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Sommario

Objectives of the work are to develop a multiscale methodology for composite structural modelling and to
validate the modelling procedure by mechanical testing.

In the field of the computational material science the multiscale methodology plays an important role. It
is based on the hierarchical concept which recognises that there is a strong interconnection between
phenomena which happen to different scales of length and time. In the field of the composite material the
approach consists in the description of the ply by knowing the behaviour of the constituents, i.e. fibre and
matrix.

In this work was developed a constitutive model for a balanced plain weave fabric. This model, starting
from geometrical parameters and mechanical parameters of the single constituents (fibre and matrix),
determines the effective moduli of the representative unit cell (RUC). This model was implemented into a
general purpose finite element program ABAQUS, building a specific user subroutine.

The last part of this job was to determine a material failure mechanism theory for the balanced plain
weave architecture that was implemented in the same specific user subroutine. The prediction of the
failure at each increment of the load was obtained by using a quadratic failure criterion, applied to the
strains with stiffness and strength reduction scheme to account for damage within the yarns.

This standard user subroutine is an augmentation for any commercial finite element code giving the
possibility to deal with any composite material made with balanced plain weave fabric, knowing the
mechanical properties of the single constituents and the specific failure mechanism.
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1. Introduction

A technique to describe the mechanical behaviour of the composite materials
is the multiscale methodology, which allows to link the macroscopic behaviour with
the micro-structural characteristics and it results to be a more predictive approach
(with respect to phenomenological models) with the possibility to estimate the
effect of a change in the fibres and matrix arrangement on the composite
behaviour. Practically, the approach consists in the description of the behaviour at
the scale of the constituents, fibre and matrix, (microscale) where each constituent
is modelled by using continuum mechanics relationships. Afterwards, the
homogenisation treatment will allow to create a mesoscale structure (e.g., layer)
and finally to deduce the macroscopic behaviour. The findings and results of this
study can be implemented in a finite element code by means of a user subroutine. A
similar approach can be attempted for thermal properties.

An important part of the task is the validation of the modelling by testing.
These tests are aimed both at the determination of the basic constituent properties
(fibre and matrix), fibre-matrix interface behaviour and at composite macroscopic
properties. The tests include fibre tensile and composite tensile, compression, shear
and bending.

2. Method to represent the results about a progressive failure model in
composite materials

We have started to study the argument of the design of composite materials
using a general purpose finite element program named ABAQUS. Laminated
composite structures under load develop local failures such as matrix cracks, fiber
breakage and fibre matrix debonds, which are termed as damage. These effects
cause permanent loss of stiffness and strength of the material. It becomes
important to predict the initiation and growth of such damage for assessing the
performance of composite structures.

The analysis of composite laminates is complicated because of both material
and geometric non-linearity, that came into play when the loads are increased
beyond the first ply failure. Material non-linearity results from the damage
mentioned early, and the geometric non-linearity is due to large displacements
experienced by the structure during loading.

Commercial code gives to the user tools to deal with composite materials. For
two-dimensional models there is shell element based on first order shear
deformation theory, that have better performance in large deformation analysis.
The strain state is referred to a specific coordinate system and the stacking
sequence of the laminate is specified to this reference coordinate system.

As we have just said damage in composite materials plays an important role.
To study these behaviours is used a progressive failure method, where the load is

5
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applied incrementally during the analysis. At each load step, a geometric non-linear
analysis is performed until a converged solution is obtained. Knowing the
deformation and stress states at each material integration point, it become possible
to compare these result with material allowable stress. If failure is detected,
stiffness reduction is carried out at the integration Gauss points of the finite
element mesh depending on the mode of failure. However, it is not an easy task to

determine the degraded properties of the damaged material with certainty.
The user can define material properties as functions of the field variables at a

material point using specific user subroutine.

The need to write specific software that represents an augmentation for any
commercial finite element code, gives a big problem to the user in the
representation of the results of the analysis. Where is the first ply failure and how

the progression of the damage develops, these are some questions that the users

have to answer.
In this paragraph is implemented a progressive failure method into the

general purpose finite element program, ABAQUS. A specific application is

developed for a post processing visualization of the results.
We have studied a panel, made of five unidirectional plies, where all the

edges are clamped and the load is a uniform pressure applied to the bottom surface

(Figure 2.1).
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Figure 2.1: Plate geometry.
The plate specification is shown in Table 2.1 and the material properties are
shown in Table 2.2. The orthotropic material properties of a lamina are obtained
either by the theoretical approach or through suitable laboratory tests. The
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theoretical approach, called a micromechanics approach, that relate the fiber and
matrix contributions to the properties of complete structures.

Table 2.1: Laminate plate specifications

Lay-up Sequence | Number of Plies | Length (mm) | Width (mm) Thickness (mm)
[0/45/90/-45/0] 5 600 600 3.43
Table2.2: Mechanical properties of unidirectional E-Glass/Polyester ply

Longitudinal Modulus, E, (GPa) 23.6
Transverse Modulus, E, = E, =(GPa) 10.0
Shear Modulus, G,,(GPa) 1.0
Poisson’s ratio, v,, 0.23
Longitudinal Tensile Strength, X, (MPa) 735.0
Longitudinal Compressive Strength, X.(MPa) 600.0
Transverse Tensile Strength, Y, (MPa) 45.0
Transverse Compressive Strength, Y. (MPa) 100.0
In-Plane Shear Strength, SC(MPa) 45.0

A typical procedure for a progressive failure analysis is illustrated in figure 2.2.
The preprocessing phase is built in the standard ABAQUS environmental and a
specific user subroutine USDFLD was written, which allows the user to define
material properties as functions of the field variables at a material point.
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Results
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Figure 2.2: Progressive failure analysis.

The full plate is modelled using 20x20 four node shell element S4R of the
ABAQUS element library based on first order shear deformation theory. How is
shown in figure 2.3 with the subroutine USDFLD it is possible to incorporate in
ABAQUS the TSAI-WU criterion:

F=) Fo,+) > Fo0, 21 (2.1)
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Figure 2.3: Progressive failure analysis.
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Where o, denotes the stress components referred to the principal material

coordinates and the parameters F are function of the lamina normal tension and
shear strengths. At each load step, Gauss point stresses are used in the failure
criterion. If failure occurred at a Gauss point, a modification of the lamina properties
was made at that Gauss point, which results in reduced stiffness of the laminate. To
this purpose the following expressions are used to determine the failure mode:

Hl = Flo-l + Fllo'12

H2 =F20'2+F22022 (2.2)
2

He = Fee0s

The largest term is selected as the dominant failure mode and the
corresponding modulus is reduced to zero. In particular H; corresponds to fibre

failure, H, corresponds to matrix crack and Hg corresponds to fibre matrix shearing

failure. The code implemented in the user subroutine is shown in the flow chart
reported in figure 2.4.
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Figure 2.4: Progressive failure analysis.

In figure 2.5 are reported results of the analysis using the standard post
processing tools in ABAQUS.
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Figure 2.5: Standard ABAQUS representation.

To the top there is the load central deflection graph and to the botton there is a
picture of the deformation of a half part of the plate. But with the standard tools is
impossible to visualize where the first ply failure is and how the progression of the
damage develops. To answer to these questions we have developed a specific
application for post processing visualization of the results.
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Used data came from the user subroutine USDFLD and such data have been
elaborated through programs written in Fortran 90 whose files of exit have been
visualized through the programs of graphic analysis Origin and gOpenMol. Then a
specific program was written in Visual Basic that has allowed visualizing all the
results of the post elaboration.

The scheme is reported in figure 2.6.

Finite Element
Program |

ABAQUS

Visual Basic

Origin |:>

User subroutine

Fortran 90 :
USDFLD %

gOpenMol

Figure 2.6: Flow chart of the post processing phase.

The graphical user interface used in Visual Basic is shown in figure 2.7.

A pressure increase of 0.008 MPa is used for the analyses and the number of load
step is 89.

To the right top there is the load central deflection graph and on its left it is possible
to see the move of the deformation of a half part of the plate. To the bottom there
are representations of the failure mode with the indication of the percent of the
material point with that failure and the number for every play. There is also a
graphical representation of the defect positions. Pushing the start button the
representation of the time progression of the simulation begins. It is also possible to
change the time between two steps. In the graphs horizontal lines show the load
that is reached during the progression of the simulation.

13
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Figure 2.7: Graphical user interface in Visual Basic.

The first ply failure was due to matrix cracking and started from the bottom surface.
The drastic change in the central deflection around the pressure of 0.20 MPa is due
to the rapid increase of the matrix cracking failure while the change at 0.46 MPa is
imputable at the start of the fiber breakage failure. Then the pressure increases
bring to a structural collapse due to the fiber breakages spread through the
thickness.

In this first approach to the composite material analysis we have developed
into one general purpose finite element program a progressive failure methodology
for composite plates and we have implemented a specific application to show the
type and extent of the damage at a given load, the first ply failure load and the final
collapse load.

3. Selection of the environment for the development

The strong limitation in the standard finite element codes, in studying
composite materials using multiscala methodology, have led us to seek commercial
codes that we could add the necessary micro-scale analysis in a standard finite
element software.
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The progressive failure method is used on the design of composite materials. In a
typical finite element analysis (FEA), failure is assessed at the macro-scale. On the
other hand, it is well known that the initiation of damage in composite materials
occurs at micro-scale. In commercial there are finite element codes based on
computational composite engineering micromechanics that could be a good solution
for ours task, therefore develop a multi-scale methodology for composite structural
modelling. One of this is GENOA-PFDA (Progressive Failure Dynamic Analysis).
Displacement, stress and strain field in a structure are obtained from the finite
element solution. The corresponding response fields at the laminate and lamination
(macro) scales are calculated using enhanced classical laminated theory. Most of the
commercial finite element programs operate strictly at this level. Because the
initiation of damage in composite materials occurs at micro-scale (fiber/matrix
level), GENOA-PFDA utilized the hierarchical approach illustrated in figure 3.1. The
hierarchical modelling reaches down to micro-scale level through the subdivision of
unit cells (that in these reports will call RUC representative unit cell) composed of
the fiber bundles and surrounding matrix material.

Stress-strain field at the micro-scale are calculated on the basis of macro-scale
results, using the computational composite engineering micromechanics. The
volume elements of the unit cell are interrogated for possible damage using a set of
failure criteria. Once damage at the unit cell level has been detected, GENOA-PFDA
degrades the relevant fiber/matrix mechanical properties based on the rules of
material behaviour and experience. The accumulation of damage at the micro-level
eventually leads to the fracture at the lamina (macro) level. Because damage is
tracked at the micro-scale, it is possible to have several types of damage in a
particular ply.

The composites and ceramics fail is due to damage growth and accumulation in the
fibres, matrix or fiber/matrix interface. Damage growth is driven by increasing load,
fatigue cycles, creep or environmental effects. Other affecting damage growth rates
are manufacturing flaws, voids and residual stresses, moisture and temperature.
Predicting composite structure failure, durability and life it means predicting
composite behaviour at the micro-scale of fiber and matrix, translaminar and
interlaminar.

GENOA is an augmentation to FEA adding the necessary micro-scale analysis that
gives the possibility of asses the composite failures where they initiate therefore in
the fiber, matrix and fiber-matrix interface.

The main components in GENOA are:

1) Progressive Failure Analysis (PFA)
2) Material Constituent Analyzer (MCA)
3) Material Uncertainty Analyzer (MUA)

15
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4) Time Dependent Reliability (TDR)
This code is based on three main functional components:

1) Finite Element Software FEA where is used any commercial software package
NASTRAN, ABAQUS, ANSYS, etc.

2) Full Hierarchical Modelling which goes down to the sub-scale.

3) Micro-Mechanics Materials Engineering.

In figure 3.1 it is shown the interaction of GENOA and FEA to perform progressive
damage analysis.

Figure 3.1: Interaction GENOA and FEA.

The FEA solution give displacements (u), stresses (o) and strains (&), with these
data the Full-Hierarchical Modelling can determine the damage to the level of the
fibre and matrix and this information is passed to the Composite Micro-Mechanics
which update the stiffness and strength of the fibre and matrix which are the new
input for the FEA.

In the figure 3.2 there is a different view of the same process. Above the dot line
there is the traditional FEA and lamina theory. Below the line are the capability
added by GENOA, there is a unit cell made up of matrix and fiber furthermore, such
unit cell is further divided into slice on which is applied the micro-scale analysis.
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Figure 3.2: Capability added by GENOA to a traditional FEA.

This sub-division is shown in figure 3.3 where at the slide level is employ micro-
stress theory that determines where the failures are taking place in the fibre or in
the matrix using 16 failure criteria. There are also 6 criteria for assessing the
occurrence of delamination between the lamina.

- «Employ micro-stress theory
wbdnmine stresses in sub-divisions

sub-divisions for

ns of 16 failure criteria

Delamination

Large
relative
rotation

*Employ micro-stress theory

*Determine interlamina stresses
+Interrogate lamina for i’
violations of 6 failure criteria

Figure 3.3: Sub-division of the unit cell and mode of delamination.

All the failure criteria are shown in figure 3.4.

17
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Close form equations, built at micro-scale level, allow to obtain damage and the
consequent reduction of stiffness and strength quickly and then the FEM can run

again to assess what happening in the next step of increase of the load.

When there is a failure in a particular node (figure 3.5) of the lamina, the code must

take into account that the node can no longer bear a load.

Figure 3.5: Route information of damage from the microscale to the macroscale.

That node is called fractured so the code removes the node. We need to remesh and

GENOA automatic remesh (figure 3.6).
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Figure 3.6: Outline of the automatic remesh.

In figure 3.7 is shown the input and the output of GENOA.

Figure 3.7: Outline of the input and the output in the GENOA code.
The code must be calibrated by knowing the properties of the fibers and matrix.

When there is uncertainty on these data it becomes necessary to perform some
mechanical tests on specimen of lamina or laminate as shown in figure 3.8.

19
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Figure 3.8: Test necessary to calibrate the code.

As it can be seen in figure 3.9 the test results are input to a routine that exists in
GENOA, that provides as an output the properties of the fiber and matrix.

Figure 3.9: Outline for determining the mechanical properties of the fiber and the
matrix.

The module named Material Constituent Analyzer (MCA) shown in figure 3.9
calculates lamina (ply) and laminate composite properties knowing the composite
architectures and a first estimation of the properties of the fiber and matrix.
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Figure 3.10: Automated sensitivity analysis.

The Sensitivity Analysis, shown in figure 3.9 and in more detail in figure 3.10, is
based on the module Material Uncertainty Analyzer (MUA).

This module combines micro-mechanics and probabilistic analysis for study the
influence of fundamental primitive variables on the structural response and in
particular, on the response sensitivity to constituent material and to other design
variables, such as fiber architecture, manufacturing tolerances and defect content.
The output of this module are utilized from the Time Dependent Reliability (TDR) for
predict the composite system probability of failure and the sensitivity effects of the
material properties, loading conditions and service and manufacturing conditions, so
it will be possible targeting design parameter changes, that will be most effective in
reducing probability of a given failure mode from occurring, and the probability of
failure.

GENOA handles a broad spectrum of composite textile architectures (figure 3.11).

Figure 3.11: Textile architectures covered by GENOA.

21



ACCORDO DI PROGRAMMA MSE-ENEA

4. Constitutive model for a balanced plain weave fabric

The research for a possible commercial environmental had shown that in
commercially there are finite element codes based on computational composite
engineering micromechanics that could be a good solution for our problems. After
the research what emerges is that such products are almost totally developed from
the NASA ((National Aeronautics and Space Administration) and when
commercialized they are characterized by exorbitant costs.

The high cost of the commercial code that could represent a possible
environment for development of a model for the structural analysis of ceramic
matrix composite material, has brought us to the decision to internally develop a
multiscale code based on the commercial software ABAQUS.

This work deals of developing a constitutive model for balanced plain weave
fabric (figure 4.1). The micromechanical model was implemented in Fortran [1]
programs and user material subroutine for ABAQUS [2], called UMAT, was created
out of these programs.

(a) plain weave

_ representative unit cell
(RUC)

. - fill yarn - warp yarn

Figure 4.1: Plane weave fabric.

This model starting from geometrical parameter and mechanical parameter of
the single constituents (fiber and matrix), determines the effective moduli of the
representative unit cell (RUC) shown in figure 4.2 [3].



Figure 4.2: Plain weave RUC geometry and notation.

This model was implemented in the structural analysis software system ABAQUS,
writing a specific subroutine called UMAT. This UMAT subroutine provides the
capability to combine a new material model with the powerful numerical algorithms
for structural analysis available in ABAQUS.

The last part of this job was to determine a material failure mechanism theory
for balanced plain weave architecture and implement this model in a specific
subroutine in the ABAQUS structural analysis software.

The geometric model was developed with the following assumptions:

1. The yarn spacing (quantity a in figure 4.3) for the fill and warp yarns are
assumed to be equal.

2. There is no gap between adjacent yarns.

3. The centreline of the yarn path consists of undulation portions and straight
portions, with the centreline of undulating portions described by the sine
function as drawn in figure 4.4.

4. The cross-section area and the thickness of the yarn normal to its centreline
are uniform along the arc-length of the centreline.

23
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Figure 4.4: Geometry of an undulation region along the warp yarn.

warp yarn

The input parameters for the Fortran subroutine that solve the nonlinear

equations describing the geometry of the balanced plane weave architecture are
shown in the flow chart in figure 4.5.
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1L

FORTRAN code

1l

Figure 4.5: Flow chart to resolve the geometry.

The first three parameters describe that the warp and fill yarns contain the same
number of filaments n, with all filaments having the same diameter d;, and the

same packing density py, that represents the ratio between the whole area of the
filaments and the yarn cross section area (figure 4.6).

25
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Yarn

Filaments

Figure 4.6: The yarn is made with n filaments.

Numerical results of the geometric model, for several values of number of filaments
in a yarn, are shown in figure 4.7. In these examples the fibre volume fraction is
VRYC =064 , the diameter of a filament is d; =0.007mm, the yarn spacing is
a=1.411mm and the packing density is py =0.75 while the number of filaments is
changed from 4000 to 14000. In the figure 4.7 it is possible to see the change in the
geometry of the balanced plane weave as a function of the number of the filaments;
and it is interesting to note that when this number becomes too large, the codes, to
avoid discontinuity in the slope, change in automatic way the value of the yarn
spacing that for n=14000 becomes a=1.626mm.
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Figure 4.7: Some geometric results.

The calculation of the effective moduli of the representative unit cell (RUC)
was developed with the following assumptions:

1. The representative unit cell (RUC) is treated as a spatially oriented fibre
composite composed of yarns with transversely isotropic material properties
and longitudinal material axes oriented at known angles 3 and 6 how draw in

figure 4.8.

2. The RUC (representative unit cell) is composed of three linear elastic phases:
two warp yarns, two fill yarns and matrix.

3. Homogenization of the RUC (representative unit cell) to determine its
effective moduli is based on iso-strain assumption.
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Figure 4.8: Rotations from RUC directions(x,y,z) to yarn directions(1,2,3).

The equivalent elasticity matrix for the RUC is defined by:

1
Ceq :\7 VI Cwarpdv +VICfiIIdV +VICmatri>gV (4-1)

warp matrix

Where it is evident that the RUC is assumed to be composed of three linear elastic
phases: two warp yarns, two fill yarns and resin matrix. In the formula (4.1) V is the
volume of the RUC, C,,, is the elasticity matrix of the warp, Cg, is the elasticity

matrix of the fill and C,,4ix is the elasticity matrix of the matrix.
The (4.1) equation can be re-written in the form:

Ceq =Vw 'Ceqw +Vi 'Ceqf +Vy 'Ceqr (4.2)

Where v,,, v¢ and v, are the volume fractions of the warp yarns, the fill yarns, and
the resin and Cy,, Ceqr and Cg,, are the equivalent elasticity matrices for the warp

and fill yarns and for the resin.

The input parameters for the Fortran subroutine that calculated the effective moduli
of the RUC for the balanced plane weave architecture are shown in the flow chart in
figure 4.9.
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Fortran code
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Figure 4.9: Flow chart to calculate the effective moduli of the RUC.

Therefore the calculation of the effective moduli of the RUC needs, knowing the
mechanical elastic properties of the warp and fill yarns and the resin mechanical
elastic properties, the determination of the following quantities:

A. Elasticity matrix for the warp yarn in the global coordinate directions that we
identified with C,[0,,(x)] , where 9=0 and g, denotes the angle between
the x-axis and the tangent to the centreline. This quantity will be function of
the direction x. In figure 4.10 are shown some results for the input data
reported in table 4.1.

B. Elasticity matrix for the fill yarn in the global coordinate directions that we

identified with Cl[%,ﬂf(y)} , Where 9=x/2 and pB; denotes the angle

between the y-axis and the tangent to the centreline. This quantity will be
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function of the direction y. In figure 4.11 are shown some results for the input
data reported in table 4.1.

C. Elasticity matrix for the resin in the RUC. The resin elasticity matrix is assumed
to be homogeneous and isotropic, so it isn’t function of the orientation
angles.

Table 4.1:

Geometrv and Mechanical INPUT

n=10000 a=1411mm t=0.47/27 mm L, =0.7812mm

Material EY . E, EJ,E, G/,.G, vis. vy v
[GPa] [GPa] [GPa] [GPa] [GPa]
Yarn 144.80 11.73 5.52 0.23 0.30
Resin 3.45 3.45 1.28 0.35 0.35

The elasticity matrix for the yarn that we have identified with C; is the off-axis

matrix that is calculated from the on-axis symmetric six-by-six elasticity matrix
C, and the transformation of the stress and strain orthogonal six-by-six matrices

T, and T,. The relation is defined by:
C1(6.8)=T; -Co T, (4.3)

For the warp yarn angle 9=0 and the angle 8= p,(x). For the fill yarn angle
0=r1/2 and the angle B=p:(y).

| would like to remember that since the yarns are isotropic in the plane
orthogonal to their direction we need five independent material properties.
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Figure 4.10: Elasticity matrix for the warp yarn.
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Figure 4.11: Elasticity matrix for the fill yarn

The equivalent elasticity matrices for the warp and fill yarns in equation (4.2) can be
expressed as line integrals rather than three dimensional integrals through the
following equations:

'H H B0 0 O
HENEO OO
2a
HEEO OO
C...w = | function[C, (0, -dx =

caw= ] [Cl0AN =\ " "m0 o
0O 00O O WO
00000 N

(4.4)
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v\__/
' H EHO0 0 O
HEEOODO
2a

. /s HENEOOO

C.qf = | function[C,(—, -dy =
= | [CS B0 d= " 0 mo o
0 00 O MmO
00000 M

Where the elements in the matrices indicated by filled squares denote non-zero
values. It can be noted how the material couplings indicated in the equations in
figure 4.10 and 4.11 between shear stress and normal strains, and between shear
stresses and shear strains, vanish when the integrations in equations (4.4) are
performed over the unit cell so the form of the equivalent elasticity matrices for the
warp and fill yarns have the same form as for an orthotropic material.

With the input data reported in table 4.1 the results are:

" W WO 0 0] [107.17 390 1841 O 0 0
HEENEOOO 390 1295 395 O 0 0
c —Tfunction[C (0.4)] -t = M N N0 00| [1841 395 2288 0 0 0
qu_O B Pw o oo mo 0| | O 0 0 468 0 0
0000 MO 0 0 0 0 2003 O
00000 N/ | O 0 0 0 0 532]
(4.5)
B EEO O 0] [1295 390 39 0 0 0]
B EEO O 0| |39 10717 1841 0 0 0
2a
_ . MW NO O 0| |395 1841 2288 0 0 0
C.s = | function[C,(—, -dy = =
eqf l [1(2ﬁf)]y 000 MO O 0 0 0 2007 0 O
0000 MO 0 0 0 0 468 0
000O0O0 N/ |oO 0 0 0 0 532]

As we have just said the resin is assumed to be homogeneous and isotropic
therefore to build the elasticity matrix we need two independent material
properties: the modulus of elasticity E, and the Poisson’s ratiov,. With the input
data reported in table 4.1 the equivalent elasticity matrix for the resin is:

33



ACCORDO DI PROGRAMMA MSE-ENEA

m W MO 0 0] [554 298 208 0 0 0O ]

B EEOO O| 208 554 208 0 0 O

1 B W EOO O| 208 208554 0 0 O

Cear =y J Cresin-aV = 000 MOO| |0 O 0 12 0 0
resinV ) :

0000 MO O 0 0 0 128 0

ooooom|[0 0 0 0 0 128

(4.6)

Knowing the equivalent elasticity matrices for the warp and fill yarns and for the
resin, it is possible, by applying the equation (4.2), to calculate the equivalent
elasticity matrix for the RUC.

50.13 3.73  9.69 0 0 0 |
3.73 50.13 9.69 0 0 0
969 9.69 19.72 0 0 0
Ceqva-Cqu+vf -Ceqf +vr-Ceqr= 0 0 0 10.34 0 0
0 0 0 0 1034 O
0 0 0 0 0 4.58 |
(4.7)

From the equivalent elasticity matrix it is possible to calculate the compliance matrix
[4]:

‘<
~<
x
\
‘<
N
x
o
o
o

EEE
Ew Ey En
. e Lo g g
0.022051 0.000497 -0.011076 0 0 0 E. E. E.
XX yy 7z
0.000497  0.022051 -0.011076 0 0 0 vy Ve 1
_y_|-0.011076 -0011076 0.061590 0 0 0 E. E. B, 0 0
Seq=Ceq ™ = = vy =
0 0 0 0096736 0 0 o o o L o o
0 0 0 0 0096736 0 Gy,
0 0 0 0 o 02821 | o o o5 o L
GXZ
o o o o o -
GXY
(4.8)

Now we can calculate the effective material coefficients for the RUC using the
relation between the elements of the compliance matrix and the elastic engineering
material constants shown in equation (4.8).

In particular for the input date reported in table 4.1 we have gotten the results
shown in table (4.2), where the RUC material properties are represented with the
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three Young moduli E,,, E,, and E,, the three shear moduli G,,, G,, and G,, the

three Poisson’s ratio v,,, vy, and v,, .

Table 2.2:
Ex =45.35GPa; E, =4535GPa; E, =16.24GPa; Gy, =10.34GPa; G,, =10.34GPa; G,, =4.58GPa
vy, =0.50229; v,, =0.50229; v,, =-0.02256

The geometry module and the module to calculated the effective moduli of the RUC
are been integrated following the flow chart shown in figure 4.12.

Yarn and matrix property input
Geometry input E y ]
RUC 2 121‘/12 V23
[nds,pg.aVe 1]
[Er Vil

Fortran solve Geometry :> Fortran solve Effective Moduli of the RUC

/ Gy ki / Effective stiffness matrix of the RUC
[Exx:Eyy Ez2.Gxy Gy .Gz Wiy Vyz Ve

Figure 4.12: Integration of Geometric Modelling and Effective Moduli Calculation.

Numerical results of this integrated model, for several values of number of filaments
in a yarn, are shown in figure 4.13. The mechanical properties of the yarns and the
resin are that shown in table 4.1. Also the geometry inputs are in table 4.1, but the
number of filaments is changed from 2000 to 14000. In the figure 4.13 it is possible
to see the change in the geometry and the elastic engineering material constants of
the balanced plane weave as function of the number of the filaments. The possibility
to change the mechanical properties varying the fabrication architectures enable
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advanced design concepts including structural tailoring, multifunctional feature and
performance enhancements.

T T T T T 0.9 T T T T T T T
1.6 x Ll n . _a——u |,
. */.741 45 05 — g
£ 1.4 L u u | e
E —"-a - 40 - 40
%] —A—t " 0.7 X
S 1.2 * e Lu S
@ F3s O o F35 Q
£ —x— Beta = 2 0.6 =.
S 1.0 1 3 E " —=—VyarnVol 3
= ©
g * ¢ 5 —e—volrvol L 30 o
_—T30 o @© 0.5
3 0.8 ./0/. a = —x— Beta a
o 0 P 2 o o)
2 ° L2s B 3 g4 r2s 2
g 0.6 /:, y 3 o * =
= A,___—-—-—-’A/ Ky 2 3
S - - < . F20 =~
S 041 a— 20~ 503
© A/ K
- E 15
0.2 — 15 0.2 e
—* ¥ e——e—° —e
0.0 T T T T T 10 0.1 T T T T T T T 10
2000 4000 6000 8000, ... 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000
number of filaments number of filaments
7o ! T T T T T 0.55 T T T T T T T
—~— * *x |45 0] L
. *— a— __—k———% 45
60 ~ 0.50 R o j—
| ]
\ 40 0.45 ™ / L 40
g‘f\so . l\ o 0:40 7 / " o
o = "—a [0 0 0354 m —=—vyz Lss I
= 40 . —=—Ex=Ey 3 8 —e—vxy S
3 —e—Ez 30 8 » 0.30 7 * —x— Beta Lo @
g | —A—Gyz=Gxz 2 50254 o
30 —v—Gxy Lo @ & 2
g Bet 25 » 2020 Los 2
S * —x— Beta 2 & * 2
O 20 @ 0.15 =
> o e 208 Lo
o— 0.10
° ° o— _A——A
10 A ’/A/A——’A 15 0054 o . L.s
* v v v v v 0004 X TT—e
0 10 e -® °o— o
T T T T T -0.05 10

T T
2000 4000 6000 8000

10000 12000 14000

number of filaments

T T
2000 4000

T T T T T
6000 8000 ,J[OOOO 12000 14000
number of filaments

Figure 4.13: Geometric Modelling and Effective Moduli Calculation.

In figure 4.13 the symbols have the following meaning:
Beta = 3, = tangent of the undulation region where x=0 (Crimp angle);

t = thickness of the yarn; a =yarn spacing;
L, = length of the undulation region; E.« =Young moduli;

G« = Shear moduli; v« = Poisson’s ratios;

Vyarmvor =VFoC = volume fraction of the yarns; Vg =V,R°C = volume fraction of

the resin.

Until now we have developed a numerical constitutive model to determine the plain
weave effective stiffness matrix. The next step was to implement these constitutive
models in the ABAQUS structural analysis software system and to define an
incremental finite element approach to progressive failure. Therefore in this last
phase we had to determine a material failure mechanism theory for the balanced
plain weave architecture.
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The prediction of failure at each increment step was obtained by using a quadratic
failure criterion, applied to the local strains with stiffness and strength reduction
scheme to account for damage within the yarns. In particular we thought to use the
Tsai theory [5] to account for progressive degradation of the strengths and
stiffnesses of the yarns. The theory does not consider delamination phenomena at
the interface between the yarn and the resin system within the RUC.

The Tsai-Wu quadratic criterion in the strain space is:

Gllgf + 2G128182 +Gzz€22 +G66‘962 +G]_81 +G282 =1 (49)
Where the parameters G are:
2 2
G113 =F11Q11 + 2F15Q11Q12 + F22Q1>

2 2
Gy =F11Q12 +2F15Q15Q97 + F22Q2,

Gp = F11Q11Q12 + F12(Q11Q22 + Qf ) + F25Q15Q52
(4.10)

2
Ges = Fss Q66

G; =FQ11 + FQ5
G, =FQ1p + FQy

The strength parameters F are given as function of the material strengths for the
yarns. They are: the tensile strength in the yarn direction X, the compressive

strength in the yarn direction X, the tensile strength in the transverse direction Y,,
the compressive strength in the transverse direction Y, and the in-plane longitudinal
shear strength S.
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1
Fiq = X
tX¢
1
Fpp =
YiYe
Y
Xy X
(4.11)
1 1
Fp=———
Yo Yo
1
Fes =—
32
F*
FLy = 12
xtXCYtYC

Where —1<F;, <1 and we take the generalized von Mises value F;, =—1/2.

The reduced stiffnesses for the yarns along the axis are obtained from the five yarn
independent material properties that are the modulus of elasticity along the yarn
E/, the modulus of elasticity transversally to the yarn EJ, the Poisson ratio
vi, =vi;, the Poisson ratio vJ, and the shear modulus G,.

E/

Q11 = y
(1-vivs)

E y

Qg2 = 2

(4.12)

_ovA . Y

Q12 =v5Q11 =v{,Q2
_ Y

Qs6 = G1>

As you can note we assume that the users know the material properties of the
yarns. But the code can start the analysis from the properties of the constituents of
the yarn therefore filaments and resin. We have used a modified rule of mixtures
based on the definition of the stress partitioning parameter that is treated as an
empirical constant, so the model needs to have as input two stress partitioning

parameters: one for the transverse Young’s modulus P; and one for the longitudinal

shear modulus P; . The inputs to the micromechanic module are the filament
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properties that is assumed to be transversely isotropic so we need five independent
parameters: the modulus of elasticity along the filament Elf , the modulus of

elasticity transversally to the filament E, , the Poisson ratio v,, =v.;, the Poisson

ratio v,, and the shear modulus G,,. We also need to know the properties of the

resin into the yarn that is assumed to be isotropic so there are two independent
parameters the modulus of elasticity E} and the Poisson’s ratio v}. The relations
are:

EY=v)-E] +(1-V})-E}

y vy f _vYy.,Y

P S
E) 1+P, (E; E)

(4.13)
1 1 [ 1 P:}
* f
G), 1+P; |G, G/
1 1 [ 1 PS*J
= . +
* f
G), 1+P; (G,; G/
Where:
Gy ——Fr
2-L+v)
(4.14)
y
G, = E2
23 y
2. 1+v23

Tsai developed a method to account for degradation of lamina strength and
stiffeness that we can use for the yarn. This model is based on the sign of the local
(on-axis) transverse normal strain to determine if there is matrix or filament failure
in the yarn.
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If the transverse yarn strain is positive, and there is no prior failure to this yarn, the
event is assumed to be a matrix failure inside the yarn. Matrix stiffness and
transverse strength are reduced but filament stiffness is retained.

If the transverse yarn strain is negative, or a prior failure has occurred in the yarn,
the event is assumed to be a filament failure inside the yarn. This time is used an
alternate material degradation model which also reduces the axial stiffness.

The stiffness and strength parameters that are modified in case of damage are: the

modulus of elasticity along the yarn E{, the modulus of elasticity transversally to
the yarn EJ, the Poisson ratio v},, the shear modulus G},, the compressive strength

in the yarn direction X, and the parameter F;, that we can write in a row form:
[Ely E) vi, Giy X |:12J (4.15)

If either matrix or filament failure is detected within a yarn, degradation of the local
effective yarn stiffnesses and material strengths is obtained by multiplying the yarn
material data subject to be modified, equation (4.15), by the following associated
column factors:

(4.16)
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EY

Constants E., and E; are, respectively, the matrix and filament degradation factors
while n* is a constant that governs the reduction in axial compression strength X..
The quantities EJ°™ and EJ* are, respectively, the degraded modulus of transverse

elasticity to the yarn due to matrix and filament damage:

1 1 1 Py
dm Sl
ES™ 1+P, |E, Ep-E/
(4.17)

1 1 1 Py
af S R
EJ 1+P, |E, E;f-E/

The guantities Glygm and Glygf are, respectively, the degraded shear modulus to the

yarn due to matrix and filament damage:

1 1 1 P,
dm e "
GL" 1+Py |G, Ep-G;
(4.18)

1 1 1 P,
af ot | ~f T~y
Gy 1+P; (G, E;-G;
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In a RUC we have two warp yarns and two fill yarns. The matrix failure can precede a
filament failure. Filament failure can occur once for yarn and a second indication of
filament failure is interpreted as ultimate failure and the strength and stiffnesses are
not degraded further. In figure 4.14 is shown the flow chart of the progressive

failure analysis algorithm.

1) ¥am stiffhess and
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2 Information on failure
state on integration point

3 Strain tensor

Deternine the strengths for
each ymim (warp and fill)

corre sponding to failure '
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&l Taal-Wh criferion to local
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Check Fes
TSAT=1

Vam failure
p has ocourred

Tltimate failure

(the warn is already
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Mo need to

degtade properties

Mext Fam %

Fiber failure.
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properties.

Mew information
on faillure state

Ivla trixe failure .
Degrade
properties.

e w information
on falure state

17 Compliance matrices with

degraded properties for
warp and fill yams.

2 Mew information on failure

state on integration point

Figure 4.14: Flow chart of the progressive failure analysis algorithm.
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We have discretized the warp and fill yarns into slices and for every slice we have
computed the Tsai-Wu criterion (figure 4.15).

Figure 4.15: Sketch of a part of the RUC subject to discretization.

The yarns in the RCU can be either in one of the four failure states: (1) No failure; (2)
Matrix failure; (3) Single filament failure; (4) Matrix failure followed by filament
failure. The information on the warp and fill yarns failure states are contained in a
specific array in the ABAQUS environmental. The name is STATEV(NSTATV) and it
contains the solution-dependent state variables; the values can be updated in the
user subroutine. The first row corresponds to the warp yarn and the second row to
the fill yarn. Therefore the array STATEV can take four different integer values
related to four failure states. NSTATV is the number of solution dependent state
variables that are associated with this material and they are defined in the *DEPVAR
ABAQUS option.

The geometric model, the effective moduli calculation and the material failure
model for a balanced plain weave fabric are been included within ABAQUS using the
user subroutine UMAT that allows the definition of a particular material’s
mechanical behaviour. This subroutine is called, in the ABAQUS analysis process, at
all material calculation points of elements for which the material definition includes
the *USER MATERIAL option.

In figure 4.16 is shown the flow chart of the implementation of the code in ABAQUS.
A basic concept in ABAQUS is the division of the problem history into steps. Within
each step, a number of solution increments may be performed depending on the
type of analysis for that solution step. The time increment variable is used to scale
the applied loads and displacements.
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Figure 4.16: Flow chart of the implementation of the code in ABAQUS.
For the k + 1™ solution increment, the strains may be written:
gli<+1 =& + Agli<+l (4.19)

Where & represents the strains from the previous k™ converged solution

increment (denoted by letting the iteration index i go to infinity), 4s!,, represents

the increment of strain from the previous k™ converged step to the i*" iteration of

the current k+1" solution increment, and &!,, represents the estimate of the
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strains for the strains for the it iteration of the current k + 11" solution increment.

The total strains at the beginning of the increment ¢ are provided to the

subroutine UMAT through the array STRAN(NTENS) while the strain increment Ag} .,

are provided through the array DSTRAN(NTENS) where NTEN is the size of the strain
component array.

As it is shown in figure 4.16 the current version of the UMAT subroutine requires the
user to specify 26 input values that define the geometric and material properties.
These values are provided through the array PROPS(NPROPS) in the *USER
MATERIAL ABAQUS option.

With these variables passed, the user subroutine UMAT calculated the yarns
mechanical properties by taking into consideration the information on the warp and
fill yarns failure states that are contained in the array STATEV(NSTATV). Then it is
calculated the current total strains for the present iteration by summing the total
strains from the previous increment and the corresponding iterative increments of
strain.

The yarns in the RUC are discretized into slices and for every slice is calculated the
value of the Tsai-Wu quadratic criterion in the strain space (4.9). If a new failure
mode is detected the stiffnesses and strengths of the yarns are reduced. With the
mechanical properties updated, of the warp and fill yarns, it is calculated the
effective stiffness matrix of the RUC. Now it is possible to calculate the stress state,
using the reference deformation state defined by the previous converged solution,
and the increment of stress computed using the current local stiffness matrix. As
result, the stress strain relations are written as:

O-Ii<+1 = fo + Ao-li<+l :O-I:O + Jli<+1 'Agli<+1 (4.20)

Where o represents the stress state at the previous k™ converged solution

h

increment, J},, represents the local stiffness matrix for the i" iteration of the

current k +1" solution increment.

Example problems have been solved using this user subroutine. We have studied a
square panel of side 600 mm and thickness 3.43 mm where all the edges are
clamped and the load is a uniform pressure applied to the bottom surface.

The input records for the UMAT subroutine are shown in figure 4.17.
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*DEPVAR
E
%% TMAT Property Data Definitions

% props(1-8): VECU,df,a, 2a. E?*EEJJG?E
**% props(9-16): sz,vgg,ﬁ'r,vr,Xf,Xc,Yf,K:
*% props(17-24) : SFI’BEJP}PE{E;vﬁv%

*% props|(25-26) : G{E.,Vj-y

*TU3ER MATERIAL, CONZETANTI=Z6

0.64, 0.007, 1.411, 0.75, 10000., 0., 11730., 55z0.
0.23, 0.3, 3500., ©0.35, 1500., 1500., 40.,  z46.
&5., -0.5, 3400., 0.35,258000., 18700., 0O.26, 0.35

19680, , 0.7

Figure 4.17: Input records for the UMAT subroutine.

The full plate was modelled using 10X10 eight node linear brick C3D8I of the
ABAQUS element library. The results of the progressive failure method are shown in
figure 4.18. For the post processing visualization we used a specific method
developed to represent the results of a progressive failure analysis in composite
materials [6]. A pressure increase of 0.09 MPa was used for the analyses and the
number of load step was 59. In the right top there is the load central deflection
graph; on its left it is possible to see the deformation of the plate. In the bottom
there are representation of the type and the defect positions. The change in the
central deflection respect to the situation without damage around the pressure of
0.63 MPa was due to the start of the filaments breakage failure in the yarns, while
the change at 1.48 MPa was imputable to the rapid increase of the filaments failure.
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Figure 4.18: Graphical visualization of the results.

5. Validation of the model by testing

The example shown in figure 4.18 was a way to verify the code itself for the
presence of macroscopic errors. After this preliminary check was necessary to
validate and modify the code using specific experimental results. ENEA in recent
years has worked, in collaboration with Italian industry, to create ceramic composite
materials.
The aim was to use these materials to validate the code, but preliminary tests have
shown insufficient thermal and mechanical characteristics, so we are studying a new
strategy of manufacturing to get a better material.
In the meantime, we are studying the results obtained by Japanese colleges for a
reference CVI _ SiC/SiC composite shown in part 2 of the final report RP IFERC-
R_T1 _09-JA-002 [7]. This report refers to a plain weave 2D SiC/SiC composite,
fabricated by the CVI method, that we have used as reference material for the
verification of the code.
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In the report of the Japanese colleagues have been described the guidelines

followed for the mechanical characterization of the material with an indication of

the geometry used for the specimens.

Figure 5.1 shows typical tensile stress vs. strain relationships for axial tensile loading

case (0-degree) and for the off-axial cases (30- and 45-degrees).
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Figure 5.1: Tensile stress vs. tensile curves for reference CVI-SiC/SiC composites.

Figure 5.2 shows a typical stress vs. strain curve of the compression tests.
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Figure 5.2: Compressive stress vs. compressive strain curves for reference CVI-

SiC/SiC composites.

Figure 5.3 shows a typical stress vs. strain curve of the in-plane shear test where the
loading angle set apart from the fiber longitudinal direction is 45°.
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Figure 5.3: In-plane shear stress vs. in-plane shear strain curve for reference CVI-
SiC/SiC composites.

Table 5.1 lists the mechanical properties of reference CVI-SiC/SiC composite
obtained by the experimental tests.

Mechanical parameters Symbol Value
Axial elastic modulus E. 265 GPa
Transverse elastic modulus E, 265 GPa
In-plane shear modulus E 98 GPa
Poisson’s ratio Vyy 0.13
Axial proportional limit tensile stress X1 117 MPa
Transverse proportional limit tensile stress Y, 117 MPa
Axial proportional limit compressive stress Xy 402 MPa
Transverse proportional limit compressive stress A 402 MPa
Proportional limit in-plane shear stress S 67 MPa
Axial ultimate tensile stress X1 272 MPa
Transverse ultimate tensile stress Y, 272 MPa
Axial ultimate compressive stress Xy 432 MPa
Transverse ultimate compressive stress er 432 MPa
Ultimate in-plane shear stress S 91 MPa

Table 5.1: Mechanical parameters of the reference CVI-SiC/SiC composites.

The typical mechanical parameters, used as inputs for the UMAT subroutine, are
shown in figure 4.17. Confronting these data with the mechanical data obtained
from the experimental tests we can see problems linked to the incomplete
knowledge of the input parameters. In fact, the geometrical parameters could be
measured, but the filament and matrix mechanical properties are difficult to know.
What we have done, to overcome the lack of knowing about the mechanical

properties of the single constituents, were to develop a software tool that was able
49



ACCORDO DI PROGRAMMA MSE-ENEA

to assess these mechanical properties taking in consideration the experimental
results shown in Table 5.1.

The program was written in Visual Basic and in figure 5.4 is reported the scheme for
the insertion of the mechanical properties of the single constituents therefore the
filament and matrix in the yarn and the matrix between the yarns that we identify as
matrix in the RUC.

The geometrical data are parameters that are know, while a first tentative for the
physical data could be obtained from the data sheet of the fibre and using
bibliographic result knowing the matrix material.
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Figure 5.4: Graphical user interface for the data introduction.

After the introduction of the geometry and the physical properties of the single
constituents we can open the simulation window (figure 5.5) to calculate the
effective moduli of the yarn and the representative unit cell (RUC). In this window it
is possible to change every geometrical and mechanical parameters, using specific
slide bars and then, pressing the solve button, it is possible calculated the plane
weave geometry, the yarn mechanical properties and the plane weave mechanical
properties (RUC). The change of the input parameters must be done wisely until it is
possible to reproduce the experimental results that for the specific problem are the
mechanical properties reported in Table 5.1.
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Figure 5.5: Graphical user interface for the moduli calculation.

Using the results of this software tool we have define an input records for the UMAT
subroutine that could be taken as representative of the single constituent

prop

]

erties. This new input records for the UMAT subroutine is shown in figure 5.6.

MATERIALS

propsil-8y: Vi, df, ay, pd, nt, E11, EzZ, GlE,
propsi9-1&6): wlZ, w23, Er, wr, XTI, ®KC, ¥T, ¥C

props(17-24): 5C, Flz5TAR, ERy, wry, Efl1l, EfZ:, wil:z, wiiz

props(Z5-Z6): GElZ, Viyarn

Mas=imo 8 per fila

epvar
Z,

*Uzer Material, constcants=z&
.37, 0.01a, 1.8&, o.7E5, 800, 0., 11730., EEzZO.
0.z3, 0.3, 330000, 0.18&, 1EE., 480_, s0., 4320,
ZE., -0_E&, =220000., 0.18&, 2&7000., zZ4000. 0o.18k, 0. zk
zooo. , .7

z

**par 6=0.65

The

Figure 5.6: Input records for the UMAT subroutine.

use of the UMAT subroutine with the input file shown in figure 5.6, to simulate
the experimental tests, has taken to the results shown in figure 5.7.
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Figure_5.7: Comparison between experimental results and numerical simulation.

In the figure are indicated the values of same parameters used for the numerical
simulation, in particular the tensile strength in the yarn direction X; and in the

transverse direction Y, and the compressive strength in the yarn direction X, and in
the transverse direction Y., there are also reported the constants E, and E},

respectively, the matrix and filament degradation factors.
From this comparison was evident that the numerical model need same
consideration:
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1. Until now the numerical model takes in consideration damage within the
yarns but it doesn’t take in consideration for damage in the matrix of the RUC
(representative unit cell).

2. The tensile and compression strength until now are refereed to the yarns
because we are considering damage within the yarns, but the tensile and
compression strength gotten from experimental tests and reported in Table
5.1 are refereed to the RUC strength.

3. The numerical model used empirical constants, like the partitioning
parameters and the degradation factors for the matrix and filament that must
be trim on the used materials.

The first consideration bring to introduce in the material failure mechanism also the
damage of the matrix in the RUC, while the second consideration shows the
necessity to define, inside the material failure model, two different strength
parameters, one related to the yarns and the other related to the RUC.

Before to update the code we have studied the effect of the values of the strength
of the yarn and the effect of the degradation of the RUC matrix stiffness. In figure
5.8 are shown these parameters effect.
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Figure_5.8: Effect of the strength of the yarn and the RUC matrix stiffness.

In the first graph was enhanced the strength of the yarn from 117 MPa (used for the
simulation in figure 5.6) to 170 MPa with the effect to increase the change in the
slop of the tension curve to high stress. In the second graph was introduced the
degradation of the RUC matrix stiffness with the effect of reduce the slope of the
tension curve.

In the light of these new findings the model was changed with the following
philosophy:

1. The numerical model first checks for damage in the yarns and, if damage is
recognized, the model degrades the strengths and stiffness of the yarns.
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2. Knowing the actual strength and stiffness of the yarns, the model checks for
matrix damage in the RUC. To this purpose we have to introduce in the input
records for the UMAT subroutine new strength parameters differentiating
between those related to the yarns and those related to the RUC.

The damage assessment in the matrix of the RUC is gotten applying the Tsai-Wu
guadratic criterion in the strain space similarly how made for the assessment for the
yarns damage. If the Tsai-Wu criterion shows the presence of damage in the RUC
the sign of the local normal strain are studied. If the maximum plain strain is
positive, and there isn’t prior failure, the event is assumed to be a matrix failure
inside the RUC. Matrix stiffness, of the RUC, is reduced. The stiffness parameters
that are modified in case of damage are: the modulus of elasticity E, and the
Poisson’s ratio v, of the RUC matrix.

After some test to find the best parameters we have define a new input records for
the UMAT subroutine, shown in figure 5.9.

** MATERIALS

++ ——————————————————————————=—————————=——————————————————=—=——————=—=

** props(l-8): vE£, df, ay, pd, nf, E11, E2Z, GlZ,

** props (9-16): w12, w23, Er, wr, XT, XI, ¥T, IC

** props(17-24): 3C, F123TAR, ERy, wry, Efll, EfZZ, wfli, «fi3

** props (25-26) : 6f12, Viyarn, XTRUC,XCRUC, YTRUC, TCRUC, SCRUC,F12STARRUC
** Massimo 8 per fila

3,
*UTzer Material, constants=3Z
0.37, 0.01, 1.66, 0.75, aono., 0., 11730., 55Z0.
0.23, 0.3,330000., 0.185, 100., 400., 50., 400.
25., -0.5,330000., 0O.185,367000., Z4000., 0O0.185, 0.25
22000., 0.7, Z00., 400. , Z00., 400., 67 ., -0.5

** Param 6=0.3

Figure 5.9: Input records for the UMAT subroutine.

How is possible to see comparing the previous input reported in figure 5.6 we have
increased the number of the input values that the user have to specify that went
from 26 to 32. We have introduced the strengths parameters of the RUC that are:
the tensile strength of the RUC XTRUC and YTRUC, the compressive strength of the
RUC XCRUC and YCRUC, the in-plane longitudinal shear strength SCRUC and the
coefficient for the interaction term F12STARRUC.

We have also increased the number of solution state variables that are associated
with this material changing this value from 2 to 3. Therefore the STATEV(NSTATV)
that contains the solution-dependent state variables now has three components:
the first corresponds to the warp yarn, the second to the fill yarn and the third to
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the RUC matrix. We have just described the first two the last could have two values:
(1) No failure of the RUC matrix; (2) RCU matrix failure.
The use of the UMAT subroutine with the input file shown in figure 5.9, to simulate
the experimental tests, has taken to the results shown in figure 5.10.
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Figure_5.10: Comparison between experimental results and numerical simulation.
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The results are in good agreement with the experimental tests. In figure 5.10 is also
compared the in-plane shear results gotten with an off-axis specimen test with the
numerical results of the tensile off-axial case with 30-degree loading direction.

The mechanism of damage was investigated for the tensile test (case 0-degree). In
figure 5.11 is shown the numerical results.
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Figure 5.11: Damage mechanism for tension test case O-degree.

The upper graph shows the tensile stress-strain curve and the derivative of the
numerical results. We have studied four specific points where we have visualized
the type and position of the damage. The specimen is pull on the left size while it is
fix on the right. To the bottom are shown the stress and for more practices the
colours legend is enlarged in the middle left of the figure. The figures with black
background show the type and position of the damage.

Below there are the colour legend that specify the type of damage. The meaning of
the three numbers has been already described, but for convenience will repeat the
meaning:

1. The first number is referred to the warp yarn and can have four values:



(1) No damage.

(2) Matrix inside the warp yarn damaged.

(3) Filament inside the warp yarn damaged.

(4) Matrix damage followed by filament damage in the warp yarn.
2. The second number is referred to the fill yarn and can have four values:
(1) No damage.

(2) Matrix inside the fill yarn damaged.

(3) Filament inside the fill yarn damaged.

(4) Matrix damage followed by filament damage in the fill yarn.

3. The third number is referred to the matrix of the RUC and it can have two
values:
e (1) No damage.
e (2) Matrix of the RUC damaged.

The first damage arises in the filaments of the warp yarns and it is uniformly
distributed. Then at the fix, the damage in the matrix of the RUC, starts and grows
with the increase of the load, interesting the all materials. At the end the matrix
damage in the fill yarns starts too, always in the fixed position.

A similar study was done also for the tensile test (case 30-degree) and the
compression test (case 0-degree). In figures 5.12 and 5.13 are shown, respectively,
the results.
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Figure 5.12: Damage mechanism for tension test case 30-degree.
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Figure 5.13: Damage mechanism for compression test case 0-degree.

In both the cases the damage is uniformly distributed and specific behaviours could
be localized in the fixed position.

The numerical study of the tension tests has shown other interesting considerations
that are in agreement with the behaviours of the anisotropic materials. For the
cases of tensile load 0 degrees and 45 degrees the symmetric behaviour with
respect to the direction of load shows no bending of the specimens and the
displacements are along the loading direction, as shown in figure 5.14.
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Displacement of the free end of the tensile specimen (case 0°) Displacement of the free end of the tensile specimen (case 45°)
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Figure 5.14: Displacement of the free end of the tensile specimens 0-degree and 45-
degree.

For the case of tensile load 30 degrees the non symmetric behaviour with respect to
the direction of load determines a situation where the displacement of the free end
of the specimen doesn’t follow the direction of load so the specimen bent. This
behaviours are shown in figure 5.15 where are reported the cases with no damage
and with damage. The ends free of the specimen follow a direction which is 10°
shifted relative to the direction of loading. For the case in which is not taken into
account damage the displacement direction does not change during the increase of
the load (10° shifted relative to the direction of loading), while in the case in which it
is taken into account damage the displacement direction first tends to follow the
direction which is 10° shifted relative to the direction of loading, but then with the
beginning of damage the displacement direction tends to follow the direction of the
load.
In the figures 5.14 and 5.15 the warp yarns are in the x direction and the fill yarns
are in the y direction.
This behaviours could be confirm applying the classical laminate theory to a specific
composite, made by stacking together unidirectional plies oriented in specific
directions, to reproduce the specimens that were used for the axial tensile loading
case and the off-axial tensile load cases.
These studies are made in Appendix 1 where we have study tree specimens with the
follow staking sequences:

1. (0°/90°), to study the tensile case 0-degree.

2. (45°/-45°), to study the tensile case 45-degree.

3. (30°/-60°), to study the tensile case 30-degree.
The results of these study show that for the first two cases we have only strains in
the x and y direction, while in the third case we have also shear strain that
determines a bent of the specimen in the x y plane confirming what we have found
in our study.
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Figure 5.15: Displacement of the free end of the tensile specimen 30-degree.

Using the same input record for the UMAT subroutine we have studied other two
example problems that could be used for further validation of the code. The first
was a beam with length 200 mm, wide 50 mm and thickness 10 mm where both the
edges along the wide are clamped and the load is a uniform pressure applied to the
upper surface. The results of the progressive failure method are shown in figure
5.16.
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Figure 5.16: Damage mechanism for the beam example.

In the upper part, of the figure 5.16, there is the load central deflection graph;

below there are the stresses distribution associated with the representation of the
type and the defect positions.

In this example is possible to see that the damage started where the materials are in
a tension stresses. The damage then grows, with the increase of the pressure, in the
clamped and central part of the beam where the stresses are higher.

The second example was a plate with the same geometry used in figure 2.1, i.e. a
square panel of side 600 mm and thickness 3.43 mm where all the edges are
clamped and the load is a uniform pressure applied to the upper surface. The results
of the progressive faoillgre method are shown in figure 51_7
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Figure 5.17: Damage mechanism for the square panel example.

In the upper part, of the figure 5.17, there is the load central deflection graph;
below there are the stresses distribution in both side of the plate associated with
the representation of the type and the defect positions. The change in the central
deflection respect to the situation without damage around the pressure of 0.03 MPa



ENEN

< RICERCA DI BIBTEMA ELETTRICK

was due to the start of the filaments breakage failure in the fill and warp yarns. The
position was near the edge of the plate.

A rapid change in the central deflection around the pressure of 0.06 MPa was due to
the start and a rapid increase of the matrix and filament failure of the fill and warp
yarns in the centre of the plate. Then, with the increase of the pressure, even in the
region between the centre and the edges of the plate are beginning to occur
damage of the filament of the fill and warp yarns.

6. Conclusions

In this paper, was studied a multiscala methodology for composite structural
modelling. The first part was used to implement a progressive failure method into
the general purpose finite element program, ABAQUS and to develop a specific
application for a post processing visualization of the results. This introductory work
was a way to understand the capability given from the commercial code and it
allows also to integrate this code with a specific tool, to represent the results of the
analysis answering to questions, like where is the first ply failure and how the
progression of the damage develops. The strong limitations in the standard finite
element codes, studying composite materials using multiscala methodology, have
led us to seek commercial codes that were able to add the necessary micro-scale
analysis in a standard finite element software.
There aren’t many codes based on computational composite engineering
micromechanics. They are almost totally developed from the NASA (National
Aeronautics and Space Administration) and when commercialized they are
characterized by exorbitant costs. One of these codes is GENOA-PFDA (Progressive
Failure Dynamic Analysis) that, applying the hierarchical modelling, calculates the
stress-strain field at micro-scale level using micromechanics and calculating for
possible damage in the volume elements of the unit cell. Once damage, at the unit
cell level, has been detected the code degrades the relevant fiber/matrix mechanical
properties.
The high cost of the commercial code has brought us to the decision to internally
develop a multiscale code based on the commercial software ABAQUS. We have
developed a constitutive model for balanced plain weave fabric and we have also
implemented the micromechanical model, writing a specific user material
subroutine for ABAQUS, called UMAT.
This code resolves the geometry and it can calculate the equivalent elasticity matrix
to a balanced plain weave fabric. We have also determined a material failure
mechanism theory for the balanced plain weave architecture, which takes in
consideration damage within the yarns and also in the matrix of the RUC
(representative unit cell).
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For validate the code we have used results obtained by the Japanese colleagues for
a reference CVI- SiC/SiC composites shown in part 2 of the final report RP IFERC-R-
T1-09-JA-002. This report refers to a plain-weave 2D SiC/SiC composite, fabricated
by the CVI method which was suitable for the code validation. During this phase the
code was updated and it was also developed specific software tool, which asses the
mechanical properties of single constituents that reproduce the experimental
results related to the RUC.

After this phase of update we have reproduced, with the code, the experimental
tests as axial and off-axial tensile test, compressive and in-plane shear tests. The
numerical results are in good agreement with the experimental tests and also the
considerations on the type and progression of the damage seem to be in good
agreement with the real behaviour. Also the study of the displacement of the free
end of the specimens in the tensile tests is in agreement with what one would
expect to be.

Finally we have simulated two cases that could be used to make a further validation
of the code. In these tests we have multi-axial stresses so they could represent an
interesting test case for the code.
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Appendix 1
Classical laminate theory applied to tensile load tests

We take unidirectional laminae with the following mechanical properties derived by
applying the rule of mixtures to the matrix in the RUC and the yarns mechanical
properties, gotten using the software tools described in figure 5.4 and 5.5:

E,, = 340.0GPa, E,, =67.8GPa, G;, =51.0GPa, v;, =0.185

Where:

E,, is the elastic modulus in the fiber direction or longitudinal direction,

E,, is the elastic modulus in the transverse fiber direction,

G, is the shear modulus in the 1-2 axes,

vy, is the Poisson’s ratio,

The compliance matrix is:

1 va 0
Eq1 Ez
sof-n2 L (A1.1)
Eixn  Ex
0 o L
. Gy |
The stiffness matrix is:
c=5"1 (A1.2)

The ply can be rotated in the staking sequence of an angle ¢ so the transformed

stiffness matrix is:

C=Tl+«C*R*T*R? (A1.3)
Where:

cos 62 sing? 2* cos 0* sin 6
T=| sing? cos@?>  —2*cosO*sind (A1.4)

—cos@*sin@ cosf*sind

cos % —sin@?
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It is the transformation matrix.

(A1.5)

Py
I
o O -
O - O
NN O O

It is the Reuter’s matrix that takes in consideration that the classical definition of the
shear strain is twice the tensorial shear strain.

At this point we are able to study situations when the stresses and material principal
directions are aligned and also when these two set of axes are not aligned.

Now we can used those results to formulate the behaviour of a laminate throw the
plate constitutive equations:

PN w19
M A D k
Where:

N are the external forces per unit width,

M are the external moments per unit width,
% is the in plane strains,

k is the plate curvatures,

The element of the laminate stiffness matrix is:

Ars =2 Crg *(hj=hj1)

@)

i=
Bre = 2% ST % (02— 1) (A1.7)
rs — 2 rs; ] j-1 .

p_
Dys =% Crsj*(h?_h?—l)
j=1

Where p is the number of pliesand h; —h;_; =t; is the thickness of the layer j.

Using the equation (A1.6) we can impose to the specimen a force of traction and,
knowing the staking sequence, we can build the stiffness matrix, so we are able to

determine the strains vector and therefore understand the type of displacement of
the specimen.
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1. Case (0°/90°):
The stiffness matrix for € =0° and 8 =90° are:

[342310°  126310° O
C_0°=|1z6310" em710t O
0 0 51-10*
[MPa] (A1.8)
710t 126310 0
C_90°=|y 26510 3423107 00
0 o sia0t
The elements of the laminate stiffness matrix are:
1027107 6315-10° O
A=(g31510° 10271070 0
0 0 zss10t [i}
mm
00
E=[0 0 0
00 [N] (A1.9)
3200107 1313554 0
D=l 131554 106210° 0
0 0 53125 [N* mm]
Therefore:
027100 631510° 0 0 0 0
631510° 1027100 0 0 0 0
(ﬂ Bl | o 0 25510 0 0 0
B D 0 0 0 3209.10° 131554 0
0 0 0 131554 106810° 0
0 0 0 0 0 53135 | (A1.10)

Using the (A1.6) equation is possible to determine the strain vector imposing a
traction force therefore:
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We have longitudinal deformation (in the direction of the force) accompanied by a
lateral deformation in the opposite sense. The deformed specimen is shown in
figure A.1.

Unloaded

N, <

Loaded

Figure A.1: Deformation of specimen discussed in cases
(0°/90°), and (45°/-45°)..

2. Case (45°/-45°):
The stiffness matrix for 8 =45° and 6 =—45° are:

16 10° stor 10t sgszot
C_4=| 5710t 16107 6252 10"

gzsz 10t ezs2 it oeza10t
[MPa] (A1.12)
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C_4%m=| 570710

sz5r10t a5z 10t

BTEMA ELETTRICK

g

5797 10"

1610°

252 10"

.25 10t

0634 10*

The elements of the laminate stiffness matrix are:

7903z 10*
& =|gz08.1p*

o

0a
E=l0 00
0a

1 figé 10°
D=1 03204

535204

Therefore:

& B 0
EID= 0
0
0

2208 10*

7 99g- 10"

0

603 204

1 666 10°

535204

7o0z.10% 220z.10*

220210 7o0g-10*

0
0
0
0

1]
1]

ag1710t

535204
535294

1003 10°

0
0
451710
0
0
0

1] 1]
1] 1]
1] 1]

1666107 603.804
603804 1666100 535204

535294 5351294 1.IZII]3-1I33_

535204

[N*mm]

1]
1]
1]

(A1.13)

(A1.14)

Using the (A1.6) equation is possible to determine the strain vector imposing a
traction force therefore:

Z =z o=

= =

=

[100 ]

r
[ R e T e N s N

(A1.15)
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We have longitudinal deformation (in the direction of the force) accompanied by a
lateral deformation in the opposite sense. The deformed specimen is shown in

figure A.1.

3. Case (30°/-60°):
The stiffness matrix for & =30° and 6 =—-60° are:

239%-10°  4e63-10° 7397 10"
C_30°=| 46z 10" 10210’ 397110t

7go7-10* 39710t 250t

[MPa]
toe 10’ 4ss3 10t 307110t
C_60°m=| 466310 239810° —73097 10°
o710t —7zom10t 2510t
The elements of the laminate stiffness matrix are:
zses10t 233310t os1e10°
A=t zses 0t oz’
0g16:10° -0g1610° 42510t N
mm
00
B=|o 0 0
o0 [N]
232107 485741 G6RO06S
D=lugssat  1240010° 250082
662062 250088  8R5.437 [N* mm]

Therefore:

(A1.16)

(A1.17)
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[2565.10° 2732.10° 9g1610° O 0 0
233210% 256510t Jozte10® 0 0 0
(ﬂ Bl_|os1610° -921610° 42510° 0 0 0
B D 0 0 0 232107 485741 662062
0 0 0 435741 1249107 259 088
0 0 0 662068 259088 885437 | (A1.18)

Using the (A1.6) equation is possible to determine the strain vector imposing a
traction force therefore:

Wl
100
]
v || o
M | M | | 0
i 0
X
M, 0
i
o | L0
L =]
o (A1.19)
]
& 0.001
0 -4
£y _4062-10
i i} -1 -
£ | _| v =(ﬂ E) _@)=-3.996-1D4
k 0
¥
. 0
| ®F

We have longitudinal deformation (in the direction of the force) accompanied by a
lateral deformation in the opposite sense but there is also a negative shear strain.

The deformed specimen is shown in figure A.2.
Unloaded

N, <— —> N,

~

Loaded

Figure A.2: Deformation of specimen discussed in case (30°/-60°),.
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