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Sommario
Nell’ambito delle simulazioni numeriche di flussi turbolenti, la tecnica Large Eddy Simulation (LES) sta ac-

quisendo sempre più importanza, data la grande accuratezza dei risultati ottenuti con questo approccio e

soprattutto considerata la sua abilità di predirre, con elevata affidabilità, il comportamento di campi di moto

molto complessi.

Per ottenere risultati ancora più precisi senza dover aumentare in maniera considerevole i tempi di calcolo

richiesti, è stata sviluppata, all’interno del codice HeaRT, una tecnica di mesh refinement che prevede la pre-

senza di griglie a diversa risoluzione nel dominio di calcolo: queste griglie integrano in maniera indipendente

le equazioni di conservazione e comunicano fra loro, quando hanno raggiunto lo stesso istante temporale, sui

nodi di “esterni” (le celle “ghost”, necessarie per l’integrazione delle equazioni di conservazione nei punti di

zona prossimi al contorno della zona stessa).

Per trasferire i valori da una griglia più lasca ad una più fitta è usata un’interpolazionemediante la tecnica dei

minimi quadrati, al terzo ordine, che garantisce un’adeguata accuratezza della soluzione sulla griglia raffinata:

note le coordinate del punto da interpolare, si costruisce l’interpolatore selezionando tutti i punti della griglia

rada che “circondano” il punto fitto nelle tre direzioni; l’interpolazione, inoltre, è effettuata imponendo la

conservazione “globale” della grandezza, garantendo cioè che la somma dei valori fitti interpolati (pesati per

la frazione di volume della cella fitta rispetto a quella rada) sia pari al valore della cella rada alla quale le celle

fitte considerate appartengono.

Per comunicare i valori nel verso opposto (dalla griglia più fitta ad una più lasca), vengono sommati i valori

corrispondenti alle celle fitte che sono contenute all’interno di una cella rada, opportunamente pesati medi-

ante la frazione di volume fitto rispetto al volume rado.

La tecnica, dopo un’accurata validazione, è utilizzata nella simulazione di una fiamma premiscelata H2/CH4

– Aria, in cui la zona centrale, dove avvengono il mescolamento e le reazioni chimiche, è a risoluzione più alta,

mentre le zone ove il campo presenta gradienti meno marcati sono a risoluzione più bassa.
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1 Introduction

Turbulent flow field is very common in energy production burners: some particular phenomena that occur in

this plants are heavily conditioned by interaction between turbulent structures and burner walls, injectors, or

the flame front.

In particular, to avoid combustion instabilities and blow out phenomena, swirlers and bluff bodies are widely

used: in this way oxidizer and fuel (or mixture) flows have all the three components of velocity vector different

from zero; for this reason is obvious that turbulence of the flow field has a fundamental role in energy produc-

tion burners behaviour.

Usually in energy production burners, inlet flow (premiscelated or not) in combustion chamber has high

velocity and injectors have very little dimensions: so a numerical simulation based on DNS (Direct Numerical

Solution) approach is impossible; a numerical simulation based on RANS (Reynolds Averaged Navier-Stokes)

approach is very difficult to obtain because of the complexity to obtain a turbulence model suitable to the

solution of such flow field (thermal and chemical non equilibrium, with complex geometries).

So numerical simulation based on LES (Large Eddy Simulation) approach is growing in importance because

when a sufficient portion of the energy spectrum is resolved, is possible to obtain very good numerical results,

also if computational cost is anyway high (but no so high as in DNS approach), because grid cell dimension is

necessarily little to obtain a good solution of significant turbulent scales.

Modern energy production burners have usually big dimensions and a cylindrical shape, with multi-phase

flow: also if a LES numerical simulation for such burners is the ideal choice, there are some problems to obtain

a good numerical result: in particular, is necessary a large number of grid points to guarantee sufficient reso-

lution to solve little turbulent scales next to the little injectors; multi-phase flow is another constraint on the

dimension of grid cell, because solid particles or droplets cannot be bigger than a single grid cell.

For example, in figure 1.1 are illustrated numerical results of a LES simulation of a particle laden flow[1],

based on Sommerfeld and Qiu experiment: the injection system is composed of a cylindrical duct and of an

annular duct coaxial to the first one. Air and glass particles (diameter between 20µm and 80µm) flow through

the cylindrical duct to the test cylindrical chamber, while from the annular duct a swirled air flow is introduced

in the test section.

Also if the numerical solution globally has a good agreement with experimental data, and the presence of

many small flow structures is captured as the position of the stagnation point, typical for swirled combustors,

in proximity of the test chamber inlet zone radial velocity component and its RMS are not well predicted (figure

1.2): this can be dued to the poor resolution adopted in front of the bluff body separating the inner and the

outer duct; in fact, since ∆z = 3mm, only 3 grid points are present before the plane where the measures are

taken and therefore it will not be possible to reconstruct smaller structures in that zone.

Total number of grid points for this numerical simulation (more than 4millions)makes impossible to decrease

∆zminimum and increase resolution, also because of the use of structured grids.

So a mesh refinement technique is mandatory to obtain a good numerical solution (with a relatively low

computational cost) based on LES approach: numerical grid is divided in several structured grids with different

spatial resolution: next to fuel and oxidizer injectors, where turbulent scales have a very little characteristic

dimension, grid cells have very little dimensions, while in the outlet zone of the burner or the test section,

where flow velocities and flow turbulence are low, grid cells have bigger dimensions.

Multigrid approach is used for the solution of hyperbolic or elliptic systems of equations: with this technique

is possible to obtain a remarkable increase in the convergence speed of the numerical simulation; in amultigrid

approach, iterative procedures succeed to shrink the residuals obtained from the approximate solution of
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(a)

(b)

Figure 1.1: Velocity Magnitude [m/s]

(a) (b)

Figure 1.2: Velocity Component [m/s] and RMS along r direction
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governing equations ([2]): this method isn’t suitable for HeaRT code, because in this numerical code time

integration is performed by the mean of an explicit scheme.

When there aren’t chemical reactions,multi-level techniques are frequently used in LES simulations ([3], [4]):

the main part of the simulation is performed on the coarse grid levels, while the smallest resolved scales are

kept frozen (quasi-static approximation); this allows to reduce significantly the CPU times in comparison with

classical LES, while the accuracy of the simulation is preserved by the use of a fine discretization level, where

the coarse flow field is interpolated.

When non-uniform grids are used, the best achievable result is a better representation of the mean velocity

profiles: to improve the numerical solution quality, overlapping finest grids are necessary ([5]). Gird interaction

is obtained by the mean of boundary conditions enforcement from the coarse grid to the finest grid, that has

to be repeated every time step.

For incompressible flows, grid coupling can be obtained by means of Poisson equation for the pressure ([6],

[7]): every grid solves momentum conservation equations and the additional “information” due to the better

spatial resolution of the finest grid is included in the source term of the Poisson equation. Fourier polynomials

are used to transfer informations, every time step, form different gird levels.

In an hyperbolic systemof equations is possible to implement an adaptivemesh refinement (AMR) technique

([8]): by the means of an error evaluation procedure (where the error is calculated as the difference between

the numerical solution obtained in a time step 2t and the numerical solution obtained in two time steps t),

zones where mesh refinement is necessary are located. Grid level communication is carried out with bilinear

interpolations (from coarse to fine) and with weighted sums (from fine to coarse).

7
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2 HeaRT code overview

2.1 Conservation Laws

The governing equations are written in the form of partial differential equations. This form of the governing

equations derives directly from the physical principles of flow dynamics:

• conservation of mass;

• conservation of Linear Momentum;

• conservation of energy.

The conservation laws written in this form relate the flow field variables at a point in the flow, as opposed

to governing equations written in integral form that deal with a finite space, the control volume.

Conservation of Mass

The conservation of mass principle states that, in absence of mass adduction, the variation in time of the

density of the flow field in a point is equal to the variation in space of the product between the density and

the velocity vector, that is:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

where ρ is the density of the fluid.

Conservation of Momentum

The conservation of momentum principle states that in absence of external forces the rate of change of linear

momentum in a point in the space is equal to the resultant forces on that point, that is:

∂ρu

∂t
+∇ · (ρuu) = −∇ · S+ ρ

Ns∑
i=1

Yifi (2.2)

where S is the stress tensor,Ns is the number of chemical species, Yi is the mass fraction of the ith species

and fi is the body force per mass unit acting on the ith species.

Conservation of Energy

The conservation of energy principle states that in absence of energy adduction the rate of change of energy

in a point in the space is equal to the heat transfer rate and the total work made by the forces acting on that

point, that is:

∂E

∂t
+∇ · (ρuE) = ∇ · (Su) −∇ · q+ ρ

Ns∑
i=1

Yifi · (u+Vi) (2.3)

where E is the total energy (internal and kinetic), q is the heat transfer rate and Vi is the diffusion velocity

of the ith chemical species.
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2.2 Multifluids Model

In a chemical reacting and multispecies flow, an additional equation is necessary to complete the flow de-

scription: the conservation of species mass fraction; this principle states that the rate of accumulus of the

ith species depends on the convective flux, the diffusive flux and the production (or destruction) rate of the

species due to the chemical reactions, that is:

∂ρYi
∂t

+∇ · (ρuYi) = −∇ · Ji + ρω̇i (2.4)

where Ji is the diffusive mass flux and ω̇i is the production – destruction rate of the ith species.

The last equation used is the thermodynamic state equation that states a relation between the pressure, the

density and the temperature of an ideal gas, that is:

p = ρ

Ns∑
i=1

Yi
Wi

RuT (2.5)

whereWi is the molecular weight of the ith species,Ru is the universal gas constant, T is the temperature

and p is the pressure of the fluid.

The summation of all species transport equations (2.4) yields the conservation ofmass equation (2.1): there-

fore theNs speciesmass fraction conservation andmass transport equation are linearly dependent and one of

them is redundant. Furthermore, to be consistent with mass conservation, the diffusion fluxes (Ji = ρYiVi)

and the chemical source terms must satisfy:

Ns∑
i=1

Ji = 0 and

Ns∑
i=1

ω̇i = 0 (2.6)

2.3 Constitutive Equations

Each material has a different response to an external force, depending on the properties of the material itself:

the constitutive equations describe this behaviour.

In particular, they express with simple mathematical models themicroscopic molecular diffusion of momen-

tum, energy and mass. For a gas mixture, they should model the stress – strain relation between S and E, the
heat flux q and the species mass flux Ji.

2.3.1 The Diffusive Momentum Flux

For all gases that can be treated as continuum it has been observed a linear proportion between viscous

stresses that arise from the flow and the local strain rate: that is equivalent to saying that those forces are

proportional to the rates of change of the fluid’s velocity vector as one moves away from the point in ques-

tion in various directions; a fluid that behaves in this manner is called Newtonian fluid. With this assumption

is possible to derive an expression that relates the stress tensor S to the pressure p, the strain rate E and the

velocity vector u, that is:

S = (−p+ λ∇ · u) I+ 2µE = −pI+ τ (2.7)

where τ is the viscous part of stress tensor, µ is the coefficient of viscosity and λ is the second coefficient

of viscosity. These two coefficient of viscosity are related to the coefficient of bulk viscosity µb by the µb =
2/3µ + λ; with the assumption of the Stoke hypothesis (the sum of the normal stresses is zero), µb = 0, so

λ = 2/3µ and the viscous stress tensor becomes:

τij = λ
∂ui

∂xi
+ 2µ

[
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)]
(2.8)
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Pressure at the macroscopic level corresponds to the microscopic transport of momentum by means of

molecular collisions in the direction of molecules motion. Instead, molecular momentum transport in other

directions is what atmacroscopic level is called viscosity. They are of different nature, because in terms of work

done, when continuous distribution are considered, pressure produces reversible transformations (changes of

volume), while viscous stresses produce irreversible transformations (dissipation of energy into heat).

2.3.2 The Diffusive Species Mass Flux

In equation (2.4) the knowledge of diffusive species mass flux Ji is required: this flux expresses the relative

motion of chemical species with respect to the motion of their (moving) center of mass; by the means of a

constitutive law thismotion can be expressedwithout an additionalmomentumequation for chemical species.

Both modelling and calculation of individual species diffusive mass flux is not easy; the distribution of Ns

chemical species in a multicomponent gaseous mixture is rigorously obtained by the means of kinetic theory

[9]:

∇Xi =

Ns∑
i=1,i 6=j

XiXj

Dij

(
Vj −Vi

)
︸ ︷︷ ︸

DV

+(Yi − Xi)
∇p

p︸ ︷︷ ︸
PG

+
ρ

p

Ns∑
j=1

YiYj
(
fi − fj

)
︸ ︷︷ ︸

BF

+

Ns∑
j=1

XiXj

ρDij

(
αj

Yj
−

αi

Yi

)
∇T

T︸ ︷︷ ︸
SG

(2.9)

where Dij is the binary diffusion coefficient of species i into the species j, Xj and Yj are the molar and

the mass fraction of the jth species respectively, fj the body force per unit mass, acting on species j, αj the

thermodiffusion coefficient of species j.

Equations (2.9) are referred to as the Maxwell-Stefan equations, since Maxwell [10, 11] suggested them for

binary mixtures on the basis of kinetic theory, and Stefan [12] generalized them to describe the diffusion in a

gas mixture withNs species.

The main feature of equations (2.9) is that they couple inextricably all diffusion velocities Vj (and thus all

fluxes), to all concentrations Xj and Yj and their gradients. According to equations 2.9, concentrations gradi-

ents can be physically created by:

• differences in Diffusion Velocities (DV);

• Pressure Gradients (PG);

• differences in Body Forces (BF) per unit mass acting on molecules of different species;

• thermo-diffusion, or Soret Effect (SE), i.e., mass diffusion due to temperature gradients, driving light

species towards hot regions of the flow; this last effect, often neglected, is nevertheless known to be im-

portant, in particular for hydrogen combustion, and in general when very light species play an important

role.

The linear systemof equations (2.9) for the variableVj has sizeNs×Ns and requires knowledge ofNs(Ns−
1)/2 diffusivities. OnlyNs − 1 equations are independent, since the sum of all diffusion fluxes must be zero.

This system must be solved in each direction of the frame of reference (coordinate system), at every compu-

tational node and, for unsteady flows, at each time step of numerical integration.

Extracting the diffusion velocities is a very difficult task, therefore in many CFD computations simplified

models are preferred; in the present dissertation, Hirschfelder and Curtiss law is used to calculate diffusion

velocities in an approximate way:

10



Vi = −Di
∇Xi

Xi
(2.10)

where

Di =
1− Yi∑Ns

j=1,j6=i
Xj

Dji

(2.11)

The coefficient Di is an equivalent diffusion coefficient of species i into the whole remaining mixture of

Ns − 1 species.

When approximated expressions (like Hirschfelder and Curtiss law) are used to obtain diffusion velocities,

mass conservation problems can occur: in fact the diffusion velocities do not necessarily satisfy the constrain

Ns∑
i=1

Ji =

Ns∑
i=1

ρYiVi = 0

A simple empirical remedy to impose global mass conservation consists in subtracting any residual artificial

diffusional velocity from the flow velocity in the species transport equations. In fact, summing all species

transport equations, the mass conservation equation must be obtained, while it is found:

∂ρ

∂t
+∇ · (ρu) = −∇ · (ρ

Ns∑
i=1

YiVi) (2.12)

Thus, in order for the conservation of mass to be respected, a term ρfV
c involving a correction velocityVc

must be introduced. Vc is defined as

Vc = −

Ns∑
i=1

YiVi

and assuming Hirschfelder’s law holds, it becomes

Vc =

Ns∑
i=1

Wi

Wmix
Di∇Xi (2.13)

The correction velocity must be computed at each time step and added to the flow velocity in the species

convective term. The corrected convective term of species transport equations must then become

∇(ρfufYi) → ∇(ρf(uf +Vc)Yi) (2.14)

With this ”trick”, any artificial flow due to the nonzero diffusional mass flux is thereby cancelled. Further-

more, the constrain
∑Ns

i=1 Yi = 1 is strictly ensured by the

Yi =
Yi∑Ns

i=1 Yi
(1− Yi) + Yi (2.15)

2.3.3 The Diffusive Heat Flux

The heat flux q for a gaseous mixture ofNs chemical species can be splitted in three contributions:

1. the heat transfered by conduction, modeled by the Fourier’s law; at a microscopic level, this flux is

dued to molecular collision: molecules with an higher level of kinetic energy (with higher temperature)

transfer energy by molecular collision to the ones with a lower level of kinetic energy (with a lower

temperature); in the continuum view, the heat flux arises from temperature gradients;

11
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2. the heat transfered by molecular diffusion in a multi–species mixture, dued to concentration gradients;

when ∇Yi 6= 0, each species diffuses with its own velocity Vi; this means that can be energy transfer

even in a gas at uniform temperature or in a rarefied gas (where conduction is negligible);

3. the heat transfered by Dufour effect: the Onsager principle of microscopic reversibility in the thermody-

namics of irreversible processes implies that if temperature gradients cause species diffusion (thermo-

diffusive or Soret effect), concentration gradients must cause a reciprocal (Dufour effect) heat flux; the

Dufour effect is neglected [9].

The total heat flux q = qF + qVi
+ qD, where qD is the thermal flux dued to Dufour effect (neglected) is:

q = −k∇T + ρ

Ns∑
i=1

HiYiVi (2.16)

where k is the thermal conductivity andHi is the enthalpy of the i
th species.

2.4 LES Model

Large eddy simulations are based on the assumption that small-scale turbulent eddies are more isotropic than

the large ones, and are responsible mostly for energy dissipation in the mean. Modelling the small scales,

while resolving the large eddies, may be very beneficial: first, since most of the momentum transport is due to

the large eddies, model inaccuracies are less critical; secondly, the modelling of the unresolved scales is easier,

since they tend to be more homogeneous and isotropic than the large ones, which depend on the boundary

conditions.

Thus, LES is based on the use of a filtering operation: a filtered (or resolved) large-scale variable is defined

by:

f (x) =

∫
D

f
(
x ′)G (

x, x ′, ∆
)
dx ′ (2.17)

whereD is the entire domain andG is the filter function. The size of the smallest eddies that are resolved in

LES is clearly related to the filter width, denoted by∆: the grid spacingh should be sufficiently fine to represent

accurately eddies of size ∆. There has been considerable discussion on the appropriate value of filter width;

in most cases, the filter width is chosen proportional to the grid size (∆ = nh), but if the mesh is anisotropic,

an appropriate average is used to determine h:

h = (hxhyhz)
1/3

or h =
(
h2
x + h2

y + h2
z

)
(2.18)

When complex geometries are studied, is preferable relating the filter width to physical quantities, rather

than the grid. The most commonly used filter function are the sharp Fourier cutoff filter, defined in the wave

space, that is:

Ĝ (k) =

{
1, if k 6 π/∆

0, otherwise
(2.19)

the Gaussian filter in the physical space, that is:

G (x) =

√
6

π∆
2
exp

(
−
6x2

∆
2

)
(2.20)

and the tophat filter in physical space, that is

G (x) =

{
1/∆, if |x| 6 ∆/2

0, otherwise
(2.21)
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In this work, the filter operation is implicitly defined by the mesh size. The uncertainties related to the

procedure of exchanging the order of the filter and differential operators (commutation errors), are neglected

and assumed to be incorporated in the sub-grid scale modeling.

2.4.1 Filtered Conservation Equations

In compressible flows, it is convenient to use Favre-filtering to avoid the introduction of subgrid-scale terms

in the equation of conservation of mass: when the mass balance equation is averaged (with this operation a

generic variable φ is splitted into a mean value φ and a deviation from the mean denoted by φ ′), indeed,
velocity/density fluctuation correlation appears; to avoid the explicit modelling of such correlation, a Favre

average is introduced: a Favre-filtered variable is defined by the

f̃ =
ρf

ρ
(2.22)

The Favre-filtered equations of motion can be written in the form:

∂ρ

∂t
+

∂
(
ρũj

)
∂xj

= 0 (2.23)

∂
(
ρũj

)
∂t

+
∂
(
ρũiũj

)
∂xj

= −
∂p

∂xi
+

∂τji

∂xj
−

∂τSGSji

∂xj
+ ρ

Ns∑
i=1

Ỹifi (2.24)

∂
(
ρH̃

)
∂t

+
∂ρH̃ũ

∂xj
=

Dp

Dt
−

∂
(
qj + qSGS

j

)
∂xj

+ ρ

Ns∑
i=1

Ỹif̃ijṼij (2.25)

where

τij = µ

(
∂ũi

∂xj
+

∂ũj

∂xi

)
−

2

3
µδij

∂ũk

∂k

and

τSGSij = ρũiuj − ρũiũj (2.26)

qSGS
j = ρH̃uj − ρH̃ũj (2.27)

The subgrid-scale heat flux due to diffusion effects has been considered negligible with respect to SGS heat

flux qSGS
ij .

The Favre-filtered equations of species and state can be written in the form:

∂
(
rhoỸi

)
∂t

+
∂
(
ρỸiṼij

)
∂xj

= −
∂
(
ρỸiṼij

)
∂+

ρω̃−
∂JSGSij

∂xj
(2.28)

p = ρ

Ns∑
i=1

Ru
Ỹi
Wi

T (2.29)

where

JSGSij = ρỸiuj − ρỸiũj (2.30)

Also in this case, the subgrid-scale effects due to diffusion, arising from J̃ij, may be neglected with respect

to SGS species transport JSGSi .

13



Accordo di PROGRAMMAMSE-ENEA

2.4.2 Subgrid-scale Modelling

The main role of subgrid-scale model must be to remove energy from the resolved scales, mimicking the drain

that is usually associatedwith the energy cascade. It may not be necessary for amodel to represent the “exact”

SGS stresses accurately at each point in space and time, but only to account for their global effect; the resolved

scales exchange energy with the unresolved scales and the surroundings through several mechanisms.

The Smagorinsky model is the progenitor if most subgrid-scale stress models: the eddy viscosity (that has

to dissipate energy from the resolved scales) is assumed to be proportional to the subgrid-scale characteristic

length scale ∆ and to a characteristic turbulent velocity v∆ = ∆
∣∣S∣∣, that is:

µT =
(
Cs∆

)2 ∣∣S∣∣ (2.31)

where the Smagorinsky constantCs is real, so the model is absolutely dissipative: εSGS = −
(
Cs∆

)2 ∣∣S∣∣3 6

0, and
∣∣S∣∣ = √

2SijSij is the magnitude of the strain-rate tensor. The value of Cs can be evaluated by the:

Cs ' 1

π

(
2

3CK

)3/4

(2.32)

that for a Kolmogorov constant CK ' 1.4 yields Cs ' 0.18. For a lower value of Smagorinsky constant

(Cs = 0.1) this model behaves very well for isotropic turbulence, free-shear flows and channel flow (with

a damping function at the wall): near solid boundaries, indeed, Smagorinsky model is too dissipative and

therefore the lenghtscale needs to be modified by the introduction of Van Driest damping, to account the

reduced growth of the small scales near the wall; the eddy viscosity can be rewritten as:

µT =
[
Cs∆

(
1− e−y+/25

)] ∣∣S∣∣ (2.33)

Smagorinsky model is often used as a “base” for dynamic models, where coefficients are computed while

the computation progress, rather than input a priori. This is accomplished by defining a test filter (for the

computed field) whose width ∆̂ is larger than the grid filter ∆: ∆̂ = α∆, with tipically α = 2.

The subgrid-scale tensor of the double filtered field ũ is obtained from equation (2.26)

τ̂SGSij = ũiuj − ũiũj (2.34)

The resolved turbulent stress corresponding to the test filter applied to the field u is:

Lij = ũiuj − ũiũj (2.35)

Finally, applying the filter “tilde” to equation (2.26):

τ̃SGSij = ũiuj − ũiuj (2.36)

Adding equations (2.34) and (2.36) Germano’s identity can be obtained:

Lij = τ̂SGSij − τ̃SGSij (2.37)

In this equation τ̂SGSij and τ̃SGSij have to be modelled whileLij can be explicitly calculated by applying the test

filter to the LES results.

Assuming that an eddy-viscosity model is used to parametrize both subgrid and subtest stresses:

τ̃SGSij −
1

3
τ̃SGSll δij = 2ÃijC and τ̂SGSij −

1

3
τ̂SGSll δij = 2BijC (2.38)

Substituing equation (2.38) in equation (2.37):

Lij −
1

3
Lllδij = 2BijC− 2ÃijC (2.39)
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In order to obtain C, it can be removed from the filtering as if it were constant, leading to:

Lij −
1

3
Lllδij = 2CMij (2.40)

Now all terms of equation (2.40) can be determined with the aid of u: there are however five independent

equations for only one variable C, so the problem is overdetermined. The coefficient can be determined via a

least squares approach to calculate the value that “best satisfies” the system (2.40):

C =
1

2

LijMij

M2
ij

(2.41)

However, the analysis of DNS and experimental data revealed that C field predicted by the equation (2.41)

varies strongly in space and contains a significant fraction of negative values, with a variance which may be ten

times higher than the square mean: so the removal of C from the filtering operation is not really justified and

very large negative values of the eddy viscosity are a destabilizing process in a numerical simulation.

The cure often adopted consists in averaging both numerators and denominators of equation (2.41) over

space and/or time: averaging over direction of flow homogeneity has been a popular choice with can obtain

good results.

2.5 Numerical Schemes

In the HeaRT code, described in detail in section 2.6 on page 21 are used the following numerical schemes and

methods:

1. AUSM numerical scheme combined with quadratic upstream interpolation developed for the QUICK nu-

merical scheme;

2. finite difference numerical scheme;

3. Newton-Raphson method;

4. Runge-Kutta method.

2.5.1 AUSM Numerical Scheme

The develop of this numerical scheme was motivated by the desire to combine the efficiency of FVS and the

accuracy of FDS [13]. Considering the two-dimensional system of Euler equation for a perfect gas

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (2.42)

where the inviscid flux vector F consists of two physically distinct parts, namely convective and pressure

terms:

F =


ρ

ρu

ρv

ρH

u+


0

p

0

0

 = F(c) +


0

p

0

0

 (2.43)

The convective terms can now be considered as a passive scalar quantities convected by a velocity u at the

cell interface: the pressure flux terms are governed by the acoustic wave speed. So the two components can

be discretized separately: at an interface L < 1/2 < R the convective terms can be written as:
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F
(c)
1/2

= u1/2


ρ

ρu

ρv

ρH


L/R

= M1/2


ρa

ρau

ρav

ρaH


L/R

(2.44)

where

(•)L/R =

{
(•)L if M1/2 > 0

(•)R otherwise
(2.45)

The advective velocityM1/2 can be expressed as a combination of the wave speeds (M± 1) traveling to-

wards the interface
(
1
2

)
from the adjacent L and R cells:

M1/2 = M+
L +M−

R (2.46)

where the split Mach numberM± is defined according Van Leer splitting:

M± =

{
±1

4
(M± 1)2 if |M| 6 1

1
2
(M± |M|) otherwise

(2.47)

The pressure term can be writed, following equation (2.46):

p1/2 = p+
L + p−

R (2.48)

and the pressure splitting is weighted using the polynomial expansion of the characteristic speeds (M± 1).
The pressure splitting can be expressed in terms of first order polynomials (M± 1):

p± =

{
p
2
(1±M) if |M| 6 1

p
2
(M± |M|) /M otherwise

(2.49)

or in terms of second order polynomials (M± 1)2:

p± =

{
p
4
(M± 1)2 (2∓M) if |M| 6 1

p
2
(M± |M|) /M otherwise

(2.50)

All the above formulas can be recast in the form:


ρu

ρuu+ p

ρuv

ρuH


1/2

= M1/2

1

2




ρa

ρau

ρav

ρaH


L

+


ρa

ρau

ρav

ρaH


R



−
1

2

∣∣M1/2

∣∣∆1/2


ρa

ρau

ρav

ρaH



+


0

p+
L + p−

R

0

0



(2.51)

where ∆1/2 {•} = {•}R − {•}L. The first term on the right hand side is a Mach-number-weighted average of

L and R states; the second term is the numerical dissipation.

Summarizing, this numerical scheme (AUSM - Advection Upstream Splitting Method) treats the convective

and the pressure terms separately:
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x

φFL

i− 2

φL

i− 1

φC

i

φR

i+ 1

φFR

i+ 2

φl

φr

ul ur

∆xL ∆xC ∆xR

∆xfl ∆xl ∆xr ∆xfr

(
∂φ
∂x

)
l

(
∂φ
∂x

)
r

Figure 2.1: Schematic showing a control volume for node i, variables φ at upstream and downstream nodes,

grid spaces, faces velocities u∗ and face gradients (∂φ/∂x)∗

• convective terms are biased from the upstream using a properly definited cell-interface velocity;

• pressure term is dealt with convective terms using acoustic waves.

Quick Recontruction

In HeaRT code, “L” and “R” convective terms of equation (2.51) are evaluated by the mean of a quadratic

upstream interpolation developed in the QUICK (QUadratic Interpolation for Convective Kinetics) numerical

scheme [14]; the method can be expressed as a linear interpolation corrected by a term proportional to the

upstream-weighted curvature (see figure 2.1):

φ∗
l =

1

2
(φL + φC) −

∆x2l
8

1

∆xL

(
φC − φL

∆xl
−

φL − φFL

∆xfl

)
φ∗
r =

1

2
(φC + φR) −

∆x2r
8

1

∆xC

(
φR − φC

∆xr
−

φC − φL

∆xl

) (2.52)

where subscripts FL, L, C, R and FR refer to the far left, left, central, right and far right nodes; subscripts l

and r refer to the left and right faces.

The general formula for the QUICK scheme is the following:
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φ∗
l =

1

2
(φL + φC) −

∆x2l
8

Curvl

=
1

2
(φL + φC) −

∆x2l
8

[
1

∆xL
(Gradl −Gradfl)

]
φ∗
r =

1

2
(φC + φR) −

∆x2r
8

Curvr

=
1

2
(φC + φR) −

∆x2r
8

[
1

∆xC
(Gradr −Gradl)

]
(2.53)

where “Curv” represents (upstream-weighted) φ curvatures and “Grad” φ gradients.

2.5.2 Finite Difference Numerical Scheme

The idea of a finite-difference representation for a derivative can be introduced by recalling the definition of

the derivative for the function u(x, y) at x = x0 and y = y0, that is:

x

y
∆x

∆y

(a)

ui,j−1

ui,j

ui,j+1

ui−1,j ui+1,j

(b)

Figure 2.2: A typical finite-difference grid

∂u

∂x
= lim

∆x→0

u (x0 + ∆x, y0) − u (x0, y0)

∆x
(2.54)

If the function u is continuous and ∆x is “sufficiently” small but finite, is expected that

[u (x0 + ∆x, y0) − u (x0, y0)]

∆x

will be a good approximation to ∂u/∂x. Developing a Taylor-series expansion for u (x0 + ∆x, y0) about
(x0, y0) gives (see figure 2.2)

u (x0 + ∆x, y0) = u (x0, y0) +
∂u

∂x

∣∣∣∣
0

∆x+
∂2u

∂x2

∣∣∣∣
0

(∆x)2

2!
+ . . .

+
∂n−1u

∂xn−1

∣∣∣∣
0

(∆x)n−1

(n− 1)!
+

∂nu

∂xn

∣∣∣∣
ξ

(∆x)n

n!

(2.55)

where x0 6 ξ 6 (x0 + ∆x). Thus we can form the “forward” difference by rearranging equation (2.55),

switching to the i, j notation:
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∂u

∂x

∣∣∣∣
i,j

=
ui+1,j − ui,j

∆x
+ O (∆x) (2.56)

An infinite number of difference representations can be found for ∂u/∂x|i,j, for example we could expand

“backward”:

∂u

∂x

∣∣∣∣
i,j

=
ui,j − ui−1,j

∆x
+ O (∆x) (2.57)

or subtracting equations (2.56) and (2.57), to obtain the “central” difference:

∂u

∂x

∣∣∣∣
i,j

=
ui+1,j − ui−1,j

2∆x
+ O (∆x)2 (2.58)

or adding equations (2.56) and (2.57), to obtain an approximation of the second derivative:

∂2u

∂x2

∣∣∣∣
i,j

=
ui+1,j − 2ui,j + ui−1,j

(∆x)2
+ O (∆x)2 (2.59)

The mixed derivative approximation can be obtained from the Taylor-series expansion for two variables:

u (x0 + ∆x, y0 + ∆y) = u (x0, y0) +

(
∆x

∂

∂x
+ ∆y

∂

∂y

)
u (x0, y0)+

+
1

2!

(
∆x

∂

∂x
+ ∆y

∂

∂y

)2

u (x0, y0) + . . .

+
1

n!

(
∆x

∂

∂x
+ ∆y

∂

∂y

)n

u (x0 + θ∆x, y0θ∆y)

(2.60)

where 0 6 θ 6 1; rearranging equation (2.60), switching to the i, j notation:

∂2u

∂x∂y

∣∣∣∣
i,j

=
1

∆x

(
ui+1,j − ui+1,j−1

∆y
−

ui,j − ui,j−1

∆x

)
+ O (∆x,∆y) (2.61)

In thismanner is possible to obtain all derivatives that appear in Navier-Stokes equations described in section

2.1, for cylindrical and cartesian structured grids.

2.5.3 Newton-Raphson Method

Newton–Raphson method is a method for finding successively better approximations to the roots (or zeroes)

of a real-valued function. Assuming that an initial estimate x0 is known for the desired root α of f(x) = 0,

Newton-Raphson method will produce a sequence of iterates which will converge to α. Since x0 is assumed

close to α, the function f(x) can be approximated by constructing its tangent line at (x0, f (x0)), as can be

seen in figure 2.3 on the next page.

Then the root of this tangent line can be used to approximate α, calling this approximation x1. This process

can be repeated to obtain a sequence of iterates xn with the following iteration formula:

xn+1 = xn −
f (xn)

f ′ (xn)
with n > 0 (2.62)

Newton-Raphson method can be explained also starting with a Taylor series development: expanding f(x)
about xn:

f (x) = f (xn) + (x− xn) f
′ (xn) +

(x− xn)
2

2
f ′′(ξ) (2.63)
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y

x
x0x1x2α

Figure 2.3: Newton’s method

with ξ between x and xn. Letting x = α and using f (α) = 0, solving for α we obtain:

α = xn −
f (xn)

f ′ (xn)
−

(α− xn)
2

2
· f

′′ (ξn)

f ′ (xn)
(2.64)

with ξn between xn and α. Recalling equation (2.62):

α− xn+1 = −(α− xn)
2 · f

′′ (ξn)

2f ′ (xn)
with n > 0 (2.65)

Using equations (2.64) and (2.65), Newton-Raphson method has a quadratic order of convergence (p = 2)

in:

|α− xn+1| 6 c |α− xn|
p

with n > 0, c > 0 (2.66)

2.5.4 Runge-Kutta Method

Runge-Kutta method is a numerical scheme commonly used to solve initial value problems for ODE’s. This

scheme was developed around 1900 by the german mathematicians C. Runge and M. W. Kutta and essentially

utilizes the weighted average of several solutions over the interval∆t in order to improve accuracy of solution.

A generic Runge-Kutta scheme can be expressed by the:

un+1 = un + h
s∑

i=1

bik
n
i n = 0, ..,N− 1

u0 = u(t0)
(2.67)

where
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h = tn+1 − tn (2.68)

kni = F

tn + cih, u
n + h

i−1∑
j=1

aijk
n
j

 i = 1, .., s (2.69)

c1 = 0 (2.70)

i−1∑
j=1

aij = ci for i = 2, . . . , s (2.71)

and aij, ci, bi are coefficients to be determined and s are the sub steps of Runge-Kutta scheme.

2.6 HeaRT Code

Into the section 2.1 on page 8 we have pointed out that in order to perform a LES numerical simulation of an

energy burner, Navier-Stokes conservation laws are suitable. The Navier-Stokes system is the first component

of our CFD study: our aim is to find the solution of the Navier-Stokes system (conveniently modified) when the

initial and boundary conditions are imposed to it. In this section the numerical model used to find this solution

is presented.

HeaRT (Heat Release and Turbulence) numerical code, developed by UTTEI (Technical Unit for Advanced

Technologies for Energy and Industry) of ENEA, in collaboration with DIMA (Mechanical and Aerospace Engi-

neeringDepartment) of SapienzaUniversity of Rome, is an unsteady numerical solver for turbulent reacting and

non reacting flows, at lowMach number, in three-dimensional cartesian and cylindrical geometries, discretized

by the means of structured grids. Navier-Stokes equation are implemented in the compressible formulation,

in order to highlight wave propagation phenomena that are very important for combustion instability analysis.

Governing equations are solved, in HeaRT code, on a staggered grid scheme: scalars (density, temperature,

pressure, total energy and mass fractions) are set in the cell center, while the three mass fluxes are staggered

in space by half grid width and collocated in the “positive” faces of the cell (see figure 2.4a). Viscous stresses

are set in the cell center and in the edges of the cell (see figure 2.4b).

i j

k

ρUz(i, j, k)

ρUϑ(i, j, k)

ρUr(i, j, k)

ρ,p,T,Utot(i, j, k)

(a) Scalars and Mass Fluxes

i j

k

τrz(i, j, k)

τrϑ(i, j, k)

τzϑ(i, j, k)

τzz, τrr, τϑϑ,KSGS, Yi(s)(i, j, k)

(b) Viscous Stresses

Figure 2.4: Variables Position in a Cell

Summarizing, HeaRT code is a staggered numerical code that uses:

• AUSMnumerical schemewith QUICK reconstruction for convective fluxes of scalar variables (ρ,Utot, Yi);

the numerical algorithm, for evaluation of convective mass flux in a generic direction, is the following:
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i− 1 i i+ 1 i+ 2

Figure 2.5: AUSM grid

1. left and right sound velocities are evaluated on the red face in figure 2.5 by themean of a quadratic

upstream interpolation

aL = Q+
1 a (i+ 1) +Q+

2 a (i) +Q+
3 a (i− 1)

aR = Q−
1 a (i+ 2) +Q−

2 a (i+ 1) +Q−
3 a (i)

(2.72)

whereQ+
i andQ−

i , with i = 1, · · · 3 are grid spacing depending metric terms;

2. Mach number on the red face in figure 2.5 is evaluated from the

M = U (i)
aL + aR

2aLaR
(2.73)

whereU(i) is the flow velocity othogonal to the red face, where is collocated due to the staggered

formulation;

3. the convective mass flux is evaluated from

Fc =
1

2
M (ρaL + ρaR) + |M| (ρaL − ρaR) (2.74)

where ρaL and ρaR are the product of density and sound velocity evaluated by the means of

equation (2.72);

the same algorithm is used for the other two directions and for convective energy fluxes ρUtot + p and

convective species fluxes ρYi.

• second order centered finite difference numerical scheme for momentum (ρUz, ρUr, ρUθ) and for

diffusive fluxes of scalar variables; due to the staggered formulation adopted, some interpolations are

necessary to obtain all the required variables in the right place; for “axial” momentum flux, mass flow

and velocity have to be re-collocated in the cell center by the means of a linear interpolation from the

two cell faces: as can be seen in figure 2.6a on the next page, staggered velocties and mass fluxes (the

black crosses) are interpolated in the momentum cell faces (the red dotted cell) to compute momentum

flux balance, with the following equation:

φ(i) = ciφ(i+ 1/2) + (1− ci)φ(i− 1/2) (2.75)

where due to the staggered formulation ci = 1/2; after that, axial convective momentum flux p+ ρuu

can be computed, because the pressure is collocated on the cell center; for “orthogonal” momentum

flux, mass flux and velocity have to be re-collocated on the corners of the scalar cell (the red dots in

figure 2.6b on the facing page); orthogonal velocities (green crosses) are interpolated in the momentum

cell face with the equation:
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i− 1 i i+ 1

(a)

i i+ 1

j− 1

j

j+ 1

(b)

Figure 2.6: Interpolation scheme for “axial” and “orthogonal” mass fluxes and velocities

φ(i+ 1/2) = ciφ(i+ 1) + (1− ci)φ(i) (2.76)

but otherwise from “axial” flux, ci =
xi+1/2−xi

xi+1−xi
; axial mass fluxes (black crosses) are interpolated in the

momentum cell face with the equation:

φ(j+ 1/2) = cjφ(j+ 1) + (1− cj)φ(j) (2.77)

where cj =
yj+1/2−yj

yj+1−yj
. after these simple interpolations, the other convective flux (ρuauo, where

subscript “a” is for “axial” component and subscript “o” is for “orthogonal” component of flow velocity);

viscous terms in the momentum equation, due to the staggered formulation adopted (see figure 2.4b

on page 21), don’t need any interpolation and the derivatives of these terms can be easily calculated by

the equation (2.56).

For energy equation, viscous work terms and heat fluxes are evaluated from equation (2.56) as for diffu-

sive terms in species equation.

• Newton-Raphson procedure for temperature calculation; the temperature is evaluated, starting from its

old value (at the previous time-step), as the value for which the equation nRT +Etot −Htot = 0, where

R is the universal gas constant, Etot is the internal energy andHtot is the standard formation enthalpy of

the mixture.

• Runge-Kutta third order numerical scheme for time integration; in order to obtain a III order accurate

scheme s = 3must be chosen in equation (2.71); in the scheme here adopted [15] the coefficients are

set to:

c2 = c3 = 0

b1 = b2 = 1
6 b3 = 2

3

a21 = 1 a31 = a32 = 1
4 .

In order to ensure the calculation stability two conditions must be respected: the condition on the

Courant-Friedricks-Lewy (CFL) condition and the condition on the Von Neumann number VNN for the

stability of transport-diffusion systems. The CFL (or Courant) number is defined as
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CFL = λMAX
j

∆t

∆xj
(2.78)

where λMAX
j is themaximum local eigenvalue in the jth direction. The physical meaning of this condition

can be explained with reference to Figure 2.7. CFL = 1 implies that ∆t is the time by which the signal

entering the control volume crosses it reaching the opposite interface. ∆t is therefore the time by which

the flux estimate should be updated, unless the initial estimate already takes into account the outcoming

flux variation.

∆ t

j-1/2 j+1/2j

Figure 2.7: Physical interpretation of the CFL condition

The non-linear stability of this scheme, in conjunction with a ENO reconstruction is reported in [15] to

be given by the conditionCFL < 1. Nevertheless, the application of III order R-K schemes, in conjunction

with the staggered discretization described in section ( 2.5 on page 15), to compressible flow LES is

reported in [16] to be performed using CFL = 0.29 in order to limit the effects of the truncation error.

The condition on the VNN defined as

VNN = ν
∆t

(∆x)2
(2.79)

for a Forward-Time-Centered-Space (FTCS) it is reported to be VNN < 0.5 proven that a condition for

the cell Reynolds numberRe∆ is satisfied. The complete analysis of the FTCS scheme stability is reported

in [17].
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3 Mesh Refinement

Dall’analisi precedente appare evidente come sia necessario introdurre una tecnica di mesh refinement “ad

hoc” per il codice HeaRT, considerate le caratteristiche dei fluidi simulati: siamo infatti in presenza di flussi

comprimibili, reagenti e ad elevata turbolenza. Considering the features of the flow field (compressible, with

chemical reactions and with an high level of turbulence) simulated by the mean of HeaRT code, is been devel-

oped a mesh refinement technique founded on joined grids: on the entire computational domain there’s only

one grid, that can have different zones with different spatial resolution. The refinement is constant and the

same in the three direction:

∆x1
∆x2

=
∆x2
∆x3

= . . .
∆xl−1

∆xl
= r

∆y1

∆y2
=

∆y2

∆y3
= . . .

∆yl−1

∆yl
= r

∆z1
∆z2

=
∆z2
∆z3

= . . .
∆zl−1

∆zl
= r

(3.1)

Level data structure is udes for an easier identification of the number of fine cells contained in a single coarse

cell. For example, if a level l1 zone shares a border with a finest level l2 zone, and the refinement ratio (a

fixed parameter that identifies the number of fine cells contained in the immediately previous coarse level - i.

e. between level 4 and level 3 - and is the same for all the entire domain, see equation (3.1)) is set to p, there

are n = p(l2−l1) fine cells contained in a coarse cell.

With this approach is necessary to develop two different communication procedures, one that transfer vari-

able values from coarse to fine grid (named prolongation) and the other that makes the opposite way (named

restriction), but in both cases variable values are transferred only on “ghost” cells.

3.0.1 Solution Algorithm

In the solution algorithm, each grid block solves conservation equations indipentently from other grid blocks,

but the time step choosen in order to satisfy CFL condition is the same for all grids: minimum value is selected,

as can be seen in figure 3.1 on the next page (where, for the sake of simplicity, only 3 zones of 3 different spatial

resolutions - or levels - are illustrated).

Time integration procedure is here described:

1. First RK Substep of all zones, from t0 to tin1
;

2. Restriction of boundary conditions at time tfin1
from zone 2 to zone 1;

3. Prolongation of boundary conditions at time tfin1
from zone 1 to zone 2;

4. Restriction of boundary conditions at time tfin1
from zone 1 to zone 0;

5. Prolongation of boundary conditions at time tfin1
from zone 0 to zone 1;

6. Second RK Substep of all zones, from tin1
to tin2

;

7. Restriction of boundary conditions at time tfin2
from zone 2 to zone 1;

8. Prolongation of boundary conditions at time tfin2
from zone 1 to zone 2;
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12

14

1

1

1

6

6

6

11
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11

Single time step

Temporal Integration

Prolongation

Restriction

Figure 3.1: Scheme of temporal advance on all grid levels

9. Restriction of boundary conditions at time tfin2
from zone 1 to zone 0;

10. Prolongation of boundary conditions at time tfin2
from zone 0 to zone 1;

11. Third RK Substep of all zones, from tin2
to tfin;

12. Restriction of boundary conditions at time tfin3
from zone 2 to zone 1;

13. Prolongation of boundary conditions at time tfin3
from zone 1 to zone 2;

14. Restriction of boundary conditions at time tfin3
from zone 1 to zone 0;

15. Prolongation of boundary conditions at time tfin3
from zone 0 to zone 1;

So in HeaRT solver routine, at the end of any Runge-Kutta substep, finest zones start to transfer variables

values on ghost cells of neighboring coarser zones, that subsequently transfer variables values on ghost cells

of the finest zones; this couple of operations (prolongation and restriction) is repeated until coarsest zones are

reached, and all ghost cells of all zones have updated their values. At this point, a new Runge-Kutta substep

begins for all the zones of the domain.

Also in this case communications between zones of different spatial resolution are very important, because

a correct variables transfer on ghost cells is essential to obtain a continuous solution on the entire domain.

3.0.2 Communication Procedures

For the sake if simplicity, communication procedures hereafter illustrated are related to a cartesian uniform

bi-dimensional grid: their form and structure can be easily extended to a three-dimensional cylindrical or

cartesian non-uniform grid.
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ΦI,J

φi,j φi,j+1

φi+1,j φi+1,j+1

i

j

Figure 3.2: Scalar positions in a bidimensional grid

Restriction

Restriction procedure is used for communication of numerical solution from level l to level l − 1. For scalar

variables (collocated at the centre of the cell, see figure 3.2), coarse value is obtained from fine values by the

means of:

ΦI,J =

(
φi,jAi,j + φi,j+1Ai,j+1 + φi+1,jAi+1,j + φi+1,j+1Ai+1,j+1

)
Ai,j +Ai,j+1 +Ai+1,j +Ai+1,j+1

(3.2)

where Ai,j + Ai,j+1 + Ai+1,j + Ai+1,j+1 = AI,J; variables Ai,j, Ai,j+1, Ai+1,j, Ai+1,j+1 are fine cell

areas (colored areas in figure 3.2), contained in coarse cell AI,J (checkboard zone in figure 3.2). Essentially a

scalar value is a weighted sum of fine value, where the weight is the area fraction of each fine cell contained

in the coarse one. Is straightforward that for a three-dimensional case coarse value is calculated with:

ΦI,J =

n∑
i=1

φiVi

n∑
i=1

Vi

(3.3)

where n is the number of fine scalar cells contained in a scalar coarse cell.

For momentum ρU, collocated at the positive edges (in a bi-dimensional grid) of a cell (see figure 3.3 on the

next page, coarse grid value is obtained from fine values by the means of:

ΦI,J =
φi+1,jl1 + φi+1,j+1l2

l1 + l2
(3.4)

where L = l1 + l2. For a three-dimensional grid, coarse scalar value is calculated from:

ΦI,J =

n∑
i=1

φiAi

n∑
i=1

Ai

(3.5)
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ρUI,J

ρui,j ρui,j+1

ρui+1,j ρui+1,j+1

l1 l2

L

Figure 3.3: Momentum restriction

whereAi is the face area of fine cell where is collocated φi momentum andA =

n∑
i=1

Ai is the face area of

coarse cell whereΦI,J is collocated.

Prolongation

For prolongation is choosed an accurated interpolation algorithm, and therefore the whole communication

“operator” is really complex.

The selected algorithm is the same for both scalar andmomentumprolongation: least squares interpolation,

that conserves mean value in the control volumes. To compute the fine cell interpolated value a Taylor series

expansion about the coarse value ci that belongs to the corresponding coarse cell (the “centroid”):

φINT
ci

(x) = φci
+

∂φ

∂x

∣∣∣∣
ci

∆x+
∂φ

∂y

∣∣∣∣
ci

∆y+
∂φ

∂z

∣∣∣∣
ci

∆z+

+
∂2φ

∂x2

∣∣∣∣
ci

∆x2

2
+

∂2φ

∂y2

∣∣∣∣
ci

∆y2

2
+

∂2φ

∂z2

∣∣∣∣
ci

∆z2

2
+

+
∂2φ

∂x∂y

∣∣∣∣
ci

∆x∆y+
∂2φ

∂x∂z

∣∣∣∣
ci

∆x∆z+
∂2φ

∂y∂z

∣∣∣∣
ci

∆y∆z

(3.6)

where∆x = x−xci
, ∆y = y−yci

, ∆z = z−zci
being the distances, along the three cartesian coordinates,

between the reconstruction point and the centroid ci where derivatives in equation (3.6) are calculated. If first

order interpolation is choosed, only the first 4 must be mantained in equation (3.6). In a three-dimensional

case, for a third order interpolation, there are 9 unknowns (the derivatives in the equation (3.6)), so for the

sake of simplicity of the numerical algorithm, a total number of 26 neighboring points to the centroid are used

to construct the stencil of least squares interpolation: indeed, if the centroid has coordinates (I, J, K), the
stencil extends from (I− 1, J− 1, K− 1) to (I+ 1, J+ 1, K+ 1) (see figure 3.4 on page 31).
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To conserve the mean value in the control volume of the interpolating function φINT
ci

(x), the following

equation must be forced:

φi =
1

Vi

∫
Vi

φINT
ci

(x)dV (3.7)

Substituting equation (3.6) in (3.7) and computing themean value in a volumeVj of the interpolation stencil

gives:

φj = φi +
∂φ

∂x

∣∣∣∣
ci

1

Vj

∫
Vj

∆xdV +
∂φ

∂y

∣∣∣∣
ci

1

Vj

∫
Vj

∆ydV+

+
∂φ

∂z

∣∣∣∣
ci

1

Vj

∫
Vj

∆zdV+

+
∂2φ

∂x2

∣∣∣∣
ci

1

2Vj

∫
Vj

∆x2dV +
∂2φ

∂y2

∣∣∣∣
ci

1

2Vj

∫
Vj

∆y2dV+

+
∂2φ

∂z2

∣∣∣∣
ci

1

2Vj

∫
Vj

∆z2dV+

+
∂2φ

∂x∂y

∣∣∣∣
ci

1

Vj

∫
Vj

∆x∆ydV +
∂2φ

∂x∂z

∣∣∣∣
ci

1

Vj

∫
Vj

∆x∆zdV

+
∂2φ

∂y∂z

∣∣∣∣
ci

1

Vj

∫
Vj

∆y∆zdV

(3.8)

To avoiding calculation of x− xci
, ecc…, integrals for each control volume Vj with respect to ci [18], values

x − xci
, y − yci

, z − zci
in equation (3.8) are replaced with

(
x− xcj

) (
xcj

− xci

)
,
(
y− ycj

) (
ycj

− yci

)
,(

z− zcj

) (
zcj

− zci

)
:

φj = φi +
∂φ

∂x

∣∣∣∣
ci

x̂+
∂φ

∂y

∣∣∣∣
ci

ŷ+
∂φ

∂z

∣∣∣∣
ci

ẑ+
∂2φ

∂x2

∣∣∣∣
ci

x̂2 +
∂2φ

∂y2

∣∣∣∣
ci

ŷ2 +
∂2φ

∂z2

∣∣∣∣
ci

ẑ2

+
∂2φ

∂xy

∣∣∣∣
ci

x̂y+
∂2φ

∂xz

∣∣∣∣
ci

x̂z+
∂2φ

∂yz

∣∣∣∣
ci

ŷz

(3.9)

with

̂xnymzp =
1

Vi

∫
Vi

[(
x− xcj

) (
xcj

− xci

)]n [(
y− ycj

) (
ycj

− yci

)]m
[(
z− zcj

) (
zcj

− zci

)]p
dV

=

n∑
k=0

n!

k! (n− k)!

(
xcj

− xci

)k m∑
l=0

m!

l! (m− l)!

(
ycj

− yci

)l
p∑

r=0

p!

r! (p− r)!

(
ycj

− yci

)r
xn−kym−lzp−r

(3.10)

and

xmynzp =
1

Vi

∫
Vi

(x− xci
)m (y− yci

)n (z− zci
)p dV (3.11)

Writing equation (3.9) for any coarse point that belongs to the interpolation stencil, an overdetermined

system of equations can be obtained:
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∆φ = Sdφ (3.12)

where

∆φ =


wi1

(
φ1 − φci

)
wi2

(
φ2 − φci

)
· · ·
· · ·

wiN

(
φNi

− φci

)

 (3.13)

S =


x̂1 ŷ1 ẑ1 x̂21 ŷ2

1 ẑ21 x̂y1 ŷz1 x̂z1

x̂2 ŷ2 ẑ2 x̂22 ŷ2
2 ẑ22 x̂y2 ŷz2 x̂z2

· · ·
· · ·

x̂Ni
ŷNi

ẑNi
x̂2Ni

ŷ2
Ni

ẑ2Ni
x̂yNi

ŷzNi
x̂zNi

 (3.14)

dφ =
[
∂φ
∂x

∂φ
∂y

∂φ
∂z

∂2φ
∂x2

∂2φ
∂y2

∂2φ
∂z2

∂φ
∂xy

∂φ
∂yz

∂φ
∂xz

]
(3.15)

and

wij =
1∣∣−→x j −
−→x i

∣∣2 (3.16)

The system of equations (3.12) can be rearranged in the form:(
STS

)−1
ST∆φ = C∆φ = dφ (3.17)

where Cmatrix contains only geometrical constants and so can be calculated once.

In figure 3.4 on the next page interpolation domain for scalar value in a bidimensional cartesian grid is illus-

trated: the green dot is the centroid, the red cross is the fine value that has to be calculated and the black dots

are all coarse points that belong to the interpolation stencil.

The values in (3.10) can be analytically calculated; referring to figure 3.4 on the facing page, the following

values are obtained:

x̂ = ∆x

ŷ = ∆y

x̂2 =
dx2x − dx2cen

12
+ ∆x2

ŷ2 =
dy2

y − dj2cen

12
+ ∆y2

x̂y = ∆x∆y

(3.18)

where with the subscript cen are indicated cell dimensions for the centroid cell while with subscripts x and

y are indicated cell lenghts for all the points that belong to the interpolation stencil. For momentum ρU the

algorithm and the distances scheme is the same.
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4 Validation

The validation is a fundamental phase for the development of a numerical code. In this chapter a simple

three-dimensional test case and a more severe numerical simulation are presented.

4.1 Parabolic Flux Test Case

A three-dimensional test case is been performed: the test isn’t very complex, so the simulation time and com-

putational resources necessary aren’t so high; furthermore, with a simple (but efficient) test case, simulation

setup is very easy and the debuggin process is fast.

This test case selected is a simple tube, with an inlet at the right far end and and outlet at the other one,

adiabaticwalls and as initial condition the flow is fixed; at the inlet, a velocity profile (represented in figure 4.1c)

is forced. The maximum velocity in z direction is 10ms−1.

The numerical grid is composed by six different zones: the finest grid (red color in figure 4.1a) is fully sur-

rounded by five coarse zones; in this way the connection operators can be tested in all the three directions.

The numerical test shows that the parabolic flow passes over the fine grid boundaries and doesn’t change

its shape and its intensity: all variables, in the coarse-fine interface have a continuous profile without any sort

of spurioius oscillation.

4.2 LES of a Lean Premixed CH4/H2-Air Slot Flame

Instead to simulate the SANDIA Syngas Jet Flame “A” as written in the last year agreement between ENEA-

COMSO and DIMA, a different flame is been simulated, because of the availability of large numerical data sets

obtained from a DNS and a LES of this particular flame.

The test case consist in an unconfined and athmospheric Bunsen flame developing along z direction; the

premixed flame is produced by three adjacent rectangular slot burners (with undefined size in the x direction)

separated in the y direction by means of two 0.17 mm walls. From the central slot burner flows a mixture

of methane, hydrogen and air (equvalent ratio Φ = 0.7 and with 0.2 mole fraction of hydrogen) with a bulk

velocity of 100ms−1 and a temperature of 600 K, while from the lateral slots flows hot combusition product

(a) Computational domain (b) Inlet velocity profile versus time (c) Inlet velocity profile towards x (or y)

direction

Figure 4.1: Geometric and inlet setup
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(a) (b)

(c) (d)

Figure 4.2: Flow fields along z direction

of the central mixture with a velocity of 25ms−1. The central Reynolds number is 2264, based on the 1.2mm

width of the jet, its bulk velocity, and the kinematic viscosity 5.3× 10−5 m2 s−1.

This test was performed on a three-dimensional computational domain: the total lenght in the z direction is

28mm, 4mm for the injection zone and 24mm for the main mixing and reacting zone, the total lenght in the

y direction is 36mm (the injection zone has an y dimension of 1.2mm) and the total lenght in x direction is 3

mm. The domain is discretized by zones with different spatial resolution: the red ones in figure 4.4 on page 35

are the finest one, while the black ones are the coarsest.

The computational domain has 8 different zones: four fine and four coarse, with a refinement ratio of 2; in

x direction the computational domain consist of 60 nodes for the fine zones and 30 nodes for the coarse ones;

the central mixing and reacting zone has 216 nodes in z direction and 150 nodes in y direction.

In figure 4.5 on page 36 the temperature of the flow field is presented, with three different isosurfaces: also

where there’s the join between the two grids of different spatial resolution, the solution is good and there

aren’t any spurious oscillations; the figure 4.5b shows a particular of the join region, in the upper part of

the central mixing and reacting zone, where the flame front takes place and the gradients of all fluidodinamic

properties are higher: also here the solution quality is very good.

This correct behaviour is shown also in figure 4.6 on page 36, where the velocity in z direction of the flow

field is presented, with three different isosurfaces.

The numerical simulation is still up and running and data collection is in progress: so will be possible to

compare all numerical data obtained from this simulation with numerical data provided by the DNS and the

LES simulation performed on the same test case, without mesh refinement technique.
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(a) (b)

(c) (d)

Figure 4.3: Flow fields along z direction (2D)

34



Figure 4.4: Computational Domain with Refined Grids
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(a) (b)

Figure 4.5: Temperature Flow Field

(a) (b)

Figure 4.6: Velocity in z direction Flow Field
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Training course Scientific Computing in Fortran95

Training center CASPUR, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e
Ricerca

Foundamentals teachings Scientific Computing in Fortran95

From January 11
st to January 13

rd
2011

Training course Introduction to UNIX/Linux
Training center CASPUR, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e

Ricerca
Foundamentals teachings GNU/Linux fundamentals

Working Experiences

From August 1
st

2011 to July 31
st

2015

Employer Dipartimento di Meccanica e Aeronautica, Sapienza Università di Roma
Working Place ENEA CRE “Casaccia”, S. M. di Galeria, Rome, Italy

Qualification Research fellow; the aim of the research project is to develop multi-resolution algorithm for
Large Eddy Simulation of reacting flows

From February 1
st

2010 to 30
th November 2010

Employer Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMA), Sapienza Università di Roma
Working Place Rome, Italy

Qualification Collaboration contractor with DIMA; the aim of the research project is to analize gasdynamic
fields in Solid Rocket Motors combustion chambers

From July 1
st

1998 to August 31
st

1998

Employer Cartest s.r.l.
Working Place Rome, Italy

Qualification Collaboration contractor with Cartest; the aim of the project is to develop and manage an
electronic database
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Personal skills
and competences

Computer skills
and competences

Languages Fortran, Python, Bash scripting, C, LATEX
Platforms Unix, Linux, MS Windows (98, 2000, XP, Vista, 7, 8)
Concepts Parallel Programming with OpenMP, MPI

Integrated Environments Matlab, Matlab-Simulink (Scilab/Octave), MathCad, MS Visual Studio
Scientific Applications Tecplot, Paraview, VTK framework

Office Applications MS Office, OpenOffice
Computer Graphics Autocad, Blender, Inkscape, The GIMP

Hobbies

Hobbies Freediving, Spearfishing, Running

Mother tongue Italian
Other language

Self-assessment
European level(*)

Understanding Speaking Writing

Listening Reading Spoken
interaction

Spoken
production

English B1 Independent
user

B2 Independent
user

B1 Independent
user

B2 Independent
user

B2 Independent
user

(*)Common European Framework of Reference (CEF) level

Publications

September 2014 About Multi-Resolution Techniques for Large Eddy Simulation of Reactive Multi-Phase Flows,
G. Rossi, B. Favini, E. Giacomazzi, F. R. Picchia and N. M. S. Arcidiacono, 69th ATI Congress,
Milan, Italy

October 2012 LES Simulation of a Devolatilization Experiment on the IPFR Facility, F. Donato, G. Rossi, B.
Favini, E. Giacomazzi, D. Cecere, F. R. Picchia and N. M. S. Arcidiacono, 30th Meeting of the
Italian Section of Combustion Institute, Milan, Italy

June 2011 On the NDP Onset in Pre-Ignition Transient of High Performance SRMs: VEGA Z9A Expe-
rience, B. Favini, E. Cavallini, G. Rossi, M. Di Giacinto, A. Di Mascio and F. Serraglia, 5th

International Conference on Recent Advances in Space Technology, Istanbul, Turkiye
February 2011 Analysis of the Thermal Flow on the Surface of the Launcher VEGA, A. Di Mascio, R. Broglia,

R. Muscari, G. Rossi, S. Zaghi, and B. Favini, ESA VG-ESA-SOW-004-IPT Technical Report
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Ai sensi del DL 196/03 e della L. 675/96 autorizzo la Società destinataria del presente Curriculum Vitae al trattamento dei
miei dati personali.

Giacomo Rossi
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Bernardo Favini 

Curriculum vitae

1954 nato a Roma il 14 novembre.

1980 laureato  in  Ingegneria  Meccanica  con  110/110  e  lode,  Facoltà  di 
Ingegneria , Università di Roma la Sapienza.

1983 ricercatore  in  Fluidodinamica,  ING-IND/06,  presso  il  Dipartimento  di 
Meccanica  e Aeronautica  della  Facoltà di Ingegneria,  Università  di Roma  la 
Sapienza. 

1992 professore associato in Fluidodinamica, ING-IND/06, presso il Dipartimento 
di Meccanica e Aeronautica della Facoltà di Ingegneria, Università di Roma la 
Sapienza.

1998-2001 responsabile settore Applicazioni per il Consorzio Interuniversitario 
per le Applicazioni del Super Calcolo per l'Università e la Ricerca, CASPUR.

1998-2005 Membro  del  Collegio  dei  Docenti  del  Dottorato  in  Ingegneria 
Aerospaziale, Università di Roma la Sapienza.

2006 Membro del Collegio dei Docenti del Dottorato in Tecnologia e Scienza 
Aerospaziale, Università di Roma la Sapienza.

2012 Membro del Collegio dei Docenti del Dottorato in Matematica, Università di 
Roma la Sapienza.

Attività didattica

Docente  di diversi corsi del raggruppamento di Fluidodinamica, in particolare:
Gasdinamica, Fluidodinamica, Ipersonica, Magnetofluidodinamica, Gas Rarefatti, 
Aerotermochimica, Modellistica per la Propulsione a Solido, Metodi Numerici per 
le Equazioni alle Derivate Parziali Non-Lineari.

Docente del Master in Calcolo Scientifico, Università di Roma la Sapienza, in:
Fluidodinamica Numerica e Fluidodinamica Ambientale.

Docente del Master in Sistemi di Trasporto Spaziale, Università di Roma  la 
Sapienza, in: Gasdinamica Numerica.

Attività Scientifica

Ricerche svolte nell'ambito della Fluidodinamica con particolare interesse per: 
Metodi numerici per flussi comprimibili stazionari e non-stazionari in presenza 
di  urti,  Flussi  ipersonici  attorno  a  corpi  di  rientro,  Flussi  turbolenti 
reattivi, Gasdinamica dei motori a propellente solido.

13 pubblicazioni su riviste internazionali e 49 a congressi internazionali. 

Responsabile di finanziamenti Murst, Convenzioni ENEA e AVIO, e partecipante a 
gruppi di ricerca di Convenzioni ASI, AVIO e ESA-Esrin, ESA-ESTEC.




