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1. Introduction

The continuously increasing level of safety of Nuclear Power Plants (NPPs) against
internally initiated events has recently forced the nuclear engineering community to
concentrate a significant research effort on the evaluation and mitigation of risks associated to
external phenomena such as natural hazards. Among these, as demonstrated by a large
number of Probabilistic Risk Assessment (PRA) studies performed worldwide, earthquakes
play a very important role. This is because of their unique ability to initiate a fault event and,
at the same time, to cause failure of components needed to mitigate the accident itself; in
addition, large uncertainties are associated to the earthquake occurrence and to the seismic
performance evaluation of components and systems.

This situation requires, on one hand, a higher level of attention on seismic design issues;
on the other hand, unnecessary conservatism must be removed, as much as possible, from
seismic risk analysis. This is the convolution of structural and equipment fragility with
seismic hazard; the first implies the probabilistic evaluation of structural performance
conditioned to the ground shaking intensity, while the second usually amounts to estimating
the frequency of occurrence for each intensity level. Even though seismic hazard plays a
fundamental role in the estimation of the overall risk, both randomness and uncertainty
significantly affect the evaluation of structural behaviour under extreme loads and thus of
seismic reliability. Randomness cannot be avoided, since is inherent to most of the input data
of the analysis; uncertainties, being related to the lack of complete and accurate knowledge
about models and methods, must be reduced as much as possible by refining analysis
procedures.

This is the aim of the activity described in the present report, where attention is particularly
devoted to the probabilistic evaluation of the seismic performance of a NPP reactor building
for the computation of equipment fragility. It is worth noting, in this respect, that the
computation of seismic fragility of NPP components has been performed, in the last decades,
by means of a simplified but well consolidated approach, whose engineering significance and
practical validity for analyzing normal cases is not questionable; the topic addressed here is
how to develop a more sophisticated, and obviously more costly, procedure able to eliminate
part of the uncertainties and thus of the conservatism inherent in the traditional analysis. This
is intended to be applied to a limited number of components of utmost importance or when

the screening performed via the traditional procedure has shown a critical situation.



Within this context, the overall framework of seismic risk assessment will be reviewed, in
the next section, with particular reference to the peculiarities of the NPP case. Starting from
this, the analytical and computational aspects related to the assessment of reliability for a NPP
component subject to random dynamic excitation, as it typical of the seismic case, will be
treated in Section 3, while in the Section 4 an example of application will be shown, regarding

an initial design solution for the IRIS reactor building and in the last section some conclusive

considerations will be drawn.



2. Fragilities and seismic risk: the case of NPP components

Following the PEER (Pacific Earthquake Engineering Research) approach [I], the
computation of failure probability for a mechanical component under seismic loading can be
cast into the following integral evaluation, based on repeated application of the total

probability theorem:
P, = [[P{DM > dm,| EDP = edp} p,.., (edp| IM = im)p,, (im)d (edp)d(im) 1)

According to the revised formulation by Der Kiureghian [1], here adopted, the random
variables appearing in (1) are defined as follows.

DM is a Damage Measure, associated to the assumed limit state, with dm, denoting the

Damage level at failure.

EDP is an Engineering Demand Parameter (support acceleration, relative displacement,...)
expressing the level of the dynamic excitation imposed to the component due to the
global seismic response of the structure (reactor building).

IM  is an Intensity Measure (peak ground acceleration, spectral acceleration,...)
characterizing the severity of the earthquake motion at the reactor site. The statistics of
IM is usually defined in term of annual extreme values; in this case equation (1)
delivers a risk estimate in terms of annual probability of failure of the component.

Application of (1) is particularly appealing within the complex framework of NPP design,
since the main tasks, which can be performed by different groups, are well defined and
differentiated. More precisely:

e the determination of p,,(im), i.e. of the probability density function (PDF) of the

intensity measure at the site, which is the object of Seismic Hazard Analysis;

o the determination of the conditional PDF pEDP(edp[IM =im), denoted as Fragility

Analysis in [1], which is the output of the reliability analysis of the reactor building under

a seismic input of intensity equal to im;
e the determination of the conditional PDF p,,, (dm‘EDP =edp), denoted as Damage
Analysis in [1], which is the output of the reliability analysis of the component subject to

a seismic demand equal to edp.

In addition, if the component failure must be considered within an overall “Plant Fragility”
estimation the total conditional probability P{DM > dm fllM = z'm} must supplied to the
4



system reliability' analyst; to this purpose we can split the integration (1) into two subsequent

steps, as:

P, = [[ [P{D > dm, | EDP = edp) pyo (edp| IM = im) d(edp) | py (im) d(im) = o
2

= [P{DM > dm,| 1M = z'm}p,M (im) d (im)
Expression (2) implicitly defines the required component fragility (including Damage

Analysis) as:
P{DM > dm,| M =im} = [P{DM > dm,| EDP = edp} p,(edp| IM = im) d(edp) 3)

The above framework applies to the analysis of complex and/or critical components; for a

“simple” component the limit state can be directly defined in terms of the EDP value at failure

edp, , thus avoiding the damage analysis step, i.e:

P, = [P{EDP> edp,|IM = im}p,,, (im)d(im) @

3. Computation of fragility via the Response Surface Method

We shall denote in the following the fragility F(edp,im) as:
F(edp,im) = P{EDP > edp|IM = im} =1~ Py,,, (edp ! IM = im) (5)

where P, (edp/IM =im) is the conditional Cumulative Density Function of the edp random
variable.

The use of the expressions derived in section 2 implies the availability of either the
fragility function F(edp,im), in equation (4), or its derivative, appearing in (1) and (3). In fact
we get, from (5): '

dF (edp,im) ©)

Pipp(edp | IM =im)=— d(edp)

With reference to the case of equipment components located inside the reactor building of
a NPP, we shall consider as EDP the extreme value, denoted as A4, of the absolute acceleration

at the component supports; the peak acceleration4, of the most severe component of

horizontal ground motion will be taken as IM.
In general, we shall assume that the damage analysis can be performed by studying the

response of the equipment component (or subsystem such as the reactor vessel) to the
5



dynamic excitation defined by suitable time-histories of support acceleration components,
having an overall peak value equal to 4. The support motion can be in turn computed by
studying the building response via a structural model in which the component is represented
in a simple way (rigid mass or simplified mechanical modet).

This implies that no significant structure-equipment dynamic interaction occurs, so that
structure and equipment analyses can be performed in decoupled form. Note that the
performance of decoupled dynamic analysis and the use of expressions (1) or (3) is
particularly attractive when, as it usually the case in NPP design, elastic behaviour can be
assumed for the reactor building, so that non-linearity can be confined within the component

damage analysis.
The fragility function can therefore be interpreted as the probability of exceeding a given

structural dynamic amplification, that is:
F(edp,im)y=P{A>adl4,=a,}=P,(a,a)=P,(ala,) (7

where the last rhs holds for a linearized structural model.

3.1 Deterministic dynamic excitation

We shall first address a linear model under deterministic seismic input; in this case the
exceedance probability (7) is associated to a limit-state function which can be written in the

following “capacity minus demand” format:
gX,a,a,)=C-D(X,a,)=a-r(X)a, =0 (8)

in which g(X,a,aH) is the performance function, X is the vector listing the random variables

and r(X) denotes the structural response for a unit pga.
To fully exploit response linearity the preceding expression can be rewritten in the non-

dimensional form:

g(x,a/ag)=ai—r(X)=o )

4

in which the peak amplification factor a/a, is explicitly stated as EDP.

Once the limit-state function is stated the exceedance probability (7) can be expressed by

the multidimensional integral



P.(ala,)= [[[px(x)dx (10)
<0 _

which can be evaluated, in principle, via Monte Carlo Simulation (MCS); in fact the response

r(X) is algorithmically known, i.e. can be deterministically computed by structural dynamic

analysis, for every realization of the random variables X. It must be considered, however, that

a huge computing time and cost would be required for running a complex finite element

model, as it is the case for a NPP reactor building, for the number of evaluations which are

necessary for MCS, especially for the estimation of small probabilities.

For the above consideration, according to the well-established Response Surface
Methodology (RSM, see [2,3]), the “true” response function is replaced by a simple analytical

representation by assuming:

rX) = y(X)=Zp:a,.zi(X)+8: 1,(X) +e 11)

i=l

where the a;’s are coefficients to be estimated, the z;’s are the “explanatory” functions (usually

polynomials), £, is the mean value of the response and € is a zero mean random deviation or

“error” term. The latter accounts for the variability of y around its actual mean and for the ‘
lack of fit of the adopted model, i.e. for the inadequate analytical form of the RS and for
missing variables (i.e. not comprised in (11) though influencing the response). To estimate the
coefficients and the properties of ¢ a suitable number (# = p ) of numerical experiments must
be run, according to the adopted strategy (“experimental design™).

We shall assume in the following that the experiments are performed in homogeneous
conditions (i.e. differing for the x; values only), that their results are independent and that the
error term is normal with constant variance; under these hypotheses an unbiased estimate of
the coefficients a; can be obtained by the Ordinary Least Square (OLS) method,
independently of the variance of £. An unbiased estimate s> of the latter can be obtained,
once the mean mode] is defined, in terms of the so called residuals 7;: these are defined, for
each (j-th) experiment, as the difference between the observed value and the value predicted

by the mean model. The following expression can be derived:

s; = 1 >l (12)

n=pja



Once the “metamodel” (11) is set the failure probability can be easily derived from MCS,
given the very low computational cost associated to each evaluation of the limit state

function.

3.2 Random dynamic excitation

In the preceding section the excitation as been assumed deterministic; this means that, once
the intensity and frequency content are fixed, even though controlled through some random
variable listed in X, a unique realization of the external dynamic forces is possible. This does
not hold true in the seismic case since, even though overall properties (e.g. spectral
parameters) are given, an extremely large number of variables affect the seismic source, the
source-to-site transmission path and the local ground response, so that the time history of
ground motion can be described only in a probabilistic sense.

In such situation the computation of structural response becomes, once fixed the seismic
input spectral parameters and the structural properties, the result of a random vibration
analysis; we shall denote, in this light, R(X) as a new random variable whose realization 7(X)
is the extreme value of support acceleration conditioned to the values of the random variables

in X. The limit state functions (8 or 9) take the form

gX,R,a,a,)=a-R(X)a, =0 (12)

&(X.R.0,a,)=—~R(X)=0 (13)

g

in which the dynamic response R is the only random variable explicitly appearing, even
though strongly correlated with the other variables listed in X. This is because the result of a
random vibration problem is obviously dependent of the mechanical properties of the system
and the spectral properties of the excitation. Assuming that the distribution of R can be

described by its mean value £, and its standard deviation o, both parameters are function

of the component of X, i.e.:
= (X)) 5 op=0,(X) (14)

The preceding considerations support the adoption of the so called “dual response surface”
approach for solving the reliability problem under stochastic input; in fact, the functions

appearing in (14) are known, such as #(X) in (9), in algorithmic sense. Thus the method



summarized in the previous section can be applied to both of them; if the same model is used

for the mean and the standard deviation the following expressions hold:

m

Hp (X) = Z aiZ/(X) + g,

m

0 (X)=2.bz(X)+e,

(15a,b)

Again, to compute the coefficients in (15a,b) a number of experiments must be run; at each
of them the random vibration problem can be addressed via either an analytical or a
simulation approach. In the second solution, here adopted, a sample of ground motion
realizations must be generated, according to the spectral parameters appearing in X. For each
realization the extreme value of R is computed (e.g. via FE modelling and step-by-step
analysis); the mean and variance of R are then estimated. The procedure is repeated for all
experimental points, leading to » observed values for the parameters in (14); applying the

OLS method the coefficients in (15a,b) can be computed. The variances of ¢, and &, can be

finally estimated via residual analysis and formula (12).

Once models (15a,b) are established, MCS can be carried on. Note that to compute the
fragility curve (7) the integral (10) must be evaluated for a number of amplification values

a/ag, even though the Response Surface estimates (11) or (15) remain the same.

3.3 Design of Experiments

Second-order models are the most widely used in the application'of the RSM to structural
problems. A full model (i.e. encompassing all quadratic terms) requires, for m random

variables, the estimation of p=1+m+m(m+1)/2 coefficients. In this situation the most

suitable experimental strategy is the “Central Composite Design” (CCD); once fixed a “center
point”, CCD is the combination of a classical “two-level factorial design”, in which all the
combinations of two levels (high/low) of the rv’s are considered, with a “star design”. In the
latter 2m points are considered in which one variable takes an intermediate value *¢ and the

others are at the central value. Including the central point, a total number of experiments equal

ton=2"+2m+1 is reached; if m=3, for example, we have p=10 and n=15.



Reasoning in terms of non-dimensional zero-mean random variables 7, =(x,‘—,ux_)/o"vv ,

high and low levels are usually fixed in the range 7, =+(1-3), while for preserving the

“rotatability” of the design (see [DS]) the star points must be placed at o = 4_-‘\*/27 .

3.4 Refinement of the Response Surface

Significant research effort has been devoted, in the last two decades, to the problem of
refining, or updating, the RS (see, for example [5]); in reliability problems the refinement
aims to an improved fitting in the region of the failure domain where f (X) is still relatively
large, giving the largest contribution to the failure probability. An obvious choice, in this
light, is to assume as design center the design or minimum norm point; this is defined by
transforming the rv’s into the space of standard normal variables Y;. Subsequently the limit-
state function is expressed in the same space and its point which is closest to the origin is
found; this can be also interpreted as the “most likely failure point”. Obviously, the design
point is not known when the analysis is started, so that an iterative refinement procedure is
required in principle.

When the application of the above criterion is here sought, a problem arises since the
probability of exceedance (10) must be computed for a number of values of the amplification
ratio; this implies that, at each point, a different limit-state function (13) is introduced, having
a different design point. This would lead, under the above considerations, to a different
updating procedure for each amplification value; to avoid this task a different reasoning has
been applied by considering that the aim of the reliability evaluation is here the computation
of the integrals (3) or (4). If we consider the latter, along with expressions (5) and (7), we can

write the probability of failure, for a given reference “capacity” ar as:

P, = [F(edp, im)p,, (im) d(im) =

(18)
- J-Pexc(af /ag )pAg (ag) d(ag)

It can be noticed that, once ar is fixed and a first evaluation of the P, function is
available, the integrand function in (18) can be analyzed and the PGA range giving the
maximum contribution to the total probability can be detected; for the ar value under
consideration this delivers a range of amplification values, and thus of design points in (13),

which can be considered for refining the Response Surfaces (15a,b).

10



For a practical implementation of the above sketched procedure, the FORM technique,
which has no significant cost once the design point is found, is an obvious choice for the
evaluation of P, (a,/a,); the Rosenblatt Transformation has been here applied to deal with
the correlation between the random response R and the other rv’s, while the error term has
been disregarded. Accordingly the functions expressing the transformation into the standard

space are the following:

= (D_IR (%)
Yo = CD~1102]1 (x; ,xl) (19)
ym+l = (D_IPRIl...m (I‘ |x1 H "'xm)

where @is the standard Gaussian CDF, F(x;)is the marginal CDF of the first rv and

Bp...:-l (x; |x1 ,..x,,) 1is the CDF of X; conditioned to the values of the variables X}, ... X:.;. The

last of (19), expressing the CDF of dynamic response conditioned to the structural and
spectral variables is the result of the random vibration analysis. Here a type I extreme-value

distribution has been assumed, so that the CDF of R takes the form:

PRII m(r ‘xl’ tere xm) = eXp I:—eXp (_a(xl”"’ xm) (7‘ _u('xD tres xm))):, (20)

.....

being o and u the parameters depending on the estimated mean and variance of R.
The procedure for fragility evaluation can be thus subdivided into the following steps.
1. Performance of a first set of experiments by centering the CCD at the average values
of the rv’s and by assuming high/low levels at 7, =£3.
2. Estimation of the coefficients of the RS’s expressing the mean and variance of the

résponse.

3. Performance of FORM analysis for evaluating, for each amplification value in the
range of interest, the design point position and estimating Pex.

4. Computation of the integrand function 7, (a/a,)p " (a,) and selection of the PGA

range in which refinement must be pursued.

5. Performance of a new sets of experiments centered on the median of the integrand
function, with high/low levels smaller than in (1) but covering the selected range.

6. Back to point 2 for iterating the procedure.

11



7. Once the refinement procedure is ended the final value of the fragility

F(edp,im)=F, (a/a,) is computer via MCS. Importance sampling is applied,

centred on the final design point; error terms are obviously included in the final
version of the Response Surfaces (15).
have been collected; each component has been subsequently corrected, by iteratively

modifying its Fourier amplitude spectrum, to match in a satisfactory way the EC8 spectra.
4 Example of application: the IRIS reactor building

The above described procedure has been applied to the analysis of a preliminary early
design of the auxiliary building of IRIS (International Reactor Innovative and Secure). This is
a medium power (~335 MWe) pressurized light water reactor under development by an
international consortium which includes more than 21 partners from 10 countries, led by
Westinghouse Electric Company (see [4]). Installation in a site characterized by a low-to-

average seismicity level has been here assumed.

4.1 Structural and seismic input modelling

Details on the criteria adopted for setting dynamic models for the seismic analysis of the
building can be found in [6]; for performing repeated analysis, as required for fragility
estimation, a “simplified” FE model has been set, encompassing about 5x105 degrees of
freedom. The model is based on simplified approaches for representing soil-structure
interaction effects and sloshing effect in RWST pools; shell finite element are introduced for
modelling all walls and slabs, including the foundation mat (see Figure 1a).

Based on the results obtained by a more refined model (see Figure 1b) the lowest part of
the containment structure is considered as a rigid body, while the upper part (steel liner) is
replaced by an equivalent two-degree-of-freedom system.

A simplified model is introduced as well for the vessel, based on the observation that, in
the refined model, most of the deformation is concentrated in the supporting plate and in the
surrounding portion of the shell structure. Accordingly, the model is composed of a FE shell
discretization (central part) and of two rigid bars; the upper end of the top bar, located at level
of the reactor coolant pumps, will be here taken as reference point for computing the extreme

value of acceleration A, assumed as EDP.

12



The natural frequencies of the first vibrations modes, encompassing significant soil

deformation, range between 2 and 5.2 Hz. The vessel modes have frequencies in between 13

and 30 Hz (see also Table 1).

Table 1: Natural frequencies of the lowest vibration modes of the simplified model

Natural
Mode frequency Mode description
[Hz]

5 2.084 global z translation

6 2.161 global rocking about x axis

7 2.241 global rocking about y axis

8 3.368 global rotation about z

10 4.679 foundation rocking about x axis + y translation —
“cantilever” building deformation

11 5155 foundation rocking about y axis + x translation —
“cantilever” building deformation.

18 12.128 2° “cantilever” building mode in y direction

48 18.669 2° “cantilever” building mode in x direction

19 13.177 vessel rotation about y axis

22 13.188 vessel rotation about x axis

42 18.669 vessel x translation

43 18.813 vessel y translation

94 30.237 vessel z translation

Figure 1: Reactor building (a), containment and vessel (b)

13



The response spectrum prescribed by Eurocode 8 (EC8) for a type | earthquake and for
local soil conditions type C was adopted as seismic input. The spectral parameters where
treated as deterministic, so that a single set of ten input motions, each described by three
components, has been generated and used at all experimental points. Generation was
performed starting from real accelerograms and iteratively correcting their Fourier Amplitude

Spectra in order to match the EC8 curve.

4.2 Random variables, RS model and experimental design

For a preliminary test of the procedure only three random variables have been here selected
to represent the main sources of randomness for the computation of the response of an
equipment located inside the vessel:

e a random variable (lognormal distribution) describing the soil shear modulus G,
with mean value of 200 MPa and c.o.v equal to 0.2;

e arandom variable (lognormal) for the vessel damping factor, v,; the mean value of
vv has been chosen equal to 0.03, and a coefficient of variation of 0.2 has been
considered;

e arandom variable (lognormal) to describe the viscous soil damping; more in detail,
the ratio between the actual value and the nominal value of each damping factor
associated to foundation modes is considered, named &, with a mean value of 1 and
ac.o.v.of 0.2.

It must be noted, with respect to the last two RVs, that damping has been here treated in a
simplified way. This was due to the difficulty to deal with composite damping, by means of
the software package at hand, within modal superposition analysis. In the case here shown,
modal damping factor were directly stated and given in input by recognizing, with some
engineering judgement, modes dominated by foundation or by vessel movements. As a result,
nominal damping factors imposed to the foundation motion components were equal to 20, 7
and 10% for vertical, mixed translation-rotation and torsional modes respectively. Damping
of other modes was fixed at 5%.

The model chosen for the mean and variance (15) of the dynamic response is a complete
second order polynomial; a cubic mixed term (proportional to x/ x2 x3) has been also added,

leading to a total number coefficients to be estimated equal to eleven for each RS.

14



Table 2: Initial experiments

Experiment G, vy o y7 oR
1 0.4 0.4 0.4 4.170900 0.564442
2 0.4 0.4 1.6 2.946300 0.374085
3 0.4 1.6 0.4 4.200900 0.559332
4 0.4 1.6 1.6 3.044000 0.385625
5 1.6 0.4 0.4 3.236000 0.480297
6 1.6 0.4 1.6 2.261700 0.480300
7 1.6 1.6 0.4 3.249900 0.483655
8 1.6 1.6 1.6 2.439500 0.320718
9 1.3364 1 1 2.597982 0.419865
10 0.6636 1 1 2.929579 0.533907
11 1 1.3364 1 3.194488 0.552034
12 1 0.6636 1 3.200842 0.537174
13 1 1 1.3364 2.988532 0.533657
14 1 1 0.6636 3.482527 0.548909
15 1 1 1 3.274700 0.495196
Table 3: First iteration experiments
Experiment Gy v, o MR oR

1 1.3364 1 1 2.597982 0.419865

2 0.6636 1 1 2.929579 0.533907

3 1 1 '1.3364 2.988532 0.533657

4 1 1 0.6636 3.482527 0.548909

5 1.2687 1 1 2.611578 0.433613

6 0.7589 1 1 2.922170 0.548878

7 1 1 1.2687 2.647432 0.491708

8 1 1 0.7589 3.026624 0.526790

9 1 1 1 3.274700 0.495196

15



In the initial phase, considering k=3 random variables, the CCD is composed of 15
experiments: the 8 points of the 2k factorial design, located at #,=+3, the central point and 6

star points, with & chosen equal to 1.6868 for rotatability (see section 2.3).

4.3 Initial results

In Table 2 the first cycle of experiments is summarized; non dimensional values (wrt the
mean) of the random values are given, along with results in terms of mean and variance of
dynamic response amplification. Based on this results a first evaluation of the response
functions was performed and an initial fragility function was obtained by FORM analysis; the
result is shown in Figure 2 (dotted line).

To the purpose of refining the Response Surfaces, a risk estimation was performed for the
site described, in terms of seismic hazard, by the pga-return period curve shown in Figure 3;
from this the PDF of the annual pga extreme was derived. A reference value ar=25 m/s2 was
chosen as a possible collapse value for the support acceleration of a safety component inside
the vessel.

In Figure 4 the integrand function in the risk estimation (18) is depicted, allowing for a
visual appreciation of the pga range (6 to 13 m/s*) mostly contributing to the failure
probability.

From this and given the ar value the most significant range of amplification factors have
been determined; for each amplification the rv values at the design point found in the FORM
determination of Pey(ay/ag) have been detected. According to this investigation and given the
very low sensitivity of the probability of failure to the vessel damping the following criteria
were adopted for refining of the Response Surfaces

o the random variable describing the vessel damping has been eliminated from the
analysis;

« the initial experimental points of the factorial design were replaced by the star
points values corresponding to k = 2 (points 5 to 8 in Table 3), thus focusing the
parametric analysis on a smaller range of the rv’s, still centered on average values.

From the results of Table 3 updated Response Surfaces were obtained and the new fragility
curve (Figure 2) was computed. Table 4 reports the variance of the error for the predicted
responses at the initial experimental design and at the first iteration, pointing out an

improvement in the fitting.
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Conclusions

A numerical procedure has been proposed for evaluating the seismic fragility of NPP
components; though innovative, the procedure is based on consolidated numerical techniques
such as Finite Element modelling, step-by-step dynamic integration, Response Surface
Methodology, Monte Carlo Simulation. A risk-based criterion for updating the Response
Function has also been proposed. The example of application here shown, though considering

a limited number of variables, demonstrates the applicability of the procedure to a real-life

case.
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Table 4: Error variance

Hr Or
Initial 0.0883 | 0.0044
1*iteration | 0.0706 | 0.00027
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