



# RICERCA SISTEMA ELETTRICO

# **Caratterizzazione dinamica di sensori ODC**

R. Bruschi, C. Stringola, S. Giammartini, M. Nobili



Report RSE/2009/100





### RICERCA SISTEMA ELETTRICO

### Caratterizzazione dinamica di sensori ODC

R. Bruschi, C. Stringola, S. Giammartini, M. Nobili

#### CARATTERIZZAZIONE DINAMICA DI SENSORI ODC

R. Bruschi, C. Stringola, S. Giammartini (ENEA)

M. Nobili (EN.SY.EN. Srl)

Aprile 2009

Report Ricerca Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA

Area: Produzione e fonti energetiche

Tema: Tecnologie innovative per migliorare i rendimenti di conversione delle centrali a polverino di carbone - Sviluppo di un sistema di combustione di tipo "flameless" per impianti di produzione di elettricità con ridottissimi livelli di emissione di inquinanti e CO<sub>2</sub> Responsabile Tema: Stefano Giammartini, ENEA

# Indice

| 1. Introduzione                                                                           | 3  |
|-------------------------------------------------------------------------------------------|----|
| 2. Realizzazione del sistema di caratterizzazione                                         | 3  |
| 3. Misure e discussione dei risultati                                                     | 9  |
| Appendice                                                                                 | 13 |
| Specifiche tecniche del sensore IPL 10530                                                 | 13 |
| Specifiche tecniche del diodo emettitore HP-HFBR 1204                                     | 17 |
| Schema dei collegamenti sensore IPL10530/connettore Lemo 2C/morsettiera SCB-              |    |
| 68/trasmettitore HP-HFBR-1204                                                             | 19 |
| Specifiche tecniche della fibra ottica HP-HFBR 3000                                       | 20 |
| Diagramma a blocchi del Vi di acquisizione e analisi analisi per i test della risposta in |    |
| frequenza(TestRispostaFreq.1.vi)                                                          | 22 |

### 1. Introduzione

Il rapporto tecnico descrive la procedura, compresi gli strumenti, realizzata per la caratterizzazione e certificazione del sensore IPL 10530HAL con compensazione (vedi appendice) utilizzata per il sistema ODC. Il sensore viene testato per conoscere la sua resa rispetto alla **dinamica** del segnale ottico (ossia la **risposta in frequenza**) mentre la capacità trasduttiva del sensore rispetto alla lunghezza d'onda è fornita dai data-sheet.

### 2. Realizzazione del sistema di caratterizzazione

E' stato realizzato un Virtual Instrument (ambiente di sviluppo LabVIEW) per la gestione del generatore di funzioni NI-PXI 5401 della National Instruments. Le funzioni implementate sono

- generazione di vari tipi di forme d'onda periodiche
- regolazione di ampiezza e offset
- possibilità di impostare una lista di frequenze da generare in successione

In Figura 1 e in Figura 2 sono riportati il pannello frontale e il diagramma a blocchi dello strumento.



Figura 1 - Pannello frontale generatore di funzioni per test della risposta in frequenza (niFgen\_FreqList\_Generator\_TRIG.vi)



Figura 2 - Diagramma a blocchi del generatore di funzioni per test della risposta in frequenza (niFgen\_FreqList\_Generator\_TRIG.vi)

Si imposta la lista di frequenze inserendo frequenza iniziale, frequenza finale e numero di passi. Si fa partire lo strumento e alla pressione del pulsante "Send SW Trigger" parte la prima frequenza; premendo di nuovo parte la seconda frequenza e così via.

Per l'acquisizione e l'analisi dei segnali è stato realizzato uno strumento LabVIEW (un VI principale e un subVI<sup>1</sup>) che svolge le seguenti funzioni

- I. acquisisce i due segnali: generatore di funzioni (che chiameremo segnale A) e segnale del sensore ottico (B).
- II. esegue la FFT modulo e fase dei segnali A e B (con finestratura dei segnali selezionabile fra vari algoritmi: Hanning, Hamming ecc)
- III. considera sullo spettro di ampiezza dei due segnali una finestra di N campioni intorno al picco di frequenza (segnale di test sinusoidale) e integra su tale intervallo; è questo il valore considerato per la risposta in frequenza (in questo modo si tiene conto del fenomeno dello "spectral leakage".
- IV. per ciascuna frequenza di test verifica che non ci sia distorsione andando a controllare che non esistano altre armoniche oltre a quella considerata (se ci sono, che abbiano un' ampiezza inferiore a una soglia stabilita dall'utente)
- V. costruisce la curva di risposta in frequenza facendo il rapporto fra i valori ottenuti al punto tre per i due segnali (IFFT<sub>B</sub>I/IFFT<sub>A</sub>I)
- VI. controlla lo sfasamento dei due segnali ( $\Phi_B$ - $\Phi_A$ )

<sup>&</sup>lt;sup>1</sup> E' stao realizzato anche un sub-VI (decima\_waveform\_2.vi) che decima i segnali acquisiti (vedi indicatori e controlli/grafici a pag.6)

Nella Figura 3 è riportato il diagramma a blocchi del subVI "AnalisiPicchiFreq" contenuto nel programma principale; in esso ci sono le fasi dalla 2 alla 4 .



Figura 3 - Diagramma a blocchi del sub-VI per l'analisi dei picchi di frequenza (AnalisiPicchiFreq.vi)





Figura 4 - Pannello frontale del VI di acquisizione e analisi per i test della risposta in frequenza(TestRispostaFreq.1.vi)

Segue una breve descrizione degli indicatori e dei controlli dello strumento

### grafici

Il primo grafico in alto mostra i segnali acquisiti (dominio del tempo): segnale diretto (A), tratto bianco e segnale del sensore(B), tratto rosso . Su tale grafico si può

- o disabilitare la visualizzazione
- decimare i campioni da visualizzare (fino a un massimo di n/16, con n numero di campioni acquisiti)

Entrambe queste funzioni servono per non utilizzare eccessivamente le risorse di calcolo dal punto di vista della grafica

o gestire cursori di misura e ingrandimenti

Sui due grafici centrali si ha rispettivamente lo spettro di ampiezza (Volt) e la risposta in frequenza del sistema (dB).

Ancora più in basso sono visibili: un grafico piccolo che mostra la parte dello spettro di ampiezza corrispondente alla finestra di leakage (vedi sopra, punto 3) per i segnali A e B e un grafico dello sfasamento ( $\Phi_B - \Phi_A$ ) in funzione della frequenza.

### controlli principali

- ACQ Acquisisce un numero finito di campioni
- Ok valore Inserisce sul grafico della risposta in frequenza il punto corrispondente all'acquisizione appena eseguita
- Azzera Ripulisce il grafico della risposta in frequenza
- Salva valori Scrive su un file di testo un report del test (viene creato un file "Untitled report.txt" in cui sono tabellati per ciascuna frequenza di test i valori della risposta in dB e dello sfasamento  $\Phi_{\rm B}$   $\Phi_{\rm A}$ )
- acquisizione continua Passa alla modalità acquisizione continua
- **STOP** Esce dal programma
- •
- settaggi (vedi Figura 5)
  - tensione di alimentazione (0-10 Volt)
  - tensione di compensazione
  - frequenza di start

- frequenza di end (max. 250kHz vedi nota<sup>2</sup>)
- numeri di passi di frequenza
- canali d'ingresso e d'uscita
- frequenza di campionamento
- numero di campioni da acquisire
- directory di salvataggio

| Alimentazione                                                                 | Settaggio scheda                                         | Lista di frequenze                | Salvataggio report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | time_domain | Alimentazione                                                                           | Settaggio scheda                                    | a 🛛 Lista di freq                                | uenze Salvata                                     | aggio report | time_domain |
|-------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------|-------------|
| 9.995<br>9.000<br>7.000<br>6.000<br>5.000<br>4.000<br>2.000<br>1.000<br>1.000 | ege Output<br>9.995<br>on-off<br>O<br>Physical Channel C | ut_Alimentazione<br>1ao0          | Voltage Comp<br>1.000<br>0.600<br>0.200<br>0.200<br>0.200<br>0.400<br>0.200<br>1.000<br>0.200<br>0.200<br>0.200<br>0.200<br>0.000<br>0.200<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0 |             | Physical CI<br>Rev 1/ai2<br>Samples p<br>Geococo<br>Sample Ra<br>Geocococo<br>Sample Ra | nannel<br>"Dev1/al1<br>er Channel<br>ke (Hz)<br>00  | r<br>fc reale<br>4000000                         |                                                   |              |             |
| ACQ<br>Alimentazione                                                          | ok valore<br>Settaggio scheda                            | Azzera Salv<br>Lista di frequenze | ra valori Aca continua<br>Salvataggio report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STOP        | ACQ<br>Alimentazione<br>Cambia la direc                                                 | ok valore<br>Settaggio scheo<br>ctory di destinazio | Azzera<br>da Lista di freq<br>ne del file "Untit | Salva valori<br>juenze Salvata<br>led report.txt" | Acq continua | STOP        |
| 0000<br>€ND_freq<br>€200000<br>N of freq<br>€20                               | uency STEPS freq ste<br>9500                             | P                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | B C: Documents                                                                          | and Settings\Administ                               | rator\Desktop\Test                               | ODC\test_frequenz                                 | a            |             |
| ACQ                                                                           | ok valore                                                | Azzera Salv                       | a valori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STOP        | ACQ                                                                                     | ok valore                                           | Azzera                                           | Salva valori                                      | Aca continua | STOP        |

Figura 5 – Sotto-pannello dei settaggi: alimentazione, scheda, lista di frequenze, salvataggio report (pannello frontale del VI di acquisizione e analisi per i test della risposta in frequenza)

- altri controlli
  - window scegli il tipo di finestratura per i segnali d'ingresso
  - intervallo di dispersione stabilisci l'intervallo di integrazione (vedi sopra, punto 3)
  - integr\_intervallo (A e B) è il valore dell'integrale (vedi sopra, punto 3)
  - **soglia\_DIS** [%] stabilisci la soglia al di sopra della quale il segnale si considera distorto (vedi sopra, punto 4)
  - distorsione (A e B) spia accesa: segnale distorto

<sup>&</sup>lt;sup>2</sup> Il sistema può acquisire e analizzare correttamente segnali fino a 250KHz poiché: considero pari a 20 punti/periodo il numero minimo di punti per rappresentare una sinusoide; per acquisire 20 punti per ogni ciclo di una sinusoide a 250KHz devo acquisire con un Sample-rate 5000000 Sa/sec che è il massimo per la scheda di acquisizione NI-6110S

Riportiamo in appendice il diagramma a blocchi del VI di acquisizione e analisi ("TestRispostaFreq.1.vi")

Per generare il segnale luminoso di test è stato utilizzato il trasmettitore per fibre ottiche HP-HFBR 1204 dotato di connettore per fibre ottiche standard SMA.

Poiché la risposta del sensore è (vedi schema di Figura 6) condizionata dal comportamento del diodo emettitore abbiamo:

- verificato sulle specifiche di costruzione che la frequenza di taglio del diodo emettitore è nettamente al di sopra delle frequenze alle quali testare i sensori.
- polarizzato il diodo emettitore con un valore di tensione 1.5 Volt intorno al quale, mantenendo piccola (10÷20 mV) l'ampiezza del segnale, il suo comportamento si può considerare lineare.



Figura 6 – Schema del setup sperimentale

Di seguito riportiamo un hard-copy da oscilloscopio dei segnali  $v_d$  (tensione ai capi del diodo emettitore ) e  $v_s$  (generatore di funzioni).



Figura 7 – Hard-copy da oscilloscopio: a sinistra segnale di test (Ch1) e segnale ai capi del diodo emettitore (Ch2); a destra il Ch2 è ingrandito e senza componente continua

Nel primo si ha sul canale 1  $v_s$  e sul canale 2  $v_d$ . Nel secondo lo stesso ma a  $v_d$  viene tolta la componente continua in modo da poterlo ingrandire e valutarne l'ampiezza. Per i dati tecnici del trasmettitore HP-HFBR 1204 si rimanda all'appendice.

## 3. Misure e discussione dei risultati

Il setup sperimentale è il seguente:

- ✓ generatore di forme d'onda NI-FGEN 5401 e cavo BNC (50 Ohm)
- ✓ trasmettitore collegato al sensore tramite un tratto di fibra ottica (HP-HFBR-3000 da 30 metri; vedi appendice)
- ✓ accoppiatore per allineare il connettore SMA della fibra e il cabinet del sensore (appositamente costruito, vedi report "Realizzazione e certificazione delle teste ottiche del sistema ODC").
- ✓ morsettiera NI–SCB 68 per i collegamenti alla scheda di acquisizione (per dettagli vedi appendice).
- ✓ scheda d'acquisizione NI-PCI 6110 S (vedi dati tecnici in appendice).
- ✓ calcolatore con bus PXI e calcolatore con bus PCI (poiché il gen. di funzioni è su bus PXI e la scheda di acquisizione è su bus PCI la parte di generazione e quella di acquisizione sono su due calcolatori diversi; si prevede l'utilizzo di VI Server per gestire tutto da un unico PC)

In appendice è riportato uno schema dei collegamenti e in Figura 8 una foto del banco di lavoro



Figura 8 - Foto del banco di lavoro



Figura 9 - a) trasmettitore per fibre ottiche HFBR-1204; b) fibra ottica HFBR-3000 con connettori SMA; c) accoppiatore e sensore ottico su connettore Lemo 2C;

Per la misura si procede in questo modo

- impostare i parametri della lista di frequenze (per default: Amplitude = 0.5 V e DC Offset = 2.5) per "niFgen\_FreqList\_Generator\_TRIG" e mettere il VI in run
- 2. run del VI "TestRispostaFreq.1"
- 3. impostare i parametri della lista di frequenze per "TestRispostaFreq.1"
- 4. con il comando "Send SW Trigger" generare la prima frequenza
- 5. acquisire (con pulsante ACQ) e controllare che il segnale del sensore non saturi (se satura regolare la tensione di compensazione)
- 6. premere "ok valore" per salvare la misura
- 7. ripetere i passi 5 e 6 per ciascuna frequenza della lista
- 8. premere "salva valori" per salvare il test su file di testo

Riportiamo di seguito i risultati del test effettuato sul sensore contrassegnato con il numero 1. In Figura 10 sono riportati il pannello del "niFgen\_FreqList\_Generator\_TRIG.vi" e i corrispondenti segnali visti sull'oscilloscopio (sul canale 2 c'è il segnale ai capi del diodo emettitore)



Figura 10 - a) settaggi per il test del sensore numero 1 ("niFgen\_FreqList\_Generator\_TRIG.vi") b) segnale di test (ch1) e segnale ai capi del diodo emettitore (ch2)

Riportiamo il pannello dello strumento "TestRispostaFreq.1" (Figura 11), la tabella di report ("TestSens\_1\_Report.txt") e il grafico della risposta in frequenza.



Figura 11 - Pannello frontale di''TestRispostaFreq.vi'' alla fine del test del sensore numero 1

| Parametri di t | est:             |                  |              |        |  |  |  |  |
|----------------|------------------|------------------|--------------|--------|--|--|--|--|
| Tensione di a  | limentazione com | pensazione sogli | a di distors | ione   |  |  |  |  |
| 10.000         | 000 -0.100 2.000 |                  |              |        |  |  |  |  |
| freq list      | ampl_B/ampl_A    | fase_B - fase_A  | dist_A       | dist_B |  |  |  |  |
| 10000.000      | 4.866            | 0.672            | 0.000        | 0.000  |  |  |  |  |
| 19600.000      | 4.821            | 0.666            | 0.000        | 0.000  |  |  |  |  |
| 29200.000      | 4.783            | 0.661            | 0.000        | 0.000  |  |  |  |  |
| 38800.000      | 4.750            | 0.657            | 0.000        | 0.000  |  |  |  |  |
| 48400.000      | 4.722            | 0.653            | 0.000        | 0.000  |  |  |  |  |
| 58000.000      | 4.699            | 0.650            | 0.000        | 0.000  |  |  |  |  |
| 67600.000      | 4.677            | 0.647            | 0.000        | 0.000  |  |  |  |  |
| 77200.000      | 4.654            | 0.645            | 0.000        | 0.000  |  |  |  |  |
| 86800.000      | 4.627            | 0.641            | 0.000        | 0.000  |  |  |  |  |
| 96400.000      | 4.594            | 0.637            | 0.000        | 0.000  |  |  |  |  |
| 106000.000     | 4.551            | 0.631            | 0.000        | 0.000  |  |  |  |  |
| 115600.000     | 4.494            | 0.623            | 0.000        | 0.000  |  |  |  |  |
| 125200.000     | 4.421            | 0.613            | 0.000        | 0.000  |  |  |  |  |
| 134800.000     | 4.328            | 0.601            | 0.000        | 0.000  |  |  |  |  |
| 144400.000     | 4.215            | 0.585            | 0.000        | 0.000  |  |  |  |  |
| 154000.000     | 4.078            | 0.568            | 0.000        | 0.000  |  |  |  |  |
| 163600.000     | 3.920            | 0.548            | 0.000        | 0.000  |  |  |  |  |
| 173200.000     | 3.739            | 0.525            | 0.000        | 0.000  |  |  |  |  |
| 182800.000     | 3.538            | 0.502            | 0.000        | 0.000  |  |  |  |  |
| 192400.000     | 3.319            | 0.477            | 0.000        | 0.000  |  |  |  |  |
| 202000.000     | 3.083            | 0.452            | 0.000        | 0.000  |  |  |  |  |
| 211600.000     | 2.835            | 0.427            | 0.000        | 0.000  |  |  |  |  |
| 221200.000     | 2.577            | 0.402            | 0.000        | 0.000  |  |  |  |  |
| 230800.000     | 2.312            | 0.378            | 0.000        | 0.000  |  |  |  |  |
| 240400.000     | 2.041            | 0.356            | 0.000        | 0.000  |  |  |  |  |
| 250000.000     | 1.768            | 0.334            | 0.000        | 0.000  |  |  |  |  |
|                |                  |                  |              |        |  |  |  |  |

Figura 12 - Tabella di report (TestSens\_1\_Report.txt) del test sul sensore numero 1



Figura 13 - Grafico della risposta in frequenza del sensore numero 1

Nella tabella di report vengono riportati per ogni frequenza il valore in dB del rapporto fra le ampiezze di  $S_A$  e  $S_B$  e lo sfasamento fra i due segnali. Inoltre nelle colonne dist\_A e dist\_B viene indicato il superamento della soglia di distorsione (1=true, 0=false). La frequenza di taglio a -3dB è di circa 250kHz.

### Appendice

#### Specifiche tecniche del sensore IPL 10530

IPL 10530 Integrated Photodiode Amplifiers are a family of light-sensitive detectors, providing a voltage output proportional to the incident light level. The devices will operate from single or dual rail power sources, allowing simple interfacing with logic circuits or voltage comparators.

IPL Photodiode Amplifiers consist of silicon photodiodes close-coupled to amplifiers. These are mounted on ceramic substrates and hermetically sealed within T05 type metal packages to give exceptional rejection of electrical noise in arduous environments. This family provides various gain/bandwidth options to suit a wide range of applications.

#### Applications

The IPL 10530 range of Integrated Photodiode Amplifiers provide positive output voltage for increased light levels. These devices are especially suited to low light level applications, or those where high sensitivity or high interference rejection is required.

Ideal for use with the IPL range of Self-Monitoring Emitters, these devices provide the complete solution for the monitoring of particulate pollution in liquids and gases, water turbidity measurement or gas detection by virtue of spectral absorption bands. Gas pollution sensing, obscuration or "clouding" (nephelometry) techniques are alternative, proven applications.



#### Silicon Relative Spectral Response





#### Amplifier Options

Standard feedback configurations are available to provide high sensitivity and high speed in various combinations. Undercompensated versions are available for sensitive pulse detection. Where feasible, IPL will manufacture to custom requirements.

#### Filter Options

Eye response (BG18) or N.I.R. Bandpass (RG850). Many other filter options are available upon request.



#### Normalised Response of Typical Filters



Devices are supplied in TO5 cans with flat or lensed windows. Either window option can be provided with integral filters. Typical filters are "eye response" or IR. Specialist filters such as UV transmissive or bandpass are also available on request.











### Typical Characteristics @25°C

| DETECTORS                                          |                  | HIGH FREQUE         | NCT N       | PULSE                    |             | GENERAL PU  | GENERAL PURPOSE         |                          |                         |                        |                         |
|----------------------------------------------------|------------------|---------------------|-------------|--------------------------|-------------|-------------|-------------------------|--------------------------|-------------------------|------------------------|-------------------------|
| PARAMETER                                          |                  | инп                 | (With lans) | 10530A AW<br>Mat windowi | (With lans) | flat window | 10530DAL<br>(with lens) | 10530CAW<br>/flatwindsw/ | 10530HAL<br>(with lare) | 10530EAL<br>/with land | 10531EAW<br>/Datwindow/ |
| DC Supply Voltage (Dual                            | Rail(Vcc         | V                   | 42 10 48    | 42 10 418                | 42 to 4%    | 42 to 48    | 12 to al 8              | 42 10 418                | 42 10 48                | 42 to 48               | 42 to 418               |
| DC Supply Voltage (Singl                           | e Rail) Voc      | V                   | +4 to +35   | +4 to+38                 | +4 to +35   | +4 to +35   | +4 to +36               | +4 to +38                | +4 to +36               | +4 to +35              | +4 to +35               |
| Quiescent Current                                  |                  | mΑ                  | 40          | 40                       | 40          | 40          | 40                      | 40                       | 16                      | 40                     | 40                      |
| Dissipation (up to 55°C)                           |                  |                     |             |                          |             |             |                         |                          |                         |                        |                         |
| (above 55°C de rate linearly 5.6                   | /ww/^Q           | πW                  | 63D         | 630                      | ESD         | 630         | 630                     | 630                      | 630                     | 630                    | 63D                     |
| Dark Lavel Noise (RMS)                             |                  | πV                  | 10          | 10                       | 10          | 10          | 0.3                     | 0.3                      | 03                      | 15                     | 15                      |
| Detector Output Offset @                           | (XAA             | πV                  | <b>4</b> 5  | <b>4</b> 5               | 45          | <b>4</b> 5  | 48                      | 46                       | <b>4</b> 5              | 47                     | 13                      |
| Detector Output Voltage<br>(LED - Wavelangth 890nr | Vo<br>1)         | vµw¹nn <sup>2</sup> | 80          | 0.8                      | 90D         | 50          | 91D                     | 6D                       | 50                      | 903                    | 90                      |
| Detector Frequency Resp                            | anse (-3dB)      | KHz                 | 230         | 230                      | 8D          | 6D          | 12                      | 12                       | 100                     | 62                     | 62                      |
| Detector Output Current                            | Sink             | mΑ                  | 10          | 1D                       | 10          | 10          | 1D                      | 1D                       | 1                       | 10                     | 10                      |
|                                                    | Source           | mΑ                  | 1           | 1                        | 1           | 1           | 1                       | 1                        | 10                      | 1                      | 1                       |
| Short Circuit Output Dura                          | រវបា             | 5                   | *           | 8                        | *           | 80          | 8                       | 80                       | 8                       | 8                      | 8                       |
| Temperature Range                                  | Operating        | <i>°</i> С          | -20 to +90  | -20 to +80               | -30 to +80  | -20 to +80  | -20 to +90              | -20 to +80               | -2D to 485              | -20 to +60             | -20 to +80              |
|                                                    | Storage          | °C                  | -30 to +100 | -30 to +100              | -30 to +100 | -30 to +100 | -30 fp +100             | -30 to+100               | -30 to +100             | -30 to +100            | -30 to +100             |
| Stap Response                                      | <b>Rise Time</b> | μs                  | 2.D         | 20                       | 45          | 45          | 4D                      | 40                       | 1                       | 60                     | 6.D                     |
| 10% - 90%                                          | Fall Time        | μs                  | 15          | 15                       | 42          | 42          | 4D                      | 40                       | 7                       | 55                     | 55                      |
| Saturation @Pask Wavel                             | engih            | V                   | Vcc-2.D     | Vcc-20                   | Vcc-2.D     | Vcc-2.0     | Voc-2.D                 | Voc-2.0                  | Vtt:-20                 | Voc-2.0                | Voc-2.D                 |
| Photodiode Active Area                             |                  | (mm²)               | 175         | 175                      | 175         | 175         | 175                     | 175                      | 175                     | 175                    | 175                     |

#### Dimensions (mm) Pinout

### Basic Circuit







Basic Circuit 10530HAL



DS-014 ISSUE 2



### Specifiche tecniche della scheda di acquisizione scheda NI-PCI 6110 S

. These specifications are typical for 25 °C unless otherwise noted.

#### Analog Input

#### Input Characteristics

| Number of channels                                             |                                                  |
|----------------------------------------------------------------|--------------------------------------------------|
| NI 6110, NI 6115, NI 6120                                      | 4 pseudodifierential                             |
| NI 6111                                                        | 2 pseudodifierential                             |
| ADC resolution                                                 |                                                  |
| NI 6110, NI 6111, NI 6115                                      | 12 bits, 1 in 4,096                              |
| NI 6120                                                        | 16 bits, 1 in 65,536                             |
| ADC pipeline                                                   |                                                  |
| NI-6110, NI 6111                                               | 3                                                |
| NI 6115                                                        | 4                                                |
| NI 6120                                                        | 0                                                |
| Maximum sampling rate                                          |                                                  |
| NI 6110, NI 6111                                               | 5 MS/s                                           |
| NI 6115                                                        | 10 MS/s                                          |
| NI 6120                                                        | 1 MS/s <sup>1</sup>                              |
| Mininum sampling rate                                          |                                                  |
| NI 6110, NI 6111                                               | 1 kS/s                                           |
| NI 6115                                                        | 20 kS/s                                          |
| NI 6120                                                        | Nominimum                                        |
| Input signal ranges                                            |                                                  |
| (selectable by channel)                                        | ±42, ±20, ±10, ±5, ±2, ±1, ±0.5, ±0.2 V          |
| Input coupling                                                 | AC or DC                                         |
| Max working voltage for all analog input chan                  | nels                                             |
| Overvoltage protection                                         |                                                  |
| (ACH+, ACH+)                                                   | ±42 V                                            |
| Input FIFO buffer                                              |                                                  |
| NI 6110, NI 6111                                               | 8,192 samples                                    |
| NI 6115, NI 6120                                               | 16 Msamples or 32 Msamples                       |
| Data transfers                                                 | DMA (scatter-gather), interrupts, programmed I/O |
| Analog filter type                                             |                                                  |
| NI 6115                                                        | 3-pole Bessel                                    |
| NI 6120                                                        | 5-pole Bessel                                    |
| Analog filter frequency (-3 dB)                                |                                                  |
| NI 6115                                                        | 50 and 500 kHz                                   |
| NI 6120                                                        | 100 kHz                                          |
| <sup>1</sup> 800 kS/s with NI-DAQue, 1 MS/s with additional do | wnioad. Special conditions apply.                |

#### Analog Output

| Output Characteristics    |                                                  |
|---------------------------|--------------------------------------------------|
| Number of channels        | 2 voltage                                        |
| Resolution                |                                                  |
| NI 6110, NI 6111, NI 6120 | 16 bits, 1 in 65,536                             |
| NI 6115                   | 12 bits, 1 in 4,096                              |
| Max update rate           |                                                  |
| 1 channel                 | 4 MS/s                                           |
| 2 channel                 | 2.5 MS/s                                         |
| Output FIFO buffer size   |                                                  |
| NI 6110, NI 6111          | 2,048 samples                                    |
| NI 6115, NI 6120          | 16 or 32 Msamples                                |
| Data transfers            | DMA (scatter-gather), interrupts, programmed I/O |
| Values Outsut             |                                                  |

#### Voltage Output

Ranges ...... ±10 V Output coupling...... DC

### Digital I/0

| S input/cutput                                   |
|--------------------------------------------------|
| TTL/CMOS                                         |
| Input (high-impedence)                           |
|                                                  |
| Programmed I/O                                   |
| DMA (scatter-gather), interrupts, programmed I/O |
|                                                  |
| 10 Mbytes/s                                      |
|                                                  |
| 2,048 bytes                                      |
|                                                  |
| 2,048 bytes                                      |
|                                                  |

## Timing I/O

| NUMBER OF CHARGES             |                                                 |
|-------------------------------|-------------------------------------------------|
| Up/down counter/timers        | 2                                               |
| Frequency scaler              | 1                                               |
| Resolution                    |                                                 |
| Up/down counter/timers        | 24 bits                                         |
| Frequency scaler              | 4 bits                                          |
| Compatibility                 | TTL/CMOS                                        |
| Base clocks available         |                                                 |
| Up/down counter/timers        | 20 MHz, 100 kHz                                 |
| Frequency scaler              | 10 MHz, 100 kHz                                 |
| Base clock accuracy           | ±0.01%                                          |
| Maximum source frequency      |                                                 |
| Up/down counter/timers        | 20 MHz                                          |
| Minimum source pulse duration | 10 ns, edge-detect node                         |
| Minimum gate pulse duration   | 10 ns, edge-detect node                         |
| Data transfers                | DMA (scatter-oather), interrupts, ortorammed VO |

### Triggers

| Analog Trigger                                                                                                                  |                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose                                                                                                                         |                                                                                                                                                                  |
| Analog input<br>Analog output<br>General-purpose counter/timers                                                                 | Start and stop trigger, gate, clock<br>Start trigger, gate, clock<br>Source, gate<br>All analogicant chargeds, PD0/TD1G1                                         |
| aburde                                                                                                                          | An analog riput channels, PHO/THOT                                                                                                                               |
| Internal source, ACH-0.3-<br>External source, PFI0/TRIG1                                                                        | ±Full-scale<br>±10 V<br>Positive or negative; software-selectable                                                                                                |
| Ni 6110, Ni 6111, Ni 6115<br>Ni 6120<br>Hysteresis                                                                              | 8 bits, 1 in 256<br>12 bits, 1 in 4,096<br>Programmable                                                                                                          |
| Internal source, ACH-0.3><br>External source, PRI0/TRIG1                                                                        | 5 MHz<br>5 MHz                                                                                                                                                   |
| Digital Trigger<br>Purpose                                                                                                      |                                                                                                                                                                  |
| Analog input<br>Analog output<br>General-purpose counter/timers<br>External Sources<br>Compatibility<br>Response<br>Pulse width | Start and stop trigger, gate, clock<br>Start trigger, gate, clock<br>Source, gate<br>PFI-d0_90, RTSI-d0.60<br>5 V/TTL<br>Rising or falling edge<br>10 ns minimum |
| PXI Trigger Bus (PXI only)<br>Trigger lines                                                                                     | 7                                                                                                                                                                |
| RTSI Bus (PCI only)<br>Trigger lines                                                                                            | 7                                                                                                                                                                |
| Bus Interface                                                                                                                   | Master, slave                                                                                                                                                    |
| Physical<br>Dimensions (not including connectors)<br>PCI<br>PXI                                                                 | 31.2 by 10.6 cm (12.3 by 4.2 in.)<br>16 by 10 cm (6.3 by 3.9 in.)<br>68-pin male SCSI II type                                                                    |

### Specifiche tecniche del diodo emettitore HP-HFBR 1204

### Absolute Maximum Ratings

| Parameter             |                | Symbol | Min. | Max. | Unit | Reference       |  |
|-----------------------|----------------|--------|------|------|------|-----------------|--|
| Storage Temperature   |                | Ts     | -55  | +85  | °C   | Contraction and |  |
| Operating T           | emperature     | TA     | -40  | +85  | °C   | C Note 4        |  |
| Lead                  | Temp.          |        |      | +260 | °C   | Note 1          |  |
| Cycle                 | Time           |        |      | 10   | sec  |                 |  |
| Forward               | Peak           | IF, PK |      | 100  | mA   |                 |  |
| Current               | Average        | IF, AV |      | 100  | mA   |                 |  |
| Reverse Input Voltage |                | VR     |      | 1.0  | V    |                 |  |
| Voltage, Cas          | se-to-Junction | Vc     |      | 25   | V    |                 |  |

HFBR-1203/1204 TRANSMITTER



## Electrical/Optical Characteristics -40° C to +85° C unless otherwise specified

| Parameter                                             | Symbol                          | Mín.  | Typ.[2] | Max. | Units | Conditions              | Reference         |
|-------------------------------------------------------|---------------------------------|-------|---------|------|-------|-------------------------|-------------------|
| Forward Voltage                                       | VF                              | 1.44  | 1.72    | 1.94 | V     | IF = 100 mA             | Fig. 2            |
| Forward Voltage<br>Temperature Coefficient            | $\Delta V_{F}/\Delta T$         |       | -0.54   |      | mV/°C | IF = 100 mA             | Fig. 2            |
| Reverse Breakdown<br>Voltage                          | VBR                             | 1.0   | 3.1     |      | V     | I <sub>R</sub> = 100 μA | Transferration    |
| Numerical Aperture                                    | NA                              |       | 0.38    |      |       |                         |                   |
| Optical Port Diameter                                 | DT                              |       | 250     |      | μm    |                         | Note 3            |
| Peak Emission<br>Wavelength                           | λP                              |       | 820     |      | nm    |                         | Fig. 5            |
| Output Optical Power                                  | 1                               | -9.8  | -7.4    | -5.0 | dBm   | IF = 100 mA             | Succession and a  |
| Coupled into                                          | PT                              | 105   | 182     | 316  | μW    | $T_A = 25^{\circ}C$     | Fig. 3, 4         |
| Connector Assembly,                                   |                                 | -11.2 |         | -4.2 | dBm   | IF = 100 mA             | - Notes 4, 5,     |
| 100/140 µm Fiber                                      |                                 | 76    |         | 380  | μW    | -40°C < TA < 85°C       | 0,0               |
| Output Optical Power                                  |                                 |       | -19.1   |      | dBm   | IF = 100 mA             | Fig. 3, 4         |
| Coupled into<br>50/125 µm Fiber                       | PT                              |       | 12      |      | μW    | $T_A = 25^\circ C$      | Note 7            |
| Optical Power<br>Temperature Coefficient              | ΔΡτ/ΔΤ                          |       | -0.014  |      | dB/°C | IF = 100 mA             | Fig. 3            |
| Case Isolation<br>Resistance<br>(Case to Pins 1 or 2) | RCASE                           | 1     |         |      | MΩ    | VCASE = 25 V            |                   |
| Thermal Resistance                                    | ΘJC                             | -     | 90      |      | °C/W  |                         | Note 9            |
| Rise Time, Fall Time<br>(10 to 90%)                   | t <sub>r</sub> , t <sub>f</sub> |       | 11      |      | nsec  |                         | Fig. 6<br>Note 10 |

**WARNING:** OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the

#### Notes:

- 1. 2.0 mm from where leads enter case.
- 2. Typical data at  $T_A = 25^{\circ}$  C.
- DT is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.
- HFBR-3000 series Fiber Cable is specified at a narrower temperature range, -20° C to 85° C.
- 5. Output Optical Power into connectored fiber cable other

infrared output is radiologically safe; however, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

than HFBR-3000 Fiber Optic Cable/Connector Assemblies may be different than specified because of mechanical tolerances of the connector, quality of the fiber surface, and other variables.

6. Measured at the end of 1.0 metre HFBR-3000 Fiber Optic Cable/Connector Assembly with large area detector and cladding modes stripped (NA = 0.28). This fiber approximates a Standard Test Fiber.

- 7. Measured at the end of 1.0 metre  $50/125 \mu$ m fiber with large area detector and cladding modes stripped (NA = 0.22). This fiber approximates a Standard Test Fiber. The test fiber is terminated with an SMA style connector.
- g. When changing microwatts to dBm, the optical power is referenced to 1 milliwatt (1000  $\mu W)$ 
  - Optical Power, P (dBm) = 10 log P ( $\mu$ W)/1000  $\mu$ W



Figure 2. Forward Voltage and Current Characteristics



Figure 4. Normalized Transmitter Output vs. DC Forward Current

- Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit heard with the HFBR-4201 mounting hardware.
- 10. Measured with a 1 mA pre-bias current and terminated into a 50 ohm load.



Figure 3. Normalized Thermal Effects in Transmitter Output



Figure 5. Transmitter Spectrum Normalized to the Peak at 25° C

### Schema dei collegamenti sensore IPL10530/connettore Lemo 2C/morsettiera SCB-68/trasmettitore HP-HFBR-1204

| PIN sensore IPL10530                                                      | PIN connettore          | Colore    | PIN SCB-68 (S series) |  |  |  |  |
|---------------------------------------------------------------------------|-------------------------|-----------|-----------------------|--|--|--|--|
| HAL                                                                       | Lemò serie 2C           | cavo      |                       |  |  |  |  |
| 1 (-V <sub>CC</sub> )                                                     | 1                       | nero      | 54 – AO GND           |  |  |  |  |
|                                                                           | 2                       | giallo    | non connesso          |  |  |  |  |
| 4 (V compensazione)                                                       | 3                       | bianco    | 22 – AO 0             |  |  |  |  |
| 3 (+V <sub>CC</sub> )                                                     | 4                       | rosso     | 21 – AO 1             |  |  |  |  |
|                                                                           | 5                       | marrone   | non connesso          |  |  |  |  |
| 2 (Output V <sub>0</sub> )                                                | 6                       | azzurro   | 33 - AI1+             |  |  |  |  |
| NI-P2                                                                     | XI 5401                 |           |                       |  |  |  |  |
| ARB                                                                       | 6 Out +                 |           | 65 - AI2 +            |  |  |  |  |
| ARE                                                                       | 3 Out -                 |           | 31 – AI2-             |  |  |  |  |
| R( 40                                                                     | ) Ohm)                  |           |                       |  |  |  |  |
|                                                                           | 22 – AO 0 e 54 – AO GND |           |                       |  |  |  |  |
| 64 – AI2 GND, 55 – AO GND, 66 – AI1-, 32 – AI1 GND sono tutti collegati a |                         |           |                       |  |  |  |  |
| 54 – 1                                                                    | AO GND con un           | collegame | nto a stella          |  |  |  |  |

Tabella 1 - Schema dei collegamenti generatore di funzioni-scheda

Attenzione Poiché connesso al case del sensore il terminale 4 non deve toccare parti metalliche del cabinet SCB

| PIN HP-HFBR - 1204                  | Generatore di funzioni – NI-PXI 5401 |
|-------------------------------------|--------------------------------------|
| 1 - anode (vedi nota <sup>3</sup> ) | ARB Out +                            |
| 2 - cathode (vedi nota)             | ARB Out -                            |
|                                     |                                      |

Tabella 2 - Schema dei collegamenti trasmettitore(HFBR-1204) - generatore di funzioni





### Features

- HFBR-4000 OR SMA STYLE CONNECTORS
- CONNECTORS FACTORY INSTALLED AND TESTED
- SIMPLEX OR DUPLEX CABLE
- USER SPECIFIED CABLE LENGTHS
- UL RECOGNIZED COMPONENT PASSES UL VW1 FLAME RETARDANCY SPECIFICATION\*
- STANDARD 100/140 μm GLASS FIBER
- RUGGED TIGHT JACKET CONSTRUCTION
- PARAMETERS OPTIMIZED FOR LOCAL DATA COMMUNICATIONS
- BANDWIDTH: 40 MHz AT 1 km

## Description

The HFBR-3000 Simplex Fiber Optic Cable/Connector assemblies and HFBR-3100 Duplex Fiber Optic Cable/ Connector assemblies are intended for use with HP's High Performance Modules (HFBR-1001/2, HFBR-2001) and the Miniature Link series of transmitters and receivers (HFBR-12XX, HFBR-22XX) and 39301A RS-232 to Fiber Optic Multiplexer. These cable assemblies are available with either HFBR-4000 connectors (OPT 001) or SMA style connectors (OPT 002).

The HFBR-3000 Simplex cable is constructed of a single graded index glass fiber surrounded by a silicone buffer, secondary jacket, and aramid strength members. The combination is covered with a scuff resistant polyurethane outer jacket.

The HFBR-3100 Duplex cable has two glass fibers each in a cable of construction similar to the simplex cable, joined with a web. The individual charinels are identified by a marking on one channel of the cable.

### \*UL File Number E84364





The HFBR-3001 is a ten metre Simplex Cable assembly terminated with HFBR-4000 connectors. The HFBR-3021 is a ten metre Simplex Cable assembly terminated with SMA style connectors.

The cable's resistance to mechanical abuse, safety in flammable environments, and absence of electromagnetic interference effects may make the use of conduit unnecessary. However, the light weight and high strength of the cables allows them to be drawn through most electrical conduits. The connectors must be protected during installation by a pulling grip such as Kellems 033-29-003.

#### CABLE LENGTH TOLERANCE

| Cable Length (Metres) | Tolerance   |
|-----------------------|-------------|
| 1-10                  | +10/-0 %    |
| 11-100                | +1/-0 Metre |
| > 100                 | +1/-0 %     |

NOTES

- 1. DIMENSIONS ARE IN mm (INCHES). 2. FIBER END IS LOCKED FLUSH WITH
- 2. FIBER END IS LOCKED FLUSH WITH FERRULE FACE.

CAUTION:

- LCOUPLING NUT SHOULD NOT BE OVERTIGHTENED: TORQUE 0.05 TO 0.1 UNITS N-m OVER TIGHTENING MAY CAUSE EXCESSIVE FIBER MISALIGNMENT OR PERMANENT DAMAGE.
- MISALIGNMENT OR PERMANENT DAMAGE. 2. GOOD SYSTEM PERFORMANCE REQUIRES CLEAN FERRULE FACES TO AVOID OBSTRUCTING
- THE OPTICAL PATH. CLEAN COMPRESSED AIR
- OFTEN IS SUFFICIENT TO REMOVE PARTICLES. A COTTON SWAB SOAKED IN METHANOL OR FREON" MAY ALSO BE USED.

## Absolute Maximum Ratings

| Parameter                                    | Symbol  | Min. | Max. | Units  | Note  |
|----------------------------------------------|---------|------|------|--------|-------|
| Relative Humidity<br>at $T_A = 70^{\circ}$ C |         |      | 95   | %      |       |
| Storage Temp.                                | Ts      | -40  | +85  |        |       |
| Operating Temp.                              | TA      | -20  | +85  | °C     |       |
| Bend Radius, No Load                         | r       | 20   |      | mm     | 9, 10 |
| Flexing                                      | 1000000 | 50K  |      | Cycles | 1     |

| Parame  | ter                           | Symbol | Min. | Max  | nits | Note |  |
|---------|-------------------------------|--------|------|------|------|------|--|
| Crush L | oad                           | Fc     |      | 200  | N    | 2, 8 |  |
| Impact  |                               | m      |      | 1.5  | ĸg   | -    |  |
| impact  |                               | h      |      | 0.15 | m    | 3    |  |
| Tensile | on Cable                      |        |      | 300  |      |      |  |
| Force   | Force on Connec-<br>tor/Cable |        |      | 100  | N    | 9, 8 |  |

# Mechanical/Optical Characteristics -20° C to +85° C Unless Otherwise Specified.

| Parameter                   |                | Symbol | Min. | Typ. <sup>[6]</sup> | Max.     | Units          | Conditions                                    | Fig.     | Note |
|-----------------------------|----------------|--------|------|---------------------|----------|----------------|-----------------------------------------------|----------|------|
| Exit Numeric                | al Aperture    | N.A.   |      | 0.3                 | 3 80 F.S | -              | $\lambda = 820 \text{ nm}, \geq 300 \text{m}$ | <u> </u> | 4    |
| Attenuation                 |                | αο     |      | 5.5                 | 8        | dB/Km          | λ = 820 nm                                    | 1        | 7,12 |
| Bandwidth @                 | ) 1 km         | BW     |      | 40                  |          | MHz            | $\lambda = 820 \text{ nm} (\text{LED})$       |          | 5    |
| Travel Time (               | Constant       | I/V    |      | 5                   |          | ns/m           | λ = 820 nm                                    | -        | 11   |
| Optical Fiber Core Diameter |                | Dc     | 2.48 | 100                 |          | Section Sector |                                               |          |      |
| Cladding Ou                 | tside Diameter | DCL    |      | 140                 |          | μm             |                                               |          |      |
| Index Gradin                | g Coefficient  | g      |      | 2                   | 1.11     |                |                                               |          |      |
| Cable Structu               | ural Strength  | Fc     |      | 1800                |          | N              |                                               |          | 8    |
| Mass per                    | Single Channel | m/0    |      | 6                   |          | (              |                                               |          |      |
| Unit Length                 | Dual Channel   | - 11/X |      | 12                  |          | kg/km          |                                               | 1.000    |      |
| Cable Leakag                | ge Current     | IL.    |      | 30                  |          | nA             | 50KV, l=0.3m                                  |          |      |

Notes:

- 1.180° bending at minimum bend radius, with 10N tensile load.
- 2. Force applied on 2.5 mm diameter mandrel laid across the cable on a flat surface, for 100 hours, followed by flexure test.
- 3. Tested at 1 impact according to DOD-STD-1678, Method 2030, Procedure 1.
- 4. Exit N.A. is defined as the sine of the angle at which the offaxis radiant intensity is 10% of the axial radiant intensity.
- 5. Bandwidth is measured with a pulsed LED source ( $\lambda = 820$  nm), and varies as  $\ell$  -0.85, where  $\ell$  is the length of the fiber (km). Pulse dispersion and bandwidth are approximately inversely related.
- 6. Typical values are at  $T_A = 25^{\circ}$  C.

## Cable Assembly-Ordering Guide

HFBR-3000/HFBR-3100 defines fiber optic cables with factory installed connectors of user specified length. The cable length must be specified in metres and can be any length in one metre increments from 1 to 1000 metres (longer cables available upon request). Option 001 specifies that the cable is terminated with HFBR-4000 connectors and Option 002 specifies that the cable is terminated with SMA style connectors. Either OPT 001 or OPT 002 must be specified. Examples:

A. To order one Duplex Cable assembly 125 metres long, with SMA style connectors, specify:

|             | antity 125 |  |
|-------------|------------|--|
| OPT 002 Qua | antity 1   |  |

B. To order four Simplex Cable assemblies, 150 metres each, with HFBR-4000 connectors, specify:

| HFBR-3000 | Quantity 600 |
|-----------|--------------|
| OPT 001   | Quantity 4   |

- Fixed losses (length independent) are included in Transmitter/Receiver optical specifications.
- 8. One Newton equals approximately 0.225 pounds force.

9. Short term,  $\leq$  1 hr.

- 10. The probability of a fiber weak point occurring at a point of maximum bend is small, consequently the risk of fiber breakage from exceeding the maximum curvature is extremely low.
- 11. Travel time constant is the reciprocal of the group velocity for propagation of optical power. Group velocity,  $V = \lambda/n$  where  $\lambda$  = velocity of light in space = 3 x 10<sup>8</sup>m/s and n = effective core index of refraction.

12. For lower attenuation cable consult local sales office.



Figure 1. Attenuation vs. Wavelength



Diagramma a blocchi del Vi di acquisizione e analisi analisi per i test della risposta in frequenza(TestRispostaFreq.1.vi)