

RICERCA DI SISTEMA ELETTRICO

Analisi teorico - sperimentale di sistemi di micro-cogenerazione

Marco Badami, Armando Portoraro

Report RdS/2012/076

ANALISI TEORICO – SPERIMENTALE DI SISTEMI DI MICRO-COGENERAZIONE

Marco Badami, Armando Portoraro (Politecnico di Torino – Dipartimento Energia)

Settembre 2012

Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico - ENEA Area: Razionalizzazione e risparmio nell'uso dell'energia elettrica Progetto: Studi e valutazioni sull'uso razionale dell'energia: strumenti e tecnologie per l'efficienza energetica nel settore dei servizi

Responsabile del Progetto: Ilaria Bertini, ENEA

PARTE A

Raccolta ed elaborazione dei dati sperimentali di un impianto μ -CHP e di un impianto con pompa di calore a gas GHP

Indice

Introduzione 6
Parte A1 – Raccolta ed elaborazione dati sperimentali per lo sviluppo del modello di micro-
cogeneratore
1. Elaborazioni dati Modello 1
2. Elaborazioni dati Modello 2
3. Elaborazioni dati Modello 319
4. Elaborazioni dati Modello 4
5. Analisi comparative
Parte A2 – Acquisizione dati sperimentali di funzionamento pompa di calore a gas GHP29
Parte A2 – Acquisizione dati sperimentali di funzionamento pompa di calore a gas GHP29 1. Considerazioni preliminari
Parte A2 – Acquisizione dati sperimentali di funzionamento pompa di calore a gas GHP
Parte A2 – Acquisizione dati sperimentali di funzionamento pompa di calore a gas GHP 29 1. Considerazioni preliminari 29 2. Unità GHP 36
Parte A2 – Acquisizione dati sperimentali di funzionamento pompa di calore a gas GHP 29 1. Considerazioni preliminari 29 2. Unità GHP 36 Allegato 1 – Scheda tecnica pompe di calore IDM – Terra 39
Parte A2 – Acquisizione dati sperimentali di funzionamento pompa di calore a gas GHP 29 1. Considerazioni preliminari 29 2. Unità GHP 36 Allegato 1 – Scheda tecnica pompe di calore IDM – Terra 39 Allegato 2 – Scheda tecnica pompe di calore Panasonic 40
Parte A2 – Acquisizione dati sperimentali di funzionamento pompa di calore a gas GHP 29 1. Considerazioni preliminari 29 2. Unità GHP 36 Allegato 1 – Scheda tecnica pompe di calore IDM – Terra 39 Allegato 2 – Scheda tecnica pompe di calore Panasonic 40 Allegato 3 – Scheda tecnica refrigeratori e pompe di calore MTA 41

Indice delle figure

Figura 1-1 – Elaborazioni grafiche su dati di funzionamento Modello 1
Figura 1-2 – Rendimenti sperimentali della unità di cogenerazione Modello 1 10
Figura 1-3 – Potenza termica e rendimenti sperimentali con condensazione dei fumi 11
Figura 2-1 – Installazione dell'unità Modello 2 presso l'RSE (Milano) 13
Figura 2-2 – Sinottico di impianto14
Figura 2-3 – Elaborazioni grafiche su dati sperimentali Modello 215
Figura 2-4 – Immagine di una unità Modello 2 esposta presso la fiera MCE Milano (Aprile 2012) 16
Figura 2-5 – Curve di rendimento elettrico, termico e totale fornite dal produttore dell'unità Modello 217
Figura 2-6 – Rendimento termico della macchina al variare della temperatura dell'acqua in uscita 17
Figura 3-1 – Schema dell'apparato sperimentale per il test delle performance del Modello 3 19
Figura 3-2 – Andamenti delle temperature dell' acqua di raffreddamento durante le prove sperimentali a 5.6 kW
Figura 3-3 – Andamenti delle temperature dell' acqua di raffreddamento durante le prove sperimentali a 3.1 kW 21
Figura 3-4 – Andamenti delle temperature dell' acqua di raffreddamento durante le prove sperimentali a 0.6 kW
Figura 3-5 – Set di prove a carico nominale (5.6 kW): elaborazioni in funzione della portata di acqua di raffreddamento
Figura 3-6 – Set di prove a carico parziale (3.1 kW): elaborazioni in funzione della portata di acqua di raffreddamento
Figura 3-7 – Set di prove a carico parziale (0.6 kW): elaborazioni in funzione della portata di acqua di raffreddamento
Figura 3-8 – Valutazione delle performance ai carichi parziali e in funzione della portata di acqua di raffreddamento
Figura 5-1 – Analisi comparativa delle performance delle macchine oggetto di indagine
Figura 5-2 – Interpolazione sui dati di rendimento elettrico delle macchine oggetto di indagine 28
Figura 1-1 – Schema di una pompa di calore 29
Figura 1-2 – Ciclo frigorifero standard a compressione di vapore nel piano T-S con compressione reale. 30
Figura 1-3 – Andamento del COP per una pompa di calore acqua (di falda) – acqua (pannelli radianti) 31
Figura 1-4 – Andamento del COP per una pompa di calore acqua – acqua (ΔT fluido freddo: 4°C; ΔT fluido caldo: 5°C)
Figura 1-5 – Elaborazioni per pompe di calore di calore Terra di IDM (Allegato 1 – Scheda tecnica pompe di calore IDM – Terra). Temperatura di mandata al riscaldamento 35°C
Figura 1-6 – Elaborazioni per pompe di calore di calore aria – acqua Panasonic (Allegato 2 – Scheda tecnica pompe di calore Panasonic). Temperatura acqua in uscita dal condensatore 35°C 32
Figura 1-7 – Elaborazioni per pompe di calore di calore aria – acqua MTA HAEevo (Allegato 3 – Scheda tecnica refrigeratori e pompe di calore MTA). Temperatura di mandata al riscaldamento 45°C 33

Figura 1-8 – Elaborazioni condotte su unità Carrier 30AWH 004-015 aria - acqua	33
Figura 1-9 – Elaborazioni condotte su unità Carrier 30RB-RQ 17-33 aria - acqua	34
Figura 1-10 – Elaborazioni condotte su unità Carrier 30RQY 17-33 aria - acqua	34
Figura 1-11 – Elaborazioni condotte su unità Carrier 61AF 014-019 aria - acqua	34
Figura 1-12 – Elaborazioni condotte su sistema Carrier split aria acqua A2W	35
Figura 2-1 – Schemi funzionali di una unità GHP con utilizzo del recupero termico all'interno del ci frigorifero (sx) o per produzione di ACS (dx)	clo 36
Figura 2-2 – Performance delle unità GHP 8-10-13-16-20-25HP	36
Figura 2-3 – Performance delle unità GHP 16 HP – modalità heating – Tc=35°C	37
Figura 2-4 – Performance delle unità GHP 16 HP – modalità heating – Tc=45°C	38
Figura 2-5 – Performance delle unità GHP 16 HP – modalità cooling – Te=7°C	38
Figura 1-1 – Prezzo finale dell'energia nel caso di utente tipo domestico	51
Figura 1-2 – Media dei prezzi zonali orari per il mese di Aprile 2012 (€/MWh)	51
Figura 1-3 – Modello Simulink di simulazione dello scambio sul posto	53
Figura 2-1 – Modello Simulink della pompa di calore	54
Figura 2-2 – Maschera per l'inserimento delle temperature delle sorgenti e dei salti termici	54
Figura 2-3 – Blocco di calcolo delle temperature di condensazione e di evaporazione del ciclo	54
Figura 2-4 – Diagramma p-h del fluido frigorigeno R134a	55
Figura 2-5 – Modello Simulink che implementa i capisaldi del ciclo	56
Figura 2-6 – Esempio di una simulazione del ciclo realizzato dal fluido R134a nel diagramma p-h	56
Figura 2-7 – Blocco di calcolo dei COP del ciclo	57
Figura 2-8 – Valori di COP per le pompe di calore Panasonic al variare della temperatura aria esterna	58
Figura 2-9 – Andamento dei salti di temperatura al variare temperatura esterna	58
Figura 3-1 – Modello dell'unità GHP	60
Figura 3-2 – Elementi costitutivi dell'unità GHP	61
Figura 3-3 – Interpolazione dei dati sperimentali dei micro-cogeneratori analizzati	62
Figura 3-4 – Conversione ed adimensionalizzazione dei dati interpolati	63
Figura 3-5 – Inserimento della mappa sperimentale interpolata del motore all'interno del modello	63
Figura 3-6 – Schema funzionale dell'integrazione fra cogeneratore e pompa di calore	64
Figura 3-7 – Maschere per l'inserimento dei parametri di configurazione del modello	66
Figura 3-8 – Posizionamento dei punti simulati per le unità GHP 8HP e 10 HP (dati nominali)	67
Figura 3-9 – Andamento della temperatura all'interno dell'accumulo termico [°C]	68
Figura 3-10 – Andamento della potenza termica recuperata dal motore [kW]	68
Figura 3-11 – Andamento della potenza termica erogata dalla pompa di calore [kW]	69
Figura 3-12 – Ciclo di lavoro del fluido frigorigeno nel diagramma p-h	69

Introduzione

Il presente documento rappresenta la Parte A del Rapporto Finale inerente le attività svolte in seno all'Accordo di Collaborazione tra ENEA e Dipartimento Energia (DENERG) del Politecnico di Torino, per un'attività di ricerca dal titolo: "Analisi teorico – sperimentale di sistemi di micro-cogenerazione". Tale collaborazione con ENEA si inserisce nel contesto del Piano Annuale di Realizzazione 2008-2009, per quanto attiene all'Area "Razionalizzazione e risparmio nell'uso dell'energia", tematica di ricerca "Tecnologie di risparmio elettrico e nei settori collegati industria e servizi"; nello specifico, si riferisce all' obiettivo B, "Promozione della micro-cogenerazione in un contesto di micro-rete attiva per applicazioni nel settore civile" del progetto "Strumenti e tecnologie per l'efficienza energetica nel settore dei servizi".

Obiettivo di tale filone di ricerca è quello di permettere l'approfondimento delle tematiche inerenti la generazione distribuita di piccolissima taglia (micro-cogenerazione), con focus in particolare sulle unità con potenza elettrica inferiore ai 10 kW. I temi sviluppati nell'ambito del presente accordo di collaborazione tra ENEA e DENERG hanno riguardato infatti l'acquisizione dei principali parametri energetici di sistemi di micro-cogenerazione con motore a combustione interna di piccolissima taglia (1-6 kW elettrici), sia da installazione presenti sul territorio nazionale opportunamente strumentate, sia tramite opportune e specifiche richieste di dati ai produttori di tali macchine. Inoltre, sono state analizzate le reali performance energetiche di diverse pompe di calore presenti sul mercato, sia del tipo ad azionamento elettrico, sia GHP, ovvero una tecnologia piuttosto innovativa e ancora poco diffusa sul territorio caratterizzata da sistemi a pompa di calore alimentati da motori endotermici a gas di piccolissima taglia (5-6 kW).

I dati così acquisiti sono stati impiegati per la messa a punto e l'ottimizzazione del modello dinamico di cogeneratore di piccola taglia (100-500 kWel) sviluppato dal DENERG per ENEA nell'ambito della precedente annualità di ricerca di sistema elettrico (2010-2011), per renderlo idoneo alla simulazione di sistemi di micro-cogenerazione (1-6 kWel). Inoltre, il modello di unità di micro-cogenerazione così sviluppato è stato impiegato per la realizzazione di un ulteriore programma, volto alla simulazione e alla previsione del funzionamento orario e dei principali indici di efficienza energetica di una unità a pompa di calore a gas di piccolissima taglia, validato sulla base dei dati sperimentali precedentemente acquisiti.

Tali studi sono la base fondamentale per avvalorare, o meno, le opportunità che una diffusione capillare di sistemi di micro-poligenerazione diffusa può offrire sul territorio nazionale, e per valutare quali siano oggi gli ostacoli che tali tecnologie incontrano per potersi affermare come valide e sostenibili alternative ai grandi impianti di generazione termoelettrica. Le performance e i rendimenti che tali sistemi di piccolissima taglia hanno sono probabilmente oggi il maggiore ostacolo alla loro diffusione, unitamente ai costi di realizzazione di tali impianti. Solo con l'analisi dettagliata del funzionamento di tali sistemi, e tramite opportuni modelli di simulazione tarati e validati su installazioni reali, è possibile approfondire tali tematiche, e capire quali adempimenti normativi possano costituire un elemento a favore dello sviluppo di questa tecnologia, e con che ricadute sui bilanci energetici ed emissivi del territorio.

Parte A1 – Raccolta ed elaborazione dati sperimentali per lo sviluppo del modello di micro-cogeneratore

1. Elaborazioni dati Modello 1

Nel presente capitolo vengono riportati i dati relativi ad un primo modello di cogeneratore di piccolissima taglia (5.0 kWel) con motore a combustione interna. I dati relativi a tale sperimentazione, effettuata da un istituto di ricerca nazionale, e sono stati analizzati nel dettaglio. Le grandezze monitorate sono le seguenti:

- temperatura del gas naturale in ingresso al cogeneratore
- potenza termica recuperata senza scambio termico con i gas combusti
- potenza termica recuperata incluso lo scambio termico con i gas combusti
- energia termica progressivamente erogata dall'unità
- consumo di gas dell'unità (Sm3)
- energia del gas in ingresso al cogeneratore
- potenza del gas in ingresso al cogeneratore
- tempo di funzionamento dell'unità
- potenza elettrica CHP
- potenza elettrica reattiva
- potenza elettrica apparente
- energia elettrica attiva
- energia elettrica reattiva
- energia elettrica apparente
- temperatura aria esterna
- pressione aria esterna

Si è proceduto ad una analisi di consistenza dei dati forniti, al fine di identificare la strategia di funzionamento dell'unità che è stata adottata durante le prove di caratterizzazione sperimentale. In particolare, si è concentrata l'attenzione sulle seguenti grandezze:

- potenza del gas in ingresso al cogeneratore
- potenza termica recuperata
- potenza elettrica attiva

I dato grezzi, campionati con una frequenza di un dato al secondo, sono stati trattati in collaborazione con l'Enea in modo da estrarre un dato per ogni ora di funzionamento. I dati così ottenuti sono riportati in Tabella 1-1.

Ora	Potenza Termica recuperata [kW]	Potenza del gas in ingresso al cogeneratore [kW]	Potenza elettrica CHP [kW]	Rendimento elettrico	Rendimento termico	EUF
0	0.0	0.0	0.0	0	0	0
1	0.0	0.0	0.0	0	0	0
2	0.0	0.0	0.0	0	0	0
3	0.0	0.0	0.0	0	0	0
4	0.0	0.0	0.0	0	0	0
5	1.5	0.0	0.0	0	0	0
6	12.0	19.3	5.3	27.4%	62.0%	89.4%
7	12.5	19.8	5.3	26.6%	63.1%	89.7%
8	12.3	19.8	5.3	26.5%	61.8%	88.4%
9	12.2	19.8	5.3	26.9%	61.5%	88.5%
10	13.5	18.2	5.3	29.2%	74.4%	103.5%
11	12.7	19.8	5.3	26.8%	64.1%	90.9%
12	0.0	0.0	0.0	0.0%	0.0%	0.0%
13	12.4	19.3	5.4	28.1%	64.4%	92.5%
14	11.6	19.3	5.3	27.5%	60.2%	87.7%
15	0.0	0.0	0.0	0.0%	0.0%	0.0%
16	12.1	19.3	5.4	28.0%	62.5%	90.5%
17	12.4	19.9	5.3	26.5%	62.5%	89.0%
18	11.1	19.3	5.4	27.9%	57.7%	85.6%
19	0.0	0.0	0.0	0.0%	0.0%	0.0%
20	12.7	19.9	5.4	27.1%	64.2%	91.3%
21	11.7	19.3	5.3	27.5%	60.8%	88.3%
22	12.5	19.8	5.3	27.0%	63.0%	90.0%
23	11.7	19.2	5.4	27.9%	60.9%	88.8%
24	0.0	0.0	0.0	0	0	0
MEDIA	12.1	19.6	5.3	27.3%	62.0%	89.3%

Tabella 1-1 – Elaborazione dati Modello 1 su base oraria

Le elaborazioni mostrano come la prova effettuata sia stata condotta operando la macchina a punto fisso, e pari al valore nominale, per le 24 ore, a meno di alcuni punti in cui la stessa veniva spenta, o portata in stand-by (potenza del gas in ingresso nulla). Si nota anche il valore fuori scala ottenuto in corrispondenza dell'ora di funzionamento nr. 10 (valori di rendimento sia elettrico, che termico, molto al di sopra della media). I valori medi riportati sono relativi unicamente alle ore in cui la macchina è in funzione, e non comprendono il valore relativo all'ora nr. 10.

Le medesime elaborazioni sono riportate anche in forma grafica in Figura 1-1.

Figura 1-1 – Elaborazioni grafiche su dati di funzionamento Modello 1

Sono inoltre stati calcolati i rendimenti elettrico, termico e complessivo (EUF) della macchina, riportati in Figura 1-2.

Figura 1-2 – Rendimenti sperimentali della unità di cogenerazione Modello 1

All'interno del set di dati analizzati, è anche riportato un valore di potenza termica "comprensivo del contributo dovuto allo scambiatore sui gas combusti". Tale contributo è legato alla possibilità tecnica di recuperare il calore di condensazione dei fumi. Le elaborazioni sui dati di potenza termica, e di rendimento termico e totale, tenendo in considerazione tale contributo, sono riportate in Figura 1-3.

Figura 1-3 – Potenza termica e rendimenti sperimentali con condensazione dei fumi

Si nota un aumento del rendimento termico, da un valore medio del 62.0% ad un valore medio pari a 69.4%. Tale incremento si riflette sull'EUF, il cui valore medio aumenta dall'89.3%, al 96.7%.

I dati di funzionamento dell'unità Modello 1 sono stati richiesti anche direttamente al produttore, il quale ha informato che nelle loro unità non è prevista modulazione del carico, ma esse sono concepite e progettate per funzionare sempre a punto fisso, e pari al punto nominale. In tali condizioni, l'unità presenta le performance riportate in Tabella 1-2:

Grandezza	Valore	U.M
Potenza elettrica nominale	5.0	[kW]
Potenza introdotta con il combustibile	19.6	[kW]
Potere calorifico inferiore del gas naturale	9.6	[kWh/Nm3]
Consumo gas	2.04	[Nm3/h]
Consumo specifico riferito all'energia elettrica prodotta	14.1	[MJ/kWh]
Potenza termica totale con condensatore fumi a 60°C	14.6	[kW]
Rendimento elettrico	26%	[%]
Rendimento termico con condensatore fumi a 60°C	74%	[%]
Rendimento totale	100%	[%]

Tabella 1-2 – Dati nominali di	funzionamento del Modello 1	forniti dal produttore
	junzionamento dei modeno 1	joinnei aar produceore

Si nota la buona aderenza dei dati forniti dal produttore, rispetto alle elaborazioni sui dati sperimentali.

2. Elaborazioni dati Modello 2

Un ulteriore set di dati analizzato è quello relativo alle prove condotte dall'RSE - Cesi (Milano) su un'altra unità di micro-cogenerazione con motore a combustione interna da 6.0 kW_{el} (Figura 2-1), nel seguito identificata come Modello 2. Tale attività è descritta all'interno del Rapporto Cesi "Caratterizzazione e valutazione delle prestazioni di cogeneratori di piccola taglia" del 31/03/2011. La macchina è stata testata nella modalità di funzionamento ad inseguimento termico ed è stata connessa alla rete di generazione distribuita di RSE. L'accensione e lo spegnimento del motore sono stati regolati in funzione della temperatura del serbatoio d'accumulo, impostandone i valori limite. L'utenza è stata dimensionata in modo tale che non fosse necessario l'utilizzo di caldaie integrative e che il suo fabbisogno energetico (termico) potesse essere soddisfatto interamente dalla sola unità cogenerativa per tutto il periodo considerato nelle prove. Per quanto concerne il simulatore di carico termico, oltre alla modalità di regolazione manuale, che prevedeva la possibilità di impostare la potenza termica richiesta, la temperatura di ritorno dell'acqua o di agire direttamente sulla posizione della valvola a tre vie per lo smaltimento della potenza termica, è stata implementata anche una modalità di funzionamento automatica, in cui la richiesta termica veniva regolata sulla base di un profilo annuale predefinito tipico di un utenza reale. E' stato inoltre introdotto un controllo automatico della velocità del ventilatore del dissipatore, in funzione della potenza termica richiesta ed in funzione della temperatura ambiente. Si riporta in Figura 2-2 la schermata del software di gestione della postazione di prova in cui è visualizzato il sinottico d'impianto e dalla quale sono effettuate le impostazioni dei parametri di esercizio.

La sperimentazione è stata condotta per un arco temporale di circa 4 mesi, durante la stagione invernale. Sono stati forniti tre set di dati per tre diverse temperature dell'acqua in ingresso al cogeneratore, pari rispettivamente a 55, 60 e 65°C. La sintesi delle grandezze rilevate durante le prove è riportata in Tabella 2-1.

Figura 2-1 – Installazione dell'unità Modello 2 presso l'RSE (Milano)

Figura 2-2 – Sinottico di impianto

T acqua ingresso CHP (°C)	% carico	Potenza elettrica (kW)	Potenza termica (kW)	Potenza gas (kW)	Potenza gas corretta (kW)	Rend. elettrico	Rend. termico	EUF
55	50.0%	3.0	8.8	17.1	17.9	16.8%	49.4%	66.2%
55	48.3%	2.9	9.1	17.0	17.7	16.4%	51.4%	67.8%
55	63.3%	3.8	10.2	19.2	20.0	19.0%	51.1%	70.1%
55	78.3%	4.7	10.5	20.3	21.2	22.2%	49.7%	71.9%
55	78.3%	4.7	10.8	21.4	22.3	21.1%	48.4%	69.5%
55	86.7%	5.2	11.1	22.0	22.9	22.7%	48.6%	71.3%
55	100.0%	6.0	11.6	23.2	24.2	24.8%	48.0%	72.8%
55	100.0%	6.0	11.5	23.5	24.5	24.5%	46.9%	71.4%
60	50.0%	3.0	8.5	17.0	17.7	17.0%	48.3%	65.3%
60	50.0%	3.0	8.5	16.3	17.0	17.6%	50.2%	67.8%
60	63.3%	3.8	9.8	19.2	20.0	19.0%	49.2%	68.2%
60	78.3%	4.7	10.2	20.1	21.0	22.4%	48.5%	70.9%
60	80.0%	4.8	10.3	21.0	21.9	21.9%	46.9%	68.8%
60	88.3%	5.3	10.8	22.1	23.0	23.0%	47.0%	70.1%
60	100.0%	6.0	11.5	23.3	24.3	24.7%	47.3%	72.0%
60	100.0%	6.0	11.2	23.5	24.5	24.5%	45.6%	70.1%
65	50.0%	3.0	8.2	16.8	17.5	17.1%	47.0%	64.1%
65	50.0%	3.0	8.3	16.2	16.9	17.7%	49.0%	66.8%
65	63.3%	3.8	9.5	19.2	20.0	19.0%	47.5%	66.5%
65	78.3%	4.7	9.8	20.1	20.9	22.5%	46.9%	69.3%
65	78.3%	4.7	10.1	21.1	22.0	21.4%	45.9%	67.3%
65	86.7%	5.2	10.2	21.4	22.3	23.3%	45.8%	69.1%
65	100.0%	6.0	10.6	23.4	24.4	24.6%	43.4%	68.0%
65	100.0%	6.0	10.9	23.3	24.3	24.7%	44.7%	69.4%

Tabella 2-1 – Dati sperimentali unità Modello 2 forniti dall'RSE CESI

I rendimenti, calcolati per le tre diverse temperature dell'acqua calda di rientro in ingresso al modulo CHP, sono riportati in Figura 2-3.

Figura 2-3 – Elaborazioni grafiche su dati sperimentali Modello 2

Si nota come il rendimento termico diminuisca all'aumentare della temperatura acqua in ingresso all'unità, per effetto del minor recupero termico realizzato.

Anche per questa unità di micro cogenerazione, sono stati richiesti direttamente al produttore i dati nominali di funzionamento. Le indicazioni fornite sono riportate in Tabella 2-2, mentre una immagine dell'unità è riportata in

Figura 2-4.

Grandezza	Valore	U.M
Potenza elettrica nominale del generatore	6.4	[kW]
Potenza elettrica nominale ai morsetti dell'unità	6.0	[kW]
Potenza termica nominale con condensazione fumi a 60°C	11.7	[kW]
Potenza termica nominale con condensazione fumi a 30°C	14.5	[kW]
Potenza di combustibile in ingresso al 100% del carico	20.8	[kW]
Potenza di combustibile in ingresso al 75% del carico	18.9	[kW]
Potenza di combustibile in ingresso al 50% del carico	14.7	[kW]
Potenza di combustibile in ingresso al 33% del carico	13.0	[kW]
Potere calorifico inferiore del combustibile	9.45	[kWh/Nm ³]
Rendimento elettrico	28.5%	[%]
Rendimento termico con condensatore fumi a 60°C	57%	[%]
Efficienza globale (EUF)	85.5%	[%]

Tabella 2-2 – Dati tecnici nominali unità Modello 2 forniti dal produttore

Figura 2-4 – Immagine di una unità Modello 2 esposta presso la fiera MCE Milano (Aprile 2012)

Per quanto concerne la parte elettrica della macchina, il produttore informa inoltre che il generatore è di tipo sincrono a magneti permanenti e a 16 poli. La corrente da esso prodotta, di tensione e frequenza variabili, viene convertita in corrente continua e successivamente processata da un inverter già installato a bordo macchina. La potenza elettrica disponibile ai morsetti dell'unità risulta pari a 6 kW monofase.

Dal punto di vista termico, il produttore indica che in corrispondenza della massima potenza elettrica l'unità è in grado di recuperare 11.7 kW sfruttando sia l'azione di condensazione degli esausti che il raffreddamento del motore stesso. Il circuito interno alla macchina viene sigillato e precaricato con glicole etilene. Non risulta pertanto esservi acqua tecnica che dall'accumulo entri direttamente nel motore. L'interfaccia tra acqua tecnica ed antigelo motore è costituita da uno scambiatore a piastre

montato a bordo macchina. L'unità è anche dotata di sistema di emergenza contro il surriscaldamento del motore, costituito da radiatore e ventola di estrazione. Tale sistema non interviene durante il normale funzionamento dell'unità, ma è a garanzia del corretto funzionamento qualora gli altri dispositivi contro il surriscaldamento motore (sonda di temperatura sul motore, sonda sul catalizzatore e sonda nel vano motore) non dovessero funzionare correttamente. Il produttore informa inoltre che l'unità è progettata per funzionare con un salto termico sul lato acqua dello scambiatore a piastre di 5°C, con una portata minima di 2 m³/h e con temperatura massima di ritorno di 60°C. Le temperature dell'acqua motore in ingresso e uscita dello scambiatore acqua motore / acqua utenza sono pari a 70°C in ingresso e 75°C in uscita.

La gestione dei flussi termici dentro all'unità (sul circuito dell'antigelo motore quindi) è affidata ad una doppia valvola termostatica (puramente meccanica). E' possibile diminuire ulteriormente la temperatura dell'acqua di ritorno fino a 30°C circa (per applicazioni quali pavimenti radianti). In tal caso la potenza termica complessivamente recuperabile sale a 14.5 kW previo installazione di apposito kit aggiuntivo. Si riportano in Figura 2-5 le curve di rendimento elettrico, termico e totale fornite dal produttore.

Figura 2-5 – Curve di rendimento elettrico, termico e totale fornite dal produttore dell'unità Modello 2

Il produttore ha inoltre condotto una caratterizzazione del rendimento termico della macchina al variare della temperatura dell'acqua in uscita dall'unità. Tali dati, misurati sperimentalmente presso i laboratori del produttore durante prove a potenza nominale, sono mostrati in Figura 2-6. Si nota come all'aumentare della temperatura di uscita dell'acqua, la curva di rendimento si mantenga all'incirca costante fino a 68 °C circa. Oltre tale valore, la potenza termica recuperata scende linearmente fino al 33% del valore nominale, in corrispondenza della temperatura massima pari a 73 °C circa.

TEMPERATURA ACQUA – CALORE RECUPERATO

Figura 2-6 – Rendimento termico della macchina al variare della temperatura dell'acqua in uscita

Per quanto concerne le temperature dei fumi a pieno carico e ai carichi parziali in ingresso allo scambiatore acqua utenza/gas combusti, il produttore informa che tale dato non è stato rilevato durante le prove sperimentali. La temperatura dei fumi in uscita dal catalizzatore varia tra 530°C a pieno carico fino a 460°C al 33% del carico. Tali dati risultano rilevati dalla sonda a bordo macchina.

La temperatura dei fumi allo scarico risulta essere sempre pari a 60°C quando il circuito idraulico lavora a regime, sia a carico nominale che ai regimi parziali. Qualora intervenisse la ventola del radiatore di emergenza, i fumi potrebbero raggiungere anche i 90°C, ma il produttore informa che si tratterebbe di una fase di emergenza ed il motore entrerebbe nella procedura di spegnimento. La portata dei fumi è stata resa disponibile solamente in condizioni nominali, e risulta pari a 60 m³/min

Il produttore ha infine fornito alcune indicazioni per quanto concerne le emissioni in atmosfera dell'unità. Queste sono state misurate in valore assoluto in ppm. In particolare, si hanno a potenza nominale e con una percentuale di ossigeno pari a 8.7%:

- NOx = 46 ppm
- CO = 2 ppm

3. Elaborazioni dati Modello 3

Un ulteriore set di dati sperimentali, fornito da Enea, è relativo all'unità di micro-cogenerazione con motore a combustione interna da 5.6 kWel, identificata come Modello 3. I test realizzati in seno a tali prove sono caratterizzati complessivamente 6 prove, a 3 diversi livelli di potenza elettrica: 0.9, 3.1 e 5.6 kWel circa. Lo scopo delle prove è quello di valutare l'operatività ai regimi parziali sui rendimenti termico e elettrico. Per ogni livello di potenza elettrica sono stati inoltre condotti due esperimenti con due diversi valori di portata di acqua di raffreddamento (rispettivamente 0.29 e 0.18 l/s).

Per ogni prova è stato inoltre indagato un ampio range di valori della temperatura dell'acqua di raffreddamento.

L'unità testata è in grado di modulare la potenza elettrica prodotta, in funzione del carico, che è stato prodotto utilizzando 8 lampade alogene dotate di timer automatico per poter schedulare accensioni e spegnimenti. L'unità può comunque lavorare anche in parallelo alla rete elettrica, riversando in rete l'eventuale surplus di produzione rispetto al carico.

La potenza termica viene recuperata dall'acqua di raffreddamento del motore, e dai fumi, utilizzando una miscela di acqua e glicole etilenico come refrigerante. E' anche possibile operare l'unità in inseguimento termico, in modo da mantenere a un livello di temperatura di set-point desiderato un accumulo termico. Quando la temperatura dell'accumulo sale al di sopra del set-point, la potenza termica proveniente dal motore viene dispersa, e viene mantenuta solamente la produzione elettrica.

Il banco prova sperimentale, schematizzato in Figura 3-1, è dotato di opportuna strumentazione per la misura delle grandezze elencate in Tabella 3-1.

Figura 3-1 – Schema dell'apparato sperimentale per il test delle performance del Modello 3

(T: sonda RTD, M: misuratore volumetrico portata acqua raffreddamento, W: wattmetro, MG: misuratore volumetrico portata gas naturale, P: pompa a numero di giri variabile, PHE: scambiatore di calore a piastre, HE: scambiatore di calore interno).

Parametro	Simbolo	UM	Strumentazione	Range	Accuratezza
Portata volumica combustibile	m _{fuel}	Nm³/h	Sensore magnetico	0÷5.0 Nm ³ /h	±0.8% valore letto ±0.2% fondo scala
Portata volumica acqua di raffreddamento	m _{cw}	l/min	Sensore a ultrasuoni	0÷50 l/min	±2.5% fondo scala
Temperatura gas esausti	T _{exh}	°C	RTD Pt100	-50÷200 °C	±0.2 °C
Temperature acqua di raffreddamento in uscita dal motore	T _{cw,o}	°C	RTD Pt100	-50÷80 °C	±0.2 °C
Temperature acqua di raffreddamento in ingresso al motore	T _{cw,i}	°C	RTD Pt100	-50÷80 °C	±0.2 °C
Temperatura acqua nell'accumulo	T _{HWT,1} T _{HWT,2}	°C	RTD Pt100	-50÷80 °C	±0.2 °C
Temperatura aria ambiente	T _{room}	°C	RTD Pt100	-50÷80 °C	±0.2 °C
Potenza elettrica	P _{net}	w	Wattmetro	0÷6 kW	0.2% fondo scala
Carico elettrico	P _{demand}	w	Wattmetro	0÷10 kW	0.2% fondo scala

	Tabella 3-1 – Elenco	arandezze	monitorate e	sensori utilizzati
--	----------------------	-----------	--------------	--------------------

Le prove sperimentali realizzate sono elencate in Tabella 3-2. Per ogni prova, sono indicate la potenza elettrica netta, la portata d'acqua di raffreddamento, e i valori minimo e massimo della temperatura dell'acqua di raffreddamento in ingresso al motore.

Test number	Data (gg/mm/aa)	P _{net} (kW)	m _{cw}	T _{cw,i,min} (°C)	T _{cw,i,max} (°C)
		5.50	(1/5)	242	(-)
1	02/11/2011	5.58	0.29	24.2	62.0
2	11/11/2011	3.15	0.29	27.6	64.5
3	07/12/2011	0.60	0.29	21.0	56.0
4	08/11/2011	5.60	0.18	26.0	57.7
5	21/11/2011	3.13	0.18	22.9	61.7
6	25/11/2011	0.58	0.18	25.4	67.1

Tabella 3-2 – Elenco delle prove sperimentali effettuate

Si riportano nel seguito le elaborazioni grafiche sui dati forniti.

20

17.5

15

12.5

10

7.5

5

2.5

0

Figura 3-2 – Andamenti delle temperature dell' acqua di raffreddamento durante le prove sperimentali a 5.6 kW

Figura 3-3 – Andamenti delle temperature dell' acqua di raffreddamento durante le prove sperimentali a 3.1 kW

Figura 3-4 – Andamenti delle temperature dell' acqua di raffreddamento durante le prove sperimentali a 0.6 kW

Figura 3-5 – Set di prove a carico nominale (5.6 kW): elaborazioni in funzione della portata di acqua di raffreddamento

Figura 3-6 – Set di prove a carico parziale (3.1 kW): elaborazioni in funzione della portata di acqua di raffreddamento

Si riportano in Figura 3-8 gli andamenti dei rendimenti elettrico, termico e totale, al variare del grado di parzializzazione dell'unità (P_{el} / $P_{el,nom}$).

Figura 3-8 – Valutazione delle performance ai carichi parziali e in funzione della portata di acqua di raffreddamento

4. Elaborazioni dati Modello 4

I dati riportati all'interno di questa sezione sono stati forniti dal produttore dell'unità identificata come Modello 4. L'unità è un micro-cogeneratore con motore a combustione interna da 1.0 kWel il quale lavora unicamente a punto fisso e pari al 100% della sua potenzialità massima, non è previsto il funzionamento in regime parzializzato. In Tabella 4-1 se ne riportano i dati nominali di funzionamento.

Grandezza	Valore
Potenza elettrica [kW]	1.0
Potenza introdotta con il combustibile [kW]	3.8
Potenza termica totale con acqua a 75°C [kW]	2.5
Temperatura dei gas di scarico	<90 °C
Portata dei gas di scarico	1.45 g/s
Rendimento elettrico [%]	26.3%
Rendimento termico [%]	65.7%
Efficienza globale [%]	92.0%

Tabella 4-1 – Dati nominali di funzionamento forniti dal produttore del Modello 4

1

Rendimento termico

Pel/Pel,nom

Legenda

Modello 3 - m_dot,cw = 0.29 l/s

Modello 3 - m_dot, cw = 0.18 l/s

▲ Modello 2 - Tin,CHP=65°C

▲ Modello 2 - Tin,CHP=60°C ▲ Modello 2 - Tin,CHP=65°C

20% 30% 40% 50% 60% 70% 80% 90% 100%

Modello 1

Modello 4

5. Analisi comparative

Nella presente sezione si intende effettuare un'analisi comparativa delle performance delle diverse unità oggetto di indagine. In particolare, si riportano in Figura 5-1 i confronti fra i rendimenti delle macchine.

Si denotano gli andamenti tipici di rendimento elettrico decrescente al diminuire del carico, mentre il rendimento termico aumenta. Il rendimento totale si mantiene all'incirca costante.

Le mappe così elaborate sono state interpolate e utilizzate, in forma adimensionale, per creare le look-up tables da inserire all'interno del programma Matlab Simulink di simulazione di cogeneratori di piccola taglia.

L'interpolazione effettuata è mostrata in Figura 5-2.

Figura 5-2 – Interpolazione sui dati di rendimento elettrico delle macchine oggetto di indagine

Parte A2 – Acquisizione dati sperimentali di funzionamento pompa di calore a gas GHP

1. Considerazioni preliminari

Le pompe di calore sono macchine frigorifere a compressione di vapore saturo, capaci cioè di trasferire energia termica da una sorgente a temperatura più bassa (acqua, aria, suolo) ad una a temperatura più alta, utilizzabile dall'uomo, con l'apporto di lavoro esterno.

In funzione della tipologia dell'alimentazione, le pompe di calore possono essere distinte in:

- elettriche a compressione (largamente le più diffuse);
- ad assorbimento;
- alimentate da motore a combustione interna/esterna

Le pompe di calore possono essere utilizzate:

- in inverno: il calore a bassa T attinto dalla sorgente fredda (aria esterna, acqua di falda) viene elevato di temperatura e riversato nel circuito di riscaldamento;
- in estate: il calore a bassa T attinto dalla sorgente fredda (ambiente da refrigerare) viene riversato alla sorgente a più alta temperatura esterna: acqua di pozzo, di torre, aria, ecc...

Come detto, se il funzionamento è di tipo reversibile, l'unità può funzionare anche come macchina frigorifera: tramite una valvola a 4 vie è possibile commutare il funzionamento da invernale a estivo, ottenendo l'inversione del ciclo tramite l'inversione del funzionamento degli scambiatori (evaporatore e condensatore). I componenti principali dell'impianto frigorifero sono illustrati in Figura 1-1. L'impianto è costituito da quattro organi, un compressore, da un evaporatore, da un condensatore e da un organo di espansione.

Figura 1-1 – Schema di una pompa di calore

Il ciclo lavora fra due pressioni, quella superiore (dei punti 2 e 3) e quella inferiore, dei punti 4 e 1. Le trasformazioni sono rappresentate nel diagramma T-S in Figura 1-2.

Figura 1-2 – Ciclo frigorifero standard a compressione di vapore nel piano T-S con compressione reale

Poiché il fluido frigorigeno deve asportare calore dalla sorgente fredda, la sua temperatura inferiore T_e deve essere leggermente inferiore a quella della sorgente fredda stessa, T_2 . Per lo stesso motivo, dovendo il fluido cedere calore alla sorgente calda, la sua temperatura superiore T_c deve essere leggermente superiore a quella della sorgente calda stessa, ovvero T_1 . Si ha quindi:

 ΔT fluido freddo = T₂ - T_e ΔT fluido caldo = T_c - T₁

Il COP della macchina che realizza il ciclo indicato si esprime come:

$$COP = \frac{\mathsf{Q}_1}{\mathsf{L}} = \frac{\mathsf{Q}_0 + \mathsf{L}}{\mathsf{L}} = \frac{\mathsf{h}_2 - \mathsf{h}_3}{\mathsf{h}_2 - \mathsf{h}_1}$$

Il valore teorico di COP massimo, relativo al ciclo di Carnot inverso, è dato da:

$$COP = \frac{T_1}{T_1 - T_2}$$

Dove T_1 è la temperatura dell'energia resa e T_2 è la temperatura della sorgente fredda. Nel caso ideale (scambiatore di calore di superficie infinita), si può assumere $T_e = T_2$ e $T_c = T_1$. Si evince pertanto come il rendimento di una pompa di calore sia inversamente proporzionale alla differenza di temperatura tra l'ambiente da riscaldare e la sorgente di energia; maggiore è la differenza fra le due temperature, meno efficiente è il sistema.

Nel funzionamento estivo il refrigeratore sottrae calore all'ambiente da raffrescare compiendo il lavoro L. Si definisce un EER (dall'inglese Energy Efficiency Ratio) pari al rapporto tra l'energia frigorifera fornita all'ambiente climatizzato Q₀, e l'energia elettrica assorbita:

$$EER = \frac{Q_0}{L}$$

Nella realtà il COP non è definito per prefissate condizioni di riferimento, ma esso deve essere verificato sulla base delle condizioni reali di funzionamento (Figura 1-3, andamento del COP per una pompa di calore acqua – acqua, al variare della temperatura dell'acqua in uscita al condensatore). Infatti, il COP varia al variare delle temperature di evaporazione e di condensazione (ovvero, se ci si riferisce all'impianto, alle temperature della sorgente fredda e dell'utenza (pozzo caldo).

Figura 1-3 – Andamento del COP per una pompa di calore acqua (di falda) – acqua (pannelli radianti)

Si riporta in Figura 1-4 l'andamento del COP per una pompa di calore acqua – acqua, in funzione della temperatura di ingresso della sorgente fredda, e al variare della temperatura di uscita dell'acqua calda dalla pompa.

Figura 1-4 – Andamento del COP per una pompa di calore acqua – acqua (ΔT fluido freddo: 4°C; ΔT fluido caldo: 5°C¹)

In Figura 1-5 si riportano invece le elaborazioni condotte sui dati relativi a pompe di calore di calore Terra di IDM, valide per temperatura dell'acqua in uscita dal condensatore pari a 35°C, e dove si ha:

- sorgente a 0°C: aria esterna;
- sorgente a 4°C: terreno;
- sorgente a 10°C: acqua freatica

¹ Fonte: periodico "Idraulica", nr. 33, dicembre 2007. Copyright Idraulica Caleffi.

Figura 1-5 – Elaborazioni per pompe di calore di calore Terra di IDM (Allegato 1 – Scheda tecnica pompe di calore IDM – Terra). Temperatura di mandata al riscaldamento 35°C

S nota come la potenza elettrica in ingresso sia direttamente proporzionale alla potenza termica calda fornita. Il COP risulta essere poco influenzato dalla taglia della pompa considerata.

In Figura 1-6 si riportano invece le correlazioni condotte su pompe di calore aria – acqua Panasonic, in cui è mostrato il COP e la potenza termica rilasciata dalla pompa, al variare della temperatura dell'aria esterna, e per 5 diverse macchine rispettivamente di potenza pari a 7, 9, 12, 14, 16 kW. Anche queste valutazioni sono valide per una temperatura dell'acqua in uscita dal condensatore pari a 35°C.

Figura 1-6 – Elaborazioni per pompe di calore di calore aria – acqua Panasonic (Allegato 2 – Scheda tecnica pompe di calore Panasonic). Temperatura acqua in uscita dal condensatore 35°C

In Figura 1-7 si riportano le correlazioni effettuate sulla pompa di calore aria - acqua MTA - Modello HAEevo. Essendo tale macchina reversibile, sono riportate le performance sia in assetto produzione frigorifera, che in assetto di riscaldamento, al variare del salto termico sull'acqua, e della temperatura dell'aria esterna.

Figura 1-7 – Elaborazioni per pompe di calore di calore aria – acqua MTA HAEevo (Allegato 3 – Scheda tecnica refrigeratori e pompe di calore MTA). Temperatura di mandata al riscaldamento 45°C

Ulteriori valutazioni sono state condotte su unità Carrier. Nelle figure seguenti i riportano le unità analizzate, e le relative caratteristiche tecniche.

Figura 1-8 – Elaborazioni condotte su unità Carrier 30AWH 004-015 aria - acqua

Figura 1-9 – Elaborazioni condotte su unità Carrier 30RB-RQ 17-33 aria - acqua

2. Unità GHP

Nel presente capitolo viene presentata l'unità GHP, ovvero una unità costituita da un motore endotermico a gas naturale accoppiato ad una pompa di calore. Il motore endotermico provvede all'azionamento meccanico del compressore del circuito frigorifero per mezzo di una trasmissione a cinghia, mentre uno scambiatore dedicato consente di trasferire il calore recuperato dal motore e dai gas esausti al circuito frigorifero e/o alla produzione di acqua calda sanitaria (si vedano gli schemi funzionali riportati in Figura 2-1).

Figura 2-1 – Schemi funzionali di una unità GHP con utilizzo del recupero termico all'interno del ciclo frigorifero (sx) o per produzione di ACS (dx)

Dai dati forniti dai tecnici della casa costruttrice, si evidenziano i dati di performance riportati in Figura 2-2. Sono state considerate le unità aria – acqua 8-10-13-16-20-25 HP. In ascissa è riportata la potenza del combustibile introdotta nell'unità, mentre in ordinata le potenze termiche calda e fredda erogate dalla macchina, e il GUE complessivo.

Dati nominali; configurazione aria - acqua; sorgente calda 35°C; sorgente fredda 7°C

Il coefficiente GUE (Gas Utilization Efficiency) esprime il rapporto fra la potenza termica (o frigorifera) prodotta, e la corrispondente potenza del combustibile in ingresso all'unità. Le condizioni di riferimento sono le seguenti:

- modalità di riscaldamento: $T_{ext} = 7^{\circ}C$; $T_{H2O} = 35^{\circ}C$;
- modalità di raffrescamento: T_{ext} = 35°C; T_{H2O} = 7°C

Per l'unità 16 HP sono anche stati forniti i dati di funzionamento ai carichi parziali, e al variare della temperatura esterna, con i valori previsti dalla prEN 14825 per le pompe di calore a compressione elettriche, ovvero +12, +7, +2, -7°C. per quanto concerne le temperature della sorgente calda, sono stati forniti i dati relativi ai seguenti due punti di funzionamento:

- 30 35 °C, poiché prescritto dalla UNI TS 11300 4.
- 40 45°C, poiché si tratta di un range di funzionamento particolarmente diffuso

Le elaborazioni sui dati forniti sono riportati in Figura 2-3, in Figura 2-4 in Figura 2-5.

Figura 2-3 – Performance delle unità GHP 16 HP – modalità heating – Tc=35°C

Figura 2-4 – Performance delle unità GHP 16 HP – modalità heating – Tc=45°C

Figura 2-5 – Performance delle unità GHP 16 HP – modalità cooling – Te=7°C

Come si nota dai grafici, al diminuire della temperatura esterna aumentano i valori di energia primaria richiesti dalla macchina, e conseguentemente diminuiscono i valori di GUE. Le potenze termiche rese all'acqua denotano un andamento lineare con la potenza del combustibile introdotta, e l'effetto della diminuzione delle temperatura esterna fa sì che, a parità di potenza all'acqua calda, aumenti il combustibile richiesto dalla macchina.

Allegato 1 – Scheda tecnica pompe di calore IDM – Terra

Dati tecnici

Pompe di calore con evaporazione diretta

rompe ar calore con craporazio	ie aneu													
	5 D	7 D	9 D	11 D	13 D	15 D	18 D	20 D	23 D	28 D	33 D			
Potenza riscaldamento a E4/W35 in kW	5,7	7,4	8,7	10,3	12,8	15,5	18,3	20,5	23,1	28,3	32,8			
Potenza riscaldamento a E4/W50 in kW	5,5	7,1	8,4	9,8	12,2	14,6	17,5	19,7	22,4	27,1	31,3			
Rendimento a E4/W35 in kW	1,25	1,60	1,89	2,21	2,72	3,29	3,81	4,26	4,94	5,97	6,80			
Potenza COP a E4/W35	4,6	4,6	4,6	4,6	4,7	4,7	4,8	4,8	4,7	4,7	4,8			
Pompe di calore – Sole														
	5 S	7 S	8 S	10 S	12 S	15 S	17 S	19 S	22 S	26 S	30 S	37 S	45 S	
Potenza riscaldamento a B0/W35 in kW	5,4	6,8	8,3	9,7	12,0	14,9	17,2	19,6	22,1	26,6	30,5	36,8	45,5	
Potenza riscaldamento a B0/W50 in kW	5,2	6,6	8,0	9,4	11,5	14,3	16,8	18,7	21,2	25,9	29,9	35,5	44,2	
Rendimento a B0/W35 in kW	1,24	1,56	1,85	2,17	2,68	3,30	3,70	4,22	4,95	5,96	6,83	8,13	10,33	
Potenza COP a B0/W35	4,4	4,4	4,5	4,5	4,5	4,5	4,6	4,6	4,5	4,5	4,5	4,5	4,4	
Pompe di calore compatte per a	icqua fre	atica												

	7 W	9 W	11 W	13 W	16 W	19 W	22 W	25 W	28 W	33 W	39 W	45 W	58 W	
Potenza riscaldamento a W10/W35 in kW	6,9	8,6	10,5	12,5	15,7	19,3	21,5	25,1	27,9	33,8	39,2	45,4	58,4	
Potenza riscaldamento a W10/W50 in kW	6,6	8,3	10,1	11,7	14,8	18,3	20,4	23,9	26,9	32,8	38,1	43,6	56,4	
Rendimento a W10/W35 in kW	1,26	1,54	1,81	2,19	2,75	3,41	3,80	4,47	5,19	6,30	7,21	8,48	10,89	
Potenza COP a W10/W35	5,5	5,6	5,8	5,7	5,7	5,7	5,7	5,7	5,4	5,4	5,4	5,4	5,4	Ī

Dati generali

Tensione nominale							400V/50Hz								
Strumenti di lavoro							R 407 C								
Misurazioni in mm	Larghezza	622	622	622	622	622	622	622	622	750	750	750	750*	750*	
	Profondità	762	762	762	762	762	762	762	762	762	762	762	1100*	1100*	
	Altezza	1160	1160	1160	1160	1160	1160	1160	1160	1260	1260	1260	1300*	1300*	

Dati di rendimento a:

E4/W35 = Temperatura del terreno 4°C, mandata riscaldamento 35 °C E4/W50 = Temperatura del terreno 4°C, mandata riscaldamento 50 °C B0/W35 = Temperatura mandata Sole 0°C, mandata riscaldamento 35°C B0/W50 = Temperatura mandata Sole 0°C, mandata riscaldamento 50 °C

W10W35 = Temperatura mandata acqua freatica 10°C, mandata riscaldamento 35 °C W10W50 = Temperatura mandata acqua freatica 10°C, mandata riscaldamento 50 °C

Le varianti dei modelli:

S TERRA HGE:

Nell'apparecchio sono già preinstallati lo scambiatore di calore supplementare per lo scarico dei gas surriscaldati, la rispettiva valvola di regolazione, la pompa di carico accumulo e la regolazione Multitalent.

弓 TERRA:

Pompa di calore senza tecnologia HGL, con l'equipaggiamento di base, termostato massimale, lampade di controllo ed una regolazione di mandata come accessorio.

con riserva di modifiche techniche / Edizione Gennaio 2004

*Nella custodia di alluminio

Allegato 2 – Scheda tecnica pompe di calore Panasonic

Massima efficienza anche a temperature estreme

La gamma Aquarea è stata appositamente progettata per fornire la massima efficienza anche a temperature estreme rispetto ai riscaldamenti elettrici o alle caldaie a gas

SDF/SDC/MDF/MDC	7 kW	9 kW	12kW	14 kW	16 kW
Capacità di riscaldamento a +7°C (kW)	7	9	12	14	16
COP a +7°C est. con uscita acqua a 35°C	4,4	4,74	4,67	4,5	4,23
Capacità di riscaldamento a +2°C (kW)	6,55	9	11,4	12,4	13
COP a +2°C est. con uscita acqua a 35°C	3,31	3,53	3,4	3,32	3,25
Capacità di riscaldamento a -7°C (kW)	5,15	9	10	10,7	11,4
COP a -7°C est. con uscita acqua a 35°C	2,65	2,81	2,7	2,62	2,55
Capacità di riscaldamento a -15°C (kW)	4,6	8,3	8,9	9,5	10,3
COP a -15°C est. con uscita acqua a 35°C	2,3	2,55	2,43	2,35	2,33

Condizioni:

Temperatura d'ingresso dell'acqua: 30°C. Temperatura di uscita dell'acqua: 35°C

SXF/SXC/MXF/MXC	9 kW	12 kW	
Capacità di riscaldamento a +7°C (kW)	9	12	
COP a +7°C est. con uscita acqua a 35°C	4,74	4,67	
Capacità di riscaldamento a +2°C (kW)	9	12	
COP a +2°C est. con uscita acqua a 35°C	3,53	3.4	
Capacità di riscaldamento a -7°C (kW)	9	12	
COP a -7°C est. con uscita acqua a 35°C	2,81	2,7	
Capacità di riscaldamento a -15°C (kW)	9	12	
COP a -15°C est. con uscita acqua a 35°C	2,54	2,4	

Condizioni:

Temperatura d'ingresso dell'acqua: 30°C.* Temperatura di uscita dell'acqua: 35°C

*Specifiche prowisorie

Allegato 3 – Scheda tecnica refrigeratori e pompe di calore MTA

		M03	M05	M10	015	020	031	051	081	101	121	161	201	251	301	351	402	502	602
	Potenza frigorifera (1) kW	1,4	2,5	4,4	7,3	9,5	13,8	20,4	28,4	41,9	52,2	59,2	67,4	80,8	88,3	100,1	126,2	146,5	175,3
	Potenza assorbita (1) kW	0,5	0,73	1,32	1,9	2,1	3,6	5,0	6,3	8,5	10,3	13,0	15,3	17,3	19,4	22,7	27,0	30,3	36,0
Z	Potenza frigorifera (2) kW	0,9	1,8	3,2	5,0	6,6	9,9	14,4	21,0	30,8	38,5	43,6	49,8	59,2	65,7	73,5	92,6	106,6	129,3
-	Potenza assorbita (2) kW	0,52	0,77	1,36	1,7	2,0	3,4	4,9	6,7	9,0	10,8	13,5	16,1	18,2	20,4	23,9	28,9	32,5	38,2
	Potenza frigorifera (3) kW	-	-	-	7,0	8,5	13,0	21,2	28,7	38,6	50,6	57,8	64,9	75,5	85,8	98,6	125,5	143,2	169,8
3	Potenza assorbita (3) kW	-	-	-	1,7	2,1	3,3	5,2	5,9	7,5	10,1	11,5	14,3	17,0	20,2	24,8	28,7	33,7	40,2
2	Potenza frigorifera (4) kW	-	-	-	5,1	6,2	10,6	15,6	21,9	30,9	39,8	44,5	52,1	60,8	67,0	75,9	96,6	112,0	133,3
-	Potenza assorbita (4) kW	-	-	-	1,5	1,9	3,1	4,5	5,8	7,5	10,0	11,4	13,8	16,4	19,4	24,5	28,1	32,6	38,9
	Potenza frigorifera (1) kW	-	-	-	-	-	13,4	19,7	27,7	40,0	50,2	56,5	65,0	78,3	85,4	97,0	-	-	-
	Potenza assorbita (1) kW	-	-	-	-	-	3,7	5,6	6,3	8,5	10,2	12,8	15,2	17,2	19,4	22,7	-	-	-
3	Potenza frigorifera (2) kW	-	-	-	-	-	9,7	14,2	20,3	29,2	36,9	42,1	48,5	57,2	63,8	71,7	-	-	-
1 F	Potenza assorbita (2) kW	-	-	-	-	-	3,4	4,9	6,7	9,0	10,8	13,5	16,0	18,2	20,4	23,9	-	-	-
1	Potenza termica (5) kW	-	-	-	-	-	12,0	17,0	25,1	33,0	41,5	47,1	54,0	65,1	76,1	86,7	-	-	-
	Potenza assorbita (5) kW	-	-	-	-	-	3,4	4,6	6,7	8,6	11,2	12,8	14,8	17,2	19,7	24,2	-	-	-
Da	ti Generali																		
Ref	rigerante -	R134a	R4	07C	1							R407C							
Ali	mentazione elettrica V/Ph/Hz	2	30±10%/1/	50							4	00±10%/3/5	0						
Cla	isse di protezione -	IP20	IP	33	IP	44							IP54						
Pot	enza totale installata (6) kW	1,03	1,64	2,06	3,19	3,83	5,96	7,85	10,78	14,46	18,37	21,17	23,62	27,00	31,16	37,27	48,35	55,11	61,02
Co	mpressori / Circuiti N°	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	2/1	2/1	2/1	2/1	4/2	4/2	4/2
Mo	odelli con raffreddamento ad aria					<u>.</u>													
	N° Ventilatori N°	1	1	1	1	1	1	1	1	2	2	2	2	2	3	3	2	2	2
ali	Potenza nominale (ciascuno) kW	0,065	0,146	0,146	0,27	0,27	0,54	0,54	0,79	0,79	0,79	0,79	0,79	0,79	0,79	0,79	2,0	2,0	2,0
Ass.	Portata aria totale m3/h	900	2200	2100	3500	3100	6600	6200	8500	15100	13500	13500	16900	16300	22350	22350	45600	44000	42500
	Pressione sonora (7) dB(A)	48,2	48,3	48,3	52,4	52,4	53,1	53,1	53,6	54,1	54,1	55,0	56,3	56,3	58,0	58,0	64,0	64,0	64,0
-=	N° Ventilatori N°	-	-	-	-		1	1	2	2	2	2	3	3	3	3	2	2	2
120	Potenza nominale (ciascuno) kW	-	-	-	-	-	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	5,5	5,5	5,5
1	Prevalenza utile kPa	-	-	-	-	-	166	185	260	140	125	138	237	245	150	150	245	230	215
8	Portata aria totale m³/h	-	-	-	-		6900	6400	9200	13600	13500	12780	18200	17600	20145	20145	40000	40000	40000
-	Pressione sonora (7) dB(A)	-	-	-	-	-	58,8	58,8	61,2	61,2	61,2	61,2	63,1	63,1	63,1	63,1	65,0	65,0	65,0
Mo	odelli con raffreddamento ad acqua																		
Por	tata acqua m³/h	-	-	-	0.25/1.2	0.3/1.6	1.0/5.0	1.0/5.0	1.3/6.0	1.6/8.0	1.9/10.0	2.5/15.0	3.3/14.0	3.3/14.0	4.0/16.6	4.0/16.6	3.3/14.0	3.3/14.0	4.0/16.6
Att	acchi acqua condensatore In	-	-	-	3/4″	3/4"	1 1/4"	1 1/4"	1 1/2"	1 1/2"	1 1/2"	1 1/2"	2"	2"	2"	2"	2 1/2"	2 1/2"	2 1/2"
Sez	zione pompa																		
	Portata acqua (nom. con aT S°C / MAX) m3/h	0,24/0,34	0,43/1,2	0,76/1,2	1,3/4,8	1,6/4,8	2,4/6	3,5/6	4,9/9,6	7,2/9,6	9,0/18	10,2/18	11,6/18	13,9/18	15,2/27	17,2/27	21,7/48	25,2/48	30,1/48
3	Prevalenza utile (nom./min.) bar	1,18/0,54	2,78/0,46	2,78/0,46	2.9/1.4	2.8/1.4	2.8/1.5	2.6/1.4	2.5/1.3	2.1/1.5	2.6/1.6	2.5/1.7	2.5/2.0	2.4/2.0	2.6/0.9	2,4/0,8	3.4/1.5	3.2/1.5	2.9/1.5
1-	Potenza nominale kW	0.25	0.33	0.33	0.55	0.55	0.75	0.75	0.9	0.9	1.85	1.85	1.85	1.85	272	22	4	4	4
\vdash	Portata accula (nom con AT SPC (MAX) m3/h	0,4.0	0,00	0,33	12/4.9	1 6/4 0	2 4/4 0	25/4.9	4.0/12	7 2/12	9,0/12	10,2/12	11 6/20	12,000	15 2/20	17.2/20	71 7/40	25 2/40	20 1/49
10	Available head processor (and the bar			<u> </u>	1,3/4,0	1,0/4,0	2,4/4,0	3,5/4,0	4,3/13	7,2/13	5,0/13	10,2/13	11,0/30	13,3/30	15,2/30	17,2/30	21,//40	100.0	30,1740
•	Peteeza energiado	-	-		5,212,9	5,1/2,9	4,9/3,1	4,2/3,2	4,9/2,8	4,6/3,1	4,2/3,1	4,0/3,2	4,6/1,8	4,4/1,8	4,3/1,9	4,0/1,8	5,1/3,0	4,9/3,0	4,6/3,0
	Potenza nominale Kvv	-		-	1,1	1,1	1,1	1,1	2,2	2,2	2,2	2,2	4	4	4	4	7,5	7,5	7,5
Dir	mensioni (8)																		
Lar	ghezza mm	325	575	575	560	560	660	660	760	760	760	760	866	866	866	866	1255	1255	1255
Pro	olondita mm	728	652	652	1266	1266	1310	1310	1860	1860	1860	1860	2240	2240	2240	2240	3294	3294	3294
Alt	ezza mm	540	805	805	810	810	1400	1400	1447	1447	1447	1447	2064	2064	2064	2064	2140	2140	2140
Pes	o in esercizio (con pompa P3) kg	63	106	113	188	193	316	336	474	644	663	674	916	1008	1118	1134	1812	1847	1911
VO	iume serbatolo I	8	108	25	60	60	115	115	140	255	255	255	350	350	350	350	500	500	500
Att	accni acqua evaporatore In	1/4	1/2	1/2"	3/4"	3/4"	11	1"	1 1/2	1 1/2"	1 1/2	1 1/2	2"	2"	2	2"	2 1/2	2 1/2	2 1/2"
(1)	Temperatura ingresso/uscita acruia evaporatore	20/15%	omooratura	aria esterna)	cor-														

- (1) rempetatula ingresso/uscita acque evaporatore 20175°C, tempetatula ana estena 3°C;
 (3) Tempetatura ingresso/uscita acque avaporatore 20175°C, tempetatura ai a estena 3°C;
 (3) Tempetatura ingresso/uscita acque avaporatore 20175°C, tempetatura ingresso/uscita acque avaporatore 20175°C;
- (d) Temperatura ingresso/uscita acqua evaporatore 12/7°C, temperatura ingresso/uscita acqua condensatore 40/45°C;
 (d) Temperatura ingresso/uscita acqua evaporatore 12/7°C, temperatura ingresso/uscita acqua condensatore 40/45°C;
 (5) Temperatura ingresso/uscita acqua evaporatore 12/7°C, temperatura ingresso/uscita acqua condensatore 40/45°C;
 (6) Unità con pompa P3 e regolatore controllo velocità ventilatore ON/OFF (se presene);
 (7) Livello di pressione sonora in campo libero a 10m dall'unità lato condensatore e a 1.6m dal suolo;

(8) Per unità con alimentazione elettrica standard, ventilatori assiali, regolatore velociti ventilatore ON/OFF.

Modelli con raffreddamento ad aria funzionano ad una temperatura dell'aria esterra fino a 46°C (con temperatura dell'acqua di 12/7°C.). Per i dati relativi al TAEcor Aucer, contattare MTA.

Tipica configurazione a circuito chiuso

I circuiti chiusi pressurizzabili necessitano sempre di un vaso d'espansione, per i refrigeratori installati in questi impianti è disponibile un kit di caricamento automatico che lo include ed è consigliato nel caso che due o più refrigeratori di uguale taglia siano installati in parallelo.

Allegato 4 – Schede tecniche pompe di calore Carrier

Pompe di calore raffreddate ad aria

	\langle	Carrie	1

C SPREAM PROPERTY AND ADDRESS							-
	rh.	1000	th O	1000	101	200	C.34
COLORIDATION FORCES						10.11	

30AW		004	006	008	012	015
Dati secondo le condizioni Eurovent LCP(A/CHF*						
Capacità di racaldamento nominale	kw	41	5,8	72	11,9	14,5
Assorbimento elettático	kw	1,01	1,37	1,02	3,01	3,57
COP .	kw/kw	4,05	4,24	2,95	3,94	4,06
Capacità di raffreddamento nominale	kw	4,9	7,0	7 B	10,5	16,0
Assorbimento dettrico	kw	1,21	1,92	1,96	3,68	4,20
ti R	kw/kw	4,05	3,66	3,95	3,67	3,81
Dati secondo le condizioni Eurovent LCP/A/AC**						
Capacità di riscaldamento nominale	kw	3,9	58	7,6	12,9	14,0
Assorbimento dettrico	kw	1,22	1,90	2,32	4,26	4,36
cor.	kw/kw	3,2	3,06	2,18	3,03	3,21
Capacità di raffreddamento nominale	kw	73	47	5,8	10,2	13,0
Assorbimento dettrico	kW	1,13	1,60	1,97	3,46	4,47
ter .	icw/kw	2,91	2,95	2,95	2,96	2,91
Prestantone carloo patriale ESER	iw/iw	45	46	44	43	44
Peno di esercizio, unità con/senza modulo idronico	kg	39/56	61/58	71/68	105/99	130/124
Refrigerante		R-410A	8-410A	R-ROA	R-FIGA	8-910A
Compressione			DC twin-r	otary con valvola espan	ione PMV	
Ventilatori				Ventilatori elicoidali		

ren U405 1/405 1/405 2/4

iatore di calore ad acqua 30°C/35°C, temp, aria estorna 7°C bu/9°C bu, fattore di spo

erna 7°C ba/6°C bi, fattore di spo

Dati elettrici						
WACE		004	006	008	012	015
Almentatione	¥-ph-Hz	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50
Welori di tensione	V	198-264	198-264	198-264	198-264	198-264
Contenite a piento carico	Α	7,2	11	14	23	20
Amperaggio massimo del fusibile		10	16	16	25	25
Sextone del cavo di alimentazione principale	nm ²	2,5	2,5	2,5	25	2,5

Dimensioni, mm

	004	006	005	012	015	
Alterate (C)	821	821	821	1363	1363	
						8
						- 2
						1
						8
						5
						r an

908

350

Umiti di funzionamento, raffreddamento

30AWH 004-015

Carrier

Refrigeratori e pompe di calore raffreddati ad aria

Caratteristiche fisiche									
			3	068			30	RQ	
		017	071	626	63	017	071	026	653
Dati riferiti alle condizioni Eurovent LCP(A/AC*									
Potenzialità frigorfera nominale, unità standard	kW	16,5	21,6	27,6	33,6	16,1	20,4	27	33
otenus assorbita nominale	kW.	5,25	6,64	8,57	9,74	4,92	63	8,62	9,84
19	kw/kw	3.15	3,25	3,24	3,45	3,26	3.24	3,13	3,36
Hickman a carloo panalale (1582R)	kw/kw	3,61	3,64	3,64	3,84	3,76	3,60	3,51	3,76
otenzialità di riscaldamento nominal standard	KW	-	-	-	-	16,8	21/4	29,6	33
'oterus assorbita	kW	-	-	-	-	5,2	6,41	2,04	10,13
10°	kw/kw	-			-	3,24	135	3,27	3,26
Dati menti alle condizioni Eurovent LCP/A/CHE**									
toterutalità frigorifera nominale, unità standard	kW	-	-	-	-	22,5	217	347	44,1
oterus assorbita	KW	-			-	5.28	6.92	2.09	10,4
18	kw/kw	-	-	-	-	4.27	4	3,04	4,25
'otrazilită di ricaldamento nominale, unită standard	kW	-		-		17,6	72	30,7	343
otenus assorbita nominale	kW	-	-	-	-	4,25	5,36	7,5	6,35
0 °	kw/kw	-	-	-	-	41	41	41	41
ed in funzione**									
Initia standard (con modulo kironico)	kq	182	208	255	250	206	223	250	225
Initia standard (serva modulo idronico)	kg	173	195	237	262	191	205	26.7	277
Compressore tipo/humeto		Scrol/1	Scrol/1	Scol/1	Scrol/1	Scrol/1	Scrol/1	Scrol/1	Scrol/
kndutori		Due, antialia	a due velocità	Uno, assistera	durvelocità	Due, antial a	dur wiedti	Uno, assiste a	dar who
Continuato d'acqua		1.52	1.9	2,25	2,65	-	-	-	
Inita standard									
Attacchi Idraulici (MPT gan)	pol.	1	1	1-1/4	1-1/4	1	1	1-1/4	1-1/4
Inità con modulo idronico*									
ompa			Una ad u	na włocita			Una. ad ur	u wiocità	
blume del vaso d'espansione		5	5	8	8	5	5	8	8
itacco di Ingreso acqua	pol.	1-1/4	1-1/4	1-1/5	1-1/4	1-1/4	1-1/4	1-1/4	1-1/4
theco di uncha acqua	pol.	1	1	1-1/5	1-1/4	1	1	1-1/4	1-1/5
orrente nominale assobita in funzionamento*	A	1.30	1.40	2,40	2.60	1,30	1,40	2,40	2.60
terio di potenza sonora ^{nan}	dB(A)	72	74	75	75	72	74	78	78
United pressione servers	daw	40	42	46	46	40	42	46	46

...

Candidori di funcionamento Standari Europeti LD'AAC in modalità di null'indemento tempentara di tegnologica fa espas dallo cambiatone obtionento espas 172/72, tempentara dell'aria esteren 292. Candidori di funcionamento Standari Europeti LD'AAC in modalità di traditamento tempentara di tegnologica ta espas dallo cambiatone obtionento espas 172/72, tempentara dell'aria esteren 292. Candidori di funcionamento Standari Europeti LD'AAC in modalità di traditamento tempentara di tegnologica ta espas dallo cambiatone estiganzati e agua 272/172, tempentara dell'aria esteren 392. Candidori di funcionamento Standari Europeti LD'AAC in modalità di traditamento tempentara di tegnologica espas dallo cambiatone estiganzati e agua 272/172, tempentara dell'aria esteren 392. Espaio Indicato ha colo cambiano tetta di uno della cambia di regnola dallo ganzati a dallo cambiatone estiganzati e agua 272/172, tempentara dell'aria esteren 392. Espaio Indicato ha colo cambiano tetta di estiganzato di tetta cambia di regnola dalla cambiatone estiganzati e agua dallo cambiato estiganzati e agua 272/172, tempentara dell'aria esteren 772 bVX ba

Dati elettrici

			3045/	90	
		017	@1	036	033
Tensione nominale di alimentazione	Vehitz		400-3	-50	
Massima convente di spunto (Un)	· A	75	25	118	118
Potenza massima assorbita*	kW	7,8	9,1	11	13,8
Corrente nominale assorbita dall'unità ^{ma}	Α	8	12	16	17
Corrente massima assorbita (Un) ^{essa}	A	13	16	20	24

Potenza assorbita dai compressori e dai ventilaitori alle condutori di funzionamento limite (sioti con temperatura sutura di aspirazione parla 1970 e temperatura sutura di conder lentra 45 °C) con tensione monimale di almentazione di 9000 (dati riportati sulla targhetta di distrificazione dell'unita) Condutori di riportamento truoventa integretazia di impressivati aspira di distriminazione dell'unita integretazia di impressivati a supera dallo assistene oficipante espan 12770 con temperatura di impressa attendio sambiatore officipan Manima comente assorbita con potenza assorbible in funzionamento con tensione di almentazione nominale di 400 V (solori riportati sulla tabella di identificazione dell'unita) .

.... nta parta 35°C

Campo di funzionamento

30RB/RQ (modalità di raffreddamento)

Campo di fututonamento per soluzione antigelo e configurazione Pro-Dialo

Dimensioni, mm

		3098 10	ofreddo			SORC para	pe di calon	
	017	021	026	053	017	021	026	633
Alterna (C)	1579	1579	1790	1790	1579	1579	1790	1790
Lunghezza (A)	1136	1136	1002	1002	1136	1136	1002	1002
Profondità (8)	559	559	824	824	559	559	824	424

21

Refrigeratori e pompe di calore raffreddati ad aria

Carrier

aratteristiche fisiche					
KARCIY					
		017	021	036	033
Deti secondo le condizioni Eurovent LCP(A/AC*					
Capacità di raffreddamento nominale, unità standard	iow .	15,0	19,2	27,3	32,6
Polence excebita	kw	5,52	7,06	9,03	10,22
ter.	kw/kw	2,72	2,72	3,03	3,19
Pentarione carico paratale ESETR	kw/kw	3,04	2,98	3,35	3,52
Capadtà di racaldamento nominale, unità standard	iow .	16,9	20,3	28,5	31,1
Polanza assorbita	iow .	6,01	7,22	10,15	11,05
cor.	kw/kw	2,01	2,81	2,81	2,81
Peel in funcione**					
Unità standard (con modulo idronico)	kg	226	243	280	295
Unità standard (senza modulo idronico)	kg	211	228	262	277
Refrigerante			R-910A		
Compressore			Un compressor	1 1070	
Controllo			Pro-Dalog	+	
Ventilatori	0	ur writiatori centrifughi	e due włocza, pele rowna:	Un ventilatore ass	iale a due wiodtă
fluxes d'aria	la la	1640	1640	3472	3472
Depositore			Uno scambiatore di ca	ore a plastre	
Condemantore			Tubi in rame e alette	in aluminio	
Unità con modulo idmnico	U	ha pompa a velocită sing	ola, filtro di protestane, vaso di esp	ensione, fluxostato, valvo	la di scarko diresito acqua,
Ascrimento elettrico	iw	0.54	ometro, valvoia automatica di shat 0.59	0.99	1.20
Complex control of Provident		130	140	2.40	140

ell'unità alla massima potenza assorbita e 400 V)dati indicati sulla targhetta dell'unità).

XRQY					
		017	021	026	033
Potenza agrorbita					
Almentariore nominale	VphHz		400-3-5	0±10%	
ontrolio almentazione circuito			24V con trailo	mutore interno	
Massima comente di spunto (Un)*	A	75	95	118	118
foliarus masima asorbita par unitam	kw	40	9,3	11,2	140
Polence massime associate in functionersen in the		13	16	20	24

rione satura 657C) e te ebinento elettrico, compresent e wortfattori, secondo inale di 400 V (dati indicati sulla targhetta dell'unità). di tori itandari l'unoverti terromentara consi in ettica a 10°C, temp

atura dell'aria enterna 35°C. 17C/PC temps access in a

Dimensioni, mm

	A	5	C
30RCY 017-021	1135	584	1608
30RCY 026-033	1002	824	1829

Per gli spazi minimi di manutorazione fare eferimento al manuale specifico del prodotto.

Campo di fantonamento per soluzione antigelo e configurazione Pro-Otalog

30RQY 17-33

Carrier

61AF 014-019

Pompe di calore ad alta temperatura

Caratteristiche fisiche				
61AF		014-7	014-9	019
Potenzialità nominale riscaldamento*	iw	14,0	14,0	19,8
Potenza assorbita	kw	44	42	6,0
cor	iw/w	3,2	3,3	3,3
Classe Eurovent, riscaldamento		A	A	A
Potenzialită nominale riscaldamento**	kw	14,0	14,0	19,8
Potenza assorbita	iov.	3,4	3,4	
cor	interior	41	0	40
Classe Eurovent, riscaldamento		Α	٨	A
Ped in functione***				
Unità standard, con modulo idronico	kg	159	159	206
Unità standard, serva opatone modulo idronico	kg	169	169	216
Compressore			Uno, Ermettici scroll 48,3 g/s	
Refrigerante***			B-407C	
Condematore			Sumbiatore uildo brasato ad expansione diretti	
Vestilatori			Annial	
Quantità		2	2	2
Fluxo-daria	in .	2050	2050	2000
Everynalism			Tabi di nene ene alette in allaminio	

Condutori standard Eurovent tempetatura acqua in eritatajuezta dell'esaporatore – 4470/875, tempenatura dell'aria esistma bufes – 70075, Condutori standard Eurovent tempetatura acqua in eritatajuezta dell'esaporatore – 3470/875, tempenatura dell'aria esistena e Dufes – 70075, "é pone inducto la sudo caratteri internativa, interita dell'esaporatore – 3470/875, tempenatura dell'aria esistena e Dufes – 70075, "é pone inducto la sudo caratteri internativa, interita dell'esaporatore – 3470/875, tempenatura dell'aria e Dufes – 70075, "é pone inducto la sudo caratteri internativa, interita dell'esaporatore e Netolata sulla interita dell'esaporatore dell'aria, "é pone inducto la sudo caratteri internativa, interita dell'esaporatore e Netolata sulla interita dell'esaporatore dell'esaporatore e Netolata dell'esaporatore dell'esaporatore dell'esaporatore e Netolata dell'esaporatore e Ne

Dati elettrici										
61AF - Unità standard (senza modulo idrorico))			Con pompa	n pompa						
		014-7	014-9	019	014-7	014-9	019			
Potenza assorbita										
Almentatione nominale	V-ph-Hz	230-1-50 ± 10%	$400-3-50\pm10\%$	400-3-50 ± 10%	230-1-50 ± 10%	400-3-50 ± 10%	400-3-50 ± 10%			
Controllo almentazione circuito		24V con tradiomatore interno								
Massima corrente di spunto (Un)*										
Units standard	A	-	66	66	-	67	104			
Utità con opaione starter elettronica	A	47	-	-		-	-			
Pattore dell'unità di potenza al massimo della capacità**		0,82	0,82	0,82	0,82	0,82	0,82			
Potenza massima assorbita per unità**	kw	6,41	5,90	5,90	6,62	6,10	9,20			
Potenza nominale assorbita***	A	22,9	7,9	7,9	23,7	7,9	12,4			
Potenza massima assorbita (Un)****	A	30,7	10,8	10,8	31,5	10,8	16,0			

nto (massima commite assorbita dal compressone ()) di grandezza minore, più commite assorbita dai ventilatori, più commite di

Maxima commite intantana el spanto a condution limite di functoramento (maxima commite associata dal compresson () el grandezza minore, più commite associata d spanto del compresson el grandezza superiore). Potenza associata dal compresson el dal ventifatori alle condutori di functoramento limite (stoti con temperatura sutura el apinatone parla 10°C e temperatura sutura el es 65 °C) con temperatura el alternatura el 4000 (dati riportati nulla targhetta di dentificazione dell'unità) Condutori tandare l'unoventi temperatura segui no estatuta dell'esponiario el 2002/CC (temperatura dal tara el 4000 (dati riportati sutura del esponiare - 2002/CC), temperatura dell'aria estema bugho = 7°C. ¹⁰ Maxima commite associata con potenza associabile in funcionamento con tensione el alternaturatore monitale di 4000 (solori riportati sulla tabella di identificazione dell' ... atione equivalente a

Dimensioni, mm			
61AF	014-7	014-9	019
Alterza (C)	1278	1278	1579
Lungheza (A)	1103	1103	1103
Profondità (3)	12	323	559

Pergil spect ni di manutorazione fare riferimento al manuale specifico del pre

Campo di funzionamento

.

Sistema Heating

Carrier

Solena spit arte-acque			Solo risca	demento			Rhademento	i talimincarrentiz	
Unitàintena		BOAW1-H	BOAW1-H	BOANG-H	IXXAW2-H	KAWI-X	BOAW1-X	BOAN2-X	BOAN2-X
Unità-mirma (HP)		38AW26047	20404065147	28AW098H7	38AW115H7	35AW050407	2040404547	2840409047	38AW11547
Potenza nominale di raffrescamento	iw		-	-	-	4,23	5,59	7,88	9,00
Potenza minima di raffrencamento	iw	-	-	-	-	0,76	1,03	2,15	2/46
Potenza massima di rafirencamento	iw	-	-	-	-	5,62	7,55	11,4	13,02
Assorbimento elettrico	iw	-			-	1,16	1,53	1,95	2,37
12R	W/W	-	-	-	-	3,65	3,65	4,05	3,80
Classe di rendimento energetico (modalità raffrescamento)		-	-	-	-		A	A	A
Potenza nominale di riscaldamento	iw	5,00	6,53	9,10	11,50	5,00	6,53	9,10	11,50
Potenza minima di riscaldamento	iw	1,17	0,86	1,61	1,77	1,17	0,86	1,61	1,77
Potenza massima di riscaldamento	iw	5,86	6,61	14,75	15/63	5,86	8,61	1675	15,45
Assorbimento detirizo	kw	1,13	1,51	2,07	2,71	1,13	1,51	2,07	2,71
COR	W/W	4,41	4,32	440	4,24	441	4,32	4,40	4,24
Classe di rendmento energetico (modalità riscaldamento)		A	A	Α.			A	A	A

Unitàintema		504/	V1	BOAM	12
Uniti-externa		38AW050H7	38.4003310	38AW090H7	304W115H7
Portata d'acqua nominale	U6	860	1118	1548	1978
Portata d'acqua minima	L/h	655	894	1238	1582
Portata d'acqua massima	L/h	1032	1342	1258	2374
Potenus sonora (modalità raffrencamento)	db(A)	2	7	21	1
Potenus sonore (modelità riscaldamento)	da(A)	2	1	21	,
Dimensioni (h x x p)	mm	780/3	0/360	1050/56	k0/522
Pero	kg	4	0	N N	0
Almentations	VphHz	230-	1-50	200-1	-50
Unità-esterna (HP)		38AW050H7	35AW065H7	38.4W090H7	38AW115H7
Tipo di compressore		TWINROTARY	TWINRCEARY	TWN ROLWY	TWNRDWRY
Lunghezza massima tubazioni	m	50	30	70	70
Dilwdo maximo	m	30	30	30	30
Senza carica	m	20	20	30	30
Portata d'aria (min/maz)	l/mc	728	783	1658	1767
Portata d'aria (min/max)	m ³ /h	2620	2620	5970	6360
Pressione sonora (modalità tell'inscamento)	db(A)	44	45	45	50
Potenua sonora (modalità raffrencamento)	dB(A)	64	65	68	70
Prosione sonora (modalità riscaldamento)	dB(A)	46	48	49	50
Potenua sonora (modalità riscaldamento)	dB(A)	64	68	69	70
Dimensioni (h.x.l.x.p)	mm	690×900×320	520×900×320	1360×900×320	1360×900×330
Pao	kg	49	51	55	85
Accoppiamenti a cartella	polici	1/47-1/27	3/0"-5/0"	3/0"-5/0"	3/0"-5/0"
Almentatione	Vphitz	230-1-50	230-1-50	230-1-50	230-1-50

	20			
	<	5		
1	1	l	1	
1	ć)	-

Nodulo idronico combinato con CDU 5 kW + 6,5 kW									
Unità Interna		SORW100H	BOAW100K	80AW102H	BOAW102X	SOAW109H	80AW104X	80AW108H	BOAW106X
Elemento riscaldante	kw	-	-	2	2	4	4	6	6
Elementi riscaldanti a complemento	kw	-	-	1×2	1×2	2×2	2×2	2×3	2×3
Namero massimo di zone di confort		1	1	1	1	1	1	1	1
Potenza degli elementi riscaldanti, kW		1,0	1,0	1,2	1,2	1,4	1,4	1,6	1,6
Collogamenti caldata supplementare		-		-	-	-		-	-
Solo recaldamento		1	11	10	1	1	1	1	-
Reakamento e raffrescamento		1	1	1	1	1	1	1	1
Revendake		-	1	-	1		1	-	1
Produtore di acqua calda per uso domentico		Optional							

Module idmeniae.com CDU da 9 kW = 11,5 kW										
Unità interna		80AW290H	BOAW 200X	BOAW20R1	BOAW205X	80AW206H	DOM/CODEX	BOAW208H	NOAW20EX	
Elemento riscaldante	kw		-	4	4	6	6	8	8	
Elementi riscaldanti a complemento	kw	-	-	2×2	2×2	2×3	2×3	2×4	2×4	
Namero massimo di zone di confort		2	2	2	2	2	2	2	2	
Potenza degli elementi riscaldavit, kW		2,0	2,0	2,6	2,4	2,6	2,6	2,8	2,8	
Collegamenti caldata supplementare		11	1	-				-	-	
Solorisaldamento		10	1	1	1	1	1	8	8	
Risaldamento e rafiniscamento		1	1	1	1	1	1	1	1	
Revendalle		-	1	-	1	-	1	-	1	
Produzione di acqua calda per uso domentico		Optional	Optional	Optional	Optional	Optional	Optional	Optional	Optional	

PARTE B

Programma di simulazione di una unità di μ -CHP e di una pompa di calore a gas GHP e validazione con dati reali

Indice

Introduzio	one4	9
Parte B – I	Messa a punto dei programmi di simulazione e validazione con dati reali5	0
1. Implem	entazione del modello di scambio sul posto5	0
1.1.	Normativa di riferimento5	0
1.2.	Modello Simulink5	2
2. Modello	o di simulazione pompa di calore5	4
2.1.	Descrizione del modello5	4
2.2.	Validazione su dati reali5	7
3. Modello	o di simulazione unità GHP6	0
3.1.	Descrizione del modello6	0
3.2.	Motore a combustione interna6	2
3.3.	Integrazione fra motore e pompa di calore6	3
3.4.	Validazione su dati reali6	4
3.5.	Esempio di simulazione6	7

Indice delle figure

Figura 1-1 – Prezzo finale dell'energia nel caso di utente tipo domestico	51
Figura 1-2 – Media dei prezzi zonali orari per il mese di Aprile 2012 (€/MWh)	51
Figura 1-3 – Modello Simulink di simulazione dello scambio sul posto	53
Figura 2-1 – Modello Simulink della pompa di calore	54
Figura 2-2 – Maschera per l'inserimento delle temperature delle sorgenti e dei salti termici	54
Figura 2-3 – Blocco di calcolo delle temperature di condensazione e di evaporazione del ciclo	54
Figura 2-4 – Diagramma p-h del fluido frigorigeno R134a	55
Figura 2-5 – Esempio di una simulazione del ciclo realizzato dal fluido R134a nel diagramma p-h	56
Figura 2-6 – Esempio di una simulazione del ciclo realizzato dal fluido R134a nel diagramma p-h	56
Figura 2-7 – Blocco di calcolo dei COP del ciclo	57
Figura 2-8 – Valori di COP per le pompe di calore Panasonic al variare della temperatura aria esterna	58
Figura 2-9 – Andamento dei salti di temperatura al variare temperatura esterna	58
Figura 3-1 – Modello dell'unità GHP	60
Figura 3-2 – Elementi costitutivi dell'unità GHP	61
Figura 3-3 – Interpolazione dei dati sperimentali dei micro-cogeneratori analizzati	62
Figura 3-4 – Conversione ed adimensionalizzazione dei dati interpolati	63
Figura 3-5 – Inserimento della mappa sperimentale interpolata del motore all'interno del modello	63
Figura 3-6 – Schema funzionale dell'integrazione fra cogeneratore e pompa di calore	64
Figura 3-7 – Maschere per l'inserimento dei parametri di configurazione del modello	66
Figura 3-8 – Posizionamento dei punti simulati per le unità GHP 8HP e 10 HP (dati nominali)	67
Figura 3-9 – Andamento della temperatura all'interno dell'accumulo termico [°C]	68
Figura 3-10 – Andamento della potenza termica recuperata dal motore [kW]	68
Figura 3-11 – Andamento della potenza termica erogata dalla pompa di calore [kW]	69
Figura 3-12 – Ciclo di lavoro del fluido frigorigeno nel diagramma p-h	69

Introduzione

Il presente documento rappresenta la Parte B del Rapporto Finale delle attività svolte in seno all'Accordo di Collaborazione tra ENEA e Dipartimento Energia (DENERG) del Politecnico di Torino, per un'attività di ricerca dal titolo: "Analisi teorico – sperimentale di sistemi di micro-cogenerazione".

Tale rapporto ha lo scopo di illustrare sinteticamente le ricerche svolte dal DENERG, che hanno portato alla modifica e ottimizzazione del modello dinamico di cogeneratore di piccola taglia (100-500 kWel) sviluppato dal DENER per ENEA nell'ambito della precedente annualità di ricerca di sistema elettrico (2010-2011), per renderlo idoneo alla simulazione di sistemi di micro-cogenerazione (2-10 kWel). E' stato inoltre sviluppato un modello per la simulazione del regime di Scambio sul Posto (SSP) come strumento di valorizzazione dell'energia elettrica prodotta.

È stato inoltre sviluppato un nuovo programma per la simulazione di pompe di calore, che è stato accoppiato al modello di cogeneratore di piccolissima taglia a gas, per simulare così il funzionamento di pompe di calore a gas GHP.

I modelli sviluppati sono quindi stati validati con i dati sperimentali ottenuti dalle attività di cui alla Parte A del Rapporto Finale.

Parte B – Messa a punto dei programmi di simulazione e validazione con dati reali

1. Implementazione del modello di scambio sul posto

1.1. Normativa di riferimento

E' stato implementato il modello che permette di valutare il contributo in conto scambio, previsto dallo scambio sul posto, come da Deliberazione ARG/elt n.74/08 (TISP)². Tale contributo risulta applicabile al modello di cogeneratore di piccola taglia, poiché la Deliberazione prevede che ne possano beneficiare, dietro richiesta, gli impianti di cogenerazione ad alto rendimento di potenza fino a 200 kW.

Dall'analisi della normativa vigente, si evince che lo scambio sul posto consiste in una particolare forma di "autoconsumo in sito" dell'energia elettrica, mediante la quale l'energia prodotta e immessa in rete può essere prelevata e autoconsumata in un tempo differente da quello in cui si realizza la produzione. Il sistema elettrico è utilizzato come strumento per l'immagazzinamento dell'energia elettrica prodotta e non istantaneamente autoconsumata. In particolare, dal 1° gennaio 2009, anziché calcolarsi su di un saldo fisico su base annuale tra l'energia elettrica immessa e l'energia elettrica prelevata, il meccanismo prevede una compensazione economica di quanto inizialmente pagato dall'utente in fase di prelievo energetico.

La compensazione dell'energia immessa in rete viene calcolata sul principio di:

a) valorizzare l'energia elettrica immessa, nei limiti del valore dell'energia elettrica prelevata, ma al netto delle tasse e degli oneri per l'accesso alla rete;

b) restituire, per una quantità di energia elettrica prelevata al più pari a quella immessa (energia "scambiata"), alcuni oneri di accesso alla rete, ovvero le componenti variabili, espresse in €cent/kWh, relative alla tariffa di trasmissione, alla tariffa di distribuzione, al dispacciamento e agli oneri generali (componenti A e UC).

A titolo di esempio, in Figura 1-1 è illustrata la composizione del prezzo di una bolletta domestica tipo, con indicazione di quali componenti del prezzo finale dell'energia prelevata dalla rete vengano rimborsate attraverso il contributo riconosciuto a fine anno dal GSE all'utente dello scambio sul posto.

Si noti che l'Iva è rimborsata nel contributo in conto scambio nei soli casi di clienti finali non dotati di partita Iva.

Mentre la compensazione economica di cui alla lettera a) deriva dalla valorizzazione dell'energia elettrica immessa in rete, la restituzione dei corrispettivi tariffari di cui alla lettera b) rappresenta il vero e proprio incentivo intrinseco nello scambio sul posto. E' come se l'energia elettrica immessa in rete e successivamente ri-prelevata fosse stata prodotta e autoconsumata istantaneamente senza utilizzare la rete (mentre nella realtà tale rete è stata utilizzata). Ciò significa che i costi non sostenuti dai soggetti che richiedono lo scambio sul posto rimangono in capo a tutti gli utenti del sistema elettrico.

² http://www.autorita.energia.it/allegati/docs/08/074-08arg.pdf

Figura 1-1 – Prezzo finale dell'energia nel caso di utente tipo domestico

Operativamente, per calcolare il contributo da erogare nell'ambito dello scambio sul posto, il GSE svolge una serie di calcoli, di seguito sintetizzati:

Il GSE associa all'energia elettrica immessa un controvalore C_{Ei}, espresso in Euro, pari al prodotto tra la quantità di energia elettrica immessa ed il prezzo zonale orario2³. Il prezzo zonale orario varia a seconda dell'ora e del giorno di immissione, nonché della zona geografica dove sorge l'impianto. A titolo di esempio, il prezzo zonale orario medio per il mese di Aprile dell'anno 2012, per le diverse zone geografiche, è riportato in Figura 1-2:

APRILE 2012									
Zona Centro Nord									
Fascia	F1	F2	F3						
Prezzo Medio	77,71	80,64	60,88						
Zona Centro Sud									
Fascia	F1	F2	F3						
Prezzo Medio	75,27	77,89	57,46						
	Zona N	ord							
Fascia	F1	F2	F3						
Prezzo Medio	76,46	79,56	59,49						
			5.3 ad:2a ad:3a ad:3a						

Figura 1-2 – Media dei prezzi zonali orari per il mese di Aprile 2012 (€/MWh)

Quindi, ad esempio, un impianto di cogenerazione al Nord Italia che ha immesso energia elettrica in rete tra le 8 e le 19 (fascia F1) di un giorno feriale di Aprile, ha avuto diritto ad un controvalore economico pari, in media, a 7,646 €cent per ogni kWh immesso in quella fascia oraria. La quantità di energia elettrica immessa è quella rilevata dai misuratori, maggiorata del 10,8% nel caso di connessioni in BT (Bassa Tensione) e del 5,1% nel caso di connessioni in MT (Media Tensione), al fine di tenere conto delle minori perdite di rete.

2. Il GSE calcola la somma delle componenti tariffarie rimborsabili CUS espressa in €cent/kWh), limitatamente all'energia scambiata (ovvero il minimo tra l'energia immessa e quella prelevata). In particolare, nel caso di impianti di cogenerazione ad alto rendimento il termine CUS è pari alla somma delle componenti variabili della tariffa di trasmissione, della tariffa di distribuzione e del dispacciamento. Il termine CUS non include la componente MCT (Misure di Compensazione Territoriale) perché essa è applicata ai consumi di energia elettrica, anziché ai prelievi, e pertanto non può essere restituita.

³articolo 13.4, "Allegato A", deliberazione AEEG 280/07

L'effettiva possibilità di associare i prezzi orari all'energia elettrica immessa dipende dai dati di misura disponibili. Nei casi in cui non sia disponibile la misura oraria dell'energia elettrica immessa, viene associato un prezzo coerente con i dati di misura disponibili (ad esempio, a misure per fasce orarie dell'energia elettrica immessa si associa un prezzo zonale medio per ciascuna fascia oraria)

Ovviamente il valore del termine CUS dipende dalla tipologia di cliente e dalla struttura tariffaria che ad esso si applica.

3. Il GSE calcola l'onere relativo alla all'energia elettrica prelevata (espresso in €). Questo onere è calcolato al netto degli oneri associati ai servizi di trasmissione, distribuzione, misura e di dispacciamento comprensivi delle relative componenti fisse, ove presenti, nonché delle componenti A, UC ed MCT. Per come viene calcolato, il termine OE include le accise e l'Iva (quest'ultima nei soli casi di clienti finali non dotati di partita Iva). Ad esempio, se l'utente paga l'energia che preleva 20 €cent/kWh (tasse incluse), il valore di OE, espresso in riferimento al kWh, è circa il 58% del prezzo totale: 11,6 €cent/kWh.

In conclusione, il GSE eroga all'utente dello scambio un corrispettivo denominato "Contributo in Conto Scambio", C_s, che include due componenti:

- a) la prima, è finalizzata alla compensazione economica tra il valore dell'energia elettrica immessa (C_{Ei} espresso in €) e il valore della parte energia dell'energia elettrica prelevata (OE espresso in €). In pratica, il GSE riconosce all'utente dello scambio il valore economico della sua energia elettrica immessa (C_{Ei}) nei limiti del valore economico dell'energia elettrica prelevata al netto delle componenti "di rete" (O_E). In termini matematici, il GSE riconosce il minimo tra O_E e C_{Ei};
- b) la seconda, è finalizzata alla restituzione, da parte del GSE all'utente dello scambio, del termine C_{US} (espresso in c€/kWh) per la quantità di energia elettrica scambiata. E' come se, limitatamente alla quantità di energia elettrica scambiata, non fosse stata utilizzata la rete. In termini matematici, il GSE riconosce un corrispettivo pari a (C_{US} * en. scambiata)..

In conclusione, il corrispettivo riconosciuto dal GSE nell'ambito dello scambio sul posto (CS) è pari a:

$$CS = min (O_E; C_{Ei}) + C_{US} * Es$$

Dove:

O_E = valorizzazione energia prelevata

C_{Ei} = valorizzazione energia immessa

C_{US} = somma delle componenti tariffarie rimborsabili (Contributo Unitario Servizi)

Ei = energia immessa nel periodo di riferimento

Epr = energia prelevata nel periodo di riferimento

Es = energia scambiata = min (Ei; Epr)

Nel caso in cui la valorizzazione dell'energia immessa sia superiore a quella dell'energia prelevata (cioè $C_{Ei} > O_E$), tale maggiore valorizzazione può essere riportata a credito (come credito economico) negli anni successivi, senza limitazione temporale, oppure essere liquidata dal GSE.

1.2. Modello Simulink

Il modello Simulink che implementa lo scambio sul posto è illustrato in Figura 1-3.

😽 SSP * X 🖻 💼 | 🕁 🔿 ☆ | 으 으 | ► = 10.0 Normal - 🛛 🕮 🗈 🕸 📖 | 🕽 🔯 📼 🛞 🗅 | 🐸 🖬 🚭 Epr_F1 preleva nia in E2 Epr_F2 1 F2 preleva Epr_F3 EI F1 BT EI_F2 Ei_F3 P 🛱 🔁 🕪

Figura 1-3 – Modello Simulink di simulazione dello scambio sul posto

Dove si hanno i seguenti parametri:

⁴ <u>http://www.gse.it/it/Ritiro%20e%20scambio/Ritiro%20dedicato/Pages/default.aspx</u>

2. Modello di simulazione pompa di calore

2.1. Descrizione del modello

Il modello di simulazione della pompa di calore si basa sulla riproduzione del ciclo termodinamico inverso realizzato all'interno della macchina. Un'immagine del modello è riportata in Figura 2-1.

Figura 2-1 – Modello Simulink della pompa di calore

Il modello richiede in input le temperature esterne (ambiente, e dell'ambiente da riscaldare/raffreddare), e i salti termici al condensatore e all'evaporatore. Tali temperature vengono inserite all'interno del blocco "Inserimento temperature", nell'apposita maschera illustrata in Figura 2-2.

Subsystem (mask)	
Parameters	
Temperatura ambiente esterno	
35	
Temperatura ambiente interno refrigerato	
5	
Salto termico al condensatore	
10	
Salto termico all'evaporatore	
5	

Figura 2-2 – Maschera per l'inserimento delle temperature delle sorgenti e dei salti termici

Note tali temperature, il modello calcola la temperatura di evaporazione (T_e) e quella di condensazione (T_c), come illustrato in Figura 2-3:

Figura 2-3 – Blocco di calcolo delle temperature di condensazione e di evaporazione del ciclo

Tali due temperature rappresentano, rispettivamente, la temperatura superiore ed inferiore del ciclo termodinamico inverso effettuato dal fluido frigorigeno.

All'interno del modello sono state quindi introdotte le curve del limite inferiore e superiore del fluido R134a, uno dei più impiegati in questo tipo di macchine, come illustrato in Figura 2-4. L'obiettivo è individuare i capisaldi del ciclo, al fine di calcolarne il COP, al variare delle temperature di riferimento inserite precedentemente. Sono state effettuate le seguenti ipotesi:

- non vi è sotto-raffreddamento, per cui il punto 3 di inizio laminazione giace sulla curva limite inferiore;
- non vi è surriscaldamento, per cui il punto 1 di inizio compressione giace sulla curva limite superiore.

Figura 2-4 – Diagramma p-h del fluido frigorigeno R134a

Il flusso delle operazioni che vengono realizzate dal modello è di seguito descritto:

- Nota la temperatura di condensazione, questa è assunta pari alla T₃ di inizio laminazione;
- nota la temperatura del punto 3, sono univocamente determinate la sua pressione (p₃), entalpia (h₃) ed entropia (s₃) dalla curva limite inferiore;
- si calcola quindi la posizione del punto 4, che ha $h_4 = h_3$ e $T_4 = T_e$; poiché all'interno della curva "a campana" pressione e temperatura sono costanti, è possibile determinare così anche la p_4 ;
- si calcola quindi la posizione del punto 1, che ha $p_1 = p_4$, $T_1 = T_4$; h_1 ed s_1 vengono determinati dalla curva limite superiore;
- si calcola quindi la posizione del punto 2is (isentropico), dall'intersezione della retta isentropica passante per il punto 1, con la curva a pressione costante p_{2,is} = p₃. Si determina in tal modo anche la h_{2,is};
- si calcola infine il punto 2, introducendo il rendimento isentropico di compressione:

$$(_{1}is = (h_{1}(2, is) - h_{1}1)/(h_{1}2 - h_{1}1)$$

È così possibile calcolare l'entalpia h_2 . Si ha inoltre $p_2 = p_3$.

Il blocco Simulink che implementa il calcolo dei capisaldi del ciclo è rappresentato in Figura 2-5. Un esempio del ciclo che viene riprodotto dal modello nel diagramma p-h è riportato in Figura 2-6.

Figura 2-5 – Modello Simulink che implementa i capisaldi del ciclo

Figura 2-6 – Esempio di una simulazione del ciclo realizzato dal fluido R134a nel diagramma p-h

Noti i capisaldi del ciclo, il modello procede quindi al calcolo del calore ceduto al condensatore, sottratto all'evaporatore e del lavoro di compressione:

- Calore ceduto al condensatore = h2 h3
- Calore sottratto all'evaporatore = h1 h4
- Lavoro di compressione = h2 h1

E, quindi, al calcolo dei COP:

$$COP_{\downarrow}(assetto riscaldamento) = (_{1}m (_{1}el (h_{1}2 - h_{1}3)/(h_{1}2 - h_{1}1))$$
$$COP_{\downarrow}(assetto frigorifero) = (_{1}m (_{1}el (h_{1}1 - h_{1}4)/(h_{1}2 - h_{1}1))$$

dove:

 $\eta_m = rendimento meccanico, inserito per tenere conto delle perdite meccaniche interne alla macchina;$ $\eta_{el} = rendimento elettrico, inserito per tenere conto delle perdite di tipo elettrico.$

Il blocco deputato al calcolo dei COP è riportato in Figura 2-7:

Figura 2-7 – Blocco di calcolo dei COP del ciclo

2.2. Validazione su dati reali

I parametri di funzionamento del modello di pompa di calore sono stati impostati prendendo come riferimento l'unità aria – acqua Panasonic, i cui dati di performance sono stati riportati nella parte A del Rapporto Finale. In particolare, è stato analizzato il COP al variare della temperatura dell'aria esterna, e per 5 diverse macchine rispettivamente di potenza pari a 7, 9, 12, 14, 16 kW, a parità di temperatura dell'acqua in uscita dal condensatore pari a 35°C.

I valori dei rendimenti che sono stati assunti nella taratura del modello sono i seguenti:

- rendimento meccanico = 0,9
- rendimento elettrico = 0,9
- rendimento di compressione = 0,85

Fissati tali rendimenti, sono stati ricercati i salti di temperatura al condensatore e all'evaporatore, che consentono di interpolare la curva di COP medio per le diverse taglie considerate, come riportato in Figura 2-8. Come si nota, mantenendo i salti di temperatura costanti le curve simulate non hanno la concavità che è invece mostrata dai valori sperimentali. Tale concavità viene simulata con ottima aderenza ai dati sperimentali ammettendo dei salti di temperatura variabili in funzione della temperatura esterna, secondo l'andamento riportato in Figura 2-9.

Figura 2-8 – Valori di COP per le pompe di calore Panasonic al variare della temperatura aria esterna

Figura 2-9 – Andamento dei salti di temperatura al variare temperatura esterna

Si è quindi proceduto alla validazione del modello così tarato, utilizzando i dati tecnici delle unità Carrier 30AWH 004-015 aria – acqua e 30RB-RQ 17-33 aria – acqua. I risultati sono riportati in

Tabella 2-1 e in Tabella 2-2. Come si nota, sono stati confrontati i valori di COP ottenuti dal modello, con quelli sperimentali medi sui diversi modelli considerati (le variazioni di COP con la taglia sono infatti minimali). Le discrepanze ottenute sono contenute entro il 10%.

		DT H2O free	dda 23-18°	С	DT H2O calda 30-35°C			DT H2O fredda 7-12°C				DT H2O calda 40-45°C					
		aria ex	kt 35°C		aria ext 7°C			aria ext 35°C				aria ext 7°C					
Madalla				Simulazione			COD	Simulazione			ГГР	Simulazione			COD	Simulazione	
woueno	PC[KVVC]	Pass [Kwei]	EEK	dtc=dte=5	ΡιΠ[Κννር]	Pass [KWei]	COP	dtc=dte=2	ΡΟ[ΚΝΝΟ]	Pass [Kvvel]	Pass [KWEI] EER	J CCK	dtc=dte=5	Pui [Kwui]	Pass [Kwei]	COP	dtc=dte=2
004	4,9	1,2	4,05		4,1	1,0	4,06		3,3	1,1	2,92		3,9	1,2	3,20	l -	
006	7,0	1,9	3,65		5,8	1,4	4,23		4,7	1,6	2,94		5,8	1,9	3,05		
008	7,8	2,0	3,94	3,90	7,2	1,8	3,96	4,47	5,8	2,0	2,94	2,96	7,4	2,3	3,19	3,07	
012	13,5	3,7	3,67		11,9	3,0	3,95		10,2	3,5	2,95		12,9	4,3	3,03		
015	16,0	4,2	3,81		14,5	3,6	4,06		13,0	4,5	2,91		14,0	4,4	3,21		
			3,82	+2,0%			4,05	+10,3%			2,93	+1,0%			3,14	-2,09%	

Tabella 2-1 – Validazione del modello sui dati pompa di calore aria - acqua Carrier 30AWH 004-015

Tabella 2-2 – Validazione del modello sui dati pompa di calore aria - acqua Carrier 30RB-RQ 17-33

		DT H2O free	da 23-18°	С	DT H2O calda 30-35°C				DT H2O fredda 7-12°C				DT H2O calda 40-45°C			
	aria ext 35°C					aria ext 7°C aria ext 35°C					aria ex	t 7℃				
Modelle		Dace [k]Mol]	EED	Simulazione			COD	Simulazione		Docc [k]Mol]	EED	Simulazione	D+h [k\\/+h]	Dace [k]Mol]	COD	Simulazione
wodeno	PC[KVVC]	Pass [Kvvel]	EEK	dtc=dte=5	ΡιΠ[Κννር]	Pass [Kvvel]	COP	dtc=dte=2	ΡΟ[ΚΝΟΟ]	Pass [Kvvel]	EEK	dtc=dte=5	רוו [גיייו]	Pass [Kwei]	COP	dtc=dte=2
017	22,5	5,3	4,26		17,4	4,3	4,09		16,1	4,9	3,27		16,8	5,2	3,23	
021	27,7	6,9	4,00	3 00	22,0	5,4	4,10	1 18	20,4	6,3	3,24	2 07	21,4	6,4	3,34	2.07
026	34,7	9,0	3,84	3,30	30,7	7,5	4,09	4,40	27,0	8,6	3,13	2,97	29,6	9,0	3,27	3,07
033	44,1	10,4	4,24		34,3	8,4	4,09		33,0	9,8	3,35		33,0	10,1	3,26	
			4,09	-4,5%			4,10	+9,4%			3,25	-8,6%			3,28	-6,27%

3. Modello di simulazione unità GHP

3.1. Descrizione del modello

Il presente capitolo intende descrivere il modello di simulazione sviluppato in Matlab Simulink dell'unità a pompa di calore con motore endotermico GHP.

Il modello del motore endotermico è stato derivato da opportune modifiche e ottimizzazioni al modello dinamico già realizzato di cogeneratore di piccola taglia (100-500 kWel) sviluppato dal DENERG per ENEA nell'ambito della precedente annualità di ricerca di sistema elettrico (2010-2011), per renderlo idoneo alla simulazione di sistemi di micro-cogenerazione (2-10 kWel). Il modello della pompa di calore descritto al Capitolo 2 è stato quindi accoppiato al modello di micro-cogeneratore.

il modello completo dell'unità GHP è mostrato in Figura 3-1.

Figura 3-1 – Modello dell'unità GHP

Il modello prevede i seguenti dati in input:

- temperatura ambiente (T_{amb});
- portata acqua del circuito utenza (^mhu);
- temperatura di ritorno dell'acqua dal circuito utenza (T_{hu,i,saa}).

Al suo interno il blocco Unità GHP si presenta come mostrato in Figura 3-2:

Figura 3-2 – Elementi costitutivi dell'unità GHP

Rispetto al modello di motore a combustione interna in assetto cogenerativo precedentemente sviluppato, sono state implementate le seguenti modifiche:

- E' stata inserita la mappa della potenza elettrica erogata in funzione della potenza termica del combustibile (P_{el} vs P_f); tale mappa è stata ottenuta dall'interpolazione dei dati sperimentali forniti dai produttori dei micro-cogeneratori, come illustrato nella Parte A del Rapporto Finale. In particolare, usualmente, i produttori forniscono le mappe del rendimento elettrico in funzione della potenza elettrica. Tali mappe sono facilmente riconvertibili nel formato richiesto dividendo la potenza elettrica fornita per il relativo rendimento elettrico; si calcola in tal modo la potenza termica del combustibile, che può essere inserita nell'apposita look-up table, in funzione della potenza elettrica; la mappa della potenza elettrica è stata quindi adimensionalizzata rispetto alla potenza elettrica e potenza termica del combustibile nominali;
- È stato inserito il modello di pompa di calore, come descritto al Capitolo 2;
- La caldaia è stata rimossa;
- È stato mantenuto l'accumulo di energia termica sotto forma di acqua calda, con un set-point di temperatura interna impostabile dall'utente, e due temperature minima e massima di off-set per definire l'azionamento e lo spegnimento dell'unità GHP.

3.2. Motore a combustione interna

Il modello richiede la mappa sperimentale del motore che si intende simulare. In particolare, è stata inserita la mappa della potenza elettrica erogata in funzione della potenza termica del combustibile introdotta nel cogeneratore. Tale mappa è stata derivata dall'interpolazione dei dati sperimentali rilevati e presentati nella Parte A del presente Rapporto Finale, ed è mostrata in Figura 3-3.

Figura 3-3 – Interpolazione dei dati sperimentali dei micro-cogeneratori analizzati

La conversione di tale mappa con l'espressione della potenza elettrica erogata in funzione della potenza del combustibile in ingresso, e la conseguente adimensionalizzazione di tali grandezze, porta al grafico riportato in Figura 3-4.

Figura 3-4 – Conversione ed adimensionalizzazione dei dati interpolati

Tale mappa è stata quindi inserita all'interno dell'apposita look-up table all'interno del modello. Nota la potenza elettrica erogata in funzione del combustibile in ingresso, viene calcolata quindi la potenza meccanica erogata dal motore, $P_{m,CHP}$, dividendo la potenza elettrica per il rendimento nominale dell'alternatore. La potenza meccanica $P_{m,CHP}$ viene quindi trasmessa al compressore della pompa di calore per mezzo di un accoppiamento meccanico.

Figura 3-5 – Inserimento della mappa sperimentale interpolata del motore all'interno del modello

3.3. Integrazione fra motore e pompa di calore

Il modello sviluppato prevede la gestione della GHP in assetto di riscaldamento. La potenza termica recuperata dal motore a combustione interna ($P_{th,CHP}$, somma del contributo dell'acqua di raffreddamento e del recupero dai fumi di scarico), viene considerata come potenza termica utile in ingresso all'accumulo, e concorre al mantenimento della temperatura di set-point al suo interno.

La potenza meccanica sviluppata invece dal motore viene inviata, per mezzo di un rendimento meccanico di trasmissione, al compressore della pompa di calore, simulandone in questo modo l'assorbimento.

Quando l'unità GHP è spenta, essa non eroga né potenza meccanica, e quindi non aziona il compressore della pompa di calore, né potenza termica.

Lo schema funzionale dell'integrazione fra il modello di cogeneratore, e quello della pompa di calore, è mostrato in Figura 3-6.

Figura 3-6 – Schema funzionale dell'integrazione fra cogeneratore e pompa di calore

Le equazioni fra le grandezze che intervengono nelle trasformazioni termodinamiche, implementate all'interno del modello della GHP, sono di seguito riportate:

 $P_{m,HP} = \eta_m P_{m,CHP}$ $P_{th,HP} = COP P_{m,HP}$ $P_{th,tot} = P_{th,HP} + P_{th,CHP}$ $P_{th,CHP} = P_f * \eta_{th}$ $GUE = P_{th,HP} / P_f$

Il controllo dell'unità è rappresentato dall'inseguimento termico, ovvero la funzione obiettivo è il mantenimento di una temperatura di set-point prefissata all'interno dell'accumulo, con un off-set di temperature minime e massime ammesse impostabili dall'utente. Raggiunta la temperatura massima, l'unità GHP si spegne, e rimane spenta fino a quando la temperatura dell'accumulo non raggiunge il valore minimo impostato dell'utente, dopo di che si riaccende e la potenza termica totale erogata dalla macchina riprende a conferire nell'accumulo. Tale funzionamento è tipico delle unità di micro-cogenerazione della taglia considerata nell'ambito di tale ricerca (5÷15 kW), in cui il funzionamento ai carichi parziali in taluni casi non è previsto dal produttore, o comunque non è suggeribile a causa della diminuzione sensibile delle efficienze della produzione meccanica o elettrica.

3.4. Validazione su dati reali

Il modello di GHP illustrato ai capitoli precedenti è stato validato per mezzo dei dati sperimentali forniti dal produttore dell'unità. Sono state condotte due simulazioni, sui dati nominali delle unità 8HP e 10 HP, le più vicine come taglie a quelle considerate nell'ambito della presente ricerca. I dati di setup assunti sono stati, in entrambi i casi, i seguenti:

- rendimento meccanico del motore: 0,323
- rendimento elettrico della pompa di calore: 0,85
- rendimento meccanico della pompa di calore: 0,85

- rendimento trasmissione motore / pompa di calore: 0,87
- rendimento isentropico del compressore: 0,70
- temperatura della sorgente fredda (aria): 7°C
- temperatura della sorgente calda (acqua): 35°C
- salto termico al condensatore: 2°C
- salto termico all'evaporatore: 2°C

Le maschere per l'inserimento dei dati di configurazione, e la loro posizione all'interno del modello, sono riportate in Figura 3-7.

Figura 3-7 – Maschere per l'inserimento dei parametri di configurazione del modello

I risultati delle due prove condotte sono riportate in Tabella 3-1

	Dati di	targa	Dato produttore	Dato simulato	Discrepanza
Modello	P _m [kW]	P _f [kW]	Pth,tot		
8HP	5	15,5	23,5	23,7	+0,9%
10HP	6,5	20,1	30	30,7	+2,3%

Tabella 3-1 – Validazione del modello sui dati nominali unità 8HP e 10 HP

Dove $P_{th,tot} = P_{th,HP} + P_{th,CHP}$ è la potenza termica totale resa all'acqua, in uscita dalla pompa di calore. Si nota come l'aderenza dei dati simulati ai dati forniti dal produttore sia molto buona. In si riporta il posizionamento dei punti simulati sulla mappa $P_{th,tot}$ vs P_f per le unità 8HP e 10 HP.

Dati nominali; configurazione aria - acqua; sorgente calda 35°C; sorgente fredda 7°C

3.5. Esempio di simulazione

Dopo aver effettuato la validazione del modello con i dati sperimentali forniti dal produttore, nel presente paragrafo si intende illustrare i risultati di un esempio di simulazione. E' stato testato il funzionamento del modello dell'unità GHP nell'ipotesi di fornire acqua calda per riscaldamento ad un edificio, che è stato simulato come un carico termico costante, di valore impostabile dall'utente. Le simulazioni sono state condotte con i seguenti parametri:

- rendimento meccanico del motore: 0,323
- rendimento elettrico della pompa di calore: 0,85
- rendimento meccanico della pompa di calore: 0,85
- rendimento trasmissione motore / pompa di calore: 0,87
- rendimento isentropico del compressore: 0,70
- temperatura della sorgente fredda (aria ambiente): 7°C
- temperatura della sorgente calda (acqua): 35°C
- salto termico al condensatore: 2°C
- salto termico all'evaporatore: 2°C
- tempo di simulazione: 30000 time-step (secondi)

Sono inoltre stati considerati i seguenti dati di input al modello:

- potenza meccanica nominale della GHP: 5 kW
- rendimento meccanico nominale della GHP: 0,323
- temperatura acqua calda di ritorno dall'edificio: 70°C
- portata acqua utenza: 0,25 kg/s
- temperatura di set-point dell'accumulo: 80°C

- temperatura massima dell'accumulo: 85°C
- temperatura minima dell'accumulo: 75°C
- carico termico dell'edificio: 5 kW

La temperatura all'interno dell'accumulo mostra il trend riportato in

Figura 3-9, in cui si nota il mantenimento della temperatura di set-point con gli offset di temperatura minima e massima impostati dall'utente.

Figura 3-9 – Andamento della temperatura all'interno dell'accumulo termico [°*C*]

L'andamento della potenza termica recuperata dal motore a combustione interna è mostrato in Figura 3-10, mentre l'andamento della potenza termica calda erogata dalla pompa di calore è riportato in Figura 3-11.

Figura 3-10 – Andamento della potenza termica recuperata dal motore [kW]

Figura 3-11 – Andamento della potenza termica erogata dalla pompa di calore [kW]

Dal momento che il modello calcola i capisaldi del ciclo frigorifero, è possibile tracciarlo nel diagramma p-h. Si riporta tale ciclo in Figura 3-12.

Figura 3-12 – Ciclo di lavoro del fluido frigorigeno nel diagramma p-h

APPENDICE

Esperienza del gruppo di ricerca

Il Gruppo di Ricerca è formato dal Prof. Marco Badami e dall'assegnista di ricerca ing. Armando Portoraro del Dipartimento Energia del Politecnico di Torino.

Le attività svolte dai componenti gruppo nell'ambito dei sistemi di cogenerazione/trigenerazione di piccola taglia sono testimoniate da:

- Responsabilità dell'Unità Operativa del Politecnico di Torino per il progetto "HEGEL High Efficiency polyGEneration appLication" finanziato dell'Unione Europea nell'ambito del VI programma quadro (Coordinatore: Centro Ricerche FIAT). Il programma ha permesso la progettazione, lo sviluppo e la sperimentazione di tre diversi impianti di cogenerazione-trigenerazione di piccola taglia. Uno di questi impianti è stato installato e provato nel laboratorio EcoEner.Lab del Politecnico di Torino.
- Direzione del laboratorio di sistemi energetici (EcoEner.lab) per lo studio teorico-sperimentale di sistemi energetici a basso impatto ambientale che comprende attualmente due impianti ed in particolare quello citato al punto precedente e un secondo impianto costituito da una microturbina da 100 kWe e da un gruppo ad assorbimento che sfrutta il calore della microturbina per la produzione di energia frigorifera.
- Tutoring di 5 Tesi di Dottorato su argomenti riguardanti lo studio teorico-sperimentale di impianti di cogenerazione-trigenerazione di piccola taglia.
 - XVIII ciclo; Casetti A.: Analisi di sistemi di cogenerazione distribuita.(2006)
 - XXI ciclo; Mura M.: Progettazione e valutazione delle prestazioni di un impianto innovativo di piccola taglia a ciclo combinato in assetto cogenerativo (2009)
 - XXII ciclo; Portoraro A.: Studio teorico sperimentale di sistemi di trigenerazione di piccola taglia. (2010)
 - XXIV ciclo; Ferrero M.: Analisi sperimentale e simulazione di sistemi di trigenerazione. (2012)
 - XXVII ciclo (Dottorato in apprendistato con COMAU Spa); Vigliani E.: Interventi di efficienza energetica nel settore automotive e dei relativi meccanismi normativi di incentivazione.
- Referaggio di Tesi di Dottorato Europeo per l'Università Rovira i Virgili di Tarragona (Spagna):
 - Villada J.L.: "Integración de sistemas de refrigeración solar en redes de distrito de frío y de calor", 2010
 - Marimón Sarmiento M.A.: "Modelización y análisis energético de configuraciones de trigeneración en edificios", 2011
 - Montero Izquierdo I.A. "Modelización de sistemas de refrigeración por absorción con captadores solares de concentración", 2012

Durante l'attività di ricerca svolta negli ultimi anni sono stati pubblicati i seguenti lavori:

Badami M., Portoraro A., Ruscica G. (2012). Analysis of trigeneration plants: Engine with liquid desiccant cooling and micro gas turbine with absorption chiller . INTERNATIONAL JOURNAL OF ENERGY RESEARCH, vol. 36, p. 579-589, ISSN: 0363-907X, doi: 10.1002/er.1817

Badami M., Ferrero M., Portoraro A. (2012). Experimental tests of a small-scale microturbine with a liquid desiccant cooling system. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, ISSN: 1099-114X, doi: 10.1002/er.2914

M. BADAMI, MURA M. (2010). Exergetic analysis of an innovative small scale combined cycle cogeneration system. ENERGY, vol. 35, p. 2535-2543, ISSN: 0360-5442

BADAMI M., PORTORARO A (2009). Performance analysis of an innovative small-scale trigeneration plant with liquid desiccant cooling system. ENERGY AND BUILDINGS, vol. 11, p. 1195-1204, ISSN: 0378-7788

BADAMI M., MURA M (2009). Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE). ENERGY, vol. 34, p. 1315-1324, ISSN: 0360-5442, doi: 10.1016/j.energy.2009.04.031

BADAMI M, MURA M., CAMPANILE P, ANZIOSO F (2008). Design and Performance Evaluation of an Innovative Small Scale Combined Cycle Cogeneration System. ENERGY, vol. 33, p. 1264-1276, ISSN: 0360-5442, doi: 10.1016/j.energy.2008.03.001

Badami M., Ferrero M., Portoraro A. (2011). NOMINAL AND PARTIAL LOAD OPERATION OF A SMALL-SCALE MICROTURBINE WITH A LIQUID DESICCANT COOLING SYSTEM: AN EXPERIMENTAL ASSESSMENT. In: Proceedings of 2011 ASME International Mechanical Engineering Congress & Exposition. Denver, Colorado, USA, November 11-17, 2011

BADAMI M., PORTORARO A, RUSCICA G (2010). Analysis and comparison of performance of two smallscale Trigeneration plants: an ICE with a liquid desiccant cooling system and a MGT with an absorption chiller, Orlando, Florida, USA, November 13-19, 2009., vol. 6, p. 459-467, ASME, ISBN: 9780791843796, doi: 10.1115/IMECE2009-12279

M. BADAMI, J.C. BRUNO, A. CORONAS, J. ORTIGA, PORTORARO A. (2010). PRELIMINARY EXPERIMENTAL RESULTS OF A LIQUID DESICCANT COOLING SYSTEM AND COMPARISON WITH EMPIRICAL CORRELATIONS. In: -. Proceedings, 9th IIR Gustav Lorentzen Conference,. Sidney, Australia, 12-14 April 2010

BADAMI M., PORTORARO A (2009). ENERGETIC AND ECONOMIC ANALYSIS OF A SMALL-SCALE TRIGENERATION PLANT WITH A LIQUID DESICCANT COOLING SYSTEM. In: -. ExHFT-7. Krakow, Poland, 28 June - 03 July 2009, p. 475-482, ISBN: 9788374642354