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Sommario  
 
 
Objectives of the work are to develop a multiscale methodology for composite structural modelling and to 
validate the modelling procedure by mechanical testing. 

   In the field of the computational material science the multiscale methodology plays an important role. It 
is based on the hierarchical concept which recognises that there is a strong interconnection between 
phenomena which happen to different scales of length and time. In the field of the composite material the 
approach consists in the description of the ply by knowing the behaviour of the constituents, i.e. fibre and 
matrix. 
   In this work was developed a constitutive model for a balanced plain weave fabric. This model, starting 
from geometrical parameters and mechanical parameters of the single constituents (fibre and matrix), 
determines the effective moduli of the representative unit cell (RUC). This model was implemented into a 
general purpose finite element program ABAQUS, building a specific user subroutine. 
   The last part of this job was to determine a material failure mechanism theory for the balanced plain 
weave architecture that was implemented in the same specific user subroutine. The prediction of the 
failure at each increment of the load was obtained by using a quadratic failure criterion, applied to the 
strains with stiffness and strength reduction scheme to account for damage within the yarns. 
   This standard user subroutine is an augmentation for any commercial finite element code giving the 
possibility to deal with any composite material made with balanced plain weave fabric, knowing the 
mechanical properties of the single constituents and the specific failure mechanism. 
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1. Introduction 
 A technique to describe the mechanical behaviour of the composite materials 
is the multiscale methodology, which allows to link the macroscopic behaviour with 
the micro-structural characteristics and it results to be a more predictive approach 
(with respect to phenomenological models) with the possibility to estimate the 
effect of a change in the fibres and matrix arrangement on the composite 
behaviour. Practically, the approach consists in the description of the behaviour at 
the scale of the constituents, fibre and matrix, (microscale) where each constituent 
is modelled by using continuum mechanics relationships. Afterwards, the 
homogenisation treatment will allow to create a mesoscale structure (e.g., layer) 
and finally to deduce the macroscopic behaviour. The findings and results of this 
study can be implemented in a finite element code by means of a user subroutine. A 
similar approach can be attempted for thermal properties. 
 An important part of the task is the validation of the modelling by testing. 
These tests are aimed both at the determination of the basic constituent properties 
(fibre and matrix), fibre-matrix interface behaviour and at composite macroscopic 
properties. The tests include fibre tensile and composite tensile, compression, shear 
and bending. 
 
2. Method to represent the results about a progressive failure    model in 
composite materials 
 We have started to study the argument of the design of composite materials 
using a general purpose finite element program named ABAQUS. Laminated 
composite structures under load develop local failures such as matrix cracks, fiber 
breakage and fibre matrix debonds, which are termed as damage. These effects 
cause permanent loss of stiffness and strength of the material. It becomes 
important to predict the initiation and growth of such damage for assessing the 
performance of composite structures. 
 The analysis of composite laminates is complicated because of both material 
and geometric non-linearity, that came into play when the loads are increased 
beyond the first ply failure. Material non-linearity results from the damage 
mentioned early, and the geometric non-linearity is due to large displacements 
experienced by the structure during loading. 
 Commercial code gives to the user tools to deal with composite materials. For 
two-dimensional models there is shell element based on first order shear 
deformation theory, that have better performance in large deformation analysis. 
The strain state is referred to a specific coordinate system and the stacking 
sequence of the laminate is specified to this reference coordinate system. 
 As we have just said damage in composite materials plays an important role. 
To study these behaviours is used a progressive failure method, where the load is 
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applied incrementally during the analysis.  At each load step, a geometric non-linear 
analysis is performed until a converged solution is obtained. Knowing the 
deformation and stress states at each material integration point, it become possible 
to compare these result with material allowable stress. If failure is detected, 
stiffness reduction is carried out at the integration Gauss points of the finite 
element mesh depending on the mode of failure. However, it is not an easy task to 
determine the degraded properties of the damaged material with certainty. 
 The user can define material properties as functions of the field variables at a 
material point using specific user subroutine. 
 The need to write specific software that represents an augmentation for any 
commercial finite element code, gives a big problem to the user in the 
representation of the results of the analysis. Where is the first ply failure and how 
the progression of the damage develops, these are some questions that the users 
have to answer. 
 In this paragraph is implemented a progressive failure method into the 
general purpose finite element program, ABAQUS. A specific application is 
developed for a post processing visualization of the results. 
 We have studied a panel, made of five unidirectional plies, where all the 
edges are clamped and the load is a uniform pressure applied to the bottom surface 
(Figure 2.1). 

 

 
Figure 2.1: Plate geometry. 

 The plate specification is shown in Table 2.1 and the material properties are 
shown in Table 2.2. The orthotropic material properties of a lamina are obtained 
either by the theoretical approach or through suitable laboratory tests. The 
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theoretical approach, called a micromechanics approach, that relate the fiber and 
matrix contributions to the properties of complete structures. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 A typical procedure for a progressive failure analysis is illustrated in figure 2.2. 
The preprocessing phase is built in the standard ABAQUS environmental and a 
specific user subroutine USDFLD was written, which allows the user to define 
material properties as functions of the field variables at a material point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table2.2: Mechanical properties of unidirectional E-Glass/Polyester ply 

Longitudinal Modulus,  GPaEx  23.6 

Transverse Modulus,  GPaEE zy   10.0 

Shear Modulus,  GPaGxy  1.0 

Poisson’s ratio, xy  0.23 

Longitudinal Tensile Strength,   MPaXT  735.0 

Longitudinal Compressive Strength,  MPaX C  600.0 

Transverse Tensile Strength,   MPaYT  45.0 

Transverse Compressive Strength,   MPaYC  100.0 

In-Plane Shear Strength,   MPaSC  45.0 

 

Table 2.1: Laminate plate specifications 

Lay-up Sequence Number of Plies Length  mm  Width  mm  Thickness  mm  

[0/45/90/-45/0] 5 600 600 3.43 
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Figure 2.2: Progressive failure analysis. 
 
 The full plate is modelled using 20x20 four node shell element S4R of the 
ABAQUS element library based on first order shear deformation theory. How is 
shown in figure 2.3 with the subroutine USDFLD it is possible to incorporate in 
ABAQUS the TSAI-WU criterion: 
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Figure 2.3: Progressive failure analysis. 
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Where i  denotes the stress components referred to the principal material 

coordinates and the parameters F  are function of the lamina normal tension and 
shear strengths. At each load step, Gauss point stresses are used in the failure 
criterion. If failure occurred at a Gauss point, a modification of the lamina properties 
was made at that Gauss point, which results in reduced stiffness of the laminate. To 
this purpose the following expressions are used to determine the failure mode: 
 

 2
111111 FFH     

 2
222222 FFH           (2.2) 

 2
6666 FH         

 
 The largest term is selected as the dominant failure mode and the 
corresponding modulus is reduced to zero. In particular 1H  corresponds to fibre 

failure, 2H  corresponds to matrix crack and 6H  corresponds to fibre matrix shearing 

failure. The code implemented in the user subroutine is shown in the flow chart 
reported in figure 2.4. 
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Figure 2.4: Progressive failure analysis. 

 
 In figure 2.5 are reported results of the analysis using the standard post 
processing tools in ABAQUS. 
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Figure 2.5: Standard ABAQUS representation. 

 
 
To the top there is the load central deflection graph and to the botton there is a 
picture of the deformation of a half part of the plate. But with the standard tools is 
impossible to visualize where the first ply failure is and how the progression of the 
damage develops. To answer to these questions we have developed a specific 
application for post processing visualization of the results. 
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Used data came from the user subroutine USDFLD and such data have been 
elaborated through programs written in Fortran 90 whose files of exit have been 
visualized through the programs of graphic analysis Origin and gOpenMol. Then a 
specific program was written in Visual Basic that has allowed visualizing all the 
results of the post elaboration. 
The scheme is reported in figure 2.6. 

 

 
 
 

Figure 2.6: Flow chart of the post processing phase. 
 

The graphical user interface used in Visual Basic is shown in figure 2.7. 
A pressure increase of 0.008 MPa is used for the analyses and the number of load 
step is 89. 
To the right top there is the load central deflection graph and on its left it is possible 
to see the move of the deformation of a half part of the plate. To the bottom there 
are representations of the failure mode with the indication of the percent of the 
material point with that failure and the number for every play. There is also a 
graphical representation of the defect positions. Pushing the start button the 
representation of the time progression of the simulation begins. It is also possible to 
change the time between two steps. In the graphs horizontal lines show the load 
that is reached during the progression of the simulation. 
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Figure 2.7: Graphical user interface in Visual Basic. 

 
The first ply failure was due to matrix cracking and started from the bottom surface. 
The drastic change in the central deflection around the pressure of 0.20 MPa is due 
to the rapid increase of the matrix cracking failure while the change at 0.46 MPa is 
imputable at the start of the fiber breakage failure. Then the pressure increases 
bring to a structural collapse due to the fiber breakages spread through the 
thickness. 
 In this first approach to the composite material analysis we have developed 
into one general purpose finite element program a progressive failure methodology 
for composite plates and we have implemented a specific application to show the 
type and extent of the damage at a given load, the first ply failure load and the final 
collapse load. 
 
3. Selection of the environment for the development 
 The strong limitation in the standard finite element codes, in studying 
composite materials using multiscala methodology, have led us to seek commercial 
codes that we could add the necessary micro-scale analysis in a standard finite 
element software. 
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The progressive failure method is used on the design of composite materials. In a 
typical finite element analysis (FEA), failure is assessed at the macro-scale. On the 
other hand, it is well known that the initiation of damage in composite materials 
occurs at micro-scale. In commercial there are finite element codes based on 
computational composite engineering micromechanics that could be a good solution 
for ours task, therefore develop a multi-scale methodology for composite structural 
modelling. One of this is GENOA-PFDA (Progressive Failure Dynamic Analysis). 
Displacement, stress and strain field in a structure are obtained from the finite 
element solution. The corresponding response fields at the laminate and lamination 
(macro) scales are calculated using enhanced classical laminated theory. Most of the 
commercial finite element programs operate strictly at this level. Because the 
initiation of damage in composite materials occurs at micro-scale (fiber/matrix 
level), GENOA-PFDA utilized the hierarchical approach illustrated in figure 3.1. The 
hierarchical modelling reaches down to micro-scale level through the subdivision of 
unit cells (that in these reports will call RUC representative unit cell) composed of 
the fiber bundles and surrounding matrix material. 
Stress-strain field at the micro-scale are calculated on the basis of macro-scale 
results, using the computational composite engineering micromechanics. The 
volume elements of the unit cell are interrogated for possible damage using a set of 
failure criteria. Once damage at the unit cell level has been detected, GENOA-PFDA 
degrades the relevant fiber/matrix mechanical properties based on the rules of 
material behaviour and experience. The accumulation of damage at the micro-level 
eventually leads to the fracture at the lamina (macro) level. Because damage is 
tracked at the micro-scale, it is possible to have several types of damage in a 
particular ply. 
The composites and ceramics fail is due to damage growth and accumulation in the 
fibres, matrix or fiber/matrix interface. Damage growth is driven by increasing load, 
fatigue cycles, creep or environmental effects. Other affecting damage growth rates 
are manufacturing flaws, voids and residual stresses, moisture and temperature. 
Predicting composite structure failure, durability and life it means predicting 
composite behaviour at the micro-scale of fiber and matrix, translaminar and 
interlaminar. 
GENOA is an augmentation to FEA adding the necessary micro-scale analysis that 
gives the possibility of asses the composite failures where they initiate therefore in 
the fiber, matrix and fiber-matrix interface. 
The main components in GENOA are: 
 

1) Progressive Failure Analysis (PFA) 
2) Material Constituent Analyzer (MCA) 
3) Material Uncertainty Analyzer (MUA) 
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4) Time Dependent Reliability (TDR) 
 
This code is based on three main functional components: 
 

1) Finite Element Software FEA where is used any commercial software package 
NASTRAN, ABAQUS, ANSYS, etc. 

2) Full Hierarchical Modelling which goes down to the sub-scale. 
3) Micro-Mechanics Materials Engineering. 
 

In figure 3.1 it is shown the interaction of GENOA and FEA to perform progressive 
damage analysis. 
 

 
Figure 3.1: Interaction GENOA and FEA. 

 
The FEA solution give displacements )u( , stresses )(  and strains )( , with these 

data the Full-Hierarchical Modelling can determine the damage to the level of the 
fibre and matrix and this information is passed to the Composite Micro-Mechanics 
which update the stiffness and strength of the fibre and matrix which are the new 
input for the FEA. 
In the figure 3.2 there is a different view of the same process. Above the dot line 
there is the traditional FEA and lamina theory. Below the line are the capability 
added by GENOA, there is a unit cell made up of matrix and fiber furthermore, such 
unit cell is further divided into slice on which is applied the micro-scale analysis. 
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Figure 3.2: Capability added by GENOA to a traditional FEA. 

 
This sub-division is shown in figure 3.3 where at the slide level is employ micro-
stress theory that determines where the failures are taking place in the fibre or in 
the matrix using 16 failure criteria. There are also 6 criteria for assessing the 
occurrence of delamination between the lamina. 
 

 
Figure 3.3: Sub-division of the unit cell and mode of delamination. 

 
All the failure criteria are shown in figure 3.4. 
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Figure 3.4: Failure criteria. 

 
Close form equations, built at micro-scale level, allow to obtain damage and the 
consequent reduction of stiffness and strength quickly and then the FEM can run 
again to assess what happening in the next step of increase of the load. 
When there is a failure in a particular node (figure 3.5) of the lamina, the code must 
take into account that the node can no longer bear a load.  
 

 
Figure 3.5: Route information of damage from the microscale to the macroscale. 

 
That node is called fractured so the code removes the node. We need to remesh and 
GENOA automatic remesh (figure 3.6). 
 



 

 
19 

 

 
Figure 3.6: Outline of the automatic remesh. 

 
In figure 3.7 is shown the input and the output of GENOA. 
 

 
Figure 3.7: Outline of the input and the output in the GENOA code. 

 
The code must be calibrated by knowing the properties of the fibers and matrix. 
When there is uncertainty on these data it becomes necessary to perform some 
mechanical tests on specimen of lamina or laminate as shown in figure 3.8. 
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Figure 3.8: Test necessary to calibrate the code. 

 
As it can be seen in figure 3.9 the test results are input to a routine that exists in 
GENOA, that provides as an output the properties of the fiber and matrix. 
 

 
Figure 3.9: Outline for determining the mechanical properties of the fiber and the 

matrix. 
 

The module named Material Constituent Analyzer (MCA) shown in figure 3.9 
calculates lamina (ply) and laminate composite properties knowing the composite 
architectures and a first estimation of the properties of the fiber and matrix. 
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Figure 3.10: Automated sensitivity analysis. 

 
The Sensitivity Analysis, shown in figure 3.9 and in more detail in figure 3.10, is 
based on the module Material Uncertainty Analyzer (MUA).  
This module combines micro-mechanics and probabilistic analysis for study the 
influence of fundamental primitive variables on the structural response and in 
particular, on the response sensitivity to constituent material and to other design 
variables, such as fiber architecture, manufacturing tolerances and defect content. 
The output of this module are utilized from the Time Dependent Reliability (TDR) for 
predict the composite system probability of failure and the sensitivity effects of the 
material properties, loading conditions and service and manufacturing conditions, so 
it will be possible targeting design parameter changes, that will be most effective in 
reducing probability of a given failure mode from occurring, and the probability of 
failure. 
GENOA handles a broad spectrum of composite textile architectures (figure 3.11). 

 
Figure 3.11: Textile architectures covered by GENOA. 
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4. Constitutive model for a balanced plain weave fabric  
 The research for a possible commercial environmental had shown that in 
commercially there are finite element codes based on computational composite 
engineering micromechanics that could be a good solution for our problems. After 
the research what emerges is that such products are almost totally developed from 
the NASA ((National Aeronautics and Space Administration) and when 
commercialized they are characterized by exorbitant costs. 
 The high cost of the commercial code that could represent a possible 
environment for development of a model for the structural analysis of ceramic 
matrix composite material, has brought us to the decision to internally develop a 
multiscale code based on the commercial software ABAQUS. 
 This work deals of developing a constitutive model for balanced plain weave 
fabric (figure 4.1). The micromechanical model was implemented in Fortran [1] 
programs and user material subroutine for ABAQUS [2], called UMAT, was created 
out of these programs.  

 

 
Figure 4.1: Plane weave fabric. 

 
 

 This model starting from geometrical parameter and mechanical parameter of 
the single constituents (fiber and matrix), determines the effective moduli of the 
representative unit cell (RUC) shown in figure 4.2 [3]. 
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Figure 4.2: Plain weave RUC geometry and notation. 
 

This model was implemented in the structural analysis software system ABAQUS, 
writing a specific subroutine called UMAT. This UMAT subroutine provides the 
capability to combine a new material model with the powerful numerical algorithms 
for structural analysis available in ABAQUS. 
 The last part of this job was to determine a material failure mechanism theory 
for balanced plain weave architecture and implement this model in a specific 
subroutine in the ABAQUS structural analysis software. 
 The geometric model was developed with the following assumptions: 

1. The yarn spacing (quantity a  in figure 4.3) for the fill and warp yarns are 
assumed to be equal. 

2. There is no gap between adjacent yarns. 
3. The centreline of the yarn path consists of undulation portions and straight 

portions, with the centreline of undulating portions described by the sine 
function as drawn in figure 4.4. 

4. The cross-section area and the thickness of the yarn normal to its centreline 
are uniform along the arc-length of the centreline. 
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Figure 4.3: Cross section of the RUC along the warp yarn. 
 
 

 
Figure 4.4: Geometry of an undulation region along the warp yarn. 

 
 The input parameters for the Fortran subroutine that solve the nonlinear 
equations describing the geometry of the balanced plane weave architecture are 
shown in the flow chart in figure 4.5. 
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Figure 4.5: Flow chart to resolve the geometry. 

 
 

The first three parameters describe that the warp and fill yarns contain the same 
number of filaments n , with all filaments having the same diameter fd , and the 

same packing density dp ,  that represents the ratio between the whole area of the 

filaments and the yarn cross section area (figure 4.6). 
 
 

 
FORTRAN code 

 
       All geometry parameters for 

the plain weave RUC 
(representative unit cell) 

 

1. n     = number of filaments in a yarn 

2.  fd   = diameter of a filament 

3. dp   = yarn packing density 

4. a     = yarn spacing  

5. RUC
fV    = fiber volume fraction of the RUC  

           (representative unit cell) 
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Figure 4.6: The yarn is made with n filaments. 
 

Numerical results of the geometric model, for several values of number of filaments 
in a yarn, are shown in figure 4.7.  In these examples the fibre volume fraction is 

64.0V RUC
f   , the diameter of a filament is mm007.0d f  , the yarn spacing is 

mm411.1a   and the packing density is 75.0pd   while the number of filaments is 

changed from 4000 to 14000. In the figure 4.7 it is possible to see the change in the 
geometry of the balanced plane weave as a function of the number of the filaments; 
and it is interesting to note that when this number becomes too large, the codes, to 
avoid discontinuity in the slope, change in automatic way the value of the yarn 
spacing that for 14000n   becomes mm626.1a  . 
 

Yarn 

Filaments 
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Figure 4.7: Some geometric results. 

 
 The calculation of the effective moduli of the representative unit cell (RUC) 
was developed with the following assumptions: 
 

1. The representative unit cell (RUC) is treated as a spatially oriented fibre 
composite composed of yarns with transversely isotropic material properties 

and longitudinal material axes oriented at known angles  and  how draw in 
figure 4.8. 

2. The RUC (representative unit cell) is composed of three linear elastic phases: 
two warp yarns, two fill yarns and matrix. 

3. Homogenization of the RUC (representative unit cell) to determine its 
effective moduli is based on iso-strain assumption. 
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Figure 4.8: Rotations from RUC directions )z,y,x(  to yarn directions )3,2,1( . 

 
The equivalent elasticity matrix for the RUC is defined by: 
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warp matrixfillV V

matrix

V

fillwarpeq dVCdVCdVC
V

1
C     (4.1) 

 
Where it is evident that the RUC is assumed to be composed of three linear elastic 
phases: two warp yarns, two fill yarns and resin matrix. In the formula (4.1) V  is the 
volume of the RUC, warpC  is the elasticity matrix of the warp, fillC  is the elasticity 

matrix of the fill and matrixC  is the elasticity matrix of the matrix. 

The (4.1) equation can be re-written in the form: 
 
 eqrreqffeqwweq CvCvCvC       (4.2) 

 
Where wv , fv  and rv  are the volume fractions of the warp yarns, the fill yarns, and 

the resin and eqwC , eqfC  and eqrC  are the equivalent elasticity matrices for the warp 

and fill yarns and for the resin. 
The input parameters for the Fortran subroutine that calculated the effective moduli 
of the RUC for the balanced plane weave architecture are shown in the flow chart in 
figure 4.9. 
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Figure 4.9: Flow chart to calculate the effective moduli of the RUC. 
 

Therefore the calculation of the effective moduli of the RUC needs, knowing the 
mechanical elastic properties of the warp and fill yarns and the resin mechanical 
elastic properties, the determination of the following quantities: 

A. Elasticity matrix for the warp yarn in the global coordinate directions that we 
identified with  )x(,0C w1   , where 0  and w  denotes the angle between 

the x-axis and the tangent to the centreline. This quantity will be function of 
the direction x. In figure 4.10 are shown some results for the input data 
reported in table 4.1. 

B. Elasticity matrix for the fill yarn in the global coordinate directions that we 

identified with 







)y(,

2
C f1 


 , where 2/   and f  denotes the angle 

between the y-axis and the tangent to the centreline. This quantity will be 

 
Fortran code 

1) Geometry parameters (calculated in the previous point)  
2) Yarn properties 

 
y
23

y
12

y
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y
2

y
1 ,,G,E,E   

3) Matrix properties 

 rrr ,G,E   

Effective stiffness matrix of the RUC 
(representative unit cell) 

• 3 Young Moduli zzyyxx E,E,E  

• 3 Shear Moduli xzyzxy G,G,G  

• 3 Poisson’s ratio xzyzxy ,,   
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function of the direction y. In figure 4.11 are shown some results for the input 
data reported in table 4.1. 

C. Elasticity matrix for the resin in the RUC. The resin elasticity matrix is assumed 
to be homogeneous and isotropic, so it isn’t function of the orientation 
angles. 

 

 
The elasticity matrix for the yarn that we have identified with 1C  is the off-axis 

matrix that is calculated from the on-axis symmetric six-by-six elasticity matrix 

0C  and the transformation of the stress and strain orthogonal six-by-six matrices 

T  and T . The relation is defined by: 

 

  TCT),(C 0
T

1          (4.3) 

 
For the warp yarn angle 0  and the angle )x(w  . For the fill yarn angle 

2/   and the angle )y(f  . 

I would like to remember that since the yarns are isotropic in the plane 
orthogonal to their direction we need five independent material properties. 
 

mm 0.7812 L    mm 0.4727  t    mm 1.411  a    10000  n u 
Material 

r
y

1 E,E  

[GPa] 
r

y
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[GPa] 
r

y
12 G,G  

[GPa] 
r

y
12 ,  

[GPa] 
r

y
23,  

[GPa] 

Yarn 144.80 11.73 5.52 0.23 0.30 

Resin 3.45 3.45 1.28 0.35 0.35 

 

Geometry and Mechanical INPUT 

Table 4.1:  
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Figure 4.10: Elasticity matrix for the warp yarn. 
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Figure 4.11: Elasticity matrix for the fill yarn 
 
The equivalent elasticity matrices for the warp and fill yarns in equation (4.2) can be 
expressed as line integrals rather than three dimensional integrals through the 
following equations: 
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Where the elements in the matrices indicated by filled squares denote non-zero 
values. It can be noted how the material couplings indicated in the equations in 
figure 4.10 and 4.11 between shear stress and normal strains, and between shear 
stresses and shear strains, vanish when the integrations in equations (4.4) are 
performed over the unit cell so the form of the equivalent elasticity matrices for the 
warp and fill yarns have the same form as for an orthotropic material. 
With the input data reported in table 4.1 the results are: 
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As we have just said the resin is assumed to be homogeneous and isotropic 
therefore to build the elasticity matrix we need two independent material 
properties: the modulus of elasticity rE  and the Poisson’s ratio r . With the input 

data reported in table 4.1 the equivalent elasticity matrix for the resin is: 
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           (4.6) 
 

Knowing the equivalent elasticity matrices for the warp and fill yarns and for the 
resin, it is possible, by applying the equation (4.2), to calculate the equivalent 
elasticity matrix for the RUC. 
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           (4.7) 
From the equivalent elasticity matrix it is possible to calculate the compliance matrix 
[4]: 
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           (4.8) 

 
Now we can calculate the effective material coefficients for the RUC using the 
relation between the elements of the compliance matrix and the elastic engineering 
material constants shown in equation (4.8). 
In particular for the input date reported in table 4.1 we have gotten the results 
shown in table (4.2), where the RUC material properties are represented with the 
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three Young moduli xxE , yyE  and zzE  the three shear moduli xyG , yzG  and xzG  the 

three Poisson’s ratio xy , yz  and xz . 

 
 
 

  
 
 
The geometry module and the module to calculated the effective moduli of the RUC 
are been integrated following the flow chart shown in figure 4.12. 
 
 
 

 
 

Figure 4.12: Integration of Geometric Modelling and Effective Moduli Calculation. 
 

Numerical results of this integrated model, for several values of number of filaments 
in a yarn, are shown in figure 4.13.  The mechanical properties of the yarns and the 
resin are that shown in table 4.1. Also the geometry inputs are in table 4.1, but the 
number of filaments is changed from 2000 to 14000. In the figure 4.13 it is possible 
to see the change in the geometry and the elastic engineering material constants of 
the balanced plane weave as function of the number of the filaments. The possibility 
to change the mechanical properties varying the fabrication architectures enable 
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Fortran solve Geometry 

 

 
Fortran solve Effective Moduli of the RUC 

 

Geometry data Effective stiffness matrix of the RUC 

],,,G,G,G,E,E,E[ xzyzxyxzyzxyzzyyxx    

 

02256.0   ;50229.0   ;50229.0

GPa58.4G   ;GPa34.10G  ;GPa34.10G  16.24GPa;E   45.35GPa;E   45.35GPa;E
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





Table 2.2:  
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advanced design concepts including structural tailoring, multifunctional feature and 
performance enhancements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.13: Geometric Modelling and Effective Moduli Calculation. 
 

In figure 4.13 the symbols have the following meaning: 

cBeta   = tangent of the undulation region where 0x   (Crimp angle); 

t  = thickness of the yarn;   a  = yarn spacing; 

uL  = length of the undulation region;   **E  = Young moduli;    

**G  = Shear moduli;   ** = Poisson’s ratios;   
RUC
fyarnVol VV    = volume fraction of the yarns;   RUC

rolrVol VV   = volume fraction of 

the resin. 
Until now we have developed a numerical constitutive model to determine the plain 
weave effective stiffness matrix. The next step was to implement these constitutive 
models in the ABAQUS structural analysis software system and to define an 
incremental finite element approach to progressive failure. Therefore in this last 
phase we had to determine a material failure mechanism theory for the balanced 
plain weave architecture. 
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The prediction of failure at each increment step was obtained by using a quadratic 
failure criterion, applied to the local strains with stiffness and strength reduction 
scheme to account for damage within the yarns. In particular we thought to use the 
Tsai theory [5] to account for progressive degradation of the strengths and 
stiffnesses of the yarns. The theory does not consider delamination phenomena at 
the interface between the yarn and the resin system within the RUC. 
The Tsai-Wu quadratic criterion in the strain space is: 
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Where the parameters G  are: 
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   (4.10)  

 
The strength parameters F  are given as function of the material strengths for the 
yarns. They are: the tensile strength in the yarn direction tX , the compressive 

strength in the yarn direction cX , the tensile strength in the transverse direction tY , 

the compressive strength in the transverse direction cY  and the in-plane longitudinal 

shear strength S . 



ACCORDO DI PROGRAMMA MSE-ENEA 

 

 

ctct

*
12

12

266

ct
2

ct
1

ct
22

ct
11

YYXX

F
F

S

1
F

Y

1

Y

1
F

X

1

X

1
F

YY

1
F

XX

1
F













        (4.11) 

 
 

Where 1F1 *
12   and we take the generalized von Mises value 2/1F*

12  . 

The reduced stiffnesses for the yarns along the axis are obtained from the five yarn 
independent material properties that are the modulus of elasticity along the yarn 

y
1E , the modulus of elasticity transversally to the yarn y

2E , the Poisson ratio 
y
13

y
12   , the Poisson ratio y

23  and the shear modulus y
12G . 
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As you can note we assume that the users know the material properties of the 
yarns. But the code can start the analysis from the properties of the constituents of 
the yarn therefore filaments and resin. We have used a modified rule of mixtures 
based on the definition of the stress partitioning parameter that is treated as an 
empirical constant, so the model needs to have as input two stress partitioning 

parameters: one for the transverse Young’s modulus *
yP  and one for the longitudinal 

shear modulus *
sP . The inputs to the micromechanic module are the filament 
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properties that is assumed to be transversely isotropic so we need five independent 

parameters: the modulus of elasticity along the filament f
1E , the modulus of 

elasticity transversally to the filament f
2E , the Poisson ratio f

13
f

12   , the Poisson 

ratio f
23  and the shear modulus f

12G . We also need to know the properties of the 

resin into the yarn that is assumed to be isotropic so there are two independent 

parameters the modulus of elasticity y
rE  and the Poisson’s ratio y

r .  The relations 

are: 
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Where: 
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Tsai developed a method to account for degradation of lamina strength and 
stiffeness that we can use for the yarn. This model is based on the sign of the local 
(on-axis) transverse normal strain to determine if there is matrix or filament failure 
in the yarn. 
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If the transverse yarn strain is positive, and there is no prior failure to this yarn, the 
event is assumed to be a matrix failure inside the yarn. Matrix stiffness and 
transverse strength are reduced but filament stiffness is retained. 
If the transverse yarn strain is negative, or a prior failure has occurred in the yarn, 
the event is assumed to be a filament failure inside the yarn. This time is used an 
alternate material degradation model which also reduces the axial stiffness. 
The stiffness and strength parameters that are modified in case of damage are: the 

modulus of elasticity along the yarn y
1E , the modulus of elasticity transversally to 

the yarn y
2E , the Poisson ratio y

12 , the shear modulus y
12G , the compressive strength 

in the yarn direction cX  and the parameter *
12F  that we can write in a row form: 
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If either matrix or filament failure is detected within a yarn, degradation of the local 
effective yarn stiffnesses and material strengths is obtained by multiplying the yarn 
material data subject to be modified, equation (4.15), by the following associated 
column factors: 
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Constants *
mE  and *

fE  are, respectively, the matrix and filament degradation factors 

while *n  is a constant that governs the reduction in axial compression strength cX . 

The quantities ydm
2E  and ydf

2E  are, respectively, the degraded modulus of transverse 

elasticity to the yarn due to matrix and filament damage: 
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The quantities ydm
12G  and ydf

12G  are, respectively, the degraded shear modulus to the 

yarn due to matrix and filament damage: 
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In a RUC we have two warp yarns and two fill yarns. The matrix failure can precede a 
filament failure. Filament failure can occur once for yarn and a second indication of 
filament failure is interpreted as ultimate failure and the strength and stiffnesses are 
not degraded further. In figure 4.14 is shown the flow chart of the progressive 
failure analysis algorithm. 
 

 
Figure 4.14: Flow chart of the progressive failure analysis algorithm. 
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We have discretized the warp and fill yarns into slices and for every slice we have 
computed the Tsai-Wu criterion (figure 4.15). 
 

 
Figure 4.15: Sketch of a part of the RUC subject to discretization. 

 
The yarns in the RCU can be either in one of the four failure states: (1) No failure; (2) 
Matrix failure; (3) Single filament failure; (4) Matrix failure followed by filament 
failure. The information on the warp and fill yarns failure states are contained in a 
specific array in the ABAQUS environmental. The name is STATEV(NSTATV) and it 
contains the solution-dependent state variables; the values can be updated in the 
user subroutine. The first row corresponds to the warp yarn and the second row to 
the fill yarn. Therefore the array STATEV can take four different integer values 
related to four failure states. NSTATV is the number of solution dependent state 
variables that are associated with this material and they are defined in the *DEPVAR 
ABAQUS option. 
The geometric model, the effective moduli calculation and the material failure 
model for a balanced plain weave fabric are been included within ABAQUS using the 
user subroutine UMAT that allows the definition of a particular material’s 
mechanical behaviour. This subroutine is called, in the ABAQUS analysis process, at 
all material calculation points of elements for which the material definition includes 
the *USER MATERIAL option. 
In figure 4.16 is shown the flow chart of the implementation of the code in ABAQUS. 
A basic concept in ABAQUS is the division of the problem history into steps. Within 
each step, a number of solution increments may be performed depending on the 
type of analysis for that solution step. The time increment variable is used to scale 
the applied loads and displacements. 
    
 

 



ACCORDO DI PROGRAMMA MSE-ENEA 

 

 
 

Figure 4.16: Flow chart of the implementation of the code in ABAQUS. 
 

For the th1k   solution increment, the strains may be written: 
 

 i
1kk

i
1k 


           (4.19) 

 

Where 
k  represents the strains from the previous thk  converged solution 

increment (denoted by letting the iteration index i  go to infinity), i
1k  represents 

the increment of strain from the previous thk  converged step to the thi  iteration of 

the current th1k   solution increment, and i
1k  represents the estimate of the 
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strains for the strains for the thi  iteration of the current th1k   solution increment. 

The total strains at the beginning of the increment 
k  are provided to the 

subroutine UMAT through the array STRAN(NTENS) while the strain increment i
1k  

are provided through the array DSTRAN(NTENS) where NTEN is the size of the strain 
component array. 
As it is shown in figure 4.16 the current version of the UMAT subroutine requires the 
user to specify 26 input values that define the geometric and material properties. 
These values are provided through the array PROPS(NPROPS) in the *USER 
MATERIAL ABAQUS option. 
With these variables passed, the user subroutine UMAT calculated the yarns 
mechanical properties by taking into consideration the information on the warp and 
fill yarns failure states that are contained in the array STATEV(NSTATV). Then it is 
calculated the current total strains for the present iteration by summing the total 
strains from the previous increment and the corresponding iterative increments of 
strain. 
The yarns in the RUC are discretized into slices and for every slice is calculated the 
value of the Tsai-Wu quadratic criterion in the strain space (4.9). If a new failure 
mode is detected the stiffnesses and strengths of the yarns are reduced. With the 
mechanical properties updated, of the warp and fill yarns, it is calculated the 
effective stiffness matrix of the RUC. Now it is possible to calculate the stress state, 
using the reference deformation state defined by the previous converged solution, 
and the increment of stress computed using the current local stiffness matrix. As 
result, the stress strain relations are written as: 
 

 i
1k

i
1kk

i
1kk

i
1k J 





        (4.20) 

 

Where 
k  represents the stress state at the previous thk  converged solution 

increment, i
1kJ   represents the local stiffness matrix for the thi  iteration of the 

current th1k   solution increment. 
Example problems have been solved using this user subroutine. We have studied a 
square panel of side 600 mm and thickness 3.43 mm where all the edges are 
clamped and the load is a uniform pressure applied to the bottom surface. 
 The input records for the UMAT subroutine are shown in figure 4.17. 
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Figure 4.17: Input records for the UMAT subroutine. 

 
The full plate was modelled using 10X10 eight node linear brick C3D8I of the 
ABAQUS element library. The results of the progressive failure method are shown in 
figure 4.18. For the post processing visualization we used a specific method 
developed to represent the results of a progressive failure analysis in composite 
materials [6]. A pressure increase of 0.09 MPa was used for the analyses and the 
number of load step was 59. In the right top there is the load central deflection 
graph; on its left it is possible to see the deformation of the plate. In the bottom 
there are representation of the type and the defect positions. The change in the 
central deflection respect to the situation without damage around the pressure of 
0.63 MPa was due to the start of the filaments breakage failure in the yarns, while 
the change at 1.48 MPa was imputable to the rapid increase of the filaments failure. 
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Figure 4.18: Graphical visualization of the results. 
 
5.  Validation of the model by testing 
 The example shown in figure 4.18 was a way to verify the code itself for the 
presence of macroscopic errors. After this preliminary check was necessary to 
validate and modify the code using specific experimental results. ENEA in recent 
years has worked, in collaboration with Italian industry, to create ceramic composite 
materials. 
The aim was to use these materials to validate the code, but preliminary tests have 
shown insufficient thermal and mechanical characteristics, so we are studying a new 
strategy of manufacturing to get a better material. 
In the meantime, we are studying the results obtained by Japanese colleges for a 
reference CVI _ SiC/SiC composite shown in part 2 of the final report RP IFERC-
R_T1_09-JA-002 [7]. This report refers to a plain weave 2D SiC/SiC composite, 
fabricated by the CVI method, that we have used as reference material for the 
verification of the code. 
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In the report of the Japanese colleagues have been described the guidelines 
followed for the mechanical characterization of the material with an indication of 
the geometry used for the specimens. 
Figure 5.1 shows typical tensile stress vs. strain relationships for axial tensile loading 
case (0-degree) and for the off-axial cases (30- and 45-degrees). 

 
Figure 5.1: Tensile stress vs. tensile curves for reference CVI-SiC/SiC composites. 

 
Figure 5.2 shows a typical stress vs. strain curve of the compression tests. 

 
Figure 5.2: Compressive stress vs. compressive strain curves for reference CVI-

SiC/SiC composites. 
 

Figure 5.3 shows a typical stress vs. strain curve of the in-plane shear test where the 
loading angle set apart from the fiber longitudinal direction is 45°. 
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Figure 5.3: In-plane shear stress vs. in-plane shear strain curve for reference CVI-

SiC/SiC composites. 
 

Table 5.1 lists the mechanical properties of reference CVI-SiC/SiC composite 
obtained by the experimental tests. 
 

Mechanical parameters Symbol Value 

Axial elastic modulus Ex 265 GPa 
Transverse elastic modulus Ey 265 GPa 

In-plane shear modulus Es 98 GPa 
Poisson’s ratio xy 0.13 

Axial proportional limit tensile stress X1
 117 MPa 

Transverse proportional limit tensile stress Y1 117 MPa 
Axial proportional limit compressive stress X1

’ 402 MPa 

Transverse proportional limit compressive stress Y1
’ 402 MPa 

Proportional limit in-plane shear stress S 67 MPa 

Axial ultimate tensile stress X1 272 MPa 

Transverse ultimate tensile stress Y1 272 MPa 
Axial ultimate compressive stress X1

’ 432 MPa 

Transverse ultimate compressive stress Y1
’ 432 MPa 

Ultimate in-plane shear stress S 91 MPa 

Table 5.1: Mechanical parameters of the reference CVI-SiC/SiC composites. 
 
The typical mechanical parameters, used as inputs for the UMAT subroutine, are 
shown in figure 4.17. Confronting these data with the mechanical data obtained 
from the experimental tests we can see problems linked to the incomplete 
knowledge of the input parameters. In fact, the geometrical parameters could be 
measured, but the filament and matrix mechanical properties are difficult to know. 
What we have done, to overcome the lack of knowing about the mechanical 
properties of the single constituents, were to develop a software tool that was able 
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to assess these mechanical properties taking in consideration the experimental 
results shown in Table 5.1. 
The program was written in Visual Basic and in figure 5.4 is reported the scheme for 
the insertion of the mechanical properties of the single constituents therefore the 
filament and matrix in the yarn and the matrix between the yarns that we identify as 
matrix in the RUC. 
The geometrical data are parameters that are know, while a first tentative for the 
physical data could be obtained from the data sheet of the fibre and using 
bibliographic result knowing the matrix material. 
 

 
Figure 5.4: Graphical user interface for the data introduction. 

 
After the introduction of the geometry and the physical properties of the single 
constituents we can open the simulation window (figure 5.5) to calculate the 
effective moduli of the yarn and the representative unit cell (RUC). In this window it 
is possible to change every geometrical and mechanical parameters, using specific 
slide bars and then, pressing the solve button, it is possible calculated the plane 
weave geometry, the yarn mechanical properties and the plane weave mechanical 
properties (RUC). The change of the input parameters must be done wisely until it is 
possible to reproduce the experimental results that for the specific problem are the 
mechanical properties reported in Table 5.1. 
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Figure 5.5: Graphical user interface for the moduli calculation. 

 
Using the results of this software tool we have define an input records for the UMAT 
subroutine that could be taken as representative of the single constituent 
properties. This new input records for the UMAT subroutine is shown in figure 5.6. 
 

 
Figure 5.6: Input records for the UMAT subroutine. 

 
The use of the UMAT subroutine with the input file shown in figure 5.6, to simulate 

the experimental tests, has taken to the results shown in figure 5.7. 
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Figure_5.7: Comparison between experimental results and numerical simulation. 

 
In the figure are indicated the values of same parameters used for the numerical 
simulation, in particular the tensile strength in the yarn direction tX  and in the 

transverse direction tY  and the compressive strength in the yarn direction cX  and in 

the transverse direction cY , there are also reported the constants *
mE  and *

fE , 

respectively, the matrix and filament degradation factors. 
From this comparison was evident that the numerical model need same 
consideration: 
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1. Until now the numerical model takes in consideration damage within the 
yarns but it doesn’t take in consideration for damage in the matrix of the RUC 
(representative unit cell). 

2. The tensile and compression strength until now are refereed to the yarns 
because we are considering damage within the yarns, but the tensile and 
compression strength gotten from experimental tests and reported in Table 
5.1 are refereed to the RUC strength. 

3. The numerical model used empirical constants, like the partitioning 
parameters and the degradation factors for the matrix and filament that must 
be trim on the used materials. 

 
The first consideration bring to introduce in the material failure mechanism also the 
damage of the matrix in the RUC, while the second consideration shows the 
necessity to define, inside the material failure model, two different strength 
parameters, one related to the yarns and the other related to the RUC. 
Before to update the code we have studied the effect of the values of the strength 
of the yarn and the effect of the degradation of the RUC matrix stiffness. In figure 
5.8 are shown these parameters effect. 
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Figure_5.8: Effect of the strength of the yarn and the RUC matrix stiffness. 

 
In the first graph was enhanced the strength of the yarn from 117 MPa (used for the 
simulation in figure 5.6) to 170 MPa with the effect to increase the change in the 
slop of the tension curve to high stress. In the second graph was introduced the 
degradation of the RUC matrix stiffness with the effect of reduce the slope of the 
tension curve. 
In the light of these new findings the model was changed with the following 
philosophy: 

1. The numerical model first checks for damage in the yarns and, if damage is 
recognized, the model degrades the strengths and stiffness of the yarns. 
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2. Knowing the actual strength and stiffness of the yarns, the model checks for 
matrix damage in the RUC. To this purpose we have to introduce in the input 
records for the UMAT subroutine new strength parameters differentiating 
between those related to the yarns and those related to the RUC. 

 
The damage assessment in the matrix of the RUC is gotten applying the Tsai-Wu 
quadratic criterion in the strain space similarly how made for the assessment for the 
yarns damage. If the Tsai-Wu criterion shows the presence of damage in the RUC 
the sign of the local normal strain are studied. If the maximum plain strain is 
positive, and there isn’t prior failure, the event is assumed to be a matrix failure 
inside the RUC. Matrix stiffness, of the RUC, is reduced. The stiffness parameters 
that are modified in case of damage are: the modulus of elasticity rE  and the 

Poisson’s ratio r  of the RUC matrix. 

After some test to find the best parameters we have define a new input records for 
the UMAT subroutine, shown in figure 5.9. 
 

 
Figure 5.9: Input records for the UMAT subroutine. 

 
How is possible to see comparing the previous input reported in figure 5.6 we have 
increased the number of the input values that the user have to specify that went 
from 26 to 32. We have introduced the strengths parameters of the RUC that are: 
the tensile strength of the RUC XTRUC  and YTRUC , the compressive strength of the 
RUC XCRUC  and YCRUC , the in-plane longitudinal shear strength SCRUC  and the 
coefficient for the interaction term STARRUC12F . 
We have also increased the number of solution state variables that are associated 
with this material changing this value from 2 to 3. Therefore the STATEV(NSTATV) 
that contains the solution-dependent state variables now has three components: 
the first corresponds to the warp yarn, the second to the fill yarn and the third to 



 

 
55 

 

the RUC matrix. We have just described the first two the last could have two values: 
(1) No failure of the RUC matrix; (2) RCU matrix failure. 
The use of the UMAT subroutine with the input file shown in figure 5.9, to simulate 
the experimental tests, has taken to the results shown in figure 5.10. 
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Figure_5.10: Comparison between experimental results and numerical simulation. 
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The results are in good agreement with the experimental tests. In figure 5.10 is also 
compared the in-plane shear results gotten with an off-axis specimen test with the 
numerical results of the tensile off-axial case with 30-degree loading direction. 
The mechanism of damage was investigated for the tensile test (case 0-degree). In 
figure 5.11 is shown the numerical results.  

 
 

Figure 5.11: Damage mechanism for tension test case 0-degree. 
 

The upper graph shows the tensile stress-strain curve and the derivative of the 
numerical results. We have studied four specific points where we have visualized 
the type and position of the damage. The specimen is pull on the left size while it is 
fix on the right. To the bottom are shown the stress and for more practices the 
colours legend is enlarged in the middle left of the figure. The figures with black 
background show the type and position of the damage. 
Below there are the colour legend that specify the type of damage. The meaning of 
the three numbers has been already described, but for convenience will repeat the 
meaning: 

1. The first number is referred to the warp yarn and can have four values: 
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 (1) No damage. 

 (2) Matrix inside the warp yarn damaged. 

 (3) Filament inside the warp yarn damaged. 

 (4) Matrix damage followed by filament damage in the warp yarn. 
2. The second number is referred to the fill yarn and can have four values: 

 (1) No damage. 

 (2) Matrix inside the fill yarn damaged. 

 (3) Filament inside the fill yarn damaged. 

 (4) Matrix damage followed by filament damage in the fill yarn. 
 
3. The third number is referred to the matrix of the RUC and it can have two 

values: 

 (1) No damage. 

 (2) Matrix of the RUC damaged. 
 

The first damage arises in the filaments of the warp yarns and it is uniformly 
distributed. Then at the fix, the damage in the matrix of the RUC, starts and grows 
with the increase of the load, interesting the all materials. At the end the matrix 
damage in the fill yarns starts too, always in the fixed position. 
A similar study was done also for the tensile test (case 30-degree) and the 
compression test (case 0-degree). In figures 5.12 and 5.13 are shown, respectively, 
the results. 
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Figure 5.12: Damage mechanism for tension test case 30-degree. 
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Figure 5.13: Damage mechanism for compression test case 0-degree. 

 
In both the cases the damage is uniformly distributed and specific behaviours could 
be localized in the fixed position. 
The numerical study of the tension tests has shown other interesting considerations 
that are in agreement with the behaviours of the anisotropic materials. For the 
cases of tensile load 0 degrees and 45 degrees the symmetric behaviour with 
respect to the direction of load shows no bending of the specimens and the 
displacements are along the loading direction, as shown in figure 5.14. 
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Figure 5.14: Displacement of the free end of the tensile specimens 0-degree and 45-

degree. 
 
For the case of tensile load 30 degrees the non symmetric behaviour with respect to 
the direction of load determines a situation where the displacement of the free end 
of the specimen doesn’t follow the direction of  load so the specimen bent. This 
behaviours are shown in figure 5.15 where are reported the cases with no damage 
and with damage. The ends free of the specimen follow a direction which is 10° 
shifted relative to the direction of loading. For the case in which is not taken into 
account damage the displacement direction does not change during the increase of 
the load (10° shifted relative to the direction of loading), while in the case in which it 
is taken into account damage the displacement direction first tends to follow the 
direction which is 10° shifted relative to the direction of loading, but then with the 
beginning of damage the displacement direction tends to follow the direction of the 
load. 
In the figures 5.14 and 5.15 the warp yarns are in the x direction and the fill yarns 
are in the y direction. 
This behaviours could be confirm applying the classical laminate theory to a specific 
composite, made by stacking together unidirectional plies oriented in specific 
directions, to reproduce the specimens that were used for the axial tensile loading 
case and the off-axial  tensile load cases. 
These studies are made in Appendix 1 where we have study tree specimens with the 
follow staking sequences: 

1. (0°/90°)s to study the tensile case 0-degree. 
2. (45°/-45°)s to study the tensile case 45-degree. 
3. (30°/-60°)s to study the tensile case 30-degree. 

The results of these study show that for the first two cases we have only strains in 
the x and y direction, while in the third case we have also shear strain that 
determines a bent of the specimen in the x y plane confirming what we have found 
in our study. 
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Figure 5.15: Displacement of the free end of the tensile specimen 30-degree. 

 
Using the same input record for the UMAT subroutine we have studied other two 
example problems that could be used for further validation of the code. The first 
was a beam with length 200 mm, wide 50 mm and thickness 10 mm where both the 
edges along the wide are clamped and the load is a uniform pressure applied to the 
upper surface. The results of the progressive failure method are shown in figure 
5.16. 
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Figure 5.16: Damage mechanism for the beam example. 
 
In the upper part, of the figure 5.16, there is the load central deflection graph; 
below there are the stresses distribution associated with the representation of the 
type and the defect positions. 
In this example is possible to see that the damage started where the materials are in 
a tension stresses. The damage then grows, with the increase of the pressure, in the 
clamped and central part of the beam where the stresses are higher. 
The second example was a plate with the same geometry used in figure 2.1, i.e. a 
square panel of side 600 mm and thickness 3.43 mm where all the edges are 
clamped and the load is a uniform pressure applied to the upper surface. The results 
of the progressive failure method are shown in figure 5.17. 

 
Figure 5.17: Damage mechanism for the square panel example. 

 
In the upper part, of the figure 5.17, there is the load central deflection graph; 
below there are the stresses distribution in both side of the plate associated with 
the representation of the type and the defect positions. The change in the central 
deflection respect to the situation without damage around the pressure of 0.03 MPa 
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was due to the start of the filaments breakage failure in the fill and warp yarns. The 
position was near the edge of the plate. 
A rapid change in the central deflection around the pressure of 0.06 MPa was due to 
the start and a rapid increase of the matrix and filament failure of the fill and warp 
yarns in the centre of the plate. Then, with the increase of the pressure, even in the 
region between the centre and the edges of the plate are beginning to occur 
damage of the filament of the fill and warp yarns. 
 
6.  Conclusions  
 In this paper, was studied a multiscala methodology for composite structural 
modelling. The first part was used to implement a progressive failure method into 
the general purpose finite element program, ABAQUS and to develop a specific 
application for a post processing visualization of the results. This introductory work 
was a way to understand the capability given from the commercial code and it 
allows also to integrate this code with a specific tool, to represent the results of the 
analysis answering to questions, like where is the first ply failure and how the 
progression of the damage develops. The strong limitations in the standard finite 
element codes, studying composite materials using multiscala methodology, have 
led us to seek commercial codes that were able to add the necessary micro-scale 
analysis in a standard finite element software. 
There aren’t many codes based on computational composite engineering 
micromechanics. They are almost totally developed from the NASA (National 
Aeronautics and Space Administration) and when commercialized they are 
characterized by exorbitant costs. One of these codes is GENOA-PFDA (Progressive 
Failure Dynamic Analysis) that, applying the hierarchical modelling, calculates the 
stress-strain field at micro-scale level using micromechanics and calculating for 
possible damage in the volume elements of the unit cell. Once damage, at the unit 
cell level, has been detected the code degrades the relevant fiber/matrix mechanical 
properties. 
The high cost of the commercial code has brought us to the decision to internally 
develop a multiscale code based on the commercial software ABAQUS. We have 
developed a constitutive model for balanced plain weave fabric and we have also 
implemented the micromechanical model, writing a specific user material 
subroutine for ABAQUS, called UMAT. 
This code resolves the geometry and it can calculate the equivalent elasticity matrix 
to a balanced plain weave fabric. We have also determined a material failure 
mechanism theory for the balanced plain weave architecture, which takes in 
consideration damage within the yarns and also in the matrix of the RUC 
(representative unit cell). 
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For validate the code we have used results obtained by the Japanese colleagues for 
a reference CVI- SiC/SiC composites shown in part 2 of the final report RP IFERC-R-
T1-09-JA-002. This report refers to a plain-weave 2D SiC/SiC composite, fabricated 
by the CVI method which was suitable for the code validation. During this phase the 
code was updated and it was also developed specific software tool, which asses the 
mechanical properties of single constituents that reproduce the experimental 
results related to the RUC. 
After this phase of update we have reproduced, with the code, the experimental 
tests as axial and off-axial tensile test, compressive and in-plane shear tests. The 
numerical results are in good agreement with the experimental tests and also the 
considerations on the type and progression of the damage seem to be in good 
agreement with the real behaviour. Also the study of the displacement of the free 
end of the specimens in the tensile tests is in agreement with what one would 
expect to be. 
Finally we have simulated two cases that could be used to make a further validation 
of the code. In these tests we have multi-axial stresses so they could represent an 
interesting test case for the code. 
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Appendix 1 
Classical laminate theory applied to tensile load tests 

 
We take unidirectional laminae with the following mechanical properties derived by 
applying the rule of mixtures to the matrix in the RUC and the yarns mechanical 
properties, gotten using the software tools described in figure 5.4 and 5.5: 

GPa0.340E11  , GPa8.67E22  , GPa0.51G12  , 185.012   

Where: 

11E  is the elastic modulus in the fiber direction or longitudinal direction, 

22E  is the elastic modulus in the transverse fiber direction, 

12G  is the shear modulus in the 1-2 axes, 

12  is the Poisson’s ratio, 

The compliance matrix is: 
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The stiffness matrix is: 
 

1SC            (A1.2) 
 
The ply can be rotated in the staking sequence of an angle   so the transformed 
stiffness matrix is: 
 

11 RTRCTC           (A1.3) 
 
Where: 
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It is the transformation matrix. 
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It is the Reuter’s matrix that takes in consideration that the classical definition of the 
shear strain is twice the tensorial shear strain. 
At this point we are able to study situations when the stresses and material principal 
directions are aligned and also when these two set of axes are not aligned. 
Now we can used those results to formulate the behaviour of a laminate throw the 
plate constitutive equations: 
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Where: 
 
N  are the external forces per unit width, 
M  are the external moments per unit width, 

0  is the in plane strains, 
k  is the plate curvatures, 
 
The element of the laminate stiffness matrix is: 
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       (A1.7) 

 
Where p  is the number of plies and  j1jj thh    is the thickness of the layer j . 

Using the equation (A1.6) we can impose to the specimen a force of traction and, 
knowing the staking sequence, we can build the stiffness matrix, so we are able to 
determine the strains vector and therefore understand the type of displacement of 
the specimen. 
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1. Case (0°/90°)s: 
The stiffness matrix for  0  and  90  are: 
 

 
         MPa    (A1.8) 

 
 

The elements of the laminate stiffness matrix are: 
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        N    (A1.9) 

 

      mm*N  

 

Therefore: 
 

    (A1.10) 
 
Using the (A1.6) equation is possible to determine the strain vector imposing a 
traction force therefore: 
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           (A1.11) 

 
 
We have longitudinal deformation (in the direction of the force) accompanied by a 
lateral deformation in the opposite sense. The deformed specimen is shown in 
figure A.1. 

 

 
 
 
 
 
 
 
 
 

Figure A.1: Deformation of specimen discussed in cases 
(0°/90°)s and (45°/-45°)s. 

 
2. Case (45°/-45°)s: 

The stiffness matrix for  45  and  45  are: 
 

 
         MPa    (A1.12) 
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The elements of the laminate stiffness matrix are: 
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        N    (A1.13) 
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Therefore: 
 

   (A1.14) 
 
Using the (A1.6) equation is possible to determine the strain vector imposing a 
traction force therefore: 
 

 
           (A1.15) 
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We have longitudinal deformation (in the direction of the force) accompanied by a 
lateral deformation in the opposite sense. The deformed specimen is shown in 
figure A.1. 

 
3. Case (30°/-60°)s: 

The stiffness matrix for  30  and  60  are: 
 

 
         MPa    (A1.16) 

 
 

The elements of the laminate stiffness matrix are: 
 

   








mm

N
 

 

        N    (A1.17) 

 

     mm*N  

 

Therefore: 
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   (A1.18) 
 
Using the (A1.6) equation is possible to determine the strain vector imposing a 
traction force therefore: 
 

      
           (A1.19) 

 
 
We have longitudinal deformation (in the direction of the force) accompanied by a 
lateral deformation in the opposite sense but there is also a negative shear strain. 
The deformed specimen is shown in figure A.2. 
 
 
 
 
 
 
 

 
 

Figure A.2: Deformation of specimen discussed in case (30°/-60°)s. 
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