) HT1K dopo il test a T=350°C;P=6 atm lappato;

Figura E.40: Immagine SEM ingrandimento (3000X) HT1K dopo il test a T=350°C;P=6 atm;

Figura E.42: Immagine SEM ingrandimento (125X) HT1K dopo il test a T=350°C;P=6 atm lappato;

Figura E.44: Immagine SEM ingrandimento (250X) HT1K dopo il test a T=350°C;P=6 atm lappato;

Figura E.46: Immagine SEM ingrandimento (1000X) HT1K

Figura E.48: Immagine SEM ingrandimento (2000X) HT1K dopo il test a T=350°C;P=6 atm lappato;

Figura E.49: Immagine SEM ingrandimento (1000X) HT2 dopo calcinazione 800°C per 8 h;

Figura E.51: Immagine SEM ingrandimento (5000X) HT2 dopo calcinazione 800°C per 8 h;

Figura E.53: Immagine SEM ingrandimento (250X) HT2 dopo calcinazione 800°C per 8 h lappato;

Figura E.55: Immagine SEM ingrandimento (500X) HT2 dopo calcinazione 800°C per 8 h lappato;

Figura E.57: Immagine SEM ingrandimento (1000X) HT2 dopo calcinazione 800°C per 8 h lappato;

Figura E.50: Immagine SEM ingrandimento (3000X) HT2 dopo calcinazione 800°C per 8 h;

Figura E.52: Immagine SEM ingrandimento (250X) HT2 dopo calcinazione 800°C per 8 h lappato;

Figura E.54: Immagine SEM ingrandimento (500X) HT2 dopo calcinazione 800°C per 8 h lappato;

Figura E.56: Immagine SEM ingrandimento (1000X) HT2 dopo calcinazione 800°C per 8 h lappato;

Figura E.58: Immagine SEM ingrandimento (2000X) HT2 dopo calcinazione 800°C per 8 h lappato;

Figura E.59: Immagine SEM ingrandimento (2000X) HT2 dopo calcinazione 800°C per 8 h lappato;

Figura E.61: Immagine SEM ingrandimento (3000X) HT2 dopo test T 600°C P 3 atm;

Figura E.63: Immagine SEM ingrandimento (5000X) HT2 dopo test T 600°C P 3 atm;

Figura E.65: Immagine SEM ingrandimento (3000X) HT2 dopo test T 600°C P 6 atm;

Figura E.67: Immagine SEM ingrandimento (5000X) HT2 dopo test T 600°C P 6 atm;

Figura E.60: Immagine SEM ingrandimento (1000X) HT2

Figura E.62: Immagine SEM ingrandimento (3000X) HT2 dopo test T 600°C P 3 atm;

Figura E.64: Immagine SEM ingrandimento (5000X) HT2 dopo test T 600°C P 3 atm;

Figura E.66: Immagine SEM ingrandimento (5000X) HT2 dopo test T 600°C P 6 atm;

Figura E.68: Immagine SEM ingrandimento (250X) HT2 dopo test T 600°C P 6 atm lappato;

Figura E.69: Immagine SEM ingrandimento (250X) HT2 dopo test T 600°C P 6 atm lappato;

Figura E.71: Immagine SEM ingrandimento (1000X) HT2 dopo test T 600°C P 6 atm lappato;

Figura E.73: Immagine SEM ingrandimento (2000X) HT2 dopo test T 600°C P 6 atm lappato;

Figura E.75: Immagine SEM ingrandimento (3000X) HT3 dopo calcinazione 800 °C per 8 h;

Figura E.77: Immagine SEM ingrandimento (5000X) HT3 dopo calcinazione 800 °C per 8 h;

Figura E.70: Immagine SEM ingrandimento (500X) HT2 dopo test T 600°C P 6 atm lappato;

Figura E.72: Immagine SEM ingrandimento (2000X) HT2 dopo test T 600°C P 6 atm lappato;

Figura E.74: Immagine SEM ingrandimento (3000X) HT3

Figura E.76: Immagine SEM ingrandimento (5000X) HT3 dopo calcinazione 800 °C per 8 h;

Figura E.78: Immagine SEM ingrandimento (125X) HT3 dopo calcinazione 800 °C per 8 h lappato;

Figura E.79: Immagine SEM ingrandimento (250X) HT3

Figura E.81: Immagine SEM ingrandimento (1000X) HT3 dopo calcinazione 800 °C per 8 h lappato;

Figura E.83: Immagine SEM ingrandimento (2000X) HT3 dopo calcinazione 800 °C per 8 h lappato;

Figura E.85: Immagine SEM ingrandimento (3000X) HT3 dopo test T 600°C P 3 atm ;

Figura E.87: Immagine SEM ingrandimento (5000X) HT3 dopo test T 600°C P 3 atm ;

Figura E.80: Immagine SEM ingrandimento (500X) HT3 dopo calcinazione 800 °C per 8 h lappato;

Figura E.82: Immagine SEM ingrandimento (2000X) HT3 dopo calcinazione 800 °C per 8 h lappato;

Figura E.84: Immagine SEM ingrandimento (1000X) HT3 dopo test T 600°C P 3 atm ;

Figura E.86: Immagine SEM ingrandimento (5000X) HT3 dopo test T 600°C P 3 atm ;

Figura E.88: Immagine SEM ingrandimento (250X) HT3 dopo test T 600°C P 3 atm lappato ;

Figura E.89: Immagine SEM ingrandimento (250X) HT3 dopo test T 600°C P 3 atm lappato ;

Figura E.91: Immagine SEM ingrandimento (1000X) HT3 dopo test T 600°C P 3 atm lappato ;

Figura E.90: Immagine SEM ingrandimento (500X) HT3 dopo test T 600°C P 3 atm lappato ;

Figura E.92: Immagine SEM ingrandimento (2000X) HT3 dopo test T 600°C P 3 atm lappato ;

Appendice F: Risultati test di cattura.

Figura F. 1 Curva di assorbimento della CO₂ HT1T350P3.

Figura F. 3 Curva di assorbimento della CO₂ HT1T600P3.

Figura F. 5 CO₂ catturata al variare delle condizioni per HT1.

Figura F. 6 Curva di assorbimento CO₂ HT1KT350P3.

Figura F. 7 Curva di assorbimento CO₂ HT1KT350P6.

Figura F. 8 Curva di assorbimento CO₂ HT1KT600P3.

Figura F. 9 Curva di assorbimento CO₂ HT1KT600P6.

Figura F. 10 CO2 catturata al variare delle condizioni per HT1K.

Figura F. 11 Curva di assorbimento della CO₂ per HT2 T350P3.

Figura F. 12 Curva di assorbimento della CO₂ per HT2 T350P6.

Figura F. 13 Curva di assorbimento della CO₂HT2T600P3, cicli in PSA.

Figura F. 15 Curva di assorbimento della CO₂ su HT2T600P6.

Figura F. 16 Capacità di assorbimento dell'HT2 a diverse condizioni di processo.

Figura F. 17 Capacità di assorbimento di HT2 a T600 °C e 3 bar dopo 3 cicli in TSA.

Figura F. 19 Curve di assorbimento di HT2 KT350P6

Figura F. 21 Curve di assorbimento di HT2 KT600P6

Figura F. 22 Capacità di assorbimento HT2K.

Figura F. 23 Curva di assorbimento della CO_2 per HT3 a T 350 °C e 3 bar.

Figura F. 24 Curva di assorbimento della CO₂ per HT3 a T 350 °C e 6 bar.

Figura F. 25 Curva di assorbimento della CO₂ per HT3 T600P3.

Figura F. 26 Curva di assorbimento della CO2 per HT3 T600P6.

Figura F. 27 Capacità di assorbimento di HT3.

Figura F. 28 Curva di assorbimento della CO₂ per HT3KT600P3.

Figura F. 29 Curva di assorbimento della CO2 per HT3KT350P3.

Figura F. 30 Curva di assorbimento della CO₂ per HT3K T350P6.

Figura F. 31 Curva di assorbimento della CO₂ per HT3KT600P6.

Figura F. 32 Capacità di assorbimento HT3K.

Appendice G: microanalisi (EDX)

Figura G.3 Campione HT1K 500°C cross old_03

Figura G.4 Campione HT1K 500°C cross old_04

Figura G.5 Campione HT1K 500°C cross_05

Figura G.6 Campione HT1K 500°C cross_06

Figura G.7 Campione HT1K 500°C cross 2_01

Figura G.8 Campione HT1K 500°C cross 2_02

Figura G.9 Campione HT1K 500°C cross 2_03

Figura G.10 Campione HT1K 500°C cross 2_04

50µm

Figura G.11 Campione HT1K 500°C cross 2_05

Figura G.12 Campione HT1K 350°C 3 bar cross old_01

Figura G.13 Campione HT1K 350°C 3 bar cross old_02

Figura G.14 Campione HT1K 350°C 3 bar cross old_03

Figura G.15 Campione HT1K 350°C 3 bar cross_04

Figura G.16 Campione HT1K 350°C 3 bar cross_05

Figura G.17 Campione HT1K 350°C 3 bar cross_06

Figura G.18 Campione HT1K 350°C 3 bar cross_07

Figura G.19 Campione HT1K 350°C 6 bar cross old_01

Figura G.20 Campione HT1K 350°C 6 bar cross old_02

Figura G.21 Campione HT1K 350°C 6 bar cross bis_01

Figura G.22 Campione HT1K 350°C 6 bar cross bis_02

Figura G.23 Campione HT1K 350°C 6 bar cross bis_03

Al Ka1

K Ka1

Figura G.24 Campione HT1K 350°C 6 bar maps_01

Electron Image 1

Mg Ka1_2

Al Kat

Figura G.25 Campione HT1K 350°C 6 bar maps_02

Electron Image 1

Mg Ka1_2

Al Ka1

K Kat

Figura G.27 Campione HT2 800°C cross old_01

Figura G.28 Campione HT2 800°C cross old_02

Figura G.29 Campione HT2 800°C cross old_03

20µm

Figura G.30 Campione HT2 800°C cross_04

Figura G.31 Campione HT2 800°C cross_05

Figura G.32 Campione HT2 800°C cross_06

Figura G.33 Campione HT2 600°C 3 bar cross old_01

Figura G.34 Campione HT2 600°C 3 bar cross old_02

Figura G.35 Campione HT2 600°C 3 bar cross_03

Figura G.36 Campione HT2 600°C 3 bar cross_04

3.5

4

5.5

Figura G.37 Campione HT2 600°C 3 bar cross_05

Figura G.38 Campione HT2 600°C 3 bar cross_06

Figura G.39 Campione HT2 600°C 6 bar cross old_01

Figura G.40 Campione HT2 600°C 6 bar cross old_02

Figura G.41 Campione HT2 600°C 6 bar cross_03

Figura G.42 Campione HT2 600°C 6 bar cross_04

20µm

Electron Image 1

Figura G.43 Campione HT2 600°C 6 bar cross_05

Figura G.44 Campione HT3 800°C cross old_01

Figura G.45 Campione HT3 800°C cross old_02

Figura G.46 Campione HT3 800°C cross old_03

Figura G.47 Campione HT3 800°C cross_04

Spectrum 3

Figura G.48 Campione HT3 800°C cross_05

Figura G.49 Campione HT3 600°C 3 bar cross old_01

Spectrum 5 Spectrum 5 Spectrum 6 Spectrum 7 Spectr

Figura G.50 Campione HT3 600°C 3 bar cross old_02

Figura G.51 Campione HT3 600°C 3 bar cross old_03

Figura G.52 Campione HT3 600°C 3 bar cross_04

Figura G.53 Campione HT3 600°C 3 bar cross_05