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ABSTRACT

In the present work a neutronic modiile for the solution of two-dimensional steady-state
multigroup diffusion problents in nuclear reactor coves is developed. The modile can produce
both direct fliuxes as well as adjoint neutron importances. Different nmumerical schemes are
employed. A standard finite-difference approacii is firstly implemented, mainly to serve as a
referenice for less compurationally challenging schemes, such as nodal methods and boundary
element methods, which are considered in the second part of the work.

The validation of the methods proposed is carried out by comparisons of results for sinm-
plified structures. In particular a critical problem for a homogeneous reactor for which an
analvtical solution exists is considered as a benchmark.

The computational module is then applied fo a realistic fast spectrim system, having
physical characteristics similar to the proposed lead-cooled ELSY project. The results pre-
sented show the effectiveness of the numerical techniques presented. The flexibility and the
possibility to obtain neutron importances allow the use of the module for parametric studies,
design assessments and integral parameter evaluations, as well as for futire sensitivity and
perturbation analyses and as a shape solver for time-dependent procediires.

1 Imtroduction and objective of the work

The Buropean ELSY Project [1] focuses on the assessment of the fast spectrun lead-cooled
reactor technology. The physical design of the system requires flexible, efficient and reli-
able coupled neutronic and thermal-hydraulic tools o carry out extended parametric studies,
needed to evaluate and compare the performances of different configurations.

Within this project, a multidimensional neutronic model is being developed both for the
steady-state evaluation and as a module for the shape calculations in the quasi-static dynamic




framework for safety assessments. This module is to be coupled with a thermal-hydraulic
module fo properly account for non-linear effects,

The neutronic module is based on a coarse-mesh approach for the calculation of the neu-
tron distribution of the full core. The present work aims at the evaluation of the performance
of different computational schemes, starting from a standard finite volume approach in two-
dimensional multigroup diffusion on a fine mesh structure and then proceeding to a nodal
formulation of the same problem on a coarse mesh discretization [2]. The inclusion of a com-
putational option based on the boundary element method (BEM) [3, 4] on the same coarse
mesh is also under investigation. The interest of such methods is due to the possibility to
develop a computational algorithm based on a response matrix formulation, thus allowing
an efficient treatment of a full core geometry including the possibility to easily improve the
physical model described. (i.e.. passing from diffusion to transport), retaining the same struc-
ture of the numerical code. The comparison of the performances of the two algorithms (nodal
and BEM) for the evaluation of the flux distribution in a full core, both in terms of accuracy
of prediction and efficiency of calculation, constitutes an important step in the assessment of
coarse mesh methods for the application to fast reactors.

The availability of a steady-state flux solver is rather important also for the development
of a time-dependent module which is needed for safety evaluations and assessments, within
a quasi-static treatment [5]. For that purpose an adjoint solution is also needed. The adjoint
can also be used for sensitivity analyses which are rather important for the preliminary design
of a new nuclear system.

In a first stage a fine mesh finite difference module in 2D cartesian geometry is developed,
as a reference validation tool for coarse mesh and boundary element algorithms. On its turn,
such module is validated against analytical results in various configurations.

In a second stage the implementation of a nodal method is carried out. A polynomial
representation of the neutron flux within a node is used up to second and third order. Eigen-
value and flux results are reported for different number of meshes. The results show the good
performance of the coarse mesh technique associated to a reduced computational effort.

The introduction of a boundary element formulation is then performed and results are
presented and compared with previous techniques. The flexibility of the scheme could be of
great importance for future application to different configurations of lead-cooled fast reactors.

2 The physical model

The neutronic design of a nuclear reactor core requires the solution of the system of multi-
group diffusion equations. The physical characteristics of a lead-cooled reactor call for a
multidimensional treatment. In this work the diffusion model is adopted and the equations are
solved for a two-dimensional configuration. The neutron steady-state multigroup diffusion
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equations without and with an external independent source, respectively, are the following:

. ('_;( ¢ 'l' ! ¥
=V - D¥Vey(r) + Zid,(r) = Z DI (r) + Zx" Z VoG oy (r), 9=1,2,...,G

g'=l.¢'#g g'=1 a0

aud

G G
IDVGETIE) = Y B S v b)), 9= 1,200,

¢'=l9'sy ¢=1
(2)

where

D9 - diffusion coefficient of group;

Y9 =59 + 53¢ — 3979 - removal cross section of group;

%¢—9' - scattering cross section from group g to group ¢ ;

VE';’.[ - mean number of neutrons per fission times fission cross section of group ¢';

x?¢ - neutron spectrum of group g;

¢, - neutron scalar flux for group ¢;

84 - neutron source for group ¢;

k - effective multiplication constant.

For the homogeneous equation (1) the standard effective multiplication constant is introduced

as an eigenvalue, to guarantee solubility.

3 Finite-difference approach

The multigroup diffusion equations without independent source in two dimensional Cartesian
coordinate system are considered. The solution of the source-driven problem is derived as
one iteration step in the power method used to obtain the eigenvalue. The equations can be
written explicitly in the following form:

& &

g _ 8 o _ 8 .
——D”%%(w, y) — =D —dy(x, y) + T, (2, y)

Ox dy Oy
o G ®
(I 1 Y 7
= E 2 —g‘:‘i’g’(x;y) + Z/\/Q E ;VE.‘-}{i}g’(x:y): g=12,...,G
§'=1.g'#g " =1

A numerical solution can be obtained by the standard finite difference method, once the
domain with #—dimension a and y—dimension b is subdivided into [ x .J meshes which may
be chosen as A, = a/I and A, = b/J. The finite difference solution is used as a reference
for the assessment of the coarse-mesh schemes.

By integration over each mesh (;’(:i_% Lz <y 1Yot £

1 £y < Y1) one obtains the
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following discrete equations:

g g g q
Diai+Dfiagn, — Diy+Dia,
Q.A;?; Pgi—1,J ZA:% Pg.i+1.d
g g g g ¥ e
Disj—l + Di"ln"—l Lo, D’"’_l..’ + DLJ’ s oL, zg 2D£-3‘ 2D£J (b .
- 2A2 g.l)g:"w.?_l - 2A2 gjg:i:.?'("l- + 7‘,7:,‘7‘ + A2 + AZ (x Gt
7] Y el Y

& ; 4
_<'/,—»"Q I J‘ g X g' ‘
= > B +EX >~ VS Gyt

g'=1.9'#g g'=1

i=12...,I-1 §=1,2,...,0—1, ¢g=1,2,...,G,

_ ' : @)
where ¢, ; is the average flux at point (¢, 7), D; j, Di_1 ;. Di_1j-1 and D, ;_; are the values
of the diffusion coefficients associated to the volume elements contiguous to the point (4, f)

‘and bar quantities are averaged on the computational volume adopted for the integration of

the diffusion equations.

Hence, the set of finite difference equations may be written as
Ad,=8, ¢g=12,...,G 3)

where A, represents the coefficient matrix for group g. &, and S, are the flux and fission
source vectors, respectively, having the size P = (I — 1) x (J — 1).

Boundary conditions must also be imposed, letting either the flux (vacunm) or its deriva-
tive (symmetry) to vanish on a given surface.

The iterative scheme to solve the problem is established in the classical way [6], introduc-
ing an inner iteration procedure, in which, starting from a guessed fission source and effective
multiplication constant, the linear system of equations is solved up to convergence on the spa-
tial and energy group flux distribution. Successively, the fission source and the multiplication
constant are updated and a new solution for the flux is obtained (outer iteration). The proce-
dure is repeated up to an assumed convergence criterion, i.e. when the following condition
between to successive steps is fulfilled:

Jeln+1) _ f(m)
I k)

An acceleration procedure may significantly reduce the computational effort. The stan-

dard overrelaxation method (SOR) is applied for accelerating the inner iterations.

S €t (6)

4 Nodal approach

Nodal methods have proved to be very effective for the accurate solution of reactor core
physics problems in nuclear engineering applications. The general principle of nodal dif-
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fusion theory methods require to subdivide the reactor core into a relatively small number
of regions, or nodes, which present dimensions larger than the physical characteristic length
associated to the diffusion process. The detailed flux distribution within each node is approx-
imated by the superposition of a suitable set of spatial functions. The global flux distribution
is then determined by the application of a weighted residual technique associated to proper
conservation principles and coupling conditions for the nodes. In the following the deriva-
tion of the nodal scheme is presented for a general 3D system. The node is defined by its
sides Az, Ay and Az, For each spatial coordinate a one-dimensional equation is obtained
by integration over the transverse coordinates. For instance, by integration over y and z, the
following equation is obtained for node n, centered at point (L, Yn, Zn ), and group ¢

([ —‘7’L

qz( ) + —wa(.l’) + nz( B) + Ez’n g.r(‘z)

G

.I. Y - ¥
= Z 2 q © (.I' + X" z sz‘n(‘og’m(w)= g= 1: SR Ga (7}
=1
where:

—n 1 /‘?17:4-‘51;[’2 d Zn-I-A:/Z i ( )

o y [ dzgi (@, y, 2 ®
¥ ( ) AgA"’ t’,ln—'A'y/? :n—Az/‘Z g
_ 1 wn+Ay/2 n+Azf2

T (x dy / dzT (2,9, 2 )

J () = Ayhz. /, nge W, B )

1 w42z 2 v .
'm;(,‘t) = _j dz By - [Jg(‘z’* g? Z) - «]g(iﬂ; _ga Z)] (10)
2 Jan—tz/2 ‘ 2 2
Yn+Ay/2 5 p

(T) AU vnAy/2 d’y - [Jg(xa Y, §) - J!/("L'? Y, "'2—)] (II)

Following a well-assessed nodal procedure [7], [8] the unknown transverse-averaged flux EZL
is expressed as a superposition of suitable polynomial functions as:

Az Az
_m(a*) = fo x) +Z“quc ), Tp— - Lz, +—§E. (12)

i=1
If the polynomials herewith appearing are chosen according to the following formulae:

ft)("z’) = 1:
Ailz) = Ai =¢, (13)
fz(.%‘) = 352 - %:
. 1 1
fa(x) = 26(€ - 5)(5 + :2‘):
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the coefficient of the zeroth-order terms turns out to play the role of node-averaged flux.
Furthermore, since fy(2, + Az/2) = 0, the values of the fluxes at the node boundary can be

related to the expansion coefficients by:

agrl = ng+ ("’gx—

(14)
—
a’qt" = Gj’.r+ + @qx— - 2(,35

Outgoing surface currents can also be related to the expansion coefficients and to the incom-
ing currents:

'D'f'b

n n 1 n )
( ]q z+)0w‘- (aq.rf + 3ag:z:2 + 5(1‘9':1:3) + (’]:r:v:x:+ @n (}'5 )

g

D 1
( gv—)tmﬁ' = A_:;(ag.xl 30:;1; 2 gr‘i) + ( )m (26)
The weighted residual method is now applied for the determination of a relationship in-
volving the unknown coefficients ajy 4. This can be achieved by spatial integration after the

application of the weighting functzon .ug = £%*1 for any group, p being any positive integer.
The following expression is readily obtained:

lz%); Qo + Zinlaey + 4@?15 — L)étes]
o —g A\ in 1,2p43 n an
_(EZ LA }_21/2 Il J,s1+4(9p+r,—1a.g,x3].
It is worth taking the limit for p — o, yielding:
D —_ ( .
~as )’; a7 + D80, = Z mg e+ X Z VL, | an). (18)

The physical meaning of this process has been discussed in previous reference works [7], [8]
where the present nodal approach is described in full detail.

Combining Eq. (18) with Egs. (14-16), a relationship connecting incoming and outgoing
partial currents with the average flux is obtained:

Az 8 A o B
( +)aut’(1 + Etn E-Dg) + (‘]g:‘x:—)*?mf( Et’rz + ~——“D';;.) - _D
Az 4
12 — sy _ Dy ) _ZF ne
(]J1+)m( 12 “n A D ) (fgx )m( {u Ai}’,’Dn (19)

+‘§—;—<z -0+ XS o,

¢'=1 ¢'=1




Ax Ax 4 6 =
(f;—)om‘(l +— Em + _Dg} + (]_;:”+)C’w"( E n T —D;’;) Dfi(f",:

Az 12 Ax Az
Ax Az 4
(‘]; )’"l( E?ft Az Dg) + ( +)’m( 19 Eivl - .’I?D;;) (20)

(Z n - +5 X Z szﬂ)aq xt

g =1

Alternatively the above formulae can be given the following form:

51;( Dot + S12{- q1+)mtt + 51352 = &14( ff,z,_)m + S'f.&(ﬂ&ﬂin + 316

21
'5'1.2(‘ )(mt + «551( z+)m;f + 5134’5 - 'SIo( )iu + Sff.&f(*];;_;.)'én — 18,
where:
Ar 8 Ay 8 ., . Az
81 = E" — DI, s =1+4—%) +-—DY, 533 =1+—27 —D"'
Su = b i U s = Lk i+ 0 e s = L et A7
A Ay 4
$12 = Em A.'I?D;Z’ $ag = 12 Zm AyD*ﬁJ Sg2 = Em A.Dg'
]
6 6 6
13 = —ZED:;Z; 828 = —A—nyp 833 = —"Z—zDg“
Az, 8 AV 8 _, Az 8
siu=1- _1—2—.2*{”' — Al su=1- 12/2m Z{]D’J" ssa=1- —2 - ED;Q”
Ax 4 Ay 4 Az 4
— 2% F e o — _ E DY e — g
$15 12 Ef:n, A.’l?Dn‘ Sog = 12 Etu AyDn‘ S35 12 Em A.,D
Ar & Y &
316 == Z(z Zﬁ q + )z VE‘;-”) ¢ 11
gl=1 gl=1
Sog = (Z ;i —>q+ T Z”Effn)% ol
q=1
S36 = E—L—(leq 4 /I. Z I/Zf")flg -
q—
(22)

At last, applying the boundary continuity conditions for fluxes and currents, the node balance
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equation is cast into the following form:

1

o Ugmdout + (T Jous] — (T Jows + (T Jonel }

1 n 7 (=
+A—'I/ {[(']:(]y+)0?l$' + (r]gy_)cm‘t] - [('];;:l-_l)om‘ + (Jz,y.,_l)out]}

1 . ~ (23)
+E {[(‘Lﬁ,-{-)m;t + (']:Zz_)out] - [(J;?j)mu + ('];Z_f}o'ut]}
¢ X G ,
—n e 3 —n
506, =) DL + T Y ovs48y. 9=1,..,G
=1 ¢'=1
At last, equations involving 5;, (s Jous and (Jg,_)ou; for each node are obtained:
(ToetJout = 015_2 + ﬂz(]ﬁ_l Jout + fés(«{;f;rl Jour + t1815
('];I;,;_)mzt = (1'4(,3_2 + {55(‘]: ;;_,':.1 )(mt + QG(J_ ;—-& )o'uf. - tI.'S'lﬁ
(J;;_i_ )()uf, = Z)Ig:’ -+ b‘z («f;;_-_l)(mt + bﬂ('];;__f>owt + tasap
(J;;_ )mtt = 1745_:; + bc’? (J;;tl)out + bﬁ('];;f)vut - t‘.Z'f"2('a'
(24)

—n : _
(T2 et = 16 + (T Yo + (T out + tasas

(o

- )mrt = 6(1:5:; + Cy (J : :,__1 )ou’t + C(»(J ;l;}.l )()u;t - t3$36

By = S, + Ao (T Vour + da( Ty Yout

gr—

'}‘C&A (J ot ) out + d5 (vﬁ:;:.l )om‘- + d(i (J;;tl )rmt; + d? ( J;;.l )oui’;

g¥—
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where:

(élz — 811)513 ) 511814 — S12515 $11815 — 812514
T =y = 2—, an = g = 2 > s ag = g = ) ]
s — 8t 511~ S12 511~ Sz
. (5'22 - 82‘1) Ha3 f21804 — So2825 o182 — S20824
by =by= = g by =bg = — 3 .3 by =bg = R S S—
$31 — 29 591 — H2 Hyy — S92
. (832 — 831)833 o SmSsq— SgaSa | _ _ Sm8g5 — Sgofiyg
O=4=—5 3 » 2T — 5 5 BFT0G=F— 55—
Sz1 — 532 Sy — Sy Hzy — Sy
812 + 811 829 + §93 532 1 Sa1
h=2 5 =5 2 3= 2
811 — 570 851 — 532 83y — 839
4 = 1
1= a1+a4 b14-ba 01 +r-4
(e S 4 + )
1—ay—ag by — Qg
dy = - =3 dy, dy= —-——’ dy
( Az )b, ( Az )
l’)f) — 65 1-— 5)3 — b(,'

. .
dy = (T)Clla ds = (A—y)d"

“

= l—cs—cs

= ly, dy = (———)d:

( Ay s dr= (o )d

(25)

The algebraic problem is then solved by standard techniques and outer iterations are carried
out for the determination of the multiplication eigenvalue, as discussed above.

5 DBoundary Elements approach

The Boundary Elements Method (BEM) [9] constitutes an innovative approach for the solu-
tion of diffusion problems in nuclear reactor physics. which are applied to neutron diffusion
problems. In previous works the method has been exploited for applications to the solution
of multigroup diffusion problems [3, 4]. Also applications to transport problems in space
second-order forms have been recently proposed. Results has proven the effectiveness of the
technique and its excellent properties [10, 11].

In the following, the basics of boundary element methods for the diffusion problem is
outlined. The neutron diffusion equation in a homogeneous region V with a closed smooth

boundary surface A is written as:

DV34(r) — Tag(r) +q(x) =0 (26)
The fundamental solution, i.e. the Green function, is found by solving the problem:
DV2g(r,v') = Z,é(r, ') + 6(r — ') = 0. (7)
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Using the properties of the Green function and integrating over the volume Eq. (26), the
following integral formulation is obtained:

o(r)p(r) + / [ (2, ¥ ) (x'y) + B, Tly) Jur (xy)] A" = / f(r,r)q(r)dV’,  (28)
A 14

where: ()
iy o9ty
() = =D o'y '
k (29)
0é(1* rf,g_}

J n! (I’, I'_’,;_) =D 811:1

3

and ¢(r) is equal to 0, % or 1 depending on whether r is outside V, on the boundary of V'
or inside V, respectively. Eq. (28) allows to obtain ¢(r) and J,(r) at any point inside V,
provided that the flux and the normal current at the points of the boundary surface are known.
If we take r = r4, Eq. (28) becomes an integral equation

e(ra)d(ra) + / [t (T4, T () + (s, vy ) T (Ty)]dA = / é(rq,r)g(xNdV’! (30)
J4 v
in terms of the boundary values of ¢ and J,. Introducing the partial currents:

1 1
Ji:(rlt) = :l(’ﬁ(rfi) + 5']11(1'-4)

31D
g .'. ot 1 ~
Ja(ra) = 76(ra) F 5Ju(ra)
into Eqs.(30), one has
WA stea)+ [ Taleasi) 5000
4 A
(32)

2

=

_ ) ey 4 / T (v ¥ ) T (th)dA + i f b(rar)g(e)dV"!
Ja v

Multigroup boundary infegral equations. The multigroup equations can be cast in matrix
form as:

(VI+Q) o(x) +q(r) =0 (33)

where ¢ and g are G-dimensional vectors. The definitions of ¢(r) may be different depending
on the presence of an external group source s,(r). In the case of a suberitical system driven
by an external source the following definition holds:

g(r) = s(v) + Fé(r), : (34)
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where the fission operator takes the form:

(XI/D‘I.)V‘I.E_H (XI/D.l)szfz (}\’.'I./Dl)VGEfG
o (e/Da)iZpr (Xo/Da)vaZps ... (X2/Da)veZye 35)

(X(;./Dg)l/l Efl (X(;/D(;)szfg N (XG/DG)VGE_{C}-
Ou the other hand, for the homogeneous problem:
q(r) = —Fcﬁ(z)‘ (36)
The eigenequation

Qo = io

is assumed to have G real distinct eigenvalues A, (b = 1,2,...,G). S is defined as the matrix
which has the normalized eigenvectors g, as its columms. Thus, the following equality is

verified:
S_lQS =A

where A = diag[Ay, ..., Ag].

Now setting:

o(r) = S¢(x),
a(r) = Sn(x),
after left multiplication by $~%, Eq. (33) reads
V&h(r) + Ap(r) +n(r) = 0.

By re-defining A, = —v2, the following set of equations is obtained for each component of

vector ¢
V'l/)h( ) '7!1,’%( )+71h( )_0* h=172:"':G'

The corresponding Green fundamental solutions of the following equations
V2 (1) — it (n,Y) + 6 1) =0, h=12...,G,

are easily found out as:

. 1
tn(r,r) = %Iit)(’}’klr —1')),

together with their derivatives:

Oy, ) r/ :
;:(:'P) Tt LKy }r—rl)(ll )In ' 37)
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Boundary integral equations can be generated with the same procedure leading to Eq. (28),
obtaining:

fn(r, ) Oy (1
e(r i (r) +/T[%nf—l//h(1’r) Pn(T, T1) éérl)]df
(3%)
/“’h(r ()Y, h=1,2,...,G.
Jo

By left multiplying the set of equations (38) written in matrix form by 5, one gets back to
relations involving ¢, namely:

mmm+2/“ﬁ§”<a'%@a%ﬁ%@
(39)
—Z / b (vt )y (2)dY, g=1,2,...,G,
g'=1
where
Ty (1,10) = ) O, 10) 07 (40)

h=1

Letr be taken on the boundary, r = rp. Then finally the multigroup boundary integrated
equations can be explicitly written down:

) e +Z/ (e )T )

:_(_:(;_T)_‘] (rp _|_Z/ (rp,zr)J (rp)dl + = ’fo\If o (rr, ') g () dSY,

y'=1"
¢g=L12,...,G,
(41)

where: _
Oo(rr)

4 811}’ k4

1, 1
]qi (rr) = Z‘?’(I‘P) +
(42)
18T (rr, r})

T(rp,rp) &+ =
7o ong

T o ol ) —
‘]gg/(:{]_ }r:{ﬂ) —— 4D

Reduction of the domain integrals of the source term. The domain integrals involving
the independent and flux dependent fission sources in Egs. (41) can be reduced into a bound-
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ary integrated form as:
/ By (rr, ) ()Y

s & 5 { ofur)gor) + | dhlor, )0 7)Y

h=1

+ /F[' h(rI T)Qg’(rig’) ’lz(rI’=Il‘) %y (11")] /TI}

c? ’ C)l’lr (43)

&
—T 60 Png'
— Z # { c(rp)qg' (I'II‘)

h=l_ By,
¢n(rrs 1) _ Ogy(re) | v 19 .
+/I" [ 311% (!W(IF) Ir (rr, 11‘) 811{1 dr h=12....G.

The source distributions ¢, (r) are now assumed to be either spatially constant or first-order
polynomials. In the latter case for 2D geometry the following expression is assumed:

gzy) =he+by+4 (44)
where, obviously, 7 is the average source on the domain. , within the domain z € [0,a] and
y € [0,b]. We have

, aly bl
go(Ty) =he+ Ly + gy (*L;)l + 32) . (45)

As @ in the presence of fission emissions is evaluated by the flux of the previous generation
on the boundary, the coefficients of expansion (44) can be evaluated by using a least-square
approach. The problem can be nicely written in matrix form

Ml =N, (46)
having set the following definitions:
Az At/
Ty — a5 Yi— 5 ¢ —G
Tg — & 1Yo — 3‘—?1 I fl; —-q
M=| 7% 2 * 72 J:(f-),N: , , (47
0 » ‘2 :
~ " Az ’ . Ay v —q
g W5

where (2;,7;) are points on the boundary at which the source takes the value ¢;. By left
multiplication of Eq. (46) by M7, the normal equations are obtained for the problem:

MT M1 = MTN,
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or, explicitly:

N N N
Q.. a b _ a _

Z(wn - 5)3 Z(mn - 5) (yf; - 5) ] Z(m-n - 3)(qfln - ‘_{q)
n=1 n=1 ' - 1 — 17,—1

N N -

A a b b ( lp )
Zl(fl?n - 5)(?/7» - 5) Z;(yn - 5)2 L:( Y — 9 ) (QJ g QQ)
(48)

The above system of equations yields the value of two-dimensional vector [.

Diseretization of the boundary integral equations. In this section the numerical solution
of Egs. (41) is outlined. The boundary I is partitioned into [ elements of length d;. After
denoting the two extremes and the middle point by rp;_ 1 Irgpd and rp;, respectively, a
jocal dimensioniess coordinate 7 is introduced fo denote each pomt r along I'; as

r=rri+7(Crpg — e t)- (49)

Thus, it 1s assumed that
JE(rr) = T35 (50)

Then, assuming a linear behaviour on each boundary mesh of the integrand functions, the
boundary integrals are approximated by finite sums as:

/F Tt (aryo ) T (e )T

(51
o d
By indicating
dg,{r
G (rr) = gyis %:) = e (52)
one has:
C)L’h(fl JIF) P g gy (rr)
[ onl. 47 (x r) )h(l s IR) = ong

IIZ

8'(;;;,_ ‘ 53
¢—1/ {c)np [II iotrg T (II‘7+‘ "“f:f—%)] %' (53)

- d.
e L L%
—¥y [11’;1;11'4 +7 (rl*,j+§ 11’,;'_%)} ng,j} 5 dr.
The integrals herewith appearing are obtained by application of a numerical integration for-
mula, namely:

W1 K
] 1 frydr =" wf(m) (54)
- k=1
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Table 1: Material data for the homogeneous core.

g ] 2 Ds Do+ y9—a+? x4
[em™] [em™] [em] [em™] [em™!] -

11 0.3046E — 01 | 0.1076E — 01 | 2.11 | 0.2578E — 01 | 0.5164F — 03 | 0.7737

21 0.7060F — 02 | 0.3309E — 02 | 1.20 | 0.4705E — 02 - 0.2193

31 0.6316E — 02 | 0.4366F — 02 | 0.86 - — 0.0070

where w;, and 7, are the standard quadrature weights and abscissae, respectively. In the
present work a Gauss-Legendre formula is used.
At last the problem is cast into the following algebraic matrix-response form:

G I G I I
Z Z .A’.’Z:gg’,ij(];;j = Z Z Nggt 2+ JJ + Z Z Kog 45905 + Z Z Lgg, Uqa’?’

o'=1j=1 g'=1 j=1 g'=1 j=1 g'=1 j= (55)
i=1,2 Lg=1,2, G
where:
di .
Mg g = (2)01159 ¢+ 2J / \ Sogt [I‘ roIrg 7 (1“1“,;;4-% - f’l?,:;_%)} ar,
olr N

Nogtij = ——(2—)5@.?'59,9' +5 1 7:};' [rroTh;+7 (1’:r,j+§ - I‘FJ—%)]dT;

. 1 (l 8’1‘)}, '
Kogrii = hz_;ag/,4Bza;,q {c(r)& i+ = 2] . , —[tri lrJ —I—'r(rI i+t =T _)]cir}

d; *
g,} Ai = E O”,,;,,_LBZO";W ) ’b);,, [1; ':Il“ +7 (rii‘.j-l-% — PI‘;{}—%)} dr.

h=1

(56)
The problem for the whole system where nodes are coupled is then solved by numerical
iteration schemes.

6 Verification of numerical consistency and convergence of
methods

It is worth going through a verification of the performance of various numerical approaches
by comparison of results with highly accurate benchmark results that may be obtained directly
by an analytical formula. Therefore a homogeneous rectangular system is now considered,

15



Table 2: Errors in the calculation of the effective multiplication factor for the homogeneous
benchmark; the analytical value is & = 0.90145. Relative errors are expressed in pem for the

various models.

Nodes | FD | N | BEM | BEM | BEM | BEM
01024 | 11024 | 110240 | 120240

41020 18| 9070 | 404 95 498
8235 | 1| 2654 21 26 33
121103 0| 1283 9 3 5
16| 57| 0| 787 14 9 0
20| 37| 0| 554 16 10 2
24| 25| 0| 426 17 11 2
98| 18| 0] 349 18 11 2|
32 14| 0| 299 18 12 2
36| 11| 0| 264 18 12 2
40| 8| 0| 230 18 12 3

Table 3. Cross sections for the reflector in the heterogeneous case.
g 2.;1 D9 Eg—f—g+1 ] Eg—.-'g-kz
[em™1] [em] [em™1] [em~1]
1109667E — 02 | 2.52 | 0.9506F — 02 | 0.1270F — 03
2| 0.1608E — 02 | 1.56 | 0.1385E — 02 -

31 0.1407E — 03 | 1.00 - —

Table 4: Resuits for the calculation of & for the reflected system.
Nodes N BEM BEM BEM
11024 | 110240 | 120240
4] 1.04923 | 1.04905 | 1.04914 | 1.04916
81 1.04924 | 1.04906 | 1.04921 | 1.04922
12 | 1.04924 | 1.04901 | 1.04921 | 1.04922
16 | 1.04924 | 1.04895 | 1.04921 | 1.04922
20 | 1.04924 | 1.04889 | 1.04920 | 1.04922
24 | 1.04924 | 1.04883 | 1.04919 | 1.04922
28 | 1.04924 | 1.04877 | 1.04919 | 1.04921
32 | 1.04924 | 1.04871 | 1.04918 | 1.04921
36 | 1.04924 | 1.04865 | 1.04918 | 1.04921
40 | 1.04924 | 1.04859 | 1.04917 | 1.04920

16
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Figure 1: Convergence pattern for the calculation of the homogeneous system. FD (¢); N
(C); BEM 010 24 (%); BEM'1 10 24 (*); BEM 1 10 240 (#). BEM 1 20 240 (+).

whose dimensions are 160 cm and 140 cm. The material data for a three-group model are
reported in Table 1. A critical calculation is carried out and errors with respect to the an-
alytical value of the effective multiplication constant are reported in Table 2. The various
models are identified as foliows: FD indicates the finite difference scheme, N is nodal, BEM
«fy denotes a distribution of order « for the source (0, constant, or 1, linear, in the present
work), S the number of points used for the discretization of each edge and -y the order of
the quadrature formula for integration. The number reported in the node columm indicates
the number of nodes assumed for each coordinate: hence the number of nodes covering the
2D domain increases as the square of the indicated number. The performance of the nodal
method is quite remarkable, while good results are obtained by BEM only with a first-order
approximation of the source distribution. Also, it is important to call the attention on the
important role associated to the mumber of points used for the discretization of the boundary.

Furthermore, it is interesting to observe the convergence pattern for the methods studied,
Fig. 1. While FD shows a monotonic behaviour, Nodal and some BEM methods are charac-
terized by non~-monotonic trends and reach a saturation. Such properties for the convergence
of nodal methods are well-known to exist [12] and would deserve deeper investigation. They
are connected to the assumption of the spatial distribution within the node, which, in general,
may not be consistent with the physical model as described by the differential equations to
be solved.

Some final considerations concerning the computational effort are in order. Considering
Fig. 2, it is clear that to obtain relative errors below 10 pem nodal and BEM are by far more
effective.

A non-homogeneous system is also considered, to test the performance of the schemes in -
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Figure 2: Relative errors vs. computational times for the homogeneous reactor calculation.
Identification of curves as in previous figure.

the presence of a spatial interface. The symmetrical core is 180 cm wide and characterized
by the data reported in Table 1. The data for the 90 cm thick reflector are specified in Table
3. The system is reflected only in the x-direction. The number of nodes herewith indicated
refers to the discretization in the x-direction only, since along y only two nodes are used with
zero-current on the boundary condition, to simulate an infinife medinm. Results concerning

k values are reported in Table 4.

7 Results for a realistic fast-spectrum configuration

A realistic fast-spectrum system is considered, with physical characteristics of the same type
as the ones characterizing the ELSY project. The core is constituted by three regions, with
increasing multiplicativities passing from the inner to the outermost regions. Lead is assumed
for the coolant and the reflector. Cross sections are provided by spectrum and homogenization
calculations carried out by the ENEA group participating to the ELSY project [13]. The
sketch of the system and the nuclear data for the core regions and for the reflector are reported
in Fig. 3 and Table 5.

- real reactor (3fuels + lead - two dimension with and without transverse buckling - nodal
method assumed only) - graphs for flux and adjoint)

As already anticipated, adjoints may well serve in many interesting and useful applica-
tions in nuclear core analysis. Once the physical problem is cast into an algebraic form, the
adjoint problem is easily constructed by taking the mathematical adjoint of the matrix opera-
tors appearing in the model. It is then possible to compute neutron importances that may be
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Figure 3: Geometrical configuration of the ELSY-like system.

used for sensitivity and perturbation analyses and for the construction of integral parameters
for time-dependent calculations. The results of some such calculations are now presented in

Figs. 4-.

8 Conclusions and future developments

A neutronic module for multidimensional multigroup diffusion calculations is developed.
Different discretization algorithms are implemented and tested. Some benchmark calcula-
tions allow to assess the consistency and applicability of various techniques. Nodal methods
are shown to perform adequately for the simulation of fast spectrum systems, such as lead-
cooled reactors. Realistic calculations are carried out for a system characterized by properties
similar to the system adopted as the basis of the ELSY project.

As a future development, it is foreseen to couple the neutronic module developed in the
frame of this work with a thermo-hydraulic code. This would allow to have a flexible and
efficient computational tool for the assessment of the ELSY project and for parametric cal-
culations aimed at the neutronic-thermal-hydraulic optimization.

A tfurther future development will consider the extension of the computational tool to
allow time-dependent evaluations within a quasi-static approach. To that end, the module
can perform already adjoint calcnlations. The extension is to be done following the same
philosophy as the one already employed for other recent applications [14].
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data for the ELSY-like reactor.

Table 5: Material
. 2 2 R il B s G
[em™] [em™ 1] [em] [em™] [em™1] -
CORE;
1103303E =01 | 0.1076E — 01 | 2.11 | 0.2578F — 01 | 0.5164% — 03 | 0.7737
2| 0.8638E — 02 | 0.3300E — 02 | 1.20 | 0.47052FE — 02 - 0.2103
3| 0.7360FE — 02 | 0.4366E — 02 | 0.86 — - (.0070
CORE,
1| 0.3306E — 01 | 0.1146 5 — 01 | 2,11 | 0.2562E — 01 | 0.5135E — 03 | 0.7737
21 0.8651FE — 02 | 0.3608FE — 02 | 1.30 | 0.4576F — 02 — 0.2164
3| 0.7460F — 02 | 0.4766E — 02 | 0.86 — - 0.0069
CORE;
1103314 —-01 | 0.1267E — 01 | 2.11 | 0.2831F — 01 | 0.5071E — 03 | 0.7735
2108711 — 02 | 0.4551E — 02 | 1.31 | 0.4324E —02 — (0.2195
3| 0.7676E — 02 | 0.B620F — 02 | 0.87 — — 0.0070
REFLECTOR
1101274 - 01 — 2.52 | 0.9506F — 02 | 0.1270F — 03 —
2| 0.3413FL — 02 — 1.56 | 0.1385F — 02 — —
3| 0.1358F — 02 — 1.00 — — —
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Figure 7. Graphs of the neutron im?ortance for the first group.
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Figure 8: Graphs of the neutron importance for the second group.
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Figure 9. Graphs of the neutron importance for the third group.





