

Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile

RICERCA DI SISTEMA ELETTRICO

Sviluppo di un processo in membrane polimeriche per la purificazione del biogas da CO_2 e H_2S

Giacobbe Braccio, Isabella De Bari, Antonio Molino

Report RdS/2011/134

STATO DELL'ARTE SULLO SVILUPPO DI UN PROCESSO PER LA PURIFICAZIONE DEL BIOGAS DA CO₂ e H₂S UTILIZZANDO MODULI DI MEMBRANE POLIMERICHE E DEFINIZIONE DELLA CONFIGURAZIONE E DEI PARAMETRI OTTIMALI DI FUNZIONAMENTO E INDIVIDUAZIONI DEI POSSIBILI MIGLIRAMENTI IMPIANTISTICI

Giacobbe Braccio, Isabella De Bari, Antonio Molino (ENEA)

Settembre 2011

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico – ENEA Area: Produzione di energia elettrica e protezione dell'ambiente Progetto: Studi sulla produzione elettrica locale da biomasse a scarti

Responsabile Progetto: Angelo Moreno, ENEA

1. Configurazioni impiantistiche per il processo separativo a moduli di membrane polimeriche

1.1 Generalità sul processo separativo

Diversi studi di letteratura mostrano l'applicabilità industriale dei processi a membrane polimeriche¹ per la separazione della anidride carbonica dal biogas al fine di ottenere biometano alimentabile in rete[1,2] anche se la maggior parte della letteratura è maggiormente concentrata verso le similari problematiche connesse al gas naturale.

Allo stato attuale le membrane polimeriche mostrano un buon livello di competitività con le tecnologie convenzionali per la separazione di CO_2 e H_2S da biogas sia per ciò che riguarda le performance e sia per i costi di esercizio².

Di seguito saranno valutate la variabili che influenzano il processo di separazione mediante membrane polimeriche per diverse configurazioni impiantistiche sulla base della letteratura disponibile, in termini di simulazioni numeriche o dati sperimentali, dove disponibili. La figura 1 mostra uno schema semplificato di impianto a membrane per la separazione del biogas; l'alimentazione costituita dal gas in uscita dal processo fermentativo viene preventivamente compresso e successivamente inviato alla membrana; il retentato ricco in CH₄ potrà subire ulteriore compressione per la sua immissione in rete o utilizzata in stazionario per energia elettrica e/o calore, mentre il permeato, ricco in CO₂, contenente ancora percentuali non trascurabili in CH₄, non viene utilizzato ed è inviato al vent.

Figura 1Configurazione stadio singolo

Tale configurazione, se da un lato presenta notevole semplificazione impiantistica, dall'altro lascia passare il permeato che ha un contenuto di metano non trascurabile(anche fino al 20-30%) a seconda della tipologia di membrana, dell'area attiva e delle condizioni operative.

¹ Allegato I: Membrane polimeriche utilizzabili per la separazione CO₂/CH₄

² Allegato II: Confronto tra le diverse tecnologie per la separazione di CO₂ dal biogas

1.1 Effetto della pressurizzazione interstadio

Una possibile implementazione al processo mostrato in figura 1 consiste nell'utilizzo di un doppio modulo separativo, eventualmente con una pressurizzazione intermedia. Le configurazioni di processo a doppio stadio a membrana sono di maggior utilizzo, anche se in letteratura sono proposti anche di processi a 3 stadi sebbene i costi aggiuntivi legati alla complessità impiantistica ed al controllo delle variabili in gioco non ne giustificano l'utilizzo tranne che per particolari applicazioni[3].

Di seguito si riportano diverse configurazioni di impianto mediante moduli a membrane polimeriche proposti in letteratura che, per il grado di performance raggiungibili, sono utilizzabili per applicazioni industriali:

Figura 3 Configurazione doppio stadio: Tipologia 2

Figura 4 Configurazione doppio stadio: Tipologia 3

La configurazione a doppio stadio, tipologia 1, consiste nel recupero del metano dalla corrente di permeato in uscita dal primo modulo a membrane mediante un secondo stadio di separazione per poi miscelarsi con la corrente di retentato in uscita dal primo stadio di separazione. Le configurazioni 2 e 3 a doppio stadio separativo prevedono il ricircolo di una corrente in uscita dal secondo stadio separativo; nella tipologia 2 viene riciclato in ingresso il retentato, ricco in metano, in uscita dal secondo stadio separativo, mentre nella tipologia 3, il riciclo avviene a monte dello stadio di compressione ovviando in questo modo al secondo stadio di compressione[4,5,6,7,8,9]. Di seguito si riporteranno risultati numerici di simulazioni condotte in ambiente Aspen HYSYS per le 4 configurazioni impiantistiche proposte supponendo di partire da una membrana PVAm/PVA (polivinilammina/polivinil alcol) i cui dati di letteratura mostrano una selettività CO_2/CH_4 fino a 40 e permeabilità pari a 0.55 m³(STP)/m² h bar a 2 bar[1] nelle diverse configurazioni impiantistiche supponendo di partire da una portata di 1000Nm³/h di biogas grezzo contenente 35%Vol. CO_2 e 65%Vol. CH_4 nelle condizioni operative di indagine riportate nella parte in tabella imponendo in ciascun caso una purezza in metano pari al 98%:

	Singolo modulo a membrana	Tipologia 1	Tipologia 2	Tipologia 3
Alimentazione biogas(Nm ³ /h)	1000	1000	1000	1000
Pressione di alimentazione(bar)	1.2	1.2	1.2	1.2
%Vol. CO_2 alimentazione	35	35	35	35
T, P 1° stadio permeato (°C, bar)	25, 1	25, 1	25, 1	25, 1
T, P 2° stadio	-	25, 1	25, 1	25, 1

In un processo di purificazione del biogas, la purezza in CH₄ ed il suo relativo recupero dalla corrente di alimentazione sono fattori tecnici importanti per determinare l'ottimale configurazione

impiantistica al fine di garantire una bassa perdita in metano e soddisfare le caratteristiche tecniche del gas, mentre la superficie della membrana e l'energia di compressione sono fattori economici che anch'essi condizionano la scelta del processo.

La figura 5 mostra i risultati ottenibili da un singolo processo separativo al variare della pressione di alimentazione in presenza o meno del gas di purga(estrazione del gas) lato permeato, fissata la purezza in metano pari al 98% per soddisfare le specifiche di prodotto:

Figura 5 Recupero in metano e area superficiale in funzione della pressione di alimentazione allo stadio separativo[1]

In entrambi i processi, con e senza gas di purga lato permeato, si verifica che per basse pressioni di esercizio sono necessarie maggiori superficie attive per raggiungere i livelli di purezza richiesti al gas in uscita dal processo sebbene la permeabilità in CO_2 è superiore a 3 bar rispetto a quella a 20 bar ((0,48 m³/(m² bar h) vs 0,18 m³/(m² bar h)), inoltre il recupero in metano è più basso per basse pressioni operative. Questi due parametri(superficie richiesta, recupero in metano) danno un contributo più marcatamente negativo per basse pressioni operative nel caso in cui non si utilizza gas di purga lato permeato, come è possibile vedere dalla tabella che segue:

3bar	3bar	20bar	20bar
No	sweep	No	sweep
sweep		sweep	
378	588	566	593
98	98	98	98
55	82	78	83
57	88.8	85.5	89.5
12.780	2.344	956	685
99	127	157	158
6	2	1.3	1.3
30	6.4	4.4	4.2
	3bar No sweep 378 98 55 57 12.780 99 6 30	3bar 3bar No sweep sweep	3bar 3bar 20bar No sweep No sweep No sweep 378 588 566 98 98 98 55 82 78 57 88.8 85.5 12.780 2.344 956 99 127 157 6 2 1.3 30 6.4 4.4

Tabella 2 Risultati di simulazione di un processo a singolo stadio

La tabella mostra i risultati ottenuti dalla simulazione a 3 e 20bar con e senza gas di purga lato permeato, supponendo una alimentazione all'impianto separativo una portata di biogas pari a 1000Nm³/h ed una purezza richiesta in metano pari al 98%Vol. I risultati ottenuti a 3 bar mostrano un netto vantaggio utilizzando il gas di purga, sia in termini di costo capitale, sia in termini di costi d'esercizio, viceversa a 20 bar i costi sono nettamente inferiori rispetto alla stessa operazione condotta a 3 bar, con o senza gas di purga, inoltre a 20bar non si verifica un netto vantaggio verso l'utilizzo del gas di purga tale da giustificare la complicazione impiantistica legata al suo utilizzo e pertanto si ritiene che 20bar senza gas sweep rappresenti la migliore condizione operativa per ottenere biometano a 40bar mediante blend di PVA/PVAm.

In linea di principio, qualsiasi purezza in CH_4 può essere raggiunta per le miscele binarie di CO_2 e di CH_4 , sebbene il problema principale è legato al tasso di recupero di CH_4 che può divenire basso al punto tale da non avere alcuna convenienza. Utilizzando invece il doppio stadio separativo si riesce ad ottenere una maggiore performance in termini anche di recupero del metano come mostrato nella figura seguente:

La figura mostra come nel caso del singolo stadio a membrane si ha un crollo sul quantitativo di metano recuperato, mentre nelle configurazioni impiantistiche(Tipologia 1-3 a doppio stadio separativo) le performance sono nettamente superiori.

Poiché il costo del capitale in un processo di separazione a membrana è determinato approssimativamente dalla superficie richiesta, mentre il costo di gestione dipende in larga misura dalla spesa di compressione, è necessario valutare quali sono le variabili che condizionano il processo tale da minimizzare questi due fattori ai fini delle valutazioni tecnico-economiche di fattibilità impiantistica. Di seguito si riportano i risultati delle simulazioni numeriche [1] in termini di superficie utilizzata e di energia per la compressione nelle 4 configurazioni in esame:

La figura mostra che nel caso del singolo stadio le energie necessarie per la compressione sono nettamente inferiori rispetto alle configurazioni a doppio stadio pur riuscendo a raggiungere purezze elevate in termini di CH₄, questo però a discapito del recupero complessivo del metano stesso e della purezza nella corrente di permeato contenente CO₂.

E' possibile inoltre vedere come varia la richiesta di superficie della membrana in funzione della purezza in metano al retentato, infatti per tutte le configurazioni si verifica un aumento quasi lineare fino a livelli di purezza di 90-95% per poi aumentare in maniera più che lineare alla richiesta di maggiore purezza, dimostrando che una maggiore area della membrana è necessaria per ottenere una purezza superiore CH₄, e di conseguenza maggior energia spesa a causa di un più alto rapporto di riciclo.

La tabella riassume i risultati della simulazione del biogas utilizzando le quattro configurazioni avendo fissato la purezza nel biogas upgrdado pari al 98% al fine di soddisfare le specifiche di prodotto.

	Stadio singolo	Doppio stadio Tipologi a 1	Doppio stadio Tipologi a 2	Doppio stadio Tipologi a 3
Alimentazione biogas(Nm ³ /h)	1000	1000	1000	1000
Pressione al 1° e 2° stadio(bar)	20, -	20, 20	20, 20	20, 19.5
Portata di upgrading(Nm ³ /h)	566	745	769	638
Purezza in CH4(%Vol)	98	98	98	98
Purezza in CO ₂ (%Vol)	78	92.2	98.1	92.5
Recupero di CH₄(%Vol)	85.5	97.3	99.7	95.7
Rapporto di riciclo	-	-	0.24	0.26
Area membrana(m ²)	956	1167	1297	1226
Energia compressione(kW)	157	220	220	203
Costo capitale(M€)	1.33	2.14	2.19	1.67
Costo esercizio (€cent/Nm³ biogas upgradato)	4.43	6.36	6.29	6.01
Costi totali incluso biogas grezzo (€cent/Nm ³ biogas upgradato) Tabella 3 Risultati delle simu	16.3 Iazioni nelle	14.63 4 configuraz	14.37 ioni di proce	21.57

La configurazione a singolo stadio mostra il più basso costo di capitale, anche se il principale svantaggio è legato alle perdite di CH₄ per circa il 15%. Per i tre processi a doppio stadio, i criteri principali di valutazione di processo sono il recupero CH₄ e il costo totale di esercizio per unità di prodotto; in base a tali parametri la tipologia di configurazione 2(con ricircolo) risulta essere di essere ottimale per il processo in esame.

Nell'impianto a doppio stadio una variabile determinante per la scelta del processo è la pressione di compressione prima dell'ingresso al 2° stadio. I risultati sperimentali mostrano che, ad una pressione inferiore a 10 bar si verifica un aumento drastico della superficie della membrana, mentre il lavoro di compressione si mantiene pressoché costante(raggiungendo comunque un minimo a 10bar) a causa del fatto che a basse pressioni è necessario aumentare il ricircolo per garantire il livello di purezza richiesto, mentre a pressioni elevate prevale maggiormente l'effetto compressione rispetto al ricircolo e quindi alla portata da alimentare al compressore:

Figura 8 Andamento della pressione di compressione al secondo stadio in funzione della superficie della membrana e dell'energia di compressione per la configurazione impiantistica a doppio stadio di tipologia 2

La figura mostra che, fissata la pressione di immissione alla rete e la qualità del metano, per pressioni di compressione al 2° stadio pari a 10 bar corrisponde la minima richiesta energetica al compressore compatibilmente con una superficie totale richiesta per i due stadi separativi di circa 1400m².

La portata di alimentazione al processo rappresenta altra variabile di processo di non trascurabile importanza. La figura che segue mostra l'andamento della performance di separazione in funzione del feed d'alimentazione

Figura 9 Influenza della portata di alimentazione sulla performance di separazione e una superficie totale pari a 1440m²

Come è possibile notare, all'aumentare della portata si verifica una drastica riduzione della purezza del metano anche se di conseguenza ciò comporta l'aumento del suo recupero e della purezza in termini di anidride carbonica.

La concentrazione di CO₂ nel biogas di alimentazione può variare dal 25% al 50%, il suo contenuto nel feed rappresenta un altro parametro fondamentale per il dimensionamento dell'impianto. La figura che segue mostra l'andamento della portata di riciclo e dell'energia di compressione in funzione della percentuale di anidride carbonica nel feed di biogas, fissata la superficie totale delle membrane al primo e secondo stadio separativo:

Figura 10 Influenza della percentuale di anidride carbonica nel feed di alimentazione in funzione del rapporto di riciclo e dell'energia di compressione

In definitiva, nelle condizioni di indagine e nella portata di alimentazione del biogas da inviare allo stadio di upgrading(1000Nm³/h) ne risulta che le condizioni maggiormente performanti e con un minor impatto economico sono date dalla configurazione a doppio stadio nella tipologia 2 con le seguenti condizioni operative:

Parametri	Risultati simulazioni
Area Totale(m ²)	1440
Pressione di alimentazione al 1° e 2° stadio(bar)	20, 10
Temperatura e pressione al permeato(°C, bar)	25, 1
Portata di biometano prodotta(Nm ³ /h)	761
Purezza in CH4(%Vol.)	98
Purezza in CO ₂ (%Vol.)	98

Recupero in CH ₄ (%Vol.)	99
Energia di compressione(kW)	234
Costi capitale(M€)	1.97
Costi di esercizio (€cent/Nm ³ di biogas upgradato)	5.83
Costi totali (€cent/Nm ³ di biogas upgradato incluso il biogas grezzo)	13.97

Tabella 4 Condizione migliore di processo per il trattamento di 1000Nm³/h di biogas grezzo con un contenuto di CO₂ pari al 35%Vol.

Il costo del processo di purificazione del biogas varia notevolmente in funzione della tecnologia, della capacità d'impianto, dalla ubicazione etc nel range 13-50€cent/Nm³. Per le condizioni di indagine il costo per la produzione di biometano risulta pari a 13.97 €cent/Nm³ per un capacità dell'impianto di 1000 Nm³/h, compreso il valore biogas grezzo e la compressione del biogas alla rete del gas naturale a 40bar, mentre il prezzo di mercato in Italia del metano è di 40.09 €cent/Nm³ al gennaio 2010(<u>http://www.autorita.energia.it/it/relaz_ann/10/10.htm</u>), il che ne giustificherebbe la fattibilità industriale per tali impianti.

1.2 Effetto dell'umidità del biogas

La corrente di biogas grezzo in uscita dal di gestore anaerobico presenta un contenuto di umidità non trascurabile. La valutazione dell'effetto della stessa sulle performance di membrane polimeriche è stato valutato in letteratura[10]. Nel caso di utilizzo di blend PVAm/PVA la figura che segue mostra l'effetto della selettività e permeabilità al variare dell'umidità relativa per diverse pressioni di esercizio:

Figura 10 Effetto della umidità relativa sulla selettività e permeabilità per blend di membrane PVA/PVAm[10]

E' possibile osservare come l'andamento della selettività in funzione dell'umidità relativa è sempre lo stesso al variare della pressione, presentando un massimo per una fissata umidità relativa per poi diminuire, anche se, all'aumentare della pressione tale massimo è sempre più spostato nella regione di sinistra, a più bassa umidità relativa, inoltre la permeabilità in CO₂ è sempre crescente all'aumentare dell'umidità relativa, da questo se ne deduce che la diminuzione di selettività CO₂/CH₄ in funzione della umidità relativa può essere imputata al minor effetto di setaccio molecolare nei confronti del metano.

Anche la temperatura influenza in maniera consistente la selettività della membrana, come è possibile visualizzare nella figura che segue:

Figura 11 Effetto della temperatura e dell' umidità relativa sulla selettività e permeabilità per blend di membrane PVA/PVAm[10]

Risultati sperimentali[10] mostrano come l'aumento della temperatura non provoca variazioni in termini di permeabilità della CO_2 anche se l'andamento della umidità relativa in funzione della selettività presenta un massimo che è tanto più alto quanto più bassa è la temperatura operativa riduzioni della selettività e questo probabilmente legato ad un più elevato trasporto diffusivo del CH_4 attraverso la membrana a più alte temperature.

1.3 Processi separativi ibridi membrane/ammine

In alcuni casi specifici può risultare di maggiore convenienza sfruttare le peculiarità sia degli impianti a membrana sia di quelli adsorbimento/stripping con soluzioni amminiche[11,13], infatti nel caso di impianto amminico la dimensione di ricircolo di adsorbente, l'energia al ribollitore, le pompe etc. sono funzione prevalentemente del contenuto di anidride carbonica nella alimentazione ed in maniera molto più ridotta dal volume di gas da trattare, pertanto risulta molto più economico trattare elevate portate a basso contenuto in CO₂ anziché basse portate con elevate concentrazioni in CO₂; di converso, gli impianti a membrane sono da preferire a quelli amminici quando la portata da trattare è bassa mentre è elevato il contenuto in CO₂. In alcune condizioni operative gli impianti ibridi risultano maggiormente convenienti in termini di costi di impianto e di esercizio rispetto ad una soluzione unica, solo membrane o solo ammine, come riportato nella figura che segue[11]:

Figura 11 Range ottimali di funzionamento degli impianto a membrana ed amminici³[11]

Un possibile schema di processo di impianto ibrido è mostrato nella seguente figura:

 $^{^{3}}$ 1 million standard cubic foot/day = 28,316.847 cubic meter/day [60° F]

Figura 12 Possibile configurazione impiantistica per gli impianti ibridi ammine/membrane[11]

I sistemi a membrane rappresentano una valida alternativa agli impianti amminici in termini di separazione congiunta di H_2S e CO_2 dal gas naturale e dai biogas(sweetening). Ad oggi esistono diverse tipologie di membrane che presentano una buona selettività $H_2S/CH_4[12]$ e tali membrane rappresentano una soluzione valida all'upgrading del biogas specie nei casi in cui i contenuti di CO_2 sono superiori al 20-25% Vol. o, in soluzione ibride agli impianti convenzionali solo amminici, quando le portate da trattare sono relativamente basse[11].

A titolo di esempio si riportano i valori di permeabilità di membrane polimeriche commerciali a base di acetato di cellulosa utilizzabili per lo sweetening del biogas:

Permeabilità			Selettività(i/ CH ₄)			Rif
CO ₂	H_2O	CO ₂	H ₂ S	N_2	C_2H_6	
8.9	500	20-25	50	1	0.42	[14]
8.9	500	21	19	1	0.42	[15]

Tabella 5 Valori di Permeabilità per membrane commerciali in acetato di cellulosa[14,15]

A livello industriale i moduli a membrane in acetato di cellulosa per lo sweetening del gas naturale sono utilizzati in diversi impianti industriali; Cyanara-NATCO produce moduli hollow fiber in triacetato di cellulosa[16] utilizzato nell'impianto del Thailandian gulf(830.000 Nm³/h) rappresentativo del più grande impianto al mondo a membrane per la separazione di CO₂[17]. La PRISM (Air Products) rappresenta un'altra cooperation che produce membrane commerciali per la separazione della CO₂. Un esempio di impianto che utilizza queste membrane per l'upgrading di fino del gas naturale al fine di ottenere una riduzione di concentrazione in CO₂ dal 4,5% fino a circa 2% con una capacità d'impianto di 9.500 Nm³/h[18].

L'impianto MEDAL dell'Air Liquide rappresenta una ulteriore applicazione industriale di impianti a moduli polimerici da 120.000Nm³/h per la separazione della CO₂ dall'80% al 20%[19]. Nei casi in cui il biogas prodotto contiene diversi inquinanti oltre all'acido solfidrico, quali idrocarburi alogenati, siloxani o quantità consistenti di ossigeno/azoto, che possono inficiare la qualità del biometano prodotto e/o del processo di upgrading, può essere utile uno stadio di cleaning dedicato⁴[20,21,22].

⁴ Allegato III: Tecnologie di cleaning del biogas

2. Allegato I: Membrane polimeriche utilizzabili per la separazione CO2/CH4

6FDA membrane

Ν	Membrana	Т	Р	Permeabi	Permeabilit	Selettivit	ref
		(°C)	(bar)	lità CO₂	à CH₄	à	
1	6FDA-TAD PO	30	1	27.4	0.52	52.2	[23]
	6FDA-TABP	30	1	63.6	1.37	46.2	
2	6FDA-DAM	35	20	121	4.48	27	[24]
	6FDA-DAM(0)	35	20	22	0.73	30	
	6FDA-DAM(1)	35	20	46	1.35	34	
3	6FDA-mPD	35	3.7	11.03	0.19	58	[25]
	6FDA-mPDBA	35	3.7	6.53	0.1	65.3	
	X-6FDA-mPD/DABA	35	3.7	9.5	0.15	63.3	
	X-6FDA-DABA	35	3.7	10.4	0.12	87	
4	6FDA-durene	35	10	455.8	28.4	16.05	[26]
5	6FDA-TAPA(ter NH)	35	1	65	1.59	41	[27]
	6FDA-TAPA(t anidride)	35	1	6.7	0.11	61	
	DSDA-TAPA(ter NH)	35	1	4	-	-	
	DADA-TAPA(t anidride)	35	1	1	-	-	
6	6FDA-DATPA	30	10	23	0.68	34	[28]
7	6FDA-PFDAB	25	5	17.77	0-44	40.4	[29]
	6FDA-m-PDA	25	5	9.73	0.21	46.3	
	ODPA-PFDAB	25	5	11.03	0.36	30.6	
	ODPA-m-PDA	25	5	0.301	0.0064	47	
	BTDA-PFDAB	25	5	10.1	0.29	34.8	
	BTDA-m-PDA	25	5	0.428	0.0086	49.8	
8	6FDA-6FPDA comp PreI	35	3.5	47.27	3.65	12.94	[30]
	6FDA-6FPDAcom postI	35	3.5	71.52	1.75	40.9	
9	6FDA.1,5-NDA	35	10	22.6	0.46	49	[31]
1	6FDA-HAB	RT	55	6x10 ²	10	60	[32]
0							
1	6FDA-durene/mPDA	RT	1	49.1	1.63	30.1	[33]
1							
1	6FDA-NDA/	2	7	22.6	0.47	48.1	[34]
2							
	6FDA-NDA/durene(75-	2	7	70	1.65	42.4	
	25)						
	6FDA-NDA/durene(50-	2	7	96.4	3.93	24.5	
	50)						
	6FDA-NDA/durene(25-	2	7	274	12.9	21.2	
	75)						
	6FDA-NDA/durene	2	7	423	28	15.1	
1	6FDA-DDS	30	5	35	0.35	94.6	[35]
3							
1	6FDA-TAB	30	10	54	0.9	60	[36]
4							
	6FDA-TAB/DAM(75-25)	30	10	73.7	1.67	44	
	6FDA-TAB/DAM(50-50)	30	10	155	7.38	21	
	6FDA-TAB/DAM(25-75)	30	10	370	17.6	21	
1	6FDA-terfenil	31	2	21.48	0.747	28.76	[37]
5			-				
	6FDA-bisfeníl	31	2	12.97	0.358	36.23	
	6FDA-fenil	31	2	11.89	0.353	33.68	

1 6	6FDA gener 0 amm term	30	10	0.5	0.4	25	[38]
	6FDA gener 1 amm term	30	10	0.7	0.6	20	
	6FDA gener 2 amm term	30	10	0.9	0.8	18	
1	6FDA-BAPAF	30	21	24.6	1.1	22.78	[39]
7							
	6FDA-DAP	30	21	38.57	0.49	78.82	
	6FDA-DABA	30	21	26.3	0.56	46.96	
1	6FDA-3BDAF	25	2	42.45	0.88	48	[40]
8							
1	6FDA-IPDA	31	0.6	14.8	0.38	43	[41]
9							
2	6FDA-DAFO	30	3.5	26.5	0.44	60	[42]
0							
2	6FDA-APPS	35	2	36.7	0.94	39	[43]
1							
2	6FDA-durene/fenilen	19	14	53.3	1.24	42.9	[44]
2	diamm						_
2	6FDA-DAT(3900A)	20	7	300	4.6	65	[45]
3							

Matrimid e poliammidiche

Ν	Membrana	Т	Р	Permeabili	Permeabilit	Selettivit	Ref
		(°C)	(bar	tà CO ₂	à CH₄	à	
)				
1	CM-MAT-800	30	25	611	10	61	[46]
	CM-MAT-MeOH-800			423	4.8	88	
	CM-MST-EtOH-800			191	1.1	169	
	CM-MAT-PpOH-800			565	6.7	84	
	CM-MAT-BuOH-800			547	7	78	
	CM-P84-800			499	5.6	89	
	CM-P84-MeOH-800			402	3.7	109	
	CM-P84-EtOH-800			278	2	139	
	СМ-Р84-РрОН-800			428	3.9	110	
2	Matrimid-CMSM	25	1	12	0.36	33	[47]
	Kapton-CMSM			92	5.75	16	
3	Matrimid fluorinata 1	31	10	0.018	0.2x10 ⁻⁴	94	[48]
	Matrimid fluorinata 2			0.069	0.05x10 ⁻⁴	130	
4	НВРІ	30	2	7.4	0.098	75	[49]
	HBPI-SiO ₂ (10)			10	0.13	75	
	HBPI-SiO ₂ (20)			12	0.08	150	
	HBPI-SiO ₂ (30)			19	0.08	237.5	
5	CM-P84-550	27	17	1808	36.1	50	[50]
	CM.P84-650			738	33.5	22	
6	PI/10PS	35	10	2.33	0.049	47.5	[51]
	PI/20PS			2.9	0.34	8.53	
	PI/10PSVP			3.58	0.1	35.8	
	PI/10PSVP			5.65	0.14	40.3	
7	PI	35	1	8.34	6.86	1.22	[52]
	PI/TAP			0.194	0.00231	84.3	
	PI/4A			9.36	4.19	35.8	
	PI/13X			33.4	4.87	6.8	
8	PI/PES	35	18	28.3	0.28	101	[53]

Alt	re polimeriche						
1	CMD-800-2	25	2	43.5	0.21	207	[54]
2	HQDPA-3MPDA	30	10	18.2	0.56	32.6	[55]
	HODPA-2MMDA			1.67	0.02	79.1	
	HODPA-BDA			0.69	0.008	85.7	
3	C	30	2	190	4.6	41.3	[56]
	C-CaO		-	130	3.5	37.1	[]
	C-MaO			14	1 2	11 7	
				110	4		
	C-FeO			110	4	27.5	
	C-SIO			58	2	29	
	C-AgN			180	1.4	128.6	
	C-CUN			814	0.66	1233	
	C-FeN			310	2.1	147.6	
4	IPO omognea	30	0.15	95	5.8	16.4	[57]
_	IPO composita			82	2.5	38	
5	Polifosfazene 1	35	2	93.6	0.62	15	[58]
	Polifosfazene 2			115.9	7.13	16.2	
	Polifosfazene 3			226.7	19.2	11.8	
6	PPO	30	1	90	5.4	16.7	[59]
	PPO Br			93.6	5.4	17.3	
	SPPO Br1			84	3.15	26.7	
	SPPO Br2			62.5	2.8	22.3	
	SPPO Br3			147.2	8.5	17.3	
7	ABS-AC1-M02	30	37	5.04	0.23	21.9	[60]
	ABS-AC1-M05			6.1	0.28	21.8	
	ABS-AC1-M07			9.7	0.36	26.9	
	ABS-AC1-M10			13.4	0.46	29.1	
	ABS			3.43	0.17	20-2	
	ABS-AC1-M20			8.43	0.38	22.1	
	ABS-AC1-M25			11.44	0.45	25.4	
	ABS-AC1-M33			14.43	0.47	30.7	
	ABS-AC1-M40			22.64	0.59	38.4	
8	Hyflon AD 80	21	2	2x10 ²	18.2	11	[61]
	AD 1600			6x10 ²	96.8	6.2	
	AD 2400			2x10 ³	285.7	7	
9	PPOP(50%)	25	4.9	4.73	-	-	[62]
_	PPOP(20%)	-	_	9.26	-	-	
1	PTBP	30	2.1	17	1.7	10	[63]
0							
-	PDTBP			27	5	5.4	
1	TER-BPA	35	1	30.3	1.9	16.13	[64]
1			_				
	TER-6FBPA			37.3	2.2	16.72	
	TER-fluorene			41.2	2.8	14.71	
1	BPA+50%mol	35	5	5.71	0.22	26.1	[65]
2	naftandiolo					1011	[00]
	BPA+70%mol			4.62	0.15	30.2	
	naftandiolo			1102	5115	5012	
1	PVTMS	30	1	190	22	86	[66]
2		50	-	190	22	0.0	[00]
	PVTMS donaton 1M HC			27.7	2.6	10.7	
				60.6	2.0	17.1	
	FVINS-PAR U.U4M			0.00	5,0	1/.1	

1	Acrilaturetano	26	2	175	13.5	12.9	[67]
4	Viniluretano			1071	245	A A	
1	PVP	35	1	0.067	4.9x10 ⁻⁴	135.9	[68]
5							
1	6 FPT-6FBTA	35	1	25.29	1.58	16.01	[69]
6				10 50			
	6 FPI-BPA			18.53	1.41	13.11	
	6FPPv-BPΔ			29.40	1.78	12.04	
1	FBP/6FPT	35	1	25.75	1.59	16.18	[70]
7	-						
	FBP/6FPP			35.65	1.8	19.82	
1	Polyetilenossido	25	7	105	6.17	17	[71]
8		20	2	0.72	0.022	22	[70]
1	РГЭ-П	30	5	0.75	0.032	23	[/2]
	PFS-t-butanolo			4.12	0.17	24	
	PF6f-H			2.5	0.15	17	
	PF6f-t-But			11	0.53	21	
2	Poliarilenetere	35	1	30.3	1.9	16.13	[72]
0							
2	P3AcET	30	1.8	1.42	0.08	18	[73]
1	D2HET			226	0	42	
2	Poli acido acetico	20	2	1.2	o 0.075	42	[74]
2		20	-		01075	10	[,]]
2	PEI/PEG/NMP	RT	17	7.44x10 ⁻⁴	0.12x10 ⁻⁴	62	[75]
3							
2	PEK-C	30	1	2.72	0.082	33.2	[76]
4	DEEK C			2 17	0.056	20 E	
	PEER-C DFK-A			2.17 4 46	0.050	28.6	
	PEK-H			2.36	0.07	34.2	
2	SPPO-Na	30	7	4.66x10 ⁻⁴	0.07x10 ⁻⁴	67	[77]
5							
	SPPO-K			6.2x10 ⁻⁴	0.22x10 ⁻⁴	56.3	
	SPPO-Ca			5.74x10 ⁻⁴	0.06x10 ⁻⁴	95.5	
2		25	0.07	5.00X10	0.09X10	50.Z	[79]
6	FVDC-FVC	25	0.07	0.84	0.52	92	[/0]
2	BBL	30	1	0.12	1.7x10 ⁻³	71	[79]
7							
2	BPDA/ODA	35	2.5	0.23	0.02	11.5	[80]
8				0.45			
2	BPDA/ODA	20	-	0.45	0.04	11.3	[01]
2	5440	30	T	2.3	0.059	39	[81]
	SPPO-Li ⁺			2.6	0.125	21	
	SPPO-Mg ²⁺			1.54	0.023	67	
	SPPO-AI ³⁺			3.84	0.126	30.5	
3	1 min EDA cross-linked	50	35	10	250	38	[82]
0	6PFDA Durene						
3	Hyflon AD	20	35	8.2	257	10.6	[83]

				14.3	266	10 3	
					~		
				21.0	200	10.5	
				21.0	200	0.2	
				35.0	2/4	9.5	
				53.2	281	8.7	
3	Matrimid/PES	40	22	70	11	68	[84]
2							
				175	10	42	
				260	11	39	
3	6FDA-DAM: DABA(2:1)	50	35	10			[24]
3	formati a:						r 1
5	130°C				140	37	
	22000				120	25	
					139	35	
_	295°C				115	31	
3	СМ-Р84-800	50	35	20	492	97	[50]
4							
3	Matrimid	40	35	10	7.26	31.6	[85]
5							
	Untreated p-				3.34	37.5	
	xilendiammine cross-						
	linked						
2	Matrimid mixed	10	25	24 E	7	45	[06]
5		10	33	34.5	/	45	[00]
6	film(19%vol. CMS)						50-1
3	Lustran 246(ABS	50	20	20	3.1	-	[87]
7	copolimero)						
			30		3.6		
			40		3.9		
			50		5.1		
3	Ultem mixed matrix	10	35	6	4.9	62	[54]
8	containing 35%vol CMS			-			
2	6EDA-2 6-DAT hollow	_	35	14	50	40	[45]
0	fibor		55	14	59	40	[43]
9		FO	26	0 5	0.4×10-4	24	1001
4	PVSA/PS	50	26	0.5	0.4X10	24	[88]
0							
4	SPPO-H ⁺ -PES	20	35	6.9	0.426	37	[89]
1							
	SPPO-Li ⁺ -PES				0.585	21.6	
	SPPO-Cs ⁺ -PES				0.546	32.2	
4	Poliammide-polieter	4	23	27	31	17	[90]
2	copolimero supportato						
_	SU PVDF						
4	Bolimide carbonized						[01]
7	Politilide carbonized						[91]
5	400(1°C(min)	FO	22		0.042	104	
	400(1°C/min)	50	23	T	0.043	104	
	500(1°C/min)				1.43	12	
	500(1°C/min)				3.05	6	
4	1% p-xilendiammine	40	35	2	12	47	[92]
4							
4	Polivinilpirrolidone by	50	26	0.02	1.69x10 ⁻⁴	48.1	[93]
5	hydrolysis						_
35 3637 38394041 42 43 4445	Matrimid Untreated p- xilendiammine cross- linked Matrimid mixed film(19%vol. CMS) Lustran 246(ABS copolimero) Ultem mixed matrix containing 35%vol. CMS 6FDA-2.6-DAT hollow fiber PVSA/PS SPPO-H ⁺ -PES SPPO-Li ⁺ -PES SPPO-Cs ⁺ -PES Poliammide-polieter copolimero supportato su PVDF Polimide carbonized 400(1°C/min) 500(1°C/min) 1% p-xilendiammine Polivinilpirrolidone by hydrolysis	40 10 50 10 - 50 20 4 50 40 50	35 20 30 40 50 35 26 35 23 23 23 23 23	10 34.5 20 6 14 0.5 6.9 27 1 1 2 20 0.02	7.26 3.34 7 3.1 3.6 3.9 5.1 4.9 59 0.4x10 ⁻⁴ 0.426 0.585 0.546 31 0.043 1.43 3.05 12 1.69x10 ⁻⁴	31.6 37.5 45 - 62 40 24 37 21.6 32.2 17 104 12 6 47 48.1	[85] [86] [87] [54] [45] [88] [89] [90] [91] [91] [92] [93]

Tecnologia	Pressare Swing Absorptio n(PSA)		Assorbimen to		<i>Membrane</i> Separative	Separazi one criogenic a	Arricch imento in sito del
Parametri		Acqua	Solventi	Solventi			metano
			Organici	Organici			
Fluidi di processo o materiali	Carboni Attivi o Zeoliti	Acqua	Glicol Polietilenico	Mono- Etanolammin a(MFA)	PEEK, PVA, Acetato di Cellulosa, etc.		Aria
Pressione	Si, 5-7bar	Si	Si	Atmosferica	Si	Si, >5bar	Atmos
						-	rica
Temperatura	-	-	-	-	-	-45°C ~	-
Faciacomente	C:	No	C:	Ne	No dinondo	-110°C	
nrima	51	NO	51	NO	No, alpende	NO	-
dell'upgrading							
Contenuto in	>97%	97-99%	98-99%	98-99%	No	>94%	95%
metano nel gas							
upgradato						>99%	
						tecnologi	
						e per la	
						produzio	
						ne LNG	
Perdita in CH ₄	<2%	<2%	<2%	<0.1%	<2%	<2%	<2%
Sensibilità alle	SI, H ₂ S	NO	SI, e	SI, e	Dipende dalla	SI, H ₂ S	-
IIIpulezze			bile il	le il cleaning	membrana		
			cleaning	dell'H ₂ S			
			dell′H₂S				
Contenuto di	No	Si	Si	Si	No	-	-
acqua nel gas							
Tempo di	30min	30min	30min	_	_	_	_
supervisione							

3. Allegato II: Confronto tra le diverse tecnologie per la separazione di CO2 dal biogas

quotidiano Tempo di manutenzione	25-150ore	25-150ore	25-150ore	-	-	-	-
Consumo elettrico escluso il lavoro di compressione del biometano(kWh/ m ³)	0.5-0.6	0.3-0.6	0.4	0.15	-	-	-
Costo di produzione (€cent/m ³) ⁵	7-9 ⁶	4-9 ²	6 ²	2 ²	6 ⁷ 14 ⁸	-	-
Consumo di acqua(m ³ /h)	Nessuno	ConSenzaricircoloricircoloMedioAlto	Basso	Basso	Nessuno	-	-
Consumo di chemicals	Basso	Basso	Alto	Alto	Nessuno	-	-

Fonte: IEA Task 37 Progetto biogasmax. Biogas as vehicle fuel – Market Expansion to 2020 Air Quality Report on Technological Applicabilità of Existing Biogas Upgrading Processes(2007)

 ⁵ Considerando 15 €cent/kWh
 ⁶ Escluso il lavoro di compressione del biometano
 ⁷ Incluso il lavoro di compressione
 ⁸ Incluso il costo di produzione del biogas grezzo

4. Allegato III: Tecnologie di cleaning del biogas

Gas Cleaning Technologies	Inquinante			
Desolforazione Biologica Interna Filtri Biologici	Acido Solfidrico H ₂ S Aggiungendo 2-6% di air all'interno della camera di digestione. Riduzione >95% (meno di 50ppm) Aggiungendo aria e separando la camera di reazione da quella di pulizia costituita dai filtri. Riduzione >99% (meno di 50-100ppm)			
Cloruro ferroso	Aggiungendo FeCl ₂ alla camera di digestione è possibile ottenere riduzioni fino a 100-150ppm			
Carboni attivi impregnati	Utilizzata solitamente prima dell'PSA upgrading			
Idrossido/Ossidi di ferro Scrubber a NaOH	Pulizia in camera separata contenente maglie di ossido di ferroo fanghi rossi(rifiuti della produzione dell'alluminio) Soluzione acquosa di idrossido di sodio per la pulizia del gas			
Processo Swing	Idrocarburi Alogenati			
Adsorption(PSA) Absorption				
Water Solventi Scrubbing Organici				
Carbani	Siloxani			
Attivi(molto costoso)				
Assorbimento in miscele di idrocarburi				
Raffreddamento	-25°C con una efficienza di riduzione del 26% fino a -70°C con una efficienza di riduzione del 99%			
	Acqua			
Compressione e condensazione Adsorbimento su silica gel o ossidi di alluminio Assorbimento in				
glicoli o sali igroscopici				
PSA(bassa efficienza) Separazione a	Ossigeno/Azoto			
efficienza)				

5. Bibliografia

[1] Liyuan Deng, May-Britt Hagg. Techno-economic evaluation of biogas upgrading process using *CO*₂ *facilitated transport membrane*

International Journal of Greenhouse Gas Control 4 (2010) 638-646

[2] S. Sridhar, B. Smitha, T. M. Aminabhavi. Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes: A Review Membrane Separations Division, Center of Excellence in Polymer Science, Karnatak University -India

Separation & Purification Reviews, 36: 2, (2007) 113-174

[3] Kaldis, S.P., Skodras, G., Sakellaropoulos, G.P. Energy and capital cost analysis of CO₂ capture in coal IGCC processes via gas separation membranes Fuel, Processing Technology 85, (2004) 337–346.

[4] Stern, S.A., Krishnakumar, B., Charati, S.G., Amato, W.S., Friedman, A.A., Fuess, D.J. Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant Journal of Membrane Science 151, (1998) 63-74.

[5] Bhide, B.D., Stern, S.A. Membrane processes for the removal of acid gases from natural gas. Process configurations and optimization of operatine conditions Journal of Membrane Science 81, (1993) 209–237.

[6] Bhide, B.D., Stern, S.A. Membrane processes for the removal of acid gases from natural gas. II. Effects of operating conditions, economic parameters, and membrane properties Journal of Membrane Science 81, (1993) 239-252.

[7] Hao, J., Rice, P.A., Stern, S.A. Upgrading low-guality natural gas with H_2S - and CO₂-selective polymer membranes: Part I. Process design and economics of membrane stages without recycle streams

Journal of Membrane Science 209, (2002) 177-206.

[8] Hao, J, Rice, P.A., Stern, S.A. Upgrading low-quality natural gas with H₂S- and CO₂-selective polymer membranes: Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams Journal of Membrane Science 320, (2008) 108–122

[9] Rautenbach, R., Dahm, W Gas permeation—module design and arrangement Chemical Engineering and Processing 21, (1987) 141–150

[10] Liyuan Deng, Taek-Joong Kim, Marius Sandru, and May-Britt. PVA/PVAm Blend FSC Membrane for Natural Gas Sweetening Proceedings of the 1st Annual Gas Processing Symposium H. Alfadala, G.V. Rex Reklaitis and M.M. El-Halwagi (Editors) © 2009 Elsevier B.V.

[11] Richard W., Baker and Kaaeid Lokhandawa. Natural Gas Processig with Membranes: an Overview, Membrane Technology and Research, Inc. 1360 Willow Road, Suite 103, Menlo Park, California 94025

Inf Eng Chem Res 2008, 47, 2109-2121

[12] Jariwala, A.; Lokhandwala, K.; Baker, R. W *Only Raw Sour Gas for Engine Fuel? Proven Membrane Process Cleans Gas for Engines* Presented at the Laurance Reid Gas Conditioning Conference, University of Oklahoma. Norman, 2006.

[13] P. Bernardo, E. Drioli, and G. Golemme. *Membrane Gas Separation: A Review/State of the Art.* Ind. Eng. Chem. Res., 48, (2009) 4638–4663

[14] Spillmann, R. W.; Cooley, T. E. *Membrane Gas Separation Process Design Economic Considerations* AIChE Spring Meeting, (1998) New Orleans, LA

[15] Bhide, B. D.; Voskericyan, A.; Stern, S. A. *Hybrid processes for the removal of acid gases from natural gas* J. Membr. Sci. 1998, 140, 27.

[16] Kelly, R. M. Cynara. Process for separating CO_2 from other gases U.S. Patent 4659343, 1987.

[17] Callison, A.; Davidson, G. Offshore processing uses membranes for CO₂ removal Oil Gas J. Membr. Sci. 2007, 105.

[18] www.natcogroup.com/Content.asp?t)

ProductPage&ProductID)

[19] <u>www.medal.airliquide.com/en/co-membrane/co2-membrane-naturalgas-sweetening/natural-gas-sweetening-co-enhanced-oil-recovery.html.</u>

[20] Biogas Upgrading and Utilisation, IEA Bioenergy, *Task 24: Energy grom biological conversion of organic waste*.

[21] *Utvardering av uppgraderingstekniker for biogas*, SGC rapport 142, Margareta Persson Lunds Tekniska Hogskola, Novembre 2003.

[22] *Nya Renings-ocs uppgraderingstekniker for biogas*, SGC rapport 163, Johan Benjaminsson, Linkopings Tekniska Hogskola, april 2006

[23] Walker, D.R.B. (1993) Ph.D. Thesis. The University of Texas at Austin: Texas, USA.

[24] Wind, J.D., Paul, D.R., and Koros, W.J. (2004) *Natural gas permeation in polyimide membranes*. J. Membr. Sci., 228: 227–236.

[25] Bickel, C.S. and Koros, W.J. (1999) *Improvement of CO*₂/*CH*₄ separation characteristics of polyimides by chemical crosslinking. J. Membr. Sci., 155: 145–154.

[26] Lin, W.H. and Chung, T.S. (2001) *Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes*. J. Membr. Sci., 186: 183–193.

[27] Fang, J., Kita, H., and Okamoto, K.I. (2001) *Gas permeation properties of hyperbranched polyimide membranes. J. Membr.* Sci., 182: 245–256.

[28] Okamoto, K., Tanaka, K., Kita, H., Ishida, M., Kakimoto, M., and Imai, Y. (1992) *Gas permeability and permselectivity of polyimides prepared from 4,4-diaminotriphenylamine*. Polym. J., 24: 451–457.

[29] Kim, J.-H., Lee, S.B., and Kim, S.Y. (2000) *Incorporation effects of fluorinated side groups into polyimide membranes on their physical and gas permeation properties*. J. Appl. Polym. Sci., 77: 2756–2767.

[30] Xu, X. and Coleman, M.R. (1999) *Preliminary investigation of gas transport mechanism in a hþ irradiated polyimide-ceramic composite membrane*. Nucl. Instr. Meth. Phys. Res. B, 152: 325–334.

[31] Wang, R., Chan, S.S., Liu, Y., and Chung, T.S. (2002) *Gas transport properties of poly(1,5-naphthalene-2,20 bis(3,4-phthalic) hexafluoropropane) diimide (6FDA- 1,5-NDA) dense membranes.* J. Membr. Sci., 199: 191–202.

[32] Hao, J., Rice, P.A., and Stern, S.A. (2002) Upgrading low-quality natural gas with H_2S - and CO_2 -selective polymer membranes Part I. Process design and economics of membrane stages without recycle streams. J. Membr. Sci., 209: 177–206.

[33] Liu, Y., Chung, M.L., Chung, T.S., and Wang, R. (2003) *Effects of amidation on gas permeation properties of polyimide membranes*. J. Membr. Sci., 214: 83–92.

[34] Chan, S.S., Chung, T.S., Liu, Y., and Wang, R. (2003) *Gas and hydrocarbon (C2 and C3) transport properties of co-polyimides synthesized from 6FDA and 1,5- NDA (naphthalene)/durene diamines*. J. Membr. Sci., 218: 235–245.

[35] Nakajima, K., Nagaoka, S., and Kawakami, H. (2003) *Effect of molecular weight on gas selectivity of oriented thin polyimide membrane*. Polym. Adv. Technol., 14: 433–437.

[36] Burns, R.L. and Koros, W.J. (2003) *Structure-property relationships for poly(pyrrolone-imide) gas separation membranes*. Macromolecules, 36: 2374–2381.

[37] Xu, J.W., Chung, M.L., Chung, T.S., He, C.B., and Wang, R. (2003) *Permeability of polyimides derived from non-coplanar diamines and 4,40-(hexafluoroisopropylidene) diphthalic anhydride*. Polymer, 44: 4715–4721.

[38] Xiao, Y., Chung, T.S., and Chung, M.L. (2004) *Surface characterization, modification chemistry and separation performance of polyimide and polyamidoamine dendrimer composite films*. Langmuir, 20: 8230–8238.

[39] Boss, A., Punt, I., Strathmann, H., and Wessling, M. (2004) *Suppression of gas separation membrane plasticization by homogeneous polymer blending*. AIChE J., 47: 1088–1093.

[40] Raymond, P.C., Koros, W.J., and Paul, D.R. (1993) Comparison of mixed and pure gas permeation characteristics for CO_2 and CH_4 in copolymers and blends containing methyl methacrylate units. J. Membr. Sci., 77: 49–57.

[41] Kim, K.J., Park, S.H., So, W.W., Ahn, D.J., and Moon, S.J. (2003) *CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group*. J. Membr. Sci., 211: 41–49. Polymeric Membranes to Separate CO₂ from Natural Gas 167

[42] Stern, S.A., Mi, Y., and Yamamoto, H. (1989) *Structure/permeability relationships of polyimide membranes: applications to the separation of gas mixtures*. J. Appl. Polym. Sci., 27: 1887–1909.

[43] Kawakami, H., Mikawa, M., and Nagaoka, S. (1997) *Formation of surface skin layer of asymmetric polyimide membranes and their gas transport properties*. J. Membr. Sci., 137: 241–250.

[44] Qin, J.J., Chung, T.S., Cao, C., and Vora, R.H. (2005) *Effect of temperature on intrinsic permeation properties of 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimide and fabrication of its hollow fiber membranes for CO2/* CH₄ separation. J. Membr. Sci., 250: 95–103.

[45] Cao, C., Wang, R., Chung, T.S., and Liu, Y. (2002) *Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO*₂/ *CH*₄ *separation*. J. Membr. Sci., 209: 309–319.

[46] Tin, P.S., Chung, T.S., and Hill, A.J. (2004) *Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers*. Ind. Eng. Chem. Res., 43: 6476–6483.

[47] Fuertes, A.B., Nevskaia, D.M., and Centeno, T.A. (1999) *Carbon composite membranes from matrimid and kapton polyimides for gas separation*. Micropor. Mesopor. Mat., 33: 115–125.

[48] Syrtsova, D.A., Kharitonov, A.P., Teplyakov, A.P., and Koops, G.H. (2004) *Improving gas* separation properties of polymeric membranes based on glassy polymers by gas phase fluorination. Desalination, 163: 273–279.

[49] Suzuki, T. and Yamada, Y. (2005) *Physical and gas transport properties of novel hyperbranched polyimide–silica hybrid membranes*. Polym. Bull., 53: 139–146.

[50] Tin, P.S., Chung, T.S., Liu, Y., and Wang, R. (2004) *Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide*. Carbon, 42: 3123–3131.

[51] Xu, Z.K., Wang, J.L., and Springer, J. (2002) *Gas separation properties of PMDA/ODA polyimide membranes filled with polymeric nanoparticles*. J. Membr. Sci., 202: 27–34.

[52] Yong, H.H., Park, H.C., Kang, Y.S., Won, J., and Kim, W.N. (2001) *Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine*. J. Membr. Sci., 188: 151–163.

[53] Liu, Y., Chung, T.S., Wang, R., Li, D.F., and Chung, M.L. (2003) *Chemical cross-linking modification of polyimide/polyethersulfone dual-layer hollowfiber membranes for gas separation*. Ind. Eng. Chem. Res., 42: 1190–1195.

[54] Vu, D.Q., Koros, W.J., and Miller, S.J. (2003) *Mixed matrix membranes using carbon molecular sieves I. preparation and experimental results*. J. Membr. Sci., 211: 311–334.

[55] Feng, R.J., Shi, W.J., and Li, X. (2002) *Gas permeation properties of copolyetherimide based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride*. Eur. Polym. J., 38: 339–343.

[56] Lie, J.A. and Ha["]gg, M.B. (2005) *Carbon membranes from cellulose and metal loaded cellulose*. Carbon, 43: 2600–2607.

[57] Hamad, F., Khulbe, K.C., and Matsuura, T. (2005) *Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes*. J. Membr. Sci., 256: 29–37.

[58] Orme, C.J., Klaehn, J.R., and Stewart, F.F. (2004) *Gas permeability and ideal selectivity of poly [bis-(phenoxy)-phosphazene], poly[bis-(4-tert-butylphenoxy) phosphazene], and poly[bis-(3,5-di-tert-butylphenoxy)1.2 (chloro)0.8 phosphazene]*. J. Membr. Sci., 238: 47–55.

[59] Hamad, F. and Matsuura, T. (2005) *Performance of gas separation membranes made from sulfonated brominated high molecular weight poly(2,4-dimethyll, 6-phenyIene oxide)*. J. Membr. Sci., 253: 183–189.

[60] Anson, M., Marchese, J., Garis, E., Ochoa, N., and Pagliero, C. (2004) ABS copolymeractivated carbon mixed matrix membranes for CO_2/CH_4 separation. J. Membr. Sci., 243: 19–28.

[61] Golemme, G., Drioli, E., and Lufrano, F. (1994) *Gas-transport properties of high performance polymers*. Vysokomol Soedin, 360: 1945.

[62] Banerjee, S., Maier, G., Dannenberg, C., and Springer, J. (2004) *Gas permeabilities of novel poly(arylene ether)s with terphenyl unit in the main chain*. J. Membr. Sci., 229: 63–71.

[63] Orme, C.J. and Stewart, F.F. (2005) *Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes*. J. Membr. Sci., 253: 243–249.

[64] Lagunas-Fuentes, C. and Ruiz-Trevino, F.A. (2004) Syntheses and permselectivity properties of polysulfones based on bisphenol a and 1,1 bi-2 naphthol. J. Polym. Sci. Part B Polym. Phys., 42: 226–231.

[65] Orlov, A.V., Kiseleva, S.G., Karpacheva, G.P., Teplyakov, V.V., Syrtsova, D.A., Starannikova, L.E., and Lebedeva, T.L. (2003) *Structure and gas separation properties of composite films based on polyaniline*. J. Appl. Polym. Sci., 89: 1379–1384.

[66] Abdellah, L., Boutevin, B., Guida-Pietrasanta, F., and Smaihi, M. (2003) *Evaluation of photocrosslinkable fluorinated polydimethylsiloxanes as gas permeation membranes*. J. Membr. Sci., 217: 295–298.

[67] Zhi Wang, Y.Z. and Wang, S. (2002) *Novel fixed-carrier membranes for CO2 separation*. J. Appl. Polym. Sci., 86: 2222–2226.

[68] Xu, Z., Dannenberg, C., Springer, J., Banerjee, S., and Maier, G. (2002) *Novel poly(arylene ether) as membranes for gas separation*. J. Membr. Sci., 205: 23–31.

[69] Xu, Z. (2002) *Gas separation properties of polymers containing fluorine moieties*. Chem. Mater., 14: 3271–3276.

[70] Sanchez, J., Charmette, C., and Gramain, P. (2002) *Poly(ethylene oxide-co-epichlorohydrin) membranes for carbon dioxide separation*. J. Membr. Sci., 205: 259–263.

[71] Garc'y'a, C., Tiemblo, P., Lozano, A.E., de Abajo, J., and de la Campa, J.G. (2002) *Gas separation properties of new poly(aryl ether ketone)s with pendant groups*. J. Membr. Sci., 205: 73–81.

[72] Tanaka, K., Osada, Y., Kita, H., and Okamoto, K.I. (1995) *Gas permeability and permselectivity of polyimides with large aromatic rings*. J. Polym. Sci. Polym. Phys., 33: 1907–1915.

[73] Reid, B.D., Ebron, V.H.M., Musselman, I.H., Ferraris, J.P., and Balkus, K.J. (2002) *Enhanced gas selectivity in thin film composite membranes of poly(3- (2-acetoxyethyl) thiophene)*. J. Membr. Sci., 195: 181–192.

[74] Lehermeier, H.J., Dorgan, J.R., and Way, J.D. (2001) *Gas permeation properties of poly(lactic acid)*. J. Membr. Sci., 190: 243–251.

[75] Shieh, J., Chung, T.S., Wang, R., Srinivasan, M.P., and Paul, M.R. (2001) *Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers*. J. Membr. Sci., 182: 111–123.

[76] Wang, Z., Chen, T., and Xu, J. (2002) *Gas transport properties of a series of polyarylethers*. J. Appl. Polym. Sci., 83: 791–801. Polymeric Membranes to Separate CO₂ from Natural Gas 169

[77] Rhim, J.W., Chowdhury, G., and Matsuura, T. (2000) *Development of thin-film composite membranes for carbon dioxide and methane separation using sulfonated poly(phenylene oxide)*. J. Appl. Polym. Sci., 76: 735–742.

[78] Centeno, T.A. and Fuertes, A.B. (2000) *Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride)*. Carbon, 38: 1067–1073.

[79] Zimmerman, C.M. and Koros, W.J. (1999) *Comparison of gas transport and sorption in the ladder polymer BBL and some semi-ladder polymers*. Polymer, 140: 5655–5664.

[80] Zhang, J., Lu, J., Liu, W., and Xue, Q. (1999) Separation of CO_2 and CH_4 through two types of polyimide membranes. Thin Solid Films, 340: 106–109.

[81] Hamad, E., Chiwdhury, G., and Matsuura, T. (2002) *Effect of metal cations on the gas separation performance of sulfonated poly(phenylene oxid) membranes*. Desalination, 145: 365-370.

[82] Shao, L., Chung, T.S., Gohb, S.H., and Pramoda, K.P. (2005) *Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance*. J. Membr. Sci., 256: 46–56.

[83] Prabhakar, R.S., Freeman, B.D., and Roman, I. (2004) *Gas and vapor sorption and permeation in poly (2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole-co-tetrafluoroethylene)*. Macromolecules, 37: 7688–7697.

[84] Jiang, L., Chung, T.S., Li, D.F., Cao, C., and Kulprathipanja, S. (2004) *Fabrication of matrimid/polyethersulfone dual-layer hollow fiber membranes for gas separation*. J. Membr. Sci., 240 (1–2): 91–103.

[85] Tin, P.S., Chung, T.S., Liu, Y., Wang, R., Liu, S.L., and Pramoda, K.P. (2003) *Effects of cross-linking modification on gas separation performance of Matrimid membranes*. J. Membr. Sci., 225 (1–2): 77–90.

[86] Vu, D.Q., Koros, W.J., and Miller, S.J. (2003) *Effect of condensable impurity in CO*₂/CH₄ gas feeds on performance of mixed matrix membranes using carbon molecular sieves. J. Membr. Sci., 221 (1–2): 233–239.

[87] Marchese, J., Garis, E., Anson, M., Ochoa, N.A., and Pagliero, C. (2003) *Gas sorption, permeation and separation of ABS copolymer membrane*. J. Membr. Sci., 221 (1–2): 185–197.

[88] Zhang, Y., Wang, Z., and Wang, S.C. (2002) *selective permeation of CO*₂ *through new facilitated transport membranes*. Desalination, 145: 385–388.

[89] Hamad, F.A., Chowdhury, G., and Matsuura, T. (2001) *Sulfonated polyphenylene oxide*—*polyethersulfone thin-film composite membranes: Effect of counterions on the gas transport.* J. Membr. Sci., 191: 71–83.

[90] Lokhandwala, K.A., Baker, R.W., Lora, G.T., and Karl, D.A. (1995) *Sour gas treatment process including dehydration of the gas stream*. US Patent 5,401,300.

[91] Nishiyama, N., Momose, W., Egashira, Y., and Ueyama, K. (2003) *Partially carbonized polyimide membranes with high permeability for air separation*. J. Chem. Eng. Japan, 36 (5): 603–608.

[92] Cao, C., Chung, T.S., Liu, Y., Wang, R., and Pramoda, K.P. (2003) *Chemical cross-linking modification of 6FDA-2,6-DAT hollow fiber membranes for natural gas separation*. J. Membr. Sci., 216 (1–2): 257–268.

[93] Available online at www.membrane.nl/serve/theses/alie/chapter01.pdf. (Oct. 2006).