
	

	

Integration	
 of	
 the	
 FELMORE	
 Code	
 in	
 the	

Salome	
 Platform	

A.	
 Cervone,	
 D.	
 Cerroni,	
 R.	
 Da	
 Vià,	
 F.	
 Menghini,	
 S.	
 Manservizi,	
 	

G.	
 Pozzetti	

	

	

	

	

	

	

	
 Report RdS/PAR2013/045	

Agenzia nazionale per le nuove tecnologie,
l’energia e lo sviluppo economico sostenibile MINISTERO DELLO SVILUPPO ECONOMICO	

	

	

	

	

	

Integration	
 of	
 the	
 FELMORE	
 Code	
 in	
 the	
 Salome	
 Platform	

	

A.	
 Cervone,	
 D.	
 Cerroni,	
 R.	
 Da	
 Vià,	
 F.	
 Menghini,	
 S.	
 Manservisi,	
 G.	
 Pozzetti	
 -­‐	
 CIRTEN	
 UNIBO	

	

Settembre	
 2014	

	

Report	
 Ricerca	
 di	
 Sistema	
 Elettrico	
 	

Accordo	
 di	
 Programma	
 Ministero	
 dello	
 Sviluppo	
 Economico	
 -­‐	
 ENEA	

Piano	
 Annuale	
 di	
 Realizzazione	
 2013	

Area:	
 Produzione	
 di	
 energia	
 elettrica	
 e	
 protezione	
 dell'ambiente	
 	

Progetto:	
 Sviluppo	
 competenze	
 scientifiche	
 nel	
 campo	
 della	
 sicurezza	
 nucleare	
 e	
 collaborazione	
 ai	
 programmi	
 internazionali	
 per	
 il	

nucleare	
 di	
 IV	
 Generazione	
 	

Obiettivo:	
 Sviluppo	
 competenze	
 scientifiche	
 nel	
 campo	
 della	
 sicurezza	
 nucleare	

Responsabile	
 del	
 Progetto:	
 Mariano	
 Tarantino,	
 ENEA	

	

Il	
 presente	
 documento	
 descrive	
 le	
 attività	
 di	
 ricerca	
 svolte	
 all’interno	
 dell’Accordo	
 di	
 collaborazione	
 "Sviluppo	
 competenze	

scientifiche	
 nel	
 campo	
 della	
 sicurezza	
 e	
 collaborazione	
 ai	
 programmi	
 internazionali	
 per	
 il	
 nucleare	
 di	
 IV	
 generazione"	

Responsabile	
 scientifico	
 ENEA:	
 Mariano	
 Tarantino	

Responsabile	
 scientifico	
 CIRTEN:	
 Giuseppe	
 Forasassi	

	

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

2

di

96

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

3

di

96

Integration of the FEMLCORE code in the
SALOME platform

D. Cerroni, R. Da Vià, A. Cervone,
S. Manservisi, F. Menghini and G. Pozzetti

Thursday 18th September, 2014

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

4

di

96

Contents

Introduction 6

1 Code integration in SALOME platform 9
1.1 SALOME C++ library integration . 9

1.1.1 Generation of the C++ code library 9
1.1.2 Generation of the a SALOME module by using YACS-GEN 11
1.1.3 Running a SALOME module by using YACS 13
1.1.4 Running directly with a main program 16

1.2 libMesh-SALOME integration . 18
1.2.1 Generation of the code-library . 18
1.2.2 libMesh-SALOME interface . 19
1.2.3 Implementation of the SALOME-libMesh interface 26

1.3 FEMLCORE-SALOME integration . 29
1.3.1 SALOME-FEMLCORE interface 29
1.3.2 Implementation of the SALOME-FEMLCORE interface 36

1.4 Deployment of the SALOME platform on the CRESCO cluster 39

2 FEMLCORE coupling on SALOME 42
2.1 Coupling libMesh modules on SALOME 42

2.1.1 LibMesh energy problem coupling (3D-3D) 42
2.1.2 LibMesh Navier-Stokes coupling (3D-3D) 48
2.1.3 LibMesh energy coupling 3D-module/1D-module 54

2.2 Coupling FEMLCORE modules . 57
2.2.1 FEMus Navier-Stokes 3D-CFD module coupling 57
2.2.2 FEMus-libMesh coupling (3D-1D) 63

2.3 Coupling FEM-LCORE on SALOME platform 67
2.3.1 Introduction . 67
2.3.2 Exact solution and benchmark cases 69
2.3.3 Benchmarks on FEM-LCORE integration. 71
2.3.4 Coupling 3D-FEMLCORE and 1D libMesh primary loop module . 80

Conclusions 88

Bibliography 89

List of Tables 92

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

5

di

96

List of Figures 93

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

6

di

96

Introduction
Computational simulation of nuclear reactor is of great importance for design, safety and
optimal use of fuel resources. Unfortunately a complete simulation of nuclear systems
in three-dimensional geometries is not possible with the current available computational
power and therefore it is necessary a multiscale approach where the global system is
solved at a mono-dimensional level and only some components of interest are solved in
great details.
In the previous reports the multiscale code FEMLCORE has been developed for LF

reactor of generation IV in the framework of this multiscale approach. Mono-dimensional
and three-dimensional modules have been created with appropriate interfaces [2, 3].
Porous modules have been developed for the reactor core where a detailed computation
of all the reactor channels inside all the assemblies is not still possible [2, 3, 4]. Simplified
freezing modules have been adapted to compute the thermal hydraulics of the reactor
when solidification may occur [10, 5].
The mono-dimensional system code implemented in the FEMLCORE module is based

on the balance equations [4, 5]. System codes cannot reproduce a multidimensional phys-
ical systems such as a nuclear reactor because they are based only on mono-dimensional
physical principles and they need experimental data to add the missing information.
One of the main goal of the FEMLCORE project is to include, as mono-dimensional
modules, system codes validated with nuclear data. In order to do this we must inte-
grate the FEMLCORE in the SALOME platform where several nuclear system codes
are available.
SALOME is an open source generic platform for preprocessing and postprocessing

of numerical simulations, developed by CEA and other institutions [32]. In the plat-
form there are modules needed for multi-dimensional CFD computations and for system
codes. There are tools for preprocessing CAD applications (GEOM) and for generating
meshes (MESH). With the GEOM application one can create, modify, import, export
(IGES, STEP and BREP format), repair and fix CAD models. With the MESH appli-
cation one can edit, check, import and export meshes (in MED, UNV, DAT and STL
formats). These modules are fully integrated in the SALOME platform. There are also
postprocessing tools to analyze simulation data such as PARAVIS (PARAVIEW). PAR-
AVIEW is an open-source, multi-platform data analysis and visualization application.
The data analysis can be done interactively in three-dimension or using PARAVIEW’s
batch processing capabilities [28].
This platform has been conceived not only to collect a series of codes that have been

extensively used in the field of thermal hydraulics of nuclear reactors but also to harmo-
nize them with the aim of solving complex problems by exchanging information among
different codes over a common platform and on large multiprocessor architectures. SA-

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

7

di

96

LOME can also be used as a platform for the integration of external third-party numer-
ical codes to produce a new application with full pre and postprocessing management of
CAD models.
The European NURESAFE (ex NURISP) project is planned to be based on the

SALOME platform. The project has started with the CATHARE, NEPTUNE and
TRIO_U codes as independent codes, with not compatible input and output formats
[6, 7]. CATHARE is a Code for the Analysis of Thermal Hydraulics during an Acci-
dent of Reactor and safety Evaluation for LWR [22]. This system code is used mainly for
PWR safety analysis, accident management and definition of plant operating procedures.
It is also used to quantify conservative analysis margins and for nuclear reactor licensing
[23, 24]. TRIO_U and NEPTUNE codes solve the flow equations in multidimensional
geometries with particular attention to two-phase flow [26, 25]. CATHARE, NEPTUNE
and TRIO_U are developed by CEA and EDF and they can be used only under NURE-
SAFE project agreement. In particular we are interested in the CATHARE system code
[22, 23, 24]. The CATHARE system code, like other important nuclear codes, have been
developed with an interface on SALOME platform for coupling and integration [24, 27].
At the moment the platform is based on computational tools for light water reactors but
many of the codes may be adapted to liquid metals simulations.
The integration of a code on the SALOME platform is obtained by generating an

interface with functions available in the MEDMem library (provided in the SALOME
platform) that allows the data transfer from the platform to the code and viceversa. Two
different codes both with SALOMEMEDMem interface can transfer data to the interface
and then from the interface to the other code. All the data operations of the SALOME
platform involve files in MED (Modèle d’Échange de Données) format. MED is a data
storage format based upon the HDF library [35]. The HDF format is largely used and
will probably become the standard in a short future. However the implementation in
MED format is rare. In the SALOME platform a MED module is implemented. The
MED module provides a library for storing and recovering computer data in MED format
associating numerical meshes and fields, thus allowing the exchange between different
codes and solvers. Inside SALOME these structures are exchanged between solvers at the
communication level (CORBA or MPI) offering common read/write functions through
MED files.
The MED data model defines the data structures exchanged by codes. The modeled

data concern geometrical data and the resulting fields that can be defined on nodes.
MED supports eight element shapes: point, line, triangle, quadrangle, tetrahedron,
pyramid, hexahedron, polygon and polyhedron. Each element has a different number
of nodes, depending on linear or quadratic interpolation. MED defines also numbering
conventions and therefore a standard for data storage in HDF5 format. The MED
libraries are divided into three groups of functions: MED File, MED Memory and MED
CORBA. The first group (MED File) is a C and FORTRAN API that implements mesh
and read/write functions into files with .med extension. These files are in HDF5 format.
The MED Memory group, which is a C++ and Python API, creates mesh and field
objects in memory. Mesh creation can be done using set functions, or by loading a
file. Fields are also created loading files or by initialization with user-defined functions.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

8

di

96

Finally the group of functions called MED CORBA allows distributed computation
inside SALOME [32]. In order to have a working platform, common input and output
formats should be harmonized between different codes. This can be achieved by using
SALOME as the basic platform taking care of the data exchange between codes and of
the distributed computation between different clusters.
In this report we describe the integration of the FEMLCORE code in the SALOME

platform. This is the first step in the direction of coupling FEMLCORE with a system
code, like CATHARE, to simulate the entire primary loop inside the SALOME platform.
The CATHARE-SALOME interface is developed by CEA and EDF and it can be used
only under agreement. Therefore in this report we developed a mono dimensional code
with the libMesh library. The interface libMesh-SALOME was developed by CEA and
EDF for Laplacian and Linear Elasticity solution but libMesh library is open-source
software.
Chapter 1 is devoted to the integration of the libMesh and FEMLCORE (FEMus)

libraries in SALOME platform. An interface class called FEMUS is developed following
the construction of the interface class LIBMESH (developed originally by CEA and
EDF) that allows the data transfer from/to FEMLCORE and any platform integrated
code.
In Chapter 2 there is a description of many coupling tests carried on with LIBMESH

and FEMUS interface. 3D-CFD/3D-CFD coupling for energy and Navier Stokes equa-
tions are presented with codes based both on libMesh and FEMus libraries. 3D-CFD/1D-
CFD coupling for energy equation are also investigated. Simulations with FEMLCORE
(3D-porous) and the FEMUS interface are presented where the interface is used to
transfer data for heat generation and pressure drop analytical distributions. Finally a
3D-porous/1D-porous coupling FEMLCORE-libMesh is presented with the simulation
of the core of the design reactor ELSY [13, 14, 15, 16, 17, 18]. The core of this reac-
tor has been modeled and simulated with a 3D-porous model already implemented in
FEMLCORE code, while the external primary loop has been simulated with a simple
1D-porous model implemented with libMesh library.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

9

di

96

1 Code integration in SALOME platform

1.1 SALOME C++ library integration
In this section we describe the SALOME platform integration procedure with a generic
code. Any code that can be reduced in the form of C or C++ libraries could be therefore
integrated in the SALOME platform. The integration procedure ends with the gener-
ation of a code module that can run in the SALOME platform with or without GUI
support and with or without graphical YACS support for code integration. This allows
the user to couple the code at the desired level inside the platform.
We divide the procedure in three steps: generation of the code library, gener-

ation of the SALOME module and finally the implementation of the module
inside the SALOME platform. The description procedure is based on the FEM-LCORE
(FEMus) software, where the FEM-LCORE code is an application of the FEMus code.
We assume that FEMus is installed in the directory
pathtoproj/femus

and its FEM-LCORE application in pathtoproj/femus/USER_APPL/femlcore. We
use the directory pathtoproj as a main directory where all the software is supposed to
be installed (SALOME, FEM-LCORE (FEMus), HDF5, MPI etc..). We assume that
SALOME is installed in the directory
pathtoproj/salome

together with the MED libraries in pathtoproj/salome/MED. In order to use the SA-
LOME platform the environment should be created by setting
cd pathtoproj/salome
source env_products.sh

where the env_products.sh script is available from the package itself in the binary release
[32].
The compilation of the SALOME platform is needed to use MPI inside the platform.

We remark that if the SALOME is not compiled with MPI then it cannot use MPI to
pass MPI parallel information but the code can still run parallel and use MPI on its own
[29, 30].

1.1.1 Generation of the C++ code library
In this section we generate a simple code by scratch in order to clarify the SALOME
integration procedure. This integration procedure allows the user also to couple any
code of the platform with a new one written by the user himself.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

10

di

96

As a very simplified example we can consider the integration in the SALOME platform
of this simple program: given x and y, the program computes f = x+ 3 ∗ y+ sin(x). In
order to do this we can construct a set of function that can perform addition, multipli-
cation, the operation sin and then a main program that combines them to obtain the
desired results. The generation of a library code from a set of functions is simple and
can be summarized in the following steps. We consider to write a set of functions that
we call MATH. We set the application in the directory

pathtoproj/femus/contrib/Myapplication

where the pathtoproj is the directory where all the codes are installed. The application
MATH must consist of the main directory MATHCPP and the sub-directories: src, in-
clude, lib. In the sub-directory src we have files *.cxx; in include directory we have files
*.hxx; in lib we have dynamic libraries *.so

Inside the directory include one must write the header files for the C++ object oriented
class. For example in order to build the MATH class (no MPI) we construct a class header
MATH.hxx defined as

#ifndef _MATH_hxx
#define _MATH_hxx
#include <vector>

class MATH {
// Simple class
public:
double sum(const std::vector<double>& tab);
double squareroot(double x);
double plus(double x, double y);
double minus(double x, double y);
double times(double x, double y);
double sinx(double x);

private:
static const double epsilon;
static const double pi;

};

Inside the directory src one writes the source files. For example the MATH class can be
defined by two constants

const double MATH::pi=3.1415926535897931;
const double MATH::epsilon=1.0E-12;

the default constructor and some functions

double MATH::squareroot(double x) {return sqrt(x);}

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

11

di

96

double MATH::plus (double x, double y){return x+y;}
double MATH::minus(double x, double y){return x-y;}
double MATH::times(double x, double y){return x*y;}
double MATH::sinx(double x) {return sin(x);}

The command to generate the dynamic library libMATHCPP.so in the src directory, if
the program is parallel, is

mpicxx -o libMATHCPP.so *.cxx -I/pathtoproj/femus/contrib/
Myapplication/MATHCPP/include/ -lmpi -shared -fPIC

or

g++ -o libMATHCPP.so *.cxx -I/pathtoproj/femus/contrib/
Myapplication/MATHCPP/include/ -lmpi -shared -fPIC

in the serial case. A file appears with name libMATHCPP.so which is the dynamic
library just created. We move libMATHCPP.so in the lib directory with the name
libMATHCXX.so.
Finally we should have in src the file MATH.cxx, in include the header MATH.hxx

and in lib the dynamic library libMATHCXX.so. By starting from a set of functions we
have now a library of functions.

1.1.2 Generation of the a SALOME module by using YACS-GEN
At this point we have the directoryMyapplication which has MATH.cxx in src , MATH.hxx
in include and libMATHCXX.so in lib. The environment for MATHCPP can be set by

export MATHCPP_ROOT_DIR=/pathtoproj/femus/
contrib/Myapplication/MATHCPP/

In order to create a SALOME module with relative YACS functions one must run a
python script by typing

python math_component.py

The script will use YACS-GEN module to generate the needed functions and modules
and it can be written only in python language. This is the general form for the script:

#! /usr/bin/env python
import os
from module_generator import Generator,Module,Service,HXX2SALOMEComponent
Generator python function generates the code
#
grab from environment variables of interest (set by source env_products)
kernel_root_dir=os.environ["KERNEL_ROOT_DIR"]
gui_root_dir=os.environ["GUI_ROOT_DIR"]
yacs_root_dir=os.environ["YACS_ROOT_DIR"]

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

12

di

96

salome_env="pathtoproj/salome/env_products.sh"
#
create a context, that provide environment information
context={’update’:1,

"makeflags":"-j2",
"prerequisites":salome_env,
"kernel":kernel_root_dir,
"gui":gui_root_dir,
"yacs":yacs_root_dir

}
#
specify a SALOME modules called MATHEMATICS, including one SALOME
component called MATH
module="MATHEMATICS"
components_name=["MATH"]
components=[]
for compo_name in components_name:

cpp_root_dir="pathtoproj/femus/contrib/Myapplication/MATHCPP"
print
print compo_name, components_name, cpp_root_dir
generation of class components
components.append(HXX2SALOMEComponent("MATH.hxx",

"libMATHCXX.so",cpp_root_dir))

we ask to install the module in pathtoproj/salome/MATHEMATICS
module_root_dir="pathtoproj/salome/MATHEMATICS"

generate and compile the salome component with yacsgen
g=Generator(Module(module,components=components,prefix=module_root_dir),

context)
g.generate()
g.bootstrap()
g.configure()
g.make()
g.install()
#
generate a SALOME application containing :
- the MATHEMATICS module,
- the native modules GUI, YACS
g.make_appli("appli_math", restrict=["KERNEL"],

altmodules={"GUI":yacs_root_dir,
"YACS":yacs_root_dir})

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

13

di

96

The generated module is labeled MATH and it is installed in the SALOME module
directory in a new directory called MATHEMATICS. Note that if SALOME is compiled
with MPI (this is not the default) then the function HXX2SALOMEParaComponent
should be used in the above script, replacing HXX2SALOMEComponent.

1.1.3 Running a SALOME module by using YACS
After running the script in the main directory Myapplication we have two new sub-
directories, MATHEMATICS_SRC and appli_math and two files, parse_result and
parse_type_result. The directory MATHEMATICS_SRC is the build directory. The
appli_math is the directory where the application MATHEMATICS can be launched. A
new directory named MATHEMATICS appears in the SALOME main directory pathto-
proj/SALOME. This module consists of an include, src, idl and lib sub-directories.
The file parse_result contains the parsing of the function prototypes. In our case the

file parse_result is

Function;double;sum
const std::vector<double>&;tab
Function;double;squareroot
double;x
Function;double;plus
double;x
double;y
Function;double;minus
double;x
double;y
Function;double;times
double;x
double;y
Function;double;sinx
double;x

This script generates the new directory idl in the module MATHEMATICS. Each func-
tion prototype is translated in a different language by parsing the return type and the
type argument. For example the prototype double sum(double x,double y) gives double as
a function return type and has two double input variables. These functions are used for
YACS graphical representation. Before running the code one must set the environment
for the module with

export MATHEMATICS_ROOT_DIR=pathtoproj/salome/MATHEMATICS/

From the directory appli_math one can start SALOME with this MATH module. Inside
this directory two files are important: config_appli.xml and SalomeAppli.xml.
The file config_appli.xml contains

<application>

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

14

di

96

<prerequisites path="pathtoproj/salome/env_products.sh"/>

<modules>
<module name="KERNEL" path="pathtoproj/salome/KERNEL_7.3.0"/>
<module name="YACS" path="pathtoproj/salome/YACS_7.3.0"/>
<module name="GUI" path="pathtoproj/salome/YACS_7.3.0"/>
<module name="MATHEMATICS" path="pathtoproj/salome/MATHEMATICS"/>
</modules>
</application>

where one can see the modules loaded when starting the platform. By adding the location
of the GEOM, SMESH, PARAVIS modules the platform can consider the loading of the
GEOM, SMESH and PARAVIS modules too [28]. The file SalomeAppli.xml contains

<document>
<section name="launch">

<!-- SALOME launching parameters -->
<parameter name="gui" value="yes"/>
<parameter name="splash" value="yes"/>
<parameter name="file" value="no"/>
<parameter name="key" value="no"/>
<parameter name="interp" value="no"/>
<parameter name="logger" value="no"/>
<parameter name="xterm" value="no"/>
<parameter name="portkill" value="no"/>
<parameter name="killall" value="no"/>
<parameter name="noexcepthandler" value="no"/>
<parameter name="modules" value="YACS,MATHEMATICS"/>
<parameter name="pyModules" value=""/>
<parameter name="embedded" value="SalomeAppEngine,study,

cppContainer,registry,moduleCatalog"/>
<parameter name="standalone" value=""/>

</section>
</document>

By substituting YACS, MATHEMATICS with YACS, MATHEMATICS, GEOM, SMESH,
PARAVIS the platform starts with GEOM, SMESH and PARAVIS modules too. Before
starting SALOME the MATHCPP and MATHEMATICS libraries should be included
in the LD_LIBRARY_PATH by typing

export LD_LIBRARY_PATH=pathtoproj/femus/contrib/
Myapplication/MATHCPP/lib/:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=pathtoproj/salome/MATHEMATICS/lib/
salome:$LD_LIBRARY_PATH

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

15

di

96

Figure 1.1: YACS with MATH module integration

Figure 1.2: Building YACS schema for f(x, y) = x+ y + sin(x).

Now we start the YACS module by typing

cd appli_math
./runAppli

If only the YACS and MATHEMATICS modules are in the platform then SALOME
starts with no active modules. One must select the new option from the menu to use
the YACS module. If more than one module is loaded then a menu appears. We select
YACS module and then Create a new YACS schema. From Figure 1.1 one can note

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

16

di

96

Figure 1.3: Running YACS schema for f(x, y) = x+ y + sin(x).

that the functions minus, plus, sum and sin(x) from the MATH module appear on
the catalog panel. In order to construct the graphical YACS program that computes
f(x, y) = x+ y+ sin(x) we drag a sum, a sin and a sum function again from the catalog
to the main schema. We connect the return of the plus1 schema block to the x of the
plus7 block and the return of the sin8 block to the y of the plus7 block. After this we
have a situation as depicted in Figure 1.2.
From the input panel we set the initial x and y value. Then from the menu at the top

we choose Prepare the schema for run (gear button). A new schema appears which is not
editable, from here the code can be run. The tree view on the left shows computation
values and errors. It is important to note that an MPI code runs in the YACS schema
only if SALOME is compiled with MPI. This may be a limitation in the use of the YACS
module since not all MPI functions are implemented correctly in SALOME. However the
program can be run in parallel without the use of the graphical environment YACS as
it is explained in the next section.

1.1.4 Running directly with a main program
The same program can be run by using a simple main program. For example the same
result of the YACS module can be obtained with the following simple program

#include "MATH.hxx"
#include <stdio.h>
#include <cmath>
int main(){

MATH a;
double x=1.;

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

17

di

96

double y=2.;
double t=a.plus(x,y);
double s=a.plus(t,sin(x));
printf(" %f", s);

return 0;
}

This implies that in the SALOME platform a code can run both graphically (YACS) or
through simple C or C++ programs. In order to compile this program we must include
all the libraries and the paths to MATHCPP directory and MATHEMATICS module.
Then the executable program can be launched directly by the YACS graphical interface
with a Pyscript which can be found in the catalog in the elementary node section of the
YACS module.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

18

di

96

1.2 libMesh-SALOME integration
The integration of a stand-alone code is more complex but very similar. In this section
we describe the integration of the libMesh library in SALOME platform with the aim
of using computational modules generated with this library for multiscale coupling. In
particular we are interested in coupling 1D modules written with libMesh library with
the 3D FEM-LCORE applications using MEDMem library. The libMesh applications
are open-source. The integration of an open-source code can be divided into three steps:
generation of the code-library from the code, generation of the MEDMem in-
terface and SALOME-libMesh interface integration. The source code is available
and one can see how they are build. In non open-source code like CATHARE the source
code is not available but we have the binary version of the library. In this case we can
get over the first step of generation of the code-library and go directly to the second
step.

1.2.1 Generation of the code-library
The generation of the dynamic library from a code is pretty straightforward for modern
codes since they are already built as libraries. The main code is simply a collection of
call functions to libraries where the algorithms are developed. For old codes, especially
in FORTRAN, sometimes a monolithic main program is developed with a few functions
in support with experimental data. In this case is straightforward, for developers, to
rebuild the code using a library structure. The libMesh code is built using libraries and
therefore, after the code installation, nothing should be done.
LibMesh is a parallel solver for PDE which uses the PETSC libraries as a main package

solver. The open MPI is supposed to be installed in

pathtoproj/openmpi-1.4.5/

The version 1.4.5 is installed but the procedure should work also for any upgrade. The
installation of the open-mpi libraries is really easy and standard. For details see [30].
The PETSC library is supposed to be installed in

pathtoproj/petsc-3.4.3

The version 3.4.3 is installed but the procedure should work also for others. We use the
opt version and not the dbg version which one could use for debugging. For further
details see [31].
We suppose that the libMesh code is installed in

pathtoproj/libmesh-0.9.2.2/

The installation can be easily obtained by following the standard procedure on [34]. The
libMesh version is the 0.9-2.2. The integration described here does not work for library
below version 0.9. The libMesh main directory must contain the lib and the include sub-
directories. In the lib sub-directory the dynamic library libmesh_opt.so.0 is located.
The dynamic library libmesh_opt.so.0 contains all the functions in binary form. In the

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

19

di

96

include sub-directory the prototypes are available for obtaining the documentation and
to compile.

1.2.2 libMesh-SALOME interface

Figure 1.4: Collaboration diagram of the LIBMESH class inside the LibMeshCpp
interface

Overview. The interface, called LibMeshCpp, between the MEDMem and the libMesh
libraries consists basically of five classes: LIBMESH, LibMeshProblem, EquationSystem-
sExtended, ParallelMeshExtended and LibMeshFunction. All these classes are located
in

pathtoproj/femus/contrib/Libmesh_cpp/

Each class has a file and a header with the class name and different extension. The
LIBMESH class is the interface with the SALOME platform as it is shown in the collabo-
ration diagram in Figure 1.4. This diagram illustrates how the LIBMESH class (interface
to SALOME) transfers data to the LibMeshProblem class. In order to interact with the
libMesh library two libMesh classes have been extended: the libMesh::EquationSystems
and the libMesh::ParalellMesh.
The EquationSystemsExtended class, which uses only MEDMem functions, inherits

the libMesh::EquationSystems which uses only libMesh functions as shown in Figure 1.5.
The libMesh::EquationSystems contains the assembly and solver of the libMesh code.
The data from the LIBMESH class can be transferred into the assembly routine which
is user accessible. The data can also be transferred in the opposite direction from the
libMesh::EquationSystems to the MEDMem interface. The data flow from parent to son

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

20

di

96

Figure 1.5: Inheritance diagram of the EquationSystemsExtended class

class is ensured by the C++ inheritance rules. The flow in opposite direction is defined
by a dynamic_cast command that allows to use son class functions from the parent
class. For this reason the parent class should be polymorphic with at least one virtual
function.

Figure 1.6: Inheritance diagram of the ParallelMeshExtended class

Also the mesh class has to be extended. As shown in Figure 1.6 the ParallelMeshEx-
tended class, which uses only MEDMem functions, inherits the original class libMesh::ParallelMesh
which uses only libMesh functions. As in the previous class, data from the LIBMESH
class can be transferred, by using a dynamic_cast statement, into the assembly routine
which is user accessible. Data can also be transferred in the opposite directions from
the libMesh::ParallelMesh to the MEDMem interface through parent to son class inher-
itance rules. We recall again that the parent class should be polymorphic with at least
one virtual function.

The LIBMESH interface class to SALOME. The LIBMESH class contains the SA-
LOME platform commands. All the code interfaces must have similar commands to run
the code from the same main program. Data in the LIBMESH class consist of a simple
vector of string of boundary name. The boundary are defined by using the GEOM and
the SMESH modules of the SALOME platform.
In order to generate a mesh with boundary we open the SALOME platform and the

GEOM module as in Figure 1.7. From the menu we open the Create a Box button
and select the box dimensions. Then we select Create a Group with option face and
no restriction and click on the desired face. We label six different faces as up, down,
left, right, bottom and share. We open the SMESH module and generate the mesh for
the volume and the label for the boundary interfaces, see Figure 1.8. The boundary
names and their flags are stored in the LIBMESH interface class. Over these boundaries
and volume regions defined by using MEDMem functions we should be able to impose

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

21

di

96

Figure 1.7: Generation of the boundary with the GEOM module

Figure 1.8: Generation of the boundary name in the SMESH module

values taken by other SALOME platform codes. The functions that start and stop the
code are the constructor LIBMESH(MPI_Comm comm) and the function terminate().
These functions take into account the start and stop of all MPI parallel processes of the
code. The commands

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

22

di

96

void setType (const std::string &pbName)
void setMesh (const std::string &meshFileName)
void solve ()

are used to set the type of the problem (Navies-Stokes, energy, etc.) and the mesh.
The mesh should be available in MED and libMesh format for data exchange. The
MED format allows data transfer to other codes that use the same format. The solve
command controls the solution of the discrete system.
The boundary should be controlled for input and output. For input we have the

following interface functions

void setSource (const ParaMEDMem::MEDCouplingFieldDouble *f)
void setAnalyticSource (const std::string &f)
void setAverageSources (int n, double val[])
void setAnalyticBoundaryValues (const std::string &name,

const std::string &typeBC, const std::string &f)
void setFieldBoundaryValues (const std::string &name,

const std::string &bcType,
const ParaMEDMem::MEDCouplingFieldDouble *bcField)

For output we have

std::string getBoundaryName (int i)
std::vector< std::string > getBoundaryNames ()
ParaMEDMem::MEDCouplingFieldDouble * getOutputField

(const std::string &vName) const
ParaMEDMem::MEDCouplingFieldDouble * getValuesOnBoundary

(const std::string &name, const std::string &vName) const
ParaMEDMem::MEDCouplingFieldDouble * getValuesOnBoundary

(const std::string &name, std::vector< char * > vName) const
ParaMEDMem::MEDCouplingFieldDouble * getValuesOnBoundary_nodes

(const std::string &name, std::vector< char * >) const

The solution values can be transfer on NODES or CELLS. In this SALOME interface
the solution values are collected for CELLS or NODES but set only for CELLS.

LibMeshProblem class as interface class to libMesh code. The interface to libMesh
code is obtained through the LibMeshProblem class. Since the equation system has the
mesh pointer of the original code the extended class is not available. For this reason
the LibMeshProblem class should access to both ParallelMeshExtended and Equation-
SystemsExtended classes as shown in the collaboration diagram of the LibMeshProblem
class in Figure 1.9.
The LibMeshProblem class has been specialized for different physics. As one can see

in Figure 1.10 this class is inherited by all the physical modules. We have constructed
many modules for coupling. We have the energy equation in 1D, 2D and 3D and we call

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

23

di

96

Figure 1.9: Collaboration diagram of the LibMeshProblem class.

Figure 1.10: Inheritance diagram of the LibMeshProblem class.

it Convection-diffusion problem (Con_DiffProblem). We have the Laplace and Navier-
Stokes problem in one, two and three dimensions. For the system scale we have a specific
module called Monodim_Problem that can simulate pump, heat exchanger and source
term for taking into account the whole loop of interest. Finally we have also a module
for structural mechanics computations called LinearElasticity_Problem, available only
for 2D computations like plates and sheets. In table 1.1 we have a summary of these
modules and their relative scale of interest.
The ParallelMeshExtended class is an extension of the libMesh class ParallelMesh.

This extension defines the map between the mesh nodes and elements in MEDMem and
libMesh format. In particular the extension class contains the mesh in the ParaMED-
MEM::MEDCouplingUMesh class format and all maps

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

24

di

96

Physics Name module scale
Energy equation Con_DiffProblem 1D,2D,3D

Navier-Stokes equations NS_Problem 2D
NS_Problem3D 3D

System equation Monodim_Problem 1D
Structural mechanics LinearElasticity_Problem 2D
Laplace equation LaplaceProblem 1D,2D,3D

Table 1.1: Multiphysics modules available in LibMesh for coupling.

_node_id: node MEDmem mesh -> node libMesh mesh
_proc_id: processor MEDmem mesh -> processor libMesh mesh
_elem_id: element MEDmem mesh -> element libMesh mesh

that allow the data transfer from one format to another.
The EquationSystemsExtended class is an extension of the libMesh class EquationSys-

tems. The extension contains two standard maps

std::map< int,LibMeshFunction * > _bc
std::map< int, BCType > _bc_type

that associate to any boundary a LibmeshFunction and a BCType. The BCType are
the keywords Neumann or Dirichlet depending on the desired boundary condition. A
database of these keywords can be updated by the user. The LibmeshFunction is a
class object that completes the definition of the boundary conditions. The collaboration
diagram of this class is shown in Figure 1.11. In the EquationSystemsExtendedM class

Figure 1.11: Collaboration diagram of the EquationSystemsExtended class

new functions are available in addition to the original EquationSystems functions. The
following functions are used to set source fields computed by external codes

void setSource (const ParaMEDMEM::MEDCouplingUMesh *mesh,
const char *s)

void eraseSource ()
LibMeshFunction * getSource ()

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

25

di

96

void setAverageSources (int n_AverageSources, double Average[])
double getAverageSources (int i)

A coupling volumetric field can be transferred to a LibMesh computation by using set-
Source function. The field is defined over a ParaMEDMEM::MEDCouplingUMesh mesh
which is a MEDMem mesh format. A volumetric field can be extracted from a libMesh
solution and transferred to a LibMeshFunction with a MEDMem mesh format by using
the getSource function. If the data transfer is between 3D and 1D the average source
functions may be used.
The boundary conditions should be transferred from a code to another. Here we can

use the following functions to add or erase a boundary coupling

int addBC (const ParaMEDMEM::MEDCouplingUMesh *b)
void eraseBC (libMesh::boundary_id_type id)

or to set specific field and boundary condition type

void setBCType (libMesh::boundary_id_type id, BCType type)
void setBC (libMesh::boundary_id_type id, const char *s)
void setBC (libMesh::boundary_id_type id,

const ParaMEDMEM::MEDCouplingFieldDouble *f)
void setNodeBC (libMesh::boundary_id_type id,

const ParaMEDMEM::MEDCouplingFieldDouble *f)
LibMeshFunction * getBC (libMesh::boundary_id_type id)
BCType getBCType (libMesh::boundary_id_type id)

The boundary labels and types can be imposed by using GEOM and SMESH modules
in the SALOME platform, as already described.

The transfer data function. The data are transferred through an object class called
LibmeshFunction. The data in these class are

const libMesh::MeshBase * _mesh
const ParaMEDMEM::MEDCouplingUMesh * _support
ParaMEDMEM::MEDCouplingFieldDouble * _f
std::map< int, int > _nodeID
std::map< std::pair< int, int >, int > _faceID
std::map< int, int > _elemID

The _mesh pointer points to the mesh in libMesh format while _support contains the
mesh in MEDMem format. The solution of the internal or external problem in MEDMem
format are stored in the field _f. The _f pointer may refer to the part of the mesh
(_support) where the data are to be transferred. In fact if the function is associated
with a part of the boundary, the mesh and its solution is relative only to this part. The
_nodeID, _faceID and _elemID are the maps from the libMesh to the MEDMem mesh
format for the nodes, faces and elements respectively.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

26

di

96

The LibmeshFunction is used to evaluate the field at the boundary and to map the node
and element connectivity between coupling codes. Each code has a MEDMem interface
which is used to exchange data through the SALOME platform during execution.

1.2.3 Implementation of the SALOME-libMesh interface
In order to explain the code implementation of the data transfer we consider a simple
example with the energy equation implemented in the LibMesh module conv-diff. We
consider the domain [0, 1]×[−1, 0]×[0, 1] which is the same geometry generated in section
1.2.2. The mesh consists of 12 × 12 × 12 HEX20 quadratic elements. By using GEOM
and SMESH modules we have marked the boundary of the domain as up and down in the
z direction, left and right in the x direction and bottom and share in the y direction as
shown in Figure 1.12. We solve the energy equation that takes into account convection

right

left

Up

Down

Bottom

share

x

z

Figure 1.12: Geometry of the test case.

with constant velocity v = (0, 1, 0). The boundary has homogeneous Dirichlet boundary
condition on the up, down, left and right faces. On the share face we set homogeneous
Neumann boundary conditions while on the bottom we import a constant field from the
MEDMem interface. The LibMesh code runs through the LIBMESH class in a few lines:

LIBMESH P;
P.setType("convdiff");
P.setMesh(dataFile);
getInput(P, boundary);

for(int itime=0;itime<60;itime++){

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

27

di

96

for(int i=0; i<boundary.size(); i++) {
sBC & b = boundary[i];
if(b.isAnalytic)
P.setAnalyticBoundaryValues(b.name,b.type,b.equation);
else P.setFieldBoundaryValues(b.name, b.type, b.field);

}
P.solve();

}

The interface P class is constructed in the first statement. The problem type (convdiff)
is set with the setType function. The mesh in MED format is assigned with setMesh
function which copy the mesh to the LibMesh program in LibMesh format. The interface
conditions are set by getInput function which is set by the user.
In order to set the interface conditions the name of the different boundaries should

be associated with the boundary conditions. The labels of the boundary regions are
available calling the function getBoundaryNames() in the LIBMESH class. A simple
statement as

std::vector<std::string> bcNames = P.getBoundaryNames();

returns the name of all the boundary regions. For each region a boundary structure sBC
should be defined. This structure is defined as

struct sBC {
std::string name;
std::string type;
bool isAnalytic;
std::string equation;
MEDCouplingFieldDouble * field;

};

The name is the identity label of the boundary region. The type of boundary condition
is “Dirichlet” or “ Neumann”. If the isAnalitic is true then an analytic condition is
expected if false a numerical field is assigned. The analytical expression is defined in the
string equation by using symbolic language. The numerical field is assigned through
the pointer field. The solution computed from other codes can be transferred into this
field pointer becoming available to the LibMesh code. In our case we build a vector of
sBC structures called boundary and set the appropriate structure in the "Bottom" region
which is the active interface. In this active face we set

bcNames[0]=="Bottom";
boundary[0].type = "Dirichlet";
boundary[0].isAnalytic = true;
boundary[0].field = NULL;
boundary[0].equation = "1.";

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

28

di

96

Figure 1.13: Common surface Bottom of the computation domain where the data trans-
fer is allowed. Libmesh global numbering.

Figure 1.14: Solution when a surface allows a transfer of data.

Now at each time step the boundary condition defined by the external field field or
any analytical expression equation is imposed. In Figure 1.13 one can see the surface
(labeled as Bottom) of the computation domain where the data transfer is allowed with
Libmesh global numbering. The LIBMESH interface creates a map to connect this global
numbering to the surface mesh. The surface mesh in MEDMem representation has the
same number of nodes but different numbering. It is necessary therefore to search point
by point the correspondence. Once the map is computed all field values on the surface
can be passed to the LibMesh surface and viceversa. When the interface condition is
transferred then on the Bottom part of the boundary a constant field is applied as one
can see from Figure 1.14.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

29

di

96

1.3 FEMLCORE-SALOME integration
1.3.1 SALOME-FEMLCORE interface

FEMUS

MEDMem LIB

EquationSystemsExtendedM

FEMLCORE

FEMus LIB

Figure 1.15: Diagram of the FEMUS class inside the MEDMem interface

Overview. FEMLCORE is an application of the FEMus library aimed at computation
of 3D core thermal-hydraulics of a fast nuclear reactor. It is therefore interesting to
integrate the FEMus library with SALOME platform by writing a MEDMem interface
in order to be able to couple the 3D computation of the core obtained by FEMLCORE
with a system code simulation, like CATHARE or RELAP. The interface between the
MEDMem and the FEMus libraries consists basically of four classes: FEMUS, Equation-
SystemsExtendedM, ParallelMeshExtendedM and LibMeshFunctionM. All these classes
are located in the src and include FEMus directories. As shown in the diagram of Figure
1.15, the FEMUS class is the interface between the library FEMus and the SALOME
platform. The FEMUS interface allows to pass commands from MEDMem library to
the EquationSystemsExtendedM class which is the problem solver core. This diagram
illustrates as the FEMUS class (interface to SALOME) transfers the data to the Equa-
tionSystemsExtendedM class. In order to interact with the FEMus library two FEMus
classes have been extended: the MGEquationsSystem and the MGMesh. The extensions
are simply named as EquationsSystemExtendedM and ParalellMeshExtendedM, respec-
tively.
The EquationSystemsExtendedM class, which uses only MEDMem functions, inherits

the EquationSystems which uses only FEMus functions as shown in Figure 1.16. The
EquationSystems contains the assembly and solver of the FEMus code. The data from
the FEMUS class can be transferred into the assembly routine by a dynamic_cast op-
erator. The dynamic_cast operator is a part of the run-time type information (RTTI)
system that allows to use son class functions from the parent class. Data can also be
transferred in the opposite direction from the EquationSystems to the MEDMem inter-

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

30

di

96

Figure 1.16: Inheritance diagram of the EquationSystemsExtendedM class

Figure 1.17: Inheritance diagram of the ParallelMeshExtendedM class

face by standard C++ inheritance rules. The MGMesh class contains the multilevel
mesh in FEMus format. In order to interface FEMus with MEDMem library a new
mesh format should be introduced and the mesh class should be extended. As shown
in Figure 1.17 the ParallelMeshExtendedM class, which uses only MEDMem functions,
inherits the MGMesh which uses only libMesh functions. In FEMus library, differently
from LibMesh library, the mesh is known inside the EquationSystemsExtendedM class
and therefore the interface FEMUS class does not need to communicate directly to the
ParallelMeshExtendedM class. As in the class before the data from the FEMUS class
can be transferred by using a dynamic_cast operator into the assembly routine which is
user accessible.

The FEMUS interface class to SALOME platform. The FEMUS class is the unique
interface class. It contains data from both FEMus and MEDMem libraries in order
to transfer data from one mesh to another (MGMesh to MED). Therefore inside this
class there are both pointers _mg_mesh, _med_mesh to their respective MGMesh and
MED formats. The FEMUS class needs information to extract data from these different
mesh structures. In particular, as shown in 1.18, the classes MGUtils, MGGeomEL,
MGFEMap and MGFemusinit are available inside FEMus to transfer basic information
such as file names, parameters, multigrid level, fem elements etc.. The MGUtils con-
tains all the file names and input parameter values. The MGGeomEL and MGFEMap
contain information about the finite element mesh structure and MGFemusinit class is
the manager class for MPI and multigrid solvers.
The data needed to communicate with the MEDMem library consist of two structures:

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

31

di

96

Figure 1.18: FEMUS class data to communicate with the FEMus library.

one for the mesh and another for the boundary conditions. The mesh structure is called
interface_mesh and consists of

int id;
std::string name;
ParaMEDMEM::MEDCouplingUMesh * support;

where id is the integer number identity and name the name of the common interface.
The support is the mesh in MED format. This in general is not the whole mesh but only
the mesh for the interested interface region. Since this is a portion of the mesh numbering
is different from the global one and a map is needed. There is one interface_mesh
structure for each mesh interface of interest. The boundary conditions structure is
called UsersBC and consists of

std::string name;
std::string type;
int from_cmp;
int n_cmp;
int order_cmp;
bool isAnalytic;
std::string equation;
ParaMEDMEM::MEDCouplingFieldDouble * field;
bool on_nodes;

The name is the name of the interface while type refers to the “Mark” or “UnMarked”
flag that is used to construct the mesh map. If the interface is “Marked” the code
prepares all the tools for the data exchange including an MGMesh-MED map for field
exchange. The from_cmp and n_cmp define the first and the number of variables to be
exchanged, respectively. The interpolation order is defined by order_cmp. A quadratic
variable (on Hex27, Quad9, Tri6 or Tetra10, for example) should have order_cmp=2.
If on the surface one desires to impose an analytic function then the Boolean variable
isAnalytic should be set to “true” and the analytical expression should be defined in the

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

32

di

96

string equation. For numerical fields the MED solution should be transfer through the
field pointer as node or element values by setting the Boolean on_nodes of the UsersBC
structure. There is one UsersBC structure for each mesh interface of interest and all of
them are collected in the std::vector< UsersBC > _boundary.
The FEMUS class contains the SALOME platform commands. All the code interfaces

must have similar commands to run the code from the same main program. The functions
that start and stop the code are the constructor FEMUS(MPI_Comm comm) and the
function terminate(). These functions take into account the start and stop of all MPI
parallel processes of the code. The initialization of the parameters and the FEM elements
are obtained by the following functions

void init_param(MGUtils &mgutils);
void init_fem(MGGeomEl & mggeomel,MGFEMap & mgfemap);

The commands

void setSystem(const std::vector<NS_FIELDS> & pbName);
void setMesh();
void setMedMesh(const std::string & meshFile);

are used to set the type of the problem (Navies-Stokes, energy, etc.) and the mesh. The
NS_FIELDS enumeration collects the name of some of the implemented modules as

NS_F =0, // [0] -> Navier-Stokes (quadratic (2),NS_EQUATIONS)
NSX_F =0, // [0] -> Navier-Stokes (quadratic (2),NS_EQUATIONS)
NSY_F =1, // [1] -> Navier-Stokes (quadratic (2),NS_EQUATIONS)
NSZ_F =2, // [2] -> Navier-Stokes (quadratic (2),NS_EQUATIONS)
P_F =3, // [3] -> Pressure (linear (1),NS_EQUATIONS==0 or 2)
T_F =4, // [4] -> Temperature (quadratic (2),T_EQUATIONS)
K_F =5, // [5] -> Turbulence K (quadratic (2),TB K_EQUATIONS)
EW_F =6, // [6] -> Turbulence W (quadratic (2),TB W_EQUATIONS)
KTT_F =7, // [7] -> Turbulence K (quadratic (2),TB K_EQUATIONS)
EWTT_F=8, // [8] -> Turbulence W (quadratic (2),TB W_EQUATIONS)
SDSX_F=9, // [9] -> Displacement (quadratic (2), DS_EQUATIONS)
SDSY_F=10, // [10] -> Displacement (quadratic (2), DS_EQUATIONS)
SDSZ_F=11, // [11]-> Displacement (quadratic (2), DS_EQUATIONS)
DA_F =12, // [12]-> DA solver (quadratic (2), DA_EQUATIONS)
DA_P =13, //[13]-> DA solver (piecewise, DA_EQUATIONS)
TA_F =14, // [13]-> Temp adjoint
FS_F =15 // [13]-> Temp adjoint

For example, a vector pbName defined as pbName[0]=NS_F, pbName[1]=T_F defines
a problem which consists of the Navier-Stokes and energy equations. The solution of the
system is obtained by using these commands

void solve ()

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

33

di

96

void solve_setup (int &t_in, double &time)
void solve_onestep (const int &t_in, const int &t_step,

const int &print_step, double &time, double &dt)

The solve_setup initializes system at t = 0. The solve_onestep function controls a single
time step of the problem while solve() can be used to solve more time steps at once.
The boundary should be controlled for input and output. For input we have the

following interface functions

setSource (const ParaMEDMEM::MEDCouplingFieldDouble *f)
void setAnalyticSource (const std::string &f)
void setAverageSources (int n, double val[])
void setAnalyticBoundaryValues (const std::string &name, int n_cmp,

const std::string &typeBC, const std::string &f)
void setFieldBoundaryValues (const std::string &name, int n_cmp,

const std::string &bcType,
const ParaMEDMEM::MEDCouplingFieldDouble *bcField)

For output we have

std::string getBoundaryName (int i)
std::vector< std::string > getBoundaryNames ()
ParaMEDMEM::MEDCouplingFieldDouble getValuesOnBoundary (

const std::string &nameBC,
const std::string &systemName)

ParaMEDMEM::MEDCouplingFieldDouble *getValuesOnBoundary(
const std::string &nameBC,
const std::string &systemName, int iCmp)

ParaMEDMEM::MEDCouplingFieldDouble * getValuesOnBoundary (
const std::string &nameBC,
const std::string &systemName,
int Cmp0, int nCmp)

The solution values can be transferred only on nodes.
The interface in this library must be used in different step. They must be initialized,

marked and then used. For this reason we have different interface functions

void init_interfaces (const std::string &medfilename,
const int index_mgmesh=0,
const int index_medmesh=0)

void init_interfaces (const std::string &medfilename,
const std::string &medfile_namePold,const FEMUS &P_old,
const int index_mgmesh=0, const int index_medmesh=0)

void set_param_BCzone ()
void set_param_BCzone (FEMUS &P1)
void init_BCzone (std::vector< std::string > &bcNames)
void set_interface_userbc ()

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

34

di

96

Figure 1.19: Collaboration diagram of the ParallelMeshExtendedM class

The ParallelMeshExtendedM class. The ParallelMeshExtendedM class is an extension
of the FEMus class MGMesh. This extension defines the map between the mesh nodes
and elements in MEDMem and libMesh format. In particular the extension class contains
the mesh in the ParaMEDMEM::MEDCouplingUMesh class format and all the maps

_node_id: node MEDmem mesh -> node libMesh mesh
_proc_id: processor MEDmem mesh -> processor libMesh mesh
_elem_id: element MEDmem mesh -> element libMesh mesh

that allow the data transfer from one format to another.
Moreover this class contains one standard map and two vector flags

std::map< int, int > _bd_group
std::vector< int > _bc_id
std::vector< int > _mat_id

The first associates the integer names to an integer. We recall that the names for
the boundary and volume zones must be integer number in the range [10, 10000] and
[1, 9], respectively. The vector _bc_id contains the boundary flag at each node of the
integer name ([10− 10000]) of the surface/interface . The vector _mat_id contains the
boundary flag with the integer name ([1− 9]) of the volume/material at each node. The
collaboration diagram is shown in Figure 1.19.

The EquationSystemsExtendedM class. As shown in Figure 1.20 the EquationSys-
temsExtendedM can access to the mesh classes and to the FEMUSFunction class. In
order to transfer data from MEDMem and FEMus library new functions are available
in addition to the original EquationSystems functions.
The following functions are available to set source fields computed by external codes

void setSource (const ParaMEDMEM::MEDCouplingUMesh *mesh,
const char *s)

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

35

di

96

Figure 1.20: Collaboration diagram of the EquationSystemsExtendedM class

void eraseSource ()
FEMUSFunction * getSource ()
void setAverageSources (int n_AverageSources, double Average[])
double getAverageSources (int i)

As for the LibMesh library coupling volumetric field can be achieved by using setSource
function. The field is defined over a ParaMEDMEM::MEDCouplingUMesh mesh which
is a MEDMem mesh format. A volumetric field can be extracted from a FEMus solution
and transferred to a FEMUSFunction with a MEDMem mesh format by using the get-
Source function. If the data transfer is between 3D and 1D the average source functions
may be used.
The boundary conditions should be transferred from a code to another. Here we can

use the following functions to add or erase a boundary coupling

FEMUSFunctionM *get_interface_function_BC (boundary_id_type id)
void erase_interface_function_BC (boundary_id_type id)

The boundary labels and types can be imposed by using GEOM and SMESH modules
in the SALOME platform.

The FEMUSFunctionM transfer data class. The data are transferred through an
object class called FEMUSFunctionM. In Figure 1.21 the collaboration diagram for this
class is reported, while its data are

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

36

di

96

Figure 1.21: Collaboration diagram of the FEMUSFunctionM class

const MGMesh * _mesh
const ParaMEDMEM::MEDCouplingUMesh * _support
ParaMEDMEM::MEDCouplingFieldDouble * _f
std::map< int, int > _nodeID
std::map< std::pair< int, int >, int > _faceID
std::map< int, int > _elemID

The _mesh pointer points to the mesh in FEMus format while _support contains the
mesh in MEDMem format. The solution of the internal or external problem in MEDMem
format are stored in the field _f. The _f pointer may refer to the part of the mesh
(_support) where the data are to be transferred. In fact if the function is associated
with a part of the boundary, the MED mesh and the solution is relative only to this part.
The _nodeID, _faceID and _elemID are the maps from the FEMus to the MEDMem
mesh format for the nodes, faces and elements respectively.
The FEMUSFunction is used to evaluate the field at the boundary and to map the node

and element connectivity between coupling codes. Each code has a MEDMem interface
which is used to exchange data through the SALOME platform during execution.

1.3.2 Implementation of the SALOME-FEMLCORE interface
In order to explain the code implementation of the data transfer we consider a simple
example with the Navier-Stokes equations implemented in the FEMus module Navier-
Stokes. We consider a rectangular domain with inlet labeled “50” and outlet “111”. The
sides are labeled “100” and “11”. We recall that over common points the higher number
prevails.
The boundary condition in the FEMUs library can be set in the file User_NS.C

located in SRC directory. We set

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

37

di

96

void MGSolNS::bc_read(int bc_gam,int bc_mat,
double xp[],int bc_Neum[],int bc_flag[]) {

int imesh=atoi(_mgutils.get_file("MESHNUMBER").c_str());
bc_Neum[0]=1; bc_Neum[1]=1; bc_Neum[2]=1; bc_Neum[3]=1;
bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0; bc_flag[2]=0;

// mesh1 simple_hex27.med
if(bc_gam==100){

bc_Neum[0]=0; bc_Neum[1]=0; bc_Neum[2]=0;
bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

} // lateral
if(bc_gam==50){

bc_Neum[0]=0; bc_Neum[1]=0; bc_Neum[2]=0;
bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

} // inlet
if(bc_gam==11){
bc_Neum[0]=0; bc_Neum[1]=0; bc_Neum[2]=0;
bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

} // lateral
if(bc_gam==111){

bc_Neum[0]=0; bc_Neum[1]=0; bc_Neum[2]=1;
bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

} // outlet

in order to have Dirichlet boundary at the inlet in the vertical direction and no slip
boundary condition on the walls. For details see [1, 2, 3, 4, 5]. The FEMus code runs
by using only FEMUS class functions as

FEMUS P; // constructor
P.init_param(*mgutils[0]); // init parameter
P.init_fem(*mggeomel,*mgfemap); // init fem
// setting mesh --------------------------------------
P.setMedMesh(osfilenameP[0].str().c_str());// med-mesh
P.setMesh(); // MGmesh
// setting system -------------------------------------
P.setSystem(myproblemP); // set system
P.init_interfaces(filenameP[0].str().c_str());
P.set_param_BCzone(); // define param bc
P.set_interface_userbc(); // set bc conditions

// time loop initialization ---------------------------
int n_steps = mgutils[0]->get_par("nsteps");
double dt = mgutils[0]->get_par("dt");
int print_step = mgutils[0]->get_par("printstep");
int itime_0 = mgutils[0]->get_par("itime");

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

38

di

96

double time = 0.;
P.solve_setup(itime_0,time); // initial time loop (t=0)

// transient loop (i0time ->i0time+ n_steps) ----------
for(int itime=itime_0; itime< itime_0 + n_steps;

itime++) {
P.solve_onestep(itime_0,itime,print_step,time,dt);

}
P.terminate();

The interface P class is constructed in the first statement. The physical, geometrical
and FEM parameters are set by the P.init_param(∗mgutils[0]) where themgutils vector
may contain several mesh domains. In order to initialize the finite element environment
we use the P.init_fem(∗mggeomel, ∗mgfemap) functions. The mgutils, mggeomel and
mgfemap are objects of the classes MGUtils, MGGeomEL and MGFEMap respectively.
These classes form a mandatory computational environment for setting a Navier-Stokes
problem. The problem type (myproblemP) is set with the setSystem function. In this
case the first unique component of the vector myproblemP is set to myproblemP [0] =
“NSF “ which is the Navier-Stokes problem. For Navier-Stokes and energy equation
problem one must set myproblemP [0] = “NSF “ and myproblemP [1] = “TF “.
The mesh in med format is assigned with setMesh function which transfers automat-

ically the mesh to the FEMus program. The interface conditions are set by getInput
function which is set by the user.
We construct a vector of interface where the data should be transferred and we call it

_boundary. In this case we want to set only an analytic field on the interface ”50“. The
interface where we like to have data transfer must be marked in the file FEMUS_BC.C
in the function init_BCzone(std::vector< std :: string > &bcNames) of the FEMUS
class as

_boundary[0]=="50";
_boundary[0].type = "Mark";
_boundary[0].on_nodes = true;

Once the interface is marked the boundary condition and the data transfer should be
specified in the set_param_BCzone function as

_boundary[0]=="50";
_boundary[0].from_cmp = 0; // UsersBC initial cmp
_boundary[0].n_cmp = 3; // UsersBC n of cmp
_boundary[0].order_cmp = 2; // UsersBC order cmp
_boundary[0].isAnalytic = true; // sBC struct flag
_boundary[0].equation = "IVec*0.0+JVec*0.0+KVec*0.1";
_boundary[0].field = NULL; // sBC struct num field
_boundary[0].on_nodes = true; // UsersBC node field (true)

Finally the function

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

39

di

96

P.set_interface_userbc();

sets the desired field computing and evaluates the field at the interface nodes.
In the next chapter several examples of computations using this SALOME-FEMLCORE

interface are reported in order to better describe the potentials of the SALOME platform
integration tool presented in this report.

1.4 Deployment of the SALOME platform on the CRESCO
cluster

In this section we illustrate the steps that are required in order to deploy the SALOME
platform on the CRESCO cluster. The CRESCO infrastructure at ENEA is made up of
different clusters that are managed with a unified access control system based on SSH
and AFS [36].
The SALOME platform has been installed along with the other codes belonging to

the fissicu project, in order to ease the interaction with them. In particular, the code is
available at the address

/afs/enea.it/project/fissicu/soft/salome/

Different version are available in this folder:

• v7.2.0, precompiled from the SALOME team. This version in available in the
v7.2.0 sub-directory.

• v6.6.0, compiled in place from sources. This version has been compiled using the
SAlomeTools (sat) and it is available in the sat-install sub-directory.

The installation of two different version has been necessary since in the framework of
the NURESAFE project only v6.6.0 is officially supported. This version is the only one
for which the interfaces to couple codes to the platform are tested and developed, and
widely used by many European partners of the project.

v7.2.0 was the latest available from the SALOME website [33] and it was selected
since it offered updated sources with an easier and more tested API for code coupling,
that has been exploited for the development of the FEMLCORE interface.
The installation from sources of the whole SALOME platform requires a lot of effort,

since it depends on a huge number of third-party libraries that have to be installed with
the correct version. For this reason the SALOME development team has introduced the
SAlomeTools (sat) in order to simplify the installation procedure. With this tool, the
user can automate the installation of all the components that are required for SALOME.
Anyway, a certain degree of experience with installation procedures and the specific
SALOME installation scripts is required to properly complete the installation procedure.
Many details are left to the user, that has to check the proper installation of the third-
party libraries and be sure to avoid mix-ups between sat-installed and system-wide

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

40

di

96

installed libraries. The advantage of doing a complete build from sources is that it is
possible to enable more features and disable others with respect to the pre-compiled
binaries that are available on the website. In particular, all pre-compiled binaries do
not have MPI capabilities enabled, so it is possible to use it only compiling the platform
from sources.
A list of the prerequisite third-party libraries that are used with v6.6.0 (developed

specifically for the NURESAFE partners) is shown in Table 1.2.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

41

di

96

Library Version
Python 2.6.6
qt 4.6.3
sip 4.13.2
PyQt 4.9.1
boost 1.49.0
swig 2.0.4
tcl 8.5.9
tk 8.5.9
freetype 2.3.7
ftgl 2.1.3-rc5
cmake 2.8.7
gl2ps 1.3.5
freeimage 3.14.1
CAS 6.5.4
qwt 5.2.1
omniORB 4.1.6
omniORBpy 3.6
omniNotify 2.1
expat 2.0.1
hdf5 1.8.8
med 3.0.6
metis 4.0patched
scotch 5.1.11
libxml2 native
netgen 4.9.13
graphviz 2.28.0
numpy 1.5.1
doxygen 1.8.0
setuptools 0.6c11
docutils 0.8.1
Pygments 1.5
Jinja2 2.6
Sphinx 1.1.3
QScintilla 2.6.1
ParaViewData 3.14.0
ParaView 3.14.0
cppunit 1.12.1
openmpi 1.4.5
Homard 10.5
MeshGems 1.0

Table 1.2: SALOME v6.6.0 third-party libraries.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

42

di

96

2 FEMLCORE coupling on SALOME
In the previous chapter we have seen the integration of the libMesh and the FEMus
libraries on the SALOME platform. We have constructed interface classes (named
LIBMESH and FEMUS, respectively) that allow us to transfer data to and from the
code library to the SALOME MEDMem library. In this way by using a common com-
putational platform a solution computed from a code can be transferred to another code
through these interfaces. This is an ideal situation for multiscale analysis of LF reactors.
The main idea is to use mono-dimensional codes to compute the primary loop evolution
and three-dimensional codes to simulate in details parts of the nuclear plant. In order to
do this the three-dimensional modules developed in the FEMLCORE project are there-
fore coupled with mono-dimensional module created in libMesh or with any other code
available on the SALOME platform. Since high specialized system codes for nuclear
reactor are not open-source in this report we describe the coupling with libMesh codes
in order to reach the final purpose to couple FEMLCORE with CATHARE when this
code will be available on SALOME platform with an appropriate license.
In this chapter we report coupling simulations on SALOME platform based on the

integration described in the previous chapter. The first section introduces libMesh cou-
pling and the second section FEMus coupling. Finally, in the third section, examples
of FEMLCORE coupling with a mono-dimensional code developed with libMesh library
are reported.

2.1 Coupling libMesh modules on SALOME
2.1.1 LibMesh energy problem coupling (3D-3D)
In order to verify the data transfer during the coupling with libMesh codes we consider
a first simple example with the energy equation over the geometry shown in Figure 2.1.
The domain consists of two cubes: one in the region [0, 1] × [0, 1] × [−1, 0] (Ω1) and
another in [0, 1] × [0, 1] × [0, 1] (Ω2). The two meshes are created in a separate way
and the common face has the same number of points but different numbering. Each
mesh consists of 12× 12× 12 HEX20 quadratic elements. By using GEOM and SMESH
modules we have marked the boundary of the domain as up_down and down_down
in the z direction, left_down and right_down in the x direction and bottom_down and
share in the y direction for the down region Ω1. The same labels is used for the up-region
(Ω2) by substituting down with up. The share region which is the common interface is
labeled share in both domains.
Over this domain we consider a problem described by the energy equation with con-

stant velocity field of v = (0, 1., 0). The boundary has homogeneous Dirichlet boundary

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

43

di

96

Figure 2.1: Coupling 3D-3D geometry. Domain Ω1 ∪ Ω2.

condition on the up, down, left and right faces. On the share face we set homogeneous
Neumann boundary conditions in the down problem and non homogeneous boundary
conditions in the up region which transfers the field computed in the down problem. The
Bottom_down gets a constant field from the MEDMem interface while the top up has
homogeneous Neumann boundary conditions. We start in parallel two different prob-
lems: one in the down-region and another in the up-region and continuously transfer
data from the down to the top region. The LibMesh code runs through the LIBMESH
class with the following code lines

LIBMESH P; LIBMESH P1;
P.setType("convdiff"); P1.setType("convdiff");
P.setMesh(dataFile); P1.setMesh(dataFile1);
P.setAnalyticSource("0."); P1.setAnalyticSource("0.");
getInput(P, boundary);

for(int itime=0;itime<60;itime++){
for(int i=0; i<boundary.size(); i++) { // boundary problem P
sBC & b = boundary[i];
if(b.isAnalytic)

P.setAnalyticBoundaryValues(b.name, b.type, b.equation);
else

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

44

di

96

P.setFieldBoundaryValues(b.name, b.type, b.field);
}
P.solve();
getInput1(P1, P, boundary1);

for(int i=0; i<boundary1.size(); i++) { // boundary problem P1
sBC & b1 = boundary1[i];
if(b1.isAnalytic)

P1.setAnalyticBoundaryValues(b1.name, b1.type, b1.equation);
else

P1.setFieldBoundaryValues(b1.name, b1.type, b1.field);
}
P1.solve();
sol = P.getOutputField("u");
sol1 = P1.getOutputField("u");

}
P.terminate();
P1.terminate();

The LibMesh problems P and P1 are constructed in the first line. Each constructor
starts its MPI boot. The problem type (convdiff) is set with setType function. The
mesh with med format is assigned with setMesh function which transfers automatically
the mesh to the LibMesh program. We have two meshes inside which are read from
dataFile and datafile1 respectively. The interface condition of the problem P are set by
the getInput function which is set by the user.
In order to set the interface condition the name of the different boundaries should

be associated with the boundary conditions. The labels of the boundary regions are
available with the function getBoundaryNames() in the LIBMESH class. The boundary
conditions for the problem P are set as

boundary[0].name="right_down"
boundary[0].type = "Dirichlet";
boundary[0].isAnalytic = true;
boundary[0].field = NULL;
boundary[0].equation = "0.";
....
....
boundary[4].name="Bottom_down"
boundary[4].type = "Dirichlet";
boundary[4].isAnalytic = true;
boundary[4].field = NULL;
boundary[4].equation = "1.";

boundary[5].name="share"
boundary[5].type = "Neumann";

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

45

di

96

boundary[5].isAnalytic = true;
boundary[5].field = NULL;
boundary[5].equation = "";
bcNames[5]="share"

The boundary conditions for the problem P1, in the upper part of the domain are set as

boundary[0].name="right_up"
boundary[0].type = "Dirichlet";
boundary[0].isAnalytic = true;
boundary[0].field = NULL;
boundary[0].equation = "0.";
....
....
boundary[4].name="share"
boundary[4].type = "Dirichlet";
boundary[4].isAnalytic = false;
boundary[4].field = bdy;
boundary[4].equation = "";

boundary[5].name="top_up"
boundary[5].type = "Neumann";
boundary[5].isAnalytic = true;
boundary[5].field = NULL;
boundary[5].equation = "";
bcNames[5]="share"

In this case on the interface share of the problem P1 we set a Dirichlet boundary condition
imposing the boundary field of the problem P. The boundary field is obtained from the
problem P simply by using the following commands

MEDCouplingFieldDouble *bdy= P.getValuesOnBoundary("share", "u");

where the pointer P is passed to the problem P1 in the getInput1 function.
At each time step the boundary conditions defined by the external field field are im-

posed on the common share cube face. In Figure 2.2 one can see the surface (labeled
as share) of the computational domain where the data transfer is allowed with Libmesh
global numbering. The LIBMESH interface creates a map to connect this global num-
bering to the surface mesh share of the region Ω1 and another surface map share of the
region Ω2. The surface mesh in MEDMem representation has the same number of nodes
but different numbering. It is necessary therefore at the beginning of the computation to
search point by point the correspondence to build the map. Once the map is computed
all field values on the surface can be passed to the LibMesh surface and viceversa.
The solution over the coupled interface on the region Ω1 and Ω2 can be seen on the

left and right of Figure 2.3, respectively. The solution over the coupled domain is shown
in Figure 2.4. In this figure the solid is cut along the common interface share. Finally in

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

46

di

96

Figure 2.2: Numbering of the same surface in MEDMem mesh (top) and in libMesh as
Ω1 (left bottom) and as Ω2 (right bottom).

Figure 2.3: Solution over the coupled interface as Ω1 (left) and as Ω2 (right).

Figure 2.5 the evolution of the solution over the coupled domain is reported. For high
resolutions and small time steps the solution is continuous. The interface discontinuity
in the derivative can be seen at the initial time steps. The data transfer from the nodes
of the common face of the domain Ω1 to Ω2 seems efficient and reliable.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

47

di

96

Figure 2.4: Solution over the coupled domain.

Figure 2.5: Solution evolution over the coupled domain.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

48

di

96

2.1.2 LibMesh Navier-Stokes coupling (3D-3D)

Figure 2.6: Coupling 3D-3D geometry. Domain Ω1 ∪ Ω2.

The coupling of a scalar over a surface common region between two codes has been
shown in the previous section. Now we consider a data transfer for a vector in the
Navier-Stokes equation. We consider the geometry shown in Figure 2.6 which is similar
to the geometry presented in the previous section. This time the motion is along the z-
axis. The boundary has no slip boundary condition on the up, down, left and right faces.
On the share face we set outlet conditions in the down problem and non homogeneous
Dirichlet boundary conditions in the up problem imposing the continuity of velocity
field computed in the down problem. In the inlet bottom_down we impose standard
velocity boundary conditions with a constant field. In the top_up outflow conditions are
imposed. Again we start in parallel two different problems on multiprocessor machines,
one in the down-region and another in the up-region. The LibMesh code runs two
coupled Navier-Stokes problems through the LIBMESH class with the following code
lines

LIBMESH P; LIBMESH P1;
P.setType("navierstokes3D"); P1.setType("navierstokes3D");
P.setMesh(dataFile); P1.setMesh(dataFile1);
getInput(P, boundary);

for(int itime=0;itime<60;itime++){
for(int i=0; i<boundary.size(); i++) { // boundary problem P

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

49

di

96

sBC & b = boundary[i];
if(b.isAnalytic)

P.setAnalyticBoundaryValues(b.name, b.type, b.equation);
else

P.setFieldBoundaryValues(b.name, b.type, b.field);
}
P.solve();
getInput1(P1, P, boundary1);

for(int i=0; i<boundary1.size(); i++) { // boundary problem P1
sBC & b1 = boundary1[i];
if(b1.isAnalytic)

P1.setAnalyticBoundaryValues(b1.name, b1.type, b1.equation);
else

P1.setFieldBoundaryValues(b1.name, b1.type, b1.field);
}
P1.solve();
vsol[0] = P.getOutputField("u");
vsol[1] = P.getOutputField("v");
vsol[2] = P.getOutputField("w");

vsol1[0] = P1.getOutputField("u");
vsol1[1] = P1.getOutputField("v");
vsol1[2] = P1.getOutputField("w");

}
P.terminate();
P1.terminate();

The LibMesh problems P and P1 are constructed with the empty interface constructor
LIBMESH P and LIBMESH P1. The problem type (navierstokes3D) is set with the
setType function. The mesh with med format is assigned with the setMesh function
which transfers automatically the mesh to the libMesh program. We have two meshes,
one for the top mesh and another from the bottom one. The file is read with the setMesh
function from the dataFile and dataFile1 file respectively. The interface conditions of
the problem P are set by the getInput function. The getInput function is defined in the
main file and it is available to the user.
In order to set the interface conditions the name of the different boundaries should

be associated with the boundary conditions. The labels of the boundary regions are
available with the function getBoundaryNames() in the LIBMESH class. The boundary
conditions for the problem P are set as

boundary[0].name="right_down"
boundary[0].type = "Dirichlet";
boundary[0].isAnalytic = true;
boundary[0].field = NULL;

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

50

di

96

boundary[0].equation = "IVec*0.0 + JVec*0.0+ KVec*0.0";
....
....
boundary[4].name="Bottom_down"
boundary[4].type = "Dirichlet";
boundary[4].isAnalytic = true;
boundary[4].field = NULL;
boundary[4].equation = "IVec*0.0 + JVec*0.0+ KVec*1.0";

boundary[5].name="share"
boundary[5].type = "Neumann";
boundary[5].isAnalytic = true;
boundary[5].field = NULL;
boundary[5].equation = "0.";
bcNames[5]="share"

The boundary conditions for the problem P1, in the upper part of the domain are set as

boundary[0].name="right_up"
boundary[0].type = "Dirichlet";
boundary[0].isAnalytic = true;
boundary[0].field = NULL;
boundary[0].equation = "IVec*0.0 + JVec*0.0+ KVec*0.0";
....
....
boundary[4].name="share"
boundary[4].type = "Dirichlet";
boundary[4].isAnalytic = false;
boundary[4].field = bdy;
boundary[4].equation = "";

boundary[5].name="top_up"
boundary[5].type = "Neumann";
boundary[5].isAnalytic = true;
boundary[5].field = NULL;
boundary[5].equation = "";
bcNames[5]="share"

It is easy to note that vectors are written in the vectorial form as "IVec*u + JVec*v+
KVec*w", where an expression for each velocity component u, v and w should be appro-
priately written. In this case on the interface share of the problem P1 we set a Dirichlet
boundary condition imposing the boundary field of the problem P. The boundary field
v is obtained from the problem P by using the following functions

MEDCouplingFieldDouble *bdy=P.getValuesOnBoundary

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

51

di

96

Figure 2.7: Numbering of the same surface in MEDMem mesh (top) and in libMesh as
Ω1 (left bottom) and as Ω2 (right bottom).

Figure 2.8: Solution over the coupled interface as Ω1 (left) and as Ω2 (right).

("share","IVec* u + JVec* v + KVec* w");
P.getValuesOnBoundary("share", "w");

where the pointer P is passed to the problem P1 in the getInput1 function.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

52

di

96

Figure 2.9: Solution over the coupled domain.

Figure 2.10: Solution evolution over the coupled domain.

At each time step the boundary conditions defined by the external field field are
imposed on the common share cube face. In Figure 2.7 one can see the surface (labeled as
share) of the computation domain where the data transfer is allowed with libMesh global
numbering. The LIBMESH interface creates a map to connect this global numbering to
the surface mesh share of the region Ω1 and another surface map share of the region Ω2.
The surface mesh in MEDMem representation has the same number of nodes but different
numbering. It is necessary therefore to search point by point the correspondence. Once
the map is computed all field values on the surface can be passed to the libMesh surface
and viceversa.
The solution over the coupled interface on the region Ω1 and Ω2 can be seen on the

left and right of Figure 2.8, respectively. Some differences can be noted. The solution, as

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

53

di

96

explained before, is not passed by NODES but by CELLS. The computation of the values
over the CELL implies averaging and for large mesh the difference is not negligible. In
Figures 2.9- 2.10 one can see the solution over the coupled interface on the region Ω1 and
Ω2. The solution over the coupled domain is shown in Figure 2.9. Finally in Figure 2.10
the evolution of the solution over the coupled domain is reported. For high resolutions
and small time steps the solution seems continuous. The interface discontinuity in the
derivative can be seen clearly due to large meshes used.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

54

di

96

2.1.3 LibMesh energy coupling 3D-module/1D-module

Figure 2.11: Coupling 3D-1D geometry. Domain Ω1 ∪ Γ2 (BC line).

The multiscale coupling of a scalar over a 2D surface connecting a 3D module and
1D module can be done easily by using averaging operator on boundary. We consider
the geometry shown in Figure 2.11 which is similar to the geometry presented in the
previous section for the three-dimensional domain. The equations considered here are
the energy libMesh modules in 3D and 1D respectively. The motion in the 3D domain is
along the z-axis from A to B. The 1D region is attached to the three-dimensional region
at the point B. The mono-dimensional domain goes from B to C.
The 3D domain has Dirichlet boundary condition on the up, down, left and right faces.

On the share face (B) we set Neumann in the down problem and non homogeneous
Dirichlet boundary conditions at the point B of the 1D problem, imposing the average
temperature computed in the 3D problem. In the inlet (face (A)) we impose constant
Dirichlet boundary conditions with a constant field as at the end of the line (C) closing
the loop. Again we start in parallel two different problems on multiprocessor clusters:
one in the down-region and another in the line region. The LibMesh code runs through
the LIBMESH class with the following code lines

LIBMESH P; LIBMESH P1;
P.setType("convdiff"); P1.setType("monodim");
P.setMesh(dataFile); P1.setMesh(dataFile1);
P.setAnalyticSource("1."); P1.setAnalyticSource("0.");
double source[1]={1};
P1.setAverageSources(1,source);
std::vector<sBC> boundary; std::vector<sBC> boundary1;
getInput(P, boundary);
// time loop

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

55

di

96

for(int itime=0; itime<=15; itime++) {
for(int i=0; i<boundary.size(); i++) {

sBC & b = boundary[i];
if(b.isAnalytic)

P.setAnalyticBoundaryValues(b.name, b.type, b.equation);
else

P.setFieldBoundaryValues(b.name, b.type, b.field);
}

P.solve();
// for constant average value from P
MEDCouplingFieldDouble *bdy=NULL;
std::vector<char*> name; name.push_back("u0");
bdy = P.getValuesOnBoundary("share", "u");
double average[1]; average[0] = bdy-> getAverageValue();
P1.setAverageSources(1,average);
P1.solve();

}

P.terminate(); P1.terminate();

In this case on the interface share of the problem P1 we set a Dirichlet boundary condition
imposing the boundary field of the problem P. The boundary field u is obtained from
the problem P by using the following commands

bdy = P.getValuesOnBoundary("share", "u");

where the pointer P is passed to the problem P1 in the getInput1 function. Since the
point B is a single point we need to take the average of the surface values using the
MEDMem function

bdy-> getAverageValue();

before imposing the Dirichlet boundary condition over the first point of the line domain.
In Figure 2.12 the evolution of the solution over the coupled domain is reported. The
1D solution follows the 3D dimensional solution as expected. From the left top to the
bottom right the solution is reported for different time steps. In each Figure on the left
it is reported the three-dimensional domain while on the right the temperature along
the central axis of the cube domain (segment A-B) and along the mono-dimensional
domain (B-C). The temperature at B in the mono-dimensional domain is always below
the central point temperature of the coupling surface.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

56

di

96

Figure 2.12: Solution evolution over the coupled domain.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

57

di

96

2.2 Coupling FEMLCORE modules
The FEMLCORE code is build by using FEMus library and it has been integrated in
SALOME platform as already described in the previous chapter. In the first section we
test the coupling for the single 3D-CFD module of the library in order to combine this
code in the next section with 3D-porous module.

2.2.1 FEMus Navier-Stokes 3D-CFD module coupling

Figure 2.13: Coupling 3D-3D geometry for Navier-Stokes equation. Domain Ω1 ∪ Ω2.

We consider the geometry shown in Figure 2.13 with motion along the vertical z-axis.
The boundary has no slip boundary condition on the 110, 100 and 200 face. On the
111 face we set outlet conditions in the down problem and non-homogeneous Dirichlet
boundary conditions in the up problem imposing the continuity of velocity field computed
in the down problem. In the inlet 50 we impose standard velocity boundary conditions
with a constant field. In the surface 150 outflow conditions are imposed. Again we
start in parallel two different problems on multiprocessor machines. We run two coupled
Navier-Stokes problems through the LIBMESH class with the following code

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

58

di

96

// system 1
FEMUS P; // constructor
P.init_param(*mgutils[0]); // init parameter
P.init_fem(*mggeomel,*mgfemap); // init fem
// setting mesh --------------------------------------
P.setMedMesh(osfilenameP[0].str().c_str()); // MEDmesh
P.setMesh(); // MGmesh
// setting system -------------------------------------
P.setSystem(myproblemP); // set system
P.init_interfaces(filenameP[0].str().c_str()); // init
P.set_param_BCzone(); // def bc conditions
P.set_interface_userbc(); // set bc conditions

// system 2
FEMUS P1; // constructor
P1.init_param(*mgutils[1]); // init parameter
P1.init_fem(*mggeomel,*mgfemap); // init fem
// setting mesh --------------------------------------

P1.setMedMesh(osfilenameP[1].str().c_str());// MED-mesh
P1.setMesh(); // MGmesh
// setting system ------------------------------------

P1.setSystem(myproblemP); // set system
P1.init_interfaces(filenameP[1].str().c_str()); // init

// solving --
int n_steps = mgutils[0]->get_par("nsteps");
double dt = mgutils[0]->get_par("dt");
int print_step = mgutils[0]->get_par("printstep");
int itime_0 = mgutils[0]->get_par("itime");
double time = 0.;
P.solve_setup(itime_0,time); // initial time loop (t=0)
P1.solve_setup(itime_0,time);// initial time loop (t=0)

// transient loop (i0time ->i0time+ n_steps)
for(int itime=itime_0; itime<

itime_0 + n_steps; itime++) {
P.solve_onestep(itime_0,itime,print_step,time,dt);
P1.set_param_BCzone(P); // define param bc conditions
P1.set_interface_userbc();// set bc conditions
P1.solve_onestep(itime_0,itime,print_step,time,dt);

} // end time loop
P.terminate(); P1.terminate();

The LibMesh problem P and P1 are constructed with the empty interface constructor

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

59

di

96

FEMUS P and FEMUS P1. The problem type (“NS_F”) is set with the setSystem
function. The mesh with med format is assigned with the setMedMesh function which
transfers automatically the mesh to the FEMUS program. Now we have two meshes,
one for the top cube and another from the bottom one. The file is read with the setMesh
function from the utils class. The interface mesh of the problem P are generated by
the init_interfaces function. The set_param_BCzone function defines the boundary
conditions. This function is available to the user since it is in the FEMUS_BC.C.
In order to set the interface conditions the name of the different boundaries should

be associated with the boundary conditions. The labels of the boundary regions are
available with the function getBoundaryNames() in the LIBMESH class. The boundary
conditions for the problem P are set as

boundary[0].name="110"
boundary[0].type = "Dirichlet";
boundary[0].isAnalytic = true;
boundary[0].n_cmp = 3;
boundary[0].field = NULL;
boundary[0].equation = "IVec*0.0 + JVec*0.0+ KVec*0.0";
....
....
boundary[4].name="50"
boundary[4].type = "Dirichlet";
boundary[4].isAnalytic = true;
boundary[0].n_cmp = 3;
boundary[4].field = NULL;
boundary[4].equation = "IVec*0.0 + JVec*0.0+ KVec*1.0";

boundary[5].name="111"
boundary[5].type = "Neumann";
boundary[5].isAnalytic = true;
boundary[5].field = NULL;
boundary[5].equation = "0.";
bcNames[5]="share"

The boundary conditions for the problem P1, in the upper part of the domain, are set
as

boundary[0].name="200"
boundary[0].type = "Dirichlet";
boundary[0].isAnalytic = true;
boundary[0].n_cmp = 3;
boundary[0].field = NULL;
boundary[0].equation = "IVec*0.0 + JVec*0.0+ KVec*0.0";
....
....

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

60

di

96

boundary[4].name=""111"
boundary[4].type = "Dirichlet";
boundary[4].isAnalytic = false;
boundary[0].n_cmp = 3;
boundary[4].field = bdy;
boundary[4].equation = "";

It is easy to note that vectors are written in the vector form as "IVec*u + JVec*v+
KVec*w", where an expression for each velocity component u, v, w should be appropri-
ately written. In this case on the interface 111 of the problem P1 we set a Dirichlet

Figure 2.14: Numbering of the same surface in MEDmesh (bottom) and in MGMesh as
Ω1 (left top) and as Ω2 (right top).

boundary condition imposing the boundary field of the problem P. The boundary field
v is obtained from the problem P by using the following functions

MEDCouplingFieldDouble *bdy=P.getValuesOnBoundary
("111","NS0",0,3);

where the pointer P is passed to the problem P1 in the set_param_BCzone function.
At each time step the boundary conditions defined by the external field field are

imposed on the common 111 cube face. In Figure 2.14 one can see the surface (labeled
as 111) of the computation domain where the data transfer is allowed with FEMus global

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

61

di

96

Figure 2.15: Solution over the coupled interface as Ω1 (left) and Ω2 (right).

Figure 2.16: Solution over the coupled domain.

numbering. The FEMus interface creates a map to connect this global numbering to the
surface mesh 111 of the region Ω1 and another surface map 111 of the region Ω2. The
surface mesh in MEDMem representation has the same number of nodes but different
numbering. It is necessary therefore to search point by point the correspondence. Once
the map is computed all field values on the surface can be passed to the FEMus surface
and viceversa.
The solution over the coupled interface on the region Ω1 and Ω2 can be seen on the

left and right of Figure 2.15, respectively. No differences can be noted in this case. We
remark the difference with the libMesh case where the data exchange was for CELLS. In
this case (FEMus) the data are transferred points by points and differences are negligible.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

62

di

96

Figure 2.17: Solution evolution over the coupled domain in 3D (left) and over the center
line (right).

In Figure 2.16 one can see the solution over the coupled domain Ω1∪Ω2, while in Figures
2.17 the solution evolution is reported in the three-dimensional domain (left) and over
the center line (right).

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

63

di

96

2.2.2 FEMus-libMesh coupling (3D-1D)

Figure 2.18: Coupling 3D-1D geometry. Domain Ω1 ∪ Γ2(BCline).

The multiscale coupling of the temperature over a 2D surface connecting a 3D module
and 1D module can be done easily by using SALOME MEDMem library. In this library
many functions are available for averaging, finding maximum or minimum of any field
over a surface. We consider the geometry shown in Figure 2.18. The equations considered
here are the energy FEMus module in 3D and the monodim module of libMesh for the 1D
mesh. The motion in the 3D domain is along the z-axis from A to B. The 1D region is
attached to the three-dimensional region at the point B. The mono-dimensional domain
goes from B to C over a unitary length.
The boundary has Dirichlet boundary condition on the 100, 50 and 110 faces. On

the 110 face (B) we set Neumann in the down problem and non-homogeneous Dirichlet
boundary conditions at the pointB problem imposing the average temperature computed
in the down problem. In the inlet 50 we impose constant Dirichlet boundary conditions
with a constant field. At the end of the line (C) Dirichlet boundary condition are
imposed as at the face (A). We start in parallel two different problems on multiprocessor
machines: a FEMus problem is solved in the down-region and a libMesh problem in
the line region. The FEMus and the libMesh problems are coupled. The LibMesh and
FEMus code coupling runs with the following code lines

// system1 ---------------------------------------
FEMUS P;
P.init_param(*mgutils[0]);

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

64

di

96

P.init_fem(*mggeomel,*mgfemap);
// setting mesh ----------------------------------
P.setMedMesh(osfilenameP.str().c_str());// MEDmesh
P.setMesh(); // MGMesh
// setting system -------------------------------
std::vector<NS_FIELDS> myproblem; myproblem.resize(1);
myproblem[0]=T_F;
P.setSystem(myproblem);
P.init_interfaces(filenameP.str().c_str());

// system 2
LIBMESH P1;
P1.setType("monodim");
P1.setMesh(dataFile1);
P1.setAnalyticSource("1.");
std::vector<sBC> boundary1;

// solving
int n_steps = mgutils[0]->get_par("nsteps");
double dt = mgutils[0]->get_par("dt");
int print_step = mgutils[0]->get_par("printstep");
int i0time = mgutils[0]->get_par("itime");
double time =0.;
P.set_param_BCzone();
P.set_interface_userbc();
P.solve_setup(i0time,time);
MEDCouplingFieldDouble *bdy=NULL;

// transient loop (i0time ->i0time+ n_steps)
for(int itime=i0time; itime<

i0time +n_steps; itime++) {
P.solve_onestep(i0time,itime,print_step,time,dt);
bdy = P.getValuesOnBoundary("111","T",0);
double average[1];
average[0] =bdy-> getAverageValue();
P1.setAverageSources(1,average);
P1.solve();

}
P.terminate();
P1.terminate();

In this case on the point B of the problem P1 we set a Dirichlet boundary condition
imposing the boundary field of the problem P. The boundary field T is obtained from

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

65

di

96

Figure 2.19: Evolution over the coupled domain at different time steps. On the left
the three-dimensional solution and on the right the solution over the mono-
dimensional line BC.

the problem P by using the following commands

bdy =P.getValuesOnBoundary("111","T",0);

Since the point B is a single point we need to take the average of the surface using the
MEDMem function

bdy-> getAverageValue();

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

66

di

96

before imposing the Dirichlet boundary condition over the first point of the line domain.
In Figure 2.19 the evolution of the solution over the coupled domain is reported. The

1D solution follows the 3D dimensional solution as expected. From left top to bottom
right the solution is reported for different time steps. In each figure on the left is reported
the three-dimensional domain while on the right the temperature along the central axis of
the cube domain (segment A-B) and along the mono-dimensional domain (B-C). The
temperature at B in the mono-dimensional domain is always below the central point
temperature of the coupling surface.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

67

di

96

2.3 Coupling FEM-LCORE on SALOME platform
2.3.1 Introduction

Geometrical parameters
side 1 m
height 4.485 m
Cin 1.3 m
Cout 3.245 m
Hin 2.25 m
Hout 3.15 m
Deq 0.0129 m
r 0.5408
Hc 1.945 m
Ha 0.9 m

Figure 2.20: Geometrical parameters, physical and computational domain.

In this section we perform some tests to verify the integration on the SALOME plat-
form of the FEM-LCORE module on a simple domain defined in Figure 2.20. In this
test analytical functions are constructed through MEDMem interface in order to define
the heat source distribution and the pressure losses. In a more complex coupling these
functions can be computed by external codes and the data transferred through the FE-
MUS interface classes. As clearly shown it is possible to consider, given the particular
symmetry of the problem, only a quarter of the physical domain.
The model implemented for temperature, pressure and velocity field inside the domain

is the same used for the geometry of LF reactors described in previous reports. The
interested reader can see details in [5, 3, 4]. We recall briefly that, while for the lower
and upper plenum geometry we solve the standard three-dimensional CFD system of
equations, within the core region we instead use a porous medium model. The domain
has a square cross section of side 1 m and an overall height of 4.485 m. The reactor,
along the z direction, is divided into three zones that model the upper, the lower plenum
and the core, respectively. The lower plenum extends between the horizontal plane with
z = 0 and z = Cin while the upper plenum bounds between z = Cout and z = 4.485.
The core extends between the plane z = Cin and z = Cout in the central part of the
reactor. The other geometrical dimensions are defined in Figure 2.20.
As it is well known, the core houses fuel elements and assembly channels used for

control rod motion. This must be taken into account in developing the core porous
model. In fact both bundles of fuel and control rods reduce the section available for
the fluid decreasing the dimension of the coolant sub-channels. In this region of the
domain where the porous medium model is implemented, distributed pressure losses due
to viscous friction and accidental ones due to grid spacers must be taken into account.
We set both the source of thermal power and the distributed pressure losses due to
spacer grids of fuel elements at the top of the core, between z = Hin and z = Hout.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

68

di

96

Figure 2.21: Boundary conditions for the velocity components u, v (center and left) and
w and temperature field (T) (both in right). The blue color indicates the
type of boundary conditions Dirichlet; the red boundary conditions of type
Neumann.

The input and output sections of the core reactor are modeled by appropriate pressure
losses as defined in Table 2.2. The core inlet and outlet pressure losses are automatically
taken into account by solving three-dimensional modules. The physical properties of

Physical properties
Lead at 673.15 K

ρ 10562.99 kg/m3

µ 0.002227 Pa s
cp 147.3 J/kg K
κ 16.58 W/mK

Operating parameters in
nominal conditions

Tin 673.15 K
∆T 80 K
qg 1.1761715 · 108 W/m3

Table 2.1: Physical properties and operating parameters in nominal conditions

the fluid and the operating conditions are reported in Table 2.1. In Figure 2.20 the
values of all the geometric parameters of interest are reported, while in Figure 2.21 the
boundary conditions used for the calculations are shown. The blue color indicates the
Dirichlet type of boundary conditions; the red boundary conditions of type Neumann.
Boundary condition of Dirichlet type means that the value of the variable is fixed on
the boundary surface considered. Boundary conditions of homogeneous Neumann type

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

69

di

96

Accidental Pressure
loss

βin 0.5
βout 1
βgrids 0.52

Table 2.2: Computational parameters for Accidental Pressure losses.

means that the value of the derivative of the variable along the normal direction is equal
to zero. The vertical component w of the velocity field is fixed to the input section at
z = 0 (condition of Dirichlet type) and it is free to take any value on both side surfaces
and on the outlet at z = 4.485 (Neumann conditions). The temperature is fixed on
the input surface while on the lateral surfaces and on the output surface an adiabatic
condition is imposed. Either the velocity component u and v are fixed on the two outer
surfaces (surface x = 1 and y = 1) while they are to be computed on the exit surface.
Furthermore, the component u is fixed on the inner surface x = 0 and free on the inner
surface y = 0 while, on the contrary, the component v is fixed on the inner surface
y = 0 and free on the inner surface x = 0. The symmetry of the problem allows us to
solve the equations only over a quarter of the domain and therefore symmetry conditions
are imposed on the internal surfaces both for u and v, ensuring that there is no mass
exchange between the four subdomains in which the physical domain is divided.

2.3.2 Exact solution and benchmark cases
The particular geometry considered, similar to a simple horizontal duct, and the simple
boundary conditions imply that the problem can be solved along the one-dimensional
coordinate z obtaining the exact analytical solution. In fact, in steady state conditions,
assuming the constant physical properties in Table 2.1, the equations assume the follow-
ing simplified form

a) Continuity equation
∂w∗

∂z
= 0 (2.1)

b) Momentum equation
∂p

∂z
= −2 ρ (w∗)2

Deq
λ(w∗) (2.2)

c) Energy equation

ρ cpw
∗ ∂T
∂z

= κ
∂2T

∂z2 + qg

r
(2.3)

where r is the constant filtration coefficient defined as r = Aeff/Acore. The problem (2.1-
2.3) can be further simplified when the convective heat transfer term prevails over the

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

70

di

96

diffusion transfer term. With this assumption, the energy diffusion term can be neglected
by assigning the thermal conductivity of the fluid κ → 0. With this assumption and
integrating along the axis z we have

w∗ = const. (2.4)

pin − pout = 2 ρ (w∗)2

Deq
λ(w∗)Hc (2.5)

ρ cpw
∗ (Tout − Tin) =

qg

r
Ha (2.6)

where Hc is the height of the core and Ha is the height of the part of core where the
source term qg 6= 0.
By using the equations (2.4)-(2.6) we can validate the solution of the FEM code-

LCORE in momentum and energy. This implies the possibility to compare the dis-
tributed load losses due to viscous friction and the temperature field, calculating the
temperature output in stationary conditions at nominal power.
Pressure. By setting the filtration rate w equal to 0.85 m/s we have that the velocity

is equal to
w∗ = w

r
= 0.85

0.5408 = 1.572 m/s . (2.7)

We recall that while the real velocity is the one of the fluid actually crossing the sub-
channels within the core, the filtration velocity is a fictitious velocity that the coolant
would have if it had access to the entire section of the core. The link between these
velocities is determined by the velocity ratio between the two sections

W/w∗ = Aeff/Acore = r = 0.5408 .

For the Reynolds number we have

Re = ρw∗Deq

µ
= 10562.99× 1.572× 0.0129

0.002227 = 96185 . (2.8)

When the Reynolds number is known the Fanning friction coefficient can be calculated
directly for the case of turbulent motion. In this case we have

λ = 0.0791
Re0.25 = 0.0791

961850.25 = 0.0044916 . (2.9)

Finally, we calculate the total pressure losses resulting solely from the losses distributed
on the crossing of the sub-channels as

∆Pdist = pin − pout = 2 ρ (w∗)2

Deq
λHc =

= 2× 10562.99× 1.5722 × 0.0044916
0.0129 1.945 =

= 35355 Pa .

(2.10)

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

71

di

96

Figure 2.22: Positioning of graphics and images.

The accidental pressure drop, due to abrupt changes of the core inlet and due to the
presence of the grids spacing, can be calculated as follows

∆Pacc = 1
2 ρ (w∗)2 ∑

i

βi =

= 0.5× 10562.99× 1.5722 × (1 + 0.5 + 0.52× 5) =
= 53511 Pa

(2.11)

w m/s w∗ m/s Re ∆Pdist Pa ∆Pin&out Pa ∆Pgrids Pa Tout K

0.1 0.184 11314.09 835.3047 270.8786 469.5229 1353.57
0.2 0.369 22628.18 2809.6191 1083.5145 1878.0919 1013.41
0.5 0.924 56570.45 13965.0490 6771.9660 11738.0745 809.31
0.85 1.571 96169.77 35345.0074 19570.9820 33923.0354 753.28

Table 2.3: Analytical results for benchmark.

Temperature. In order to estimate the outlet temperature we use the simplified
energy equation in (2.6) as

Tout = Tin + qg Ha

ρ cpw
=

= 673.15 + 1.1761715 · 108 × 0.9
10562.99× 147.3× 0.85 = 753.15 K .

(2.12)

The analytical procedure just shown, useful for the evaluation of pressure drops and
outlet temperature, was repeated for the other values of the vertical velocity. The
calculations were carried out with the aid of a spreadsheet calculation and the results
obtained are shown in Table 2.3.

2.3.3 Benchmarks on FEM-LCORE integration.
In order to validate the functionality of the MEDMem interface created for the FEM-
LCORE code we perform three test cases, A, B and C. In case A-B we perform eight

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

72

di

96

numerical tests with the heat source term uniform in space. In case C a test with variable
heat source distribution is performed.

w m/s ∆Pdist Pa Tout K

Exact FEM − LCORE Exact FEM − LCORE
0.1 835.3047 835.3047 1353.57 1353.52
0.2 2809.6191 2809.6190 1013.41 1013.37
0.5 13965.0490 13965.0483 809.31 809.25
0.85 35345.0074 35345.0046 753.28 753.19

Table 2.4: Case A. Comparison between analytical results and the code: ∆Pdist and
Tout.

0 1 2 3 4

z (m)

600

800

1000

1200

1400

1600

T
 (

K
)

A

B

C

D

0 1 2 3 4

z (m)

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

P
 (

P
a
)

A

B

C

D

Figure 2.23: Case A. Temperature (left) and pressure (right) profiles along the segment
ST . Line A: inlet velocity w = 0.85 m/s; Line B: inlet velocity w = 0.5 m/s;
Line C: inlet velocity w = 0.2 m/s; Line D: inlet velocity w = 0.1 m/s.

Case A The physical properties of the refrigerant are considered constant with tem-
perature equal to the value of the inlet temperature (673.15K).
In these four tests we consider only pressure drops distributed along the entire length

of the core (Hc) while the accidental pressure drops are neglected. We consider four
values of filtration velocity w in the range w = 0.1 - 0.85 fixed on the interface of the
input section.
In Table 2.4, for the four cases listed above, they are reported both the pressure drop

and the outlet temperature together with the comparison between the numerical results
provided by the code and the corresponding analytical results. As one can see from the
table, the results provided by the FEM-LCORE code reproduce the analytical ones with
remarkable precision.
In Figures 2.23 and 2.24 the profiles of temperature, pressure and filtration velocity w

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

73

di

96

0 1 2 3 4

z (m)

0

0.2

0.4

0.6

0.8

1

w
 (

m
/s

)

A

B

C

D

Figure 2.24: Case A. Profile of the filtration velocity w along the segment ST . Line A:
inlet velocity w = 0.85 m/s; Line B: inlet velocity w = 0.5 m/s; Line C:
inlet velocity w = 0.2 m/s; Line D: inlet velocity w = 0.1 m/s

0 1 2 3 4

z (m)

0

20000

40000

60000

80000

1e+05

P
 (

P
a
)

A

B

C

D

Figure 2.25: Case A. Profile of pressure drop along the segment ST . Line A: total
pressure drop; Line B: contribution of distributed drop; Line C: contribution
to energy losses due to abrupt changes of section at the entrance and exit
of the core; Line D: contribution due to spacer grids.

along the segment ST of coordinates S = (0.5, 0.5 0) and T = (0.5, 0.5 4485) are shown
for the first four tests, respectively.

Case B In the other four tests we set the same inlet velocity of w = 0.85 m/s for all
cases, while for each test we consider different pressure drop cases:

• total pressure drop;

• only distributed;

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

74

di

96

w m/s ∆Pdist Pa ∆Pin·out Pa

Exact FEM − LCORE Exact FEM − LCORE
0.85 35345.0074 35345.0046 19570.9820 19570.9807

Table 2.5: Case B. Comparison between analytical results and the FEM-LCORE code:
∆Pdist and ∆Pacc.

w m/s ∆Pgrids Pa

Exact FEM − LCORE
0.85 33923.0354 33923.0316

Table 2.6: Case B. Comparison between analytical results and the FEM-LCORE code:
∆Pdist and ∆Pacc.

w m/s ∆Ptot Pa

Exact FEM − LCORE
0.85 88839.0249 88839.0058

Table 2.7: Case B. Comparison between analytical results and the results of the code:
∆Ptot.

• only accidental due to sudden changes in section;

• only accidental due to spacer grids.

These different conditions are imposed by using the volume interface from the MEDMem
library. For this test we use

setAnalyticSource("analitic expression");

where different analytical expressions are taken for different cases. Figure 2.25 shows
the pressure profile along the segment ST for the four cases described above. In Figure
2.26 on the right it can be seen where the accidental pressure losses are located within
the core: the grids are labeled 1, 2 3 4 and 5, while with inlet and outlet we label the
pressure drop due to changes of section.
Tables (2.5-2.7) show the comparison between the numerical results of the FEM-

LCORE code and the exact analytical results for these last four tests. Once again the
Tables show the excellent accuracy of the numerical code FEM-LCORE.

Case C As a final test we want to make a comparison between solutions considering the
physical properties of the fluid constants with temperature and power generation uniform
in space and the solutions with variable physical properties with temperature and power

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

75

di

96

Figure 2.26: Case B. Spatial distribution of the pressure drop coefficient beta.

Figure 2.27: Case C. Spatial distribution of the power factor pf .

generation variable in space. In this test we set all the pressure drops previously discussed
and vertical velocity w to the value 0.85 m/s. The variable distribution of the peak factor
is assigned by using a volume interface of the MEDMem library.
The correlations used to describe the dependence of the lead temperature physical

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

76

di

96

Physical property Temperature dependence

Density ρ = 11367− (1.1944× T) kg/m3

Viscosity µ = 4.55 · 10−4 exp (1069/T) Pa s

Thermal κ = 9.3 + (0.0108× T) W/mK
conductivity

Specific cp = 147.3 kJ/kgK
heat

Table 2.8: Case C. Temperature dependence of the lead physical properties.

0 1 2 3 4

z (m)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
f

A

B

0 0.5 1

s (m)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

p
f

A

B

Figure 2.28: Case C. Profiles of the power factor pf . Line A: pf variable; Line B: pf
uniform. On the left along segment ST ; on the right along segment MN .

properties in the range of operating temperatures of the reactor, are reported in Table
2.8 [12, 20, 21, 19]. The spatial distribution of power generation is well visible in Figures
2.27 and 2.28. The power factor is the ratio between the power generated per unit
volume as a function of the position and the average power, namely

pf(x) = qg(x)
qg

. (2.13)

In Figure 2.28 one can see the power factor pf along the segment ST and along the
segment MN on section a at z = 2.7 m (M = (0, 0, 2.7), N = (1, 1 2.7)).
The variation of the power factor in the active part of the core has been implemented

by means of the analytical function through the MEDMem interface. Different interfaces
can be applied in different regions so that the setting can be limited to the core region.
The imposed distribution is as follows

pf(x) = (0.79− 0.516 r3 + 0.363 r2 + 0.589 r) cos
(
π (z − 2.7)

1.5

)
(2.14)

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

77

di

96

0 1 2 3 4

z (m)

660

680

700

720

740

760

780

T
 (

K
)

0 1 2 3 4

z (m)

0

20000

40000

60000

80000

1e+05

P
 (

P
a
)

Figure 2.29: Case C. Comparison of temperature (left) and pressure (right) profiles
along the line ST . Dashed line: simulation with temperature dependent
physical properties and qg = const.; Solid line: simulation with constant
physical properties and qg = qg(x).

Figure 2.30: Case C. Comparison of temperature distributions on section a. On the
left temperature dependent physical property case with qg = qg(x). On the
right temperature constant physical properties case with qg = const.

where (r =
√
x2 + y2). This distribution is similar to the actual distribution of the power

reactor ELSY/ALFRED [8, 9, 10, 11, 12, 18]. In Figure 2.29 the comparison between the
profiles of pressure and temperature along the segment ST for the two cases considered
is shown. From Figure 2.30 and 2.31 it is quite evident the effect on the fields T and
w of the space power generation distribution and of the temperature dependence of the
refrigerant thermophysical properties. Finally, Figure 2.32 shows the stationary solution
for three-dimensional fields of pressure, velocity and temperature in the case of non-
uniform heat source in space with temperature dependent fluid properties. In this case
we have forced the heat source to have an analytic form but with the same MEDMem
interface we could transfer the solution from a neutronic code implemented over the
SALOME platform.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

78

di

96

Figure 2.31: Case C. Comparison between the distributions of filtration velocity w on
the section a. On the left temperature dependent physical property case
with qg = qg(x). On the right temperature constant physical properties
case with qg = const.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

79

di

96

Figure 2.32: Case C. Pressure, velocity and temperature fields. Tests with inlet filtration
velocity w = 0.85 m/s, variable fluid properties and with all pressure drops.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

80

di

96

2.3.4 Coupling 3D-FEMLCORE and 1D libMesh primary loop module

Figure 2.33: FEMLCORE module. Placement of figures and charts. Cross-sectional
portion of a at z = 3.9 m; Cross section b at z = 3.244 m; line L1 at
x = y = 0.2 m; line L2 at x = y = 1 m; line L3 at x = 1.323 m and
y = 1.176 m.

In this test we couple the FEMLCORE code with a monodimensional code based on
libmesh libraries. The monodimensional code solves the conservation equations where we
add some sources to model a simple pump and vapor generator model [5]. The coupling
gives the boundary conditions for the FEMLCORE. The FEMUS interfaces are three:
the inlet and the two outlets of the reactor. On the inlet we transfer the velocity field
from the monodimensional system to the inlet surface. At the outlet we pass the velocity
field from the outlet surface to the monodimensional libMesh problem. The pressure
field transfers in the opposite direction. We use the MEDMem tools to integrate the
field over the surfaces and transfer the average value from one scale to the other. The
temperature is always tranfer in the motion direction, i.e, from the libMesh module
to the FEMLCORE inlet and from the FEMLCORE outlet to the monodimensional
libMesh module.
In this test we analyze the working behavior of a stationary reactor with 1500 MW

of power. The reactor, along the vertical coordinate, is divided into three parts: the
lower plenum (from z = 0 to z = 1.3m) the core (from z = 1.3 to z = 3.245m) and the
upper plenum (from 3.245 to z = 4.485m). At the top of the core, between z = 2.25
and z = 3.5 m, the source of thermal power is placed together with the corresponding
fuel elements. As shown in Figure 2.34, with regard to the primary loop, both the steam
generator (SG) and the pump (pump) are positioned in the “horizontal portion” of the
ducts that links the inlet to outlet of the reactor. Let s be curvilinear coordinate of

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

81

di

96

Figure 2.34: LibMesh module. Location of the pump and steam generator in the com-
putational primary loop.

Parameter Value
Pnom 1482.235 MW

ql 0.023753 MW/m

m ≈ 124000 Kg/s
Tin 673.15 K
Tout ≈ 753 K
∆T ≈ 80 K
w∗

core ≈ 1.5 m/s
AF A 0.086436 m2

ACoolant 0.046744 m2

r 0.5408

Table 2.9: Operating parameters at steady working condition.

the centerline that connects the upper to the lower plenum. We set the pumps in the
segment with curvilinear coordinate s = 0.4-0.7 m, and the SG between s = 0.4 and
s = 1 m.
The pump is placed exactly at the entrance of the steam generator. In Table 2.9 the

main operating conditions of the system are summarized. In particular, the overall mass

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

82

di

96

Figure 2.35: FEMLCORE module. Temperature, pressure and velocity field at working
conditions.

flow is approximately 124, 000 kg/s, while the volumetric density of power (average) is

qg = Pnom

Na AF A Ha
= 1482.235

162× 0.2942 × 0.9 = 117.6156 MW/m3 , (2.15)

and the linear power density (average)

ql = Pnom

Na nr Ha
= 1482.235

162× 428× 0.9 = 0.023753 MW/m . (2.16)

For the thermal-hydraulic simulation of the core a FEMLCORE porous medium module
is used in which geometrical details describing the fuel element sub-channels are ne-
glected. The code solves the time dependent equation for the filtration velocity v. The
real velocity v∗ owned by the coolant is given by the ratio between the filtration velocity
and the occupancy factor r. The occupancy factor is defined by the ratio between the
section actually available for the passage of the fluid and the total section of the core
and it is assumed to be r = AC/AF A = 0.5408. It is clear that the coolant is subject to

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

83

di

96

Figure 2.36: FEMLCORE module. Vectorial representation of the velocity and temper-
ature field for the stationary solution at nominal power.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

84

di

96

Figure 2.37: FEMLCORE module. Stationary solution of the temperature and velocity
fields on sections a and b in the case of operation at nominal power.

Figure 2.38: FEMLCORE module. Pressure stationary solution over the sections a and
b in the case of operation at nominal power.

a sharp acceleration at the core inlet due to the narrowing of the section in the presence
of structure mechanical material. Figure 2.35 shows the fields of temperature, vertical
velocity w and pressure in steady state conditions.
The fluid enters the low plenum along the normal direction to the input surface at

z = 1.3 m (v = wk̂) at a rate of about 1 m/s (Figure 2.35 on the right and 2.36) with a

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

85

di

96

0 1 2 3 4

z (m)

660

680

700

720

740

760

780

800

T
 (

K
)

L1

L2

L3

Figure 2.39: FEMLCORE module. Temperature of the coolant along the lines L1, L2
and L3. Steady state solution in case of nominal power.

0 1 2 3 4

z (m)

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

V
el

o
ci

ty
 (

m
/s

)

A

B

C

Figure 2.40: FEMLCORE module. Components of the velocity vector along the line
L2. Steady state solution when operating at nominal power. A: component
w; B: Component u; C: component v.

temperature of 672 K. The thermophysical properties of the refrigerant at the reactor
entrance are rho = 10562.99 kg/m3, mu = 0.002227 Pa s, Kappa = 16.5857 W/mK
and CP = 147.3 J/kgK. The average temperature on the outlet surface of the core,
as well as the input of upper plenum, is about 752 K with an increase in temperature
of about 80 degrees. However since the generation of power is not uniform some peaks
reach around 772 K as shown in Figures 2.35, 2.37 and 2.39. In Figure 2.36 the path
of the fluid is shown within the reactor. As it is visible in the Figure, in the core the
velocity components u and v vanish.
The maximum pressure, just over 4 bar, is reached at the base of the reactor. This

value is mostly due to the hydrostatic load caused by the high density of lead and only
minimally to the pressure losses. In Figure 2.37 and 2.38 the fields of temperature,

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

86

di

96

0 0.5 1 1.5 2 2.5 3

s (m)

-50

0

50

100

150

200

250

300

350

P
 (

k
P

a
)

Pin - SGin

Pout

SGoutRout

Rin

A

B

0 0.5 1 1.5 2 2.5 3

s (m)

660

680

700

720

740

760

780

T
 (

K
)

SGin

SGout

Rout

Rin

Figure 2.41: LibMesh module. Pressure (top) and temperature (bottom) solution in
the primary loop in case of operation at nominal power. Rin, Rout: input
and output reactor; SGin, SGout: input and output steam generator; Pin,
Pout; input and output pump.

0 1 2 3 4

z (m)

-200

-100

0

100

200

300

400

500

P
 (

k
P

a
)

A
B

Figure 2.42: FEMLCORE module. Pressure drop along the line L2; steady state so-
lution in nominal operating conditions. Line A: pressure drop considering
the only losses distributed; Line B: pressure drop considering both the
hydraulic losses and those accidental due to the spacer grids.

pressure and vertical velocity w are shown at the core exit b placed at an intermediate
position within the upper plenum (see Figure 2.33 for details). In Figure 2.37 we can see
the effect on the temperature field of the distribution of the power factor pf on different
horizontal planes. In the same Figure one can see the flat profile of the velocity and the
formation of recirculation fluid structure near the walls of the upper plenum. In Figure
2.39 the temperature field is shown along the three vertical lines L1, L2 and L3: the
latter corresponds to the hot channel on which there is the highest values of power factor
and therefore local temperature peaks may occur.
The evolution of the vertical profile of temperature is almost the same along all three

segments. At the entrance of the active part of the core at z = 2.25 m the temperature
begins to rise up to its maximum value at the output of the core at z ≈ 3.25m. Within
the plenum, due to the strong mixing regime, the temperature along the hot channel
(L3) tends to decrease reaching, as the other profiles, a value of approximately 756 K. In
Figure 2.40 the profile of the three components of velocity along the line L2 are shown.
As already mentioned earlier, within the core the velocity components u and v (lines B

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

87

di

96

and C) vanish, while the vertical component w reaches a mean value of about 0.8 m/s
(w∗ ≈ 1.48m/s).
Two different simulations are carried out: the first considering only the hydraulic losses

due to viscous friction; the second considering the pressure losses due to the presence of
spacer grids too.
In Figure 2.42 the pressure drop along the line L2 is shown for both cases: distributed

losses only (A), accidental and distributed losses (B). The presence of the spacer grids
is clearly visible where the pressure profile is not linear between z = 2.25 and z = 3.245.
From Figure 2.41, in which the steady state solution is shown for the temperature and
pressure fields in the primary loop, it is easy to see the total value of all the pressure
drops (distributed and concentrated), which equals the pressure contribution supplied
by the pump (Figure 2.41 (a)). This total value is equal to about 95 kPa (≈ 1 bar) while
the contribution of only the distributed load losses is about 60 kPa.
The domain does not have axial symmetry. This implies that the ranges for the

pressure P , velocity v and temperature T assume different values on the two outlets.
For this reason, to study in detail the 3D effects on various physical phenomena, it
would be necessary to consider two different primary loops and then solve two libMesh
problems.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

88

di

96

Conclusions
In this report we have described the integration of the FEMLCORE code in the SA-
LOME platform. Because of the unavailability of a system code on SALOME platform
for the first evaluation of FEMLCORE integration, we have decided to use the libMesh
library to simulate a mono-dimensional loop to be integrated with FEMLCORE results.
An interface for coupling libMesh-SALOME was originally developed by CEA and EDF
over the open-source libMesh library. Starting from this work we have further devel-
oped the libMesh-SALOME interface and on this model we have build a FEMLCORE
integration interface. This allows us to drive three-dimensional modules of FEMLCORE
with boundary conditions from any system code present on SALOME platform.
Coupling examples with CFD and porous modules have been presented and evaluated.

We have reported 3D-CFD/3D-CFD coupling for energy and Navier Stokes equations
tests with codes based both on libMesh and FEMus libraries. Multiscale coupling has
been also investigated in two FEMLCORE tests. First the data transfer interface has
been used to transfer heat generation and pressure drop analytical distributions inside
the FEMLCORE core module. Finally a 3D-porous/1D-porous coupling FEMLCORE-
libMesh has been tested. In this integrated version the FEMLCORE code on the SA-
LOME platform can be considered a stand-alone code with a CAD, a mesh generator
and a visualization software. At the same time FEMLCORE code can be coupled with
system codes that have a SALOME interface.

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

89

di

96

Bibliography
[1] A. Cervone and S. Manservisi, A three-dimensional CFD program for the simulation

of the thermal-hydraulic behavior of an open core liquid metal reactor, Technical
report lin-thrg 108-2008.

[2] S. Bnà, S. Manservisi and O. Le Bot, Simulation of the Thermal-hydraulic be-
havior of Liquid Metal Reactors using a Three-Dimensional Finite Element Model,
Technical Report DIENCA-UNIBO 2010.

[3] F. G. Bornia, M. Finelli, S. Manservisi, V. Mikhin, M. Polidori and K. Voukelatou,
Development and validation of FEMLCORE code for the thermal hydraulics of open
cores, Technical Report DIENCA-UNIBO 2011.

[4] G. Bornia, D. Cerroni, S. Manservisi, M. Polidori and F. Donato, FEMLCORE
code: parallelization, turbulence models and code integration, Technical Report
ENEA-UNIBO 2012.

[5] G. D. Cerroni, S. Manservisi, F. Menghini and E. Vincenzi, Developing Multiscale
Transient Simulations with FEMLCORE code, Technical Report RdS/2013/1355
CIRTEN-UNIBO and ENEA 2013.

[6] F.Bassenghi, G.Bornia, L.Deon and S. Manservisi, Implementation and validation
of the NURISP platform, Technical report CIRTEN-UNIBO 2011.

[7] F.Bassenghi, G.Bornia, A. Cervone and S. Manservisi, The ENEA-CRESCO plat-
form for simulating liquid metal reactor, Technical report LIN-THRG 210-2010.

[8] ELSY Work Program. European Lead-cooled SYstem (ELSY) Project, Technical
report, EURATOM, Management of Radioactive Waste (2006).

[9] L. Cinotti, âĂĲReactor Assembly preliminary ConfigurationâĂİ, ELSY DOC 08
049, Del Fungo Giera Energia, (2008).

[10] I. Di Piazza, Freezing of the LFR primary pool: CFD modeling and preliminary
analysis on prototypical configuration Technical report ENEA (2012).

[11] A. Alemberti, J. Carlsson, E. Malambu, A. Orden, D. Struwe, P. Agostini, S. Monti,
European lead fast reactorâĂŤELSY, Nucl. Eng. Design, 241, pp.3470-3480 (2011).

[12] I. Di Piazza, M. Scarpa, Rassegna di Letteratura sulla Termoidraulica dei Bundle
Refrigerati a Metallo Liquido Pesante, ENEA Report LM-FR-001 (2012).

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

90

di

96

[13] L. Barucca, M. Gregorini, DHR Main components Functional Sizing, DOC/08/047,
Ansaldo Nucleare, (2008).

[14] M. Bottcher, CFX Analyses of the RVACS Decay Heat Removal System, KIT/INR-
09-01, Wissenschaftliche Berichte (2009).

[15] L. Cinotti, Reactor Assembly preliminary Configuration, ELSY-DOC08049, Del
Fungo Giera Energia (2008).

[16] A. Onea, M. Bottcher, D. Struwe, Analysis of the pressure loss through the heat
exchanger for the primary side of the ELSY nuclear reactor, KIT/INR-09-03, Wis-
senschaftliche Berichte (2009).

[17] A. Onea, M. Bottcher, D. Struwe, Detailed CFD analysis of the pressure loss on the
primary side for the heat exchanger of the ELSY fast lead-cooled reactor by applying
unit slice models, ASME-ATI-UIT, Sorrento, Italy (2010).

[18] A.Travleev, ELSY core design static, dynamic and safety parameters with the
open square FA Appendix C: Preliminary Core AnalysisâĂİ, FPN-P9IX-006, ENEA
(2009).

[19] R. N. Lyon, Liquid-Metals Handbook, 2nd ed., Atomic Energy Comm., Washington
D.C. (1952)

[20] OECD/NEA, Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Ma-
terials Compatibility, Thermal-hydraulics and Technologies, OECD/NEA No. 6195,
ISBN 978-92-64-99002-9 (2007)

[21] V. Sobolev, Thermophysical properties of lead and leadâĂŞbismuth eutectic, Journal
of nuclear materials, 362(2), 235-247 (2007).

[22] The CATHARE code, Official documentation at http://www-cathare.cea.fr

[23] CEA, CATHARE2 V2.5_1: User’s Manual, SSTH/LDAS/EM/2005-035, (2006)

[24] CEA, CATHARE2 V2.5_1: User’s Guidelines, DER-SSTH-LDAS-EM-2005-034,
(2006)

[25] TRIO_U CFD software, Official documentation at http://www-trio-u.cea.fr.

[26] J. Lavieville, E. Quemerais, S. Mimouni, and N. Mechitoua, NEPTUNE CFD V1.0
theory manual, EDF (2006)

[27] G. Geffraye et al., CATHARE 2 V2.5_2: a Single Version for Various Applications,
Proc. 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics
(NURETH-13), Kanazawa, Japan (2009)

[28] PARAVIEW visualization software, Official documentation at http://www.
paraview.org

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

91

di

96

[29] MPI (Message Passing Interface) forum, http://www.mpi-forum.org/

[30] OpenMPI library, http://www.open-mpi.org/

[31] PETSc (Portable Extension Toolkit for Scientific Computation), http://www.mcs.
anl.gov/petsc/petsc-as/

[32] CEA/DEN, SALOME Documentation, CEA/DEN, EDF R&D, OPEN CASCADE
(2007-2008).

[33] SALOME platform website: http://www.salome-platform.org/

[34] LIBMESH package: http://libmesh.sourceforge.net/

[35] HDF5 library, Official documentation at http://www.hdfgroup.org/HDF5/

[36] CRESCO infrastructure http://www.eneagrid.enea.it/

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

92

di

96

List of Tables

1.1 Multiphysics modules available in LibMesh for coupling. 24
1.2 SALOME v6.6.0 third-party libraries. 41

2.1 Physical properties and operating parameters in nominal conditions . . . 68
2.2 Computational parameters for Accidental Pressure losses. 69
2.3 Analytical results for benchmark. 71
2.4 Case A. Comparison between analytical results and the code: ∆Pdist and

Tout. 72
2.5 Case B. Comparison between analytical results and the FEM-LCORE

code: ∆Pdist and ∆Pacc. 74
2.6 Case B. Comparison between analytical results and the FEM-LCORE

code: ∆Pdist and ∆Pacc. 74
2.7 Case B. Comparison between analytical results and the results of the code:

∆Ptot. 74
2.8 Case C. Temperature dependence of the lead physical properties. 76
2.9 Operating parameters at steady working condition. 81

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

93

di

96

List of Figures

1.1 YACS with MATH module integration . 15
1.2 Building YACS schema for f(x, y) = x+ y + sin(x). 15
1.3 Running YACS schema for f(x, y) = x+ y + sin(x). 16
1.4 Collaboration diagram of the LIBMESH class inside the LibMeshCpp in-

terface . 19
1.5 Inheritance diagram of the EquationSystemsExtended class 20
1.6 Inheritance diagram of the ParallelMeshExtended class 20
1.7 Generation of the boundary with the GEOM module 21
1.8 Generation of the boundary name in the SMESH module 21
1.9 Collaboration diagram of the LibMeshProblem class. 23
1.10 Inheritance diagram of the LibMeshProblem class. 23
1.11 Collaboration diagram of the EquationSystemsExtended class 24
1.12 Geometry of the test case. 26
1.13 Common surface Bottom of the computation domain where the data trans-

fer is allowed. Libmesh global numbering. 28
1.14 Solution when a surface allows a transfer of data. 28
1.15 Diagram of the FEMUS class inside the MEDMem interface 29
1.16 Inheritance diagram of the EquationSystemsExtendedM class 30
1.17 Inheritance diagram of the ParallelMeshExtendedM class 30
1.18 FEMUS class data to communicate with the FEMus library. 31
1.19 Collaboration diagram of the ParallelMeshExtendedM class 34
1.20 Collaboration diagram of the EquationSystemsExtendedM class 35
1.21 Collaboration diagram of the FEMUSFunctionM class 36

2.1 Coupling 3D-3D geometry. Domain Ω1 ∪ Ω2. 43
2.2 Numbering of the same surface in MEDMem mesh (top) and in libMesh

as Ω1 (left bottom) and as Ω2 (right bottom). 46
2.3 Solution over the coupled interface as Ω1 (left) and as Ω2 (right). 46
2.4 Solution over the coupled domain. 47
2.5 Solution evolution over the coupled domain. 47
2.6 Coupling 3D-3D geometry. Domain Ω1 ∪ Ω2. 48
2.7 Numbering of the same surface in MEDMem mesh (top) and in libMesh

as Ω1 (left bottom) and as Ω2 (right bottom). 51
2.8 Solution over the coupled interface as Ω1 (left) and as Ω2 (right). 51
2.9 Solution over the coupled domain. 52
2.10 Solution evolution over the coupled domain. 52

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

94

di

96

2.11 Coupling 3D-1D geometry. Domain Ω1 ∪ Γ2 (BC line). 54
2.12 Solution evolution over the coupled domain. 56
2.13 Coupling 3D-3D geometry for Navier-Stokes equation. Domain Ω1 ∪ Ω2. 57
2.14 Numbering of the same surface in MEDmesh (bottom) and in MGMesh

as Ω1 (left top) and as Ω2 (right top). 60
2.15 Solution over the coupled interface as Ω1 (left) and Ω2 (right). 61
2.16 Solution over the coupled domain. 61
2.17 Solution evolution over the coupled domain in 3D (left) and over the

center line (right). 62
2.18 Coupling 3D-1D geometry. Domain Ω1 ∪ Γ2(BCline). 63
2.19 Evolution over the coupled domain at different time steps. On the left the

three-dimensional solution and on the right the solution over the mono-
dimensional line BC. 65

2.20 Geometrical parameters, physical and computational domain. 67
2.21 Boundary conditions for the velocity components u, v (center and left)

and w and temperature field (T) (both in right). The blue color indicates
the type of boundary conditions Dirichlet; the red boundary conditions
of type Neumann. 68

2.22 Positioning of graphics and images. 71
2.23 Case A. Temperature (left) and pressure (right) profiles along the segment

ST . Line A: inlet velocity w = 0.85 m/s; Line B: inlet velocity w =
0.5 m/s; Line C: inlet velocity w = 0.2 m/s; Line D: inlet velocity w =
0.1 m/s. 72

2.24 Case A. Profile of the filtration velocity w along the segment ST . Line
A: inlet velocity w = 0.85 m/s; Line B: inlet velocity w = 0.5 m/s; Line
C: inlet velocity w = 0.2 m/s; Line D: inlet velocity w = 0.1 m/s 73

2.25 Case A. Profile of pressure drop along the segment ST . Line A: total
pressure drop; Line B: contribution of distributed drop; Line C: contri-
bution to energy losses due to abrupt changes of section at the entrance
and exit of the core; Line D: contribution due to spacer grids. 73

2.26 Case B. Spatial distribution of the pressure drop coefficient beta. 75
2.27 Case C. Spatial distribution of the power factor pf 75
2.28 Case C. Profiles of the power factor pf . Line A: pf variable; Line B: pf

uniform. On the left along segment ST ; on the right along segment MN . 76
2.29 Case C. Comparison of temperature (left) and pressure (right) profiles

along the line ST . Dashed line: simulation with temperature dependent
physical properties and qg = const.; Solid line: simulation with constant
physical properties and qg = qg(x). 77

2.30 Case C. Comparison of temperature distributions on section a. On the
left temperature dependent physical property case with qg = qg(x). On
the right temperature constant physical properties case with qg = const. . 77

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

95

di

96

2.31 Case C. Comparison between the distributions of filtration velocity w on
the section a. On the left temperature dependent physical property case
with qg = qg(x). On the right temperature constant physical properties
case with qg = const. 78

2.32 Case C. Pressure, velocity and temperature fields. Tests with inlet filtra-
tion velocity w = 0.85 m/s, variable fluid properties and with all pressure
drops. 79

2.33 FEMLCORE module. Placement of figures and charts. Cross-sectional
portion of a at z = 3.9 m; Cross section b at z = 3.244 m; line L1 at
x = y = 0.2 m; line L2 at x = y = 1 m; line L3 at x = 1.323 m and
y = 1.176 m. 80

2.34 LibMesh module. Location of the pump and steam generator in the com-
putational primary loop. 81

2.35 FEMLCORE module. Temperature, pressure and velocity field at work-
ing conditions. 82

2.36 FEMLCORE module. Vectorial representation of the velocity and tem-
perature field for the stationary solution at nominal power. 83

2.37 FEMLCOREmodule. Stationary solution of the temperature and velocity
fields on sections a and b in the case of operation at nominal power. . . . 84

2.38 FEMLCORE module. Pressure stationary solution over the sections a
and b in the case of operation at nominal power. 84

2.39 FEMLCORE module. Temperature of the coolant along the lines L1, L2
and L3. Steady state solution in case of nominal power. 85

2.40 FEMLCORE module. Components of the velocity vector along the line
L2. Steady state solution when operating at nominal power. A: compo-
nent w; B: Component u; C: component v. 85

2.41 LibMesh module. Pressure (top) and temperature (bottom) solution in
the primary loop in case of operation at nominal power. Rin, Rout: input
and output reactor; SGin, SGout: input and output steam generator; Pin,
Pout; input and output pump. 86

2.42 FEMLCORE module. Pressure drop along the line L2; steady state solu-
tion in nominal operating conditions. Line A: pressure drop considering
the only losses distributed; Line B: pressure drop considering both the
hydraulic losses and those accidental due to the spacer grids. 86

Centro Ricerche Bologna
Sigla di identificazione

ADPFISS - LP2 - 044

Rev.

0

Distrib.

L

Pag.

96

di

96

Curriculum del personale CIRTEN
Il gruppo di lavoro dell’Università di Bologna che ha collaborato alla presente attività è
composta da:

• Dr. D. Cerroni. Ha conseguito la laurea magistrale in Ingegneria Energetica
presso l’Università degli studi di Bologna, sta attualmente svolgendo il suo dot-
torato di ricerca in Ingeneria Energetica, Nucleare e Del Controllo Ambientale
presso l’Università degli studi di Bologna.

• Ing. R. Da Vià. Laureato in Ingegneria Energetica.

• Prof. S. Manservisi. Laureato in Ingegneria Nucleare e in Fisica presso l’Università
degli studi di Bologna, ha poi ottenuto una laurea magistrale in Matematica-Fisica
e un Dottorato di Ricerca in Matematica-Fisica (Numerical Fluidynamics) presso
il CTTMP, Virginia Polytechnic institute and State University (USA). Ha in se-
guito ricoperto diverse posizioni: Ingegnere per le costruzioni aeronautiche nell’
aeronautica militare, 8 Stormo (1991-1994), Teaching assistant presso il Virginia
Tech (USA) (1994-1997), Associate Researcher presso l’OCIAM, Università di Ox-
ford, Oxford (UK) (1997-1999), Associate Researcher presso l’ITWM, Universita’
di Kaiserslautern (D) (1999-2000), Assistant Professor presso il Dipartimento di
Matematica, Texas Tech University (USA) (2003-2007), Ricercatore in Impianti
Nucleari presso l’Universita’ degli studi di Bologna, Bologna, Italy (2001-2012).
Attuaemente è Professore Associato in Impianti Nucleari presso l’Università degli
studi di Bologna.

• Dr. F. Menghini. Ha conseguito la laurea magistrale in Ingegneria Energet-
ica presso l’Università degli studi di Bologna, sta attualmente svolgendo il suo
dottorato di ricerca in Ingeneria Energetica, Nucleare e Del Controllo Ambientale
presso l’Università degli studi di Bologna.

• Ing. G. Pozzetti. Laureato in Ingegneria Energetica.

