

Workshop tematico: LFR-GEN IV stato attuale della tecnologia e prospettive di sviluppo

D. Martelli, M. Tarantino

Report RdS/PAR2014/220

WORKSHOP TEMATICO: LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

D. Martelli, M. Tarantino - ENEA

Settembre 2015

Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico - ENEA Piano Annuale di Realizzazione 2014 Area: Produzione di energia elettrica e protezione dell'ambiente Progetto: Sviluppo competenze scientifiche nel campo della sicurezza nucleare e collaborazione ai programmi internazionali per il nucleare di IV Generazione Linea: Collaborazione internazionale per il nucleare di IV Denerazione Obiettivo: Comunicazione e diffusione dei risultati Responsabile del Progetto: Mariano Tarantino, ENEA

di

Titolo

Workshop Tematico: LFR-GEN IV Stato attuale della tecnologia e prospettive di sviluppo

Descrittori

Tipologia del documento:	Relazione di convegno o conferenza
Collocazione contrattuale:	Accordo di programma ENEA-MSE su sicurezza nucleare e
	reattori di IV generazione
Argomenti trattati:	Ingegneria nucleare
	Generation IV reactors
	Sicurezza Nucleare

Sommario

Presso il CR ENEA "E. Clementel" di Bologna si terrà, dal 15 al 16 Gennaio 2014, un Workshop tematico dal titolo "LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO", organizzato da ENEA in collaborazione con le principali università italiane che svolgono attività di ricerca in campo nucleare. Il Workshop, promosso nell'ambito delle attività inerenti la Linea Progettuale 2 "Collaborazione internazionale per il nucleare di IV generazione" dell' AdP MSE-ENEA, assume il duplice obiettivo di condividere lo stato dell'arte dei sistemi LFR tra gli stakeholder italiani definendo al contempo, in maniera condivisa e sinergica con il contesto Europeo, le linee di intervento future in ambito LFR.

Note.

Autori:

D. Martelli, M. Tarantino

Copia n.

In carico a: M. Tarantino

2			NOME			
_			FIRMA			
1			NOME			
			FIRMA			0
0	EMISSIONE	25/09/15	NOME	D. Martelli	A. Del Nevo	M. Tarantino
	EWISSIONE	20/03/13	FIRMA	Watthe prille	the Plan	1114
REV.	DESCRIZIONE	DATA		REDAZIONE	CONVALIDA	APPROVAZIONE

di

620

(pagina lasciata intenzionalmente bianca)

Lista dei contenuti

LFR-GEN IV Stato attuale della tecnologia e prospettive di sviluppo	4
Allegato 1. Lista dei partecipanti	6
Allegato 2. Agenda del Workshop	9
Allegato 3. Presentazioni dei partecipanti	13

ENEN Ricerca Sistema Elettrico

1 LFR-GEN IV Stato attuale della tecnologia e prospettive di sviluppo

Dal 15 al 16 gennaio 2015, presso il CR ENEA Bologna "E. Clementel", si è tenuto il Workshop tematico dal titolo "LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO", organizzato da ENEA in collaborazione con le principali università italiane che svolgono attività di ricerca in campo nucleare.

Il Workshop, promosso nell'ambito delle attività inerenti la Linea Progettuale 2 "Collaborazione internazionale per il nucleare di IV generazione" dell' AdP MSE-ENEA, è stato finalizzato ad:

- Analizzare lo stato progettuale della tecnologia dei sistemi LFR partendo dal lavoro svolto in ambito ADP;
- la programmazione delle attività future, definendo le priorità di intervento in ambito italiano in maniera che siano sinergiche al contesto europeo ed internazionale (la Cina sta entrando prepotentemente nel settore);
- armonizzazione le strategie di sviluppo mediante l'incontro di tutti gli stakeholder italiani.

Fig. 1: Ingresso al CR ENEA Bologna

L'Italia, grazie all'ENEA, ANSALDO NUCLEARE e con il contributo fondamentale del CIRTEN, continua a conservare la leadership internazionale sulla progettazione e sullo sviluppo tecnologico dei sistemi LFR, nonostante il sempre più ampio interesse (accompagnato da ingenti investimenti economici) di altri Paesi quali ad esempio la Cina.

Ciò è stato possibile grazie ai continui sforzi fatti da ENEA (che ha sfruttato efficacemente i fondi dell'ADP), sia per accrescere e migliorare le proprie infrastrutture di ricerca (Brasimone e Casaccia), sia per rafforzare le proprie capacità e competenze sulla progettazione dei sistemi nucleari innovativi. (es. gruppo core design di Bologna).

ENEN Ricerca Sistema Elettrico

Tutto ciò è stato fatto sinergicamente con ANSALDO NUCLEARE - capofila del progetto – e progettista del Dimostratore ALFRED.

Questi continui sforzi hanno portato all'istituzione del Consorzio Internazionale FALCON (costituito da ANN, ENEA, ICN e CV-REZ e a breve entrerà a farne parte anche il Consorzio Interuniversitario Italiano), che ha permesso in breve tempo di accrescere la rilevanza internazionale del progetto LFR, di individuare un sito per il DEMO, di coinvolgere un sempre maggior numero di istituti di ricerca europei (es KIT - Germania, GRS - Germania, CRS4 - Sardegna, IIT - Milano), di individuare i possibili canali di finanziamento (fondi ERDF - European Regional Development Fund con il supporto del governo romeno).

Il sistema Italia deve continuare ad investire nel settore, a focalizzare gli sforzi, evitando di disperdere risorse (il progetto di riferimento è ALFRED), cercando di sensibilizzare le istituzioni e coinvolgendo il maggior numero possibile di istituti di ricerca e industrie del settore.

Nel dettaglio le strategie di intervento e sviluppo sono state delineate dall'Ing. Pietro Agostini e dal Dr. Mariano Tarantino, dell'Unità Tecnica del Brasimone, attualmente uno dei più vasti ed attrezzati parco impianti a livello internazionale sulla tecnologia dei metalli liquidi pesanti.

Facenti parte del comitato organizzatore troviamo L'Ing. P. Agostini, il Dr. M. Tarantino, il Dr. A. Del Nevo e il Dr. I. Di Piazza ricercatori UTIS ed infine A. Masinara, amministrativa gestionale presso l'ente di ricerca ENEA Brasimone.

I 54 partecipanti (Allegato 1) di cui 26 rappresentanti delle più prestigiose università italiane (Bologna, Milano, Pisa Roma, Torino), 21 rappresentanti dell'Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 6 rappresentanti delle eccellenze industriali presenti sul territorio nazionale come Ansaldo Nucleare, CSM S.p.a, Merivus, 1 rappresentanti dell'Istituto Italiano di Tecnologia (IIT) sono stati accolti presso l'aula Magna del CR ENEA Bologna (Fig. 1).

L'agenda del Workshop (Allegato 2) è stata suddivisa in 6 sessioni. All'interno della sessione di apertura sono state presentate le strategie e prospettive nazionali ed internazionali sui reattori di quarta generazione refrigerati a piombo liquido. Inoltre, è stata fornita un'ampia panoramica sullo stato attuale e sulle problematiche ancora aperte relative alla progettazione del reattore dimostratore ALFRED (Advanced Lead Fast Reactor Demonstrator). Per finire si è presentato il contributo del Consorsio Interuniversitario per la Ricerca Tecnologica Nucleare allo sviluppo dei reattori refrigerati a piombo.

All'interno delle 5 sessioni tecniche, sono stati presentati ben 30 lavori di ricerca sulle tematiche della progettazione di sistema, l'analisi di sicurezza, Chimica del refrigerante e materiali strutturali, termoidraulica del refrigerante e accoppiamento tra Codici di Calcolo. Nell'Allegato 3 vengono infine riportati i contributi presentati all'interno delle varie sessioni.

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEN Ricerca Sistema Elettrico	ADPFISS – LP2 – 112	0	L	6	620

Allegato 1.

Lista dei partecipanti

	NOME	COGNOME	ISTITUTO
1	Pietro	Agostini	ENEA
2	Morena	Angelucci	UNIPI
3	Massimo	Angiolini	ENEA
4	Gianluca	Barone	UNIPI
5	Marco	Beghi	POLIMI
6	Alessandra	Bellucci	CSM
7	Giancarlo	Bianchini	ENEA
8	Roberto	Bonifetto	POLITO
9	Mario	Bragaglia	UNITV
10	Dominic	Caron	POLITO
11	Daniele	Cerroni	UNIBO
12	Patrizio	Console Camprini	ENEA
13	Mauro	Cappelli	ENEA
14	Mario	Carta	ENEA
15	Marta	Cerini	POLIMI
16	Antonio	Cervone	ENEA
17	Luciano	Cinotti	
18	Marco	Ciotti	ENEA
19	Francesco	Cordella	ENEA
20	Giovanni	Corsini	
21	Carlo	Cristalli	ENEA
22	Giorgio	De Angelis	ENEA
23	Giuseppe	De Antoni	
24	Alessandro	Del Nevo	ENEA
25	Ivan	Di Piazza	ENEA
26	Marica	Eboli	UNIPI
27	Giuseppe	Forasassi	UNIPI
28	Nicola	Forgione	UNIPI
29	Michele	Frignani	ANN
30	Francisco	Garcia Ferrè	IIT
31	Giacomo	Grasso	ENEA
32	Luigi	Lepore	UNIROMA1
33	Rosa	Lo Frano	UNIPI
34	Francesco	Lodi	UNIBO
35	Stefano	Lorenzi	POLIMI
36	Elena	Macerta	POLIMI
37	Sandro	Manservisi	UNIBO
38	Daniele	Martelli	UNIPI
39	Emanuela	Martelli	UNIROMA1
40	Paride	Meloni	ENEA
41	Filippo	Menghini	UNIBO
42	Alessandro	Merli	UNITV
43	Francesca	Nanni	UNITV
44	Emanuele	Negrenti	ENEA
45	Vincenzo	Peluso	ENEA
46	Alessio	Pesetti	UNIPI
47	Davide	Pizzocri	POLIMI
48	Massimiliano	Polidori	ENEA

49	Massimo	Sarotto	ENEA
50	Laura	Savoldi	POLITO
51	Massimo	Sepielli	ENEA
52	Mariano	Tarantino	ENEA
53	Claudio	Testani	CSM
54	Roberto	Zanino	POLITO

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEN Ricerca Sistema Elettrico	ADPFISS – LP2 – 112	0	L	9	620

Allegato 2.

Agenda del Workshop

WORKSHOP TEMATICO

LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

ADP ENEA-MSE (PAR2013-LP2)

Bologna, 15-16 Gennaio, 2015

Centro Ricerche ENEA

"Ezio CLEMENTEL", Bologna, Italia

Presso il CR ENEA "E. Clementel" di Bologna si terrà, dal 15 al 16 Gennaio 2014, un Workshop tematico dal titolo "LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO", organizzato da ENEA in collaborazione con le principali università italiane che svolgono attività di ricerca in campo nucleare.

Il Workshop, promosso nell'ambito delle attività inerenti la Linea Progettuale 2 "Collaborazione internazionale per il nucleare di IV generazione" dell' AdP MSE-ENEA, è finalizzato a :

- > analizzare lo stato attuale della tecnologia dei sistemi LFR partendo dal lavoro svolto in ambito ADP;
- *supportare la programmazione delle attività future, definendo le priorità di intervento in ambito italiano ed europeo;*
- ➤ armonizzazione le strategie di sviluppo mediante l'incontro di tutti gli stakeholder italiani.

Il Workshop assume quindi il duplice obiettivo di condividere lo stato dell'arte dei sistemi LFR tra gli stakeholder italiani definendo al contempo, in maniera condivisa e sinergica con il contesto Europeo, le linee di intervento future in ambito LFR.

Comitato Organizzatore

M. Tarantino P. Agostini A. Del Nevo I. Di Piazza A. Masinara mariano.tarantino@enea.it pietro.agostini@enea.it alessandro.delnevo@enea.it ivan.dipiazza@enea.it annamaria.masinara@enea.it

GIOVEDÌ 15 GENNAIO, 2015

	Ora	TITOLO	SPEAKER
		Sessione di Apertura	Chair: M. Sepielli
V-1	10,30-11,00	Sviluppo dei Sistemi LFR in Europa: strategie e prospettive	P. Agostini
V-2	11,30-12,00	DEMO-LFR ALFRED: Technical Overview	M. Frignani
V-3	12,00-12,30	Il Contributo CIRTEN allo sviluppo dei sistemi LFR	G. Forasassi
	SESSIONE 1	Progettazione di Sistema	Chair: G. Grasso
1-1	12,30–12,50	Studi e Valutazioni del costo del DEMO LFR ALFRED	M. Ciotti
1-2	12,50-13,10	Misure di trasporto neutronico in piombo nel reattore TAPIRO. Rappresentatività degli esperimenti proposti.	M. Carta
1-3	13,10-13,30	Attività di Sviluppo del Codice ERANOS nel campo Non-Lineare Neutroni/Nuclidi	V. Peluso
	13,30-14,30	Pranzo	
1-4	14,30-14,50	Ottimizzazione del nocciolo ALFRED. Stato attuale.	G. Grasso
1-5	14,50-15,10	Tecniche di monitoraggio del nocciolo di ALFRED: considerazioni preliminari	F. Lodi
	SESSIONE 2	Analisi di Sicurezza	Chair: A. Del Nevo
2-1	15,10-15,30	Stato sullo sviluppo di una piattaforma di simulazione ingegneristica per reattori LFR.	E. Negrenti
2-2	15,30-15,50	Modeling and analysis of nuclear fuel pin behavior for innovative lead cooled FBR	D. Pizzocri
2-3	15,50-16,10	Development and validation of an approach and numerical models for safety analysis of FBR	A. Del Nevo
	16,10-16,30	Coffee Break	
2-4	16,30-16,50	Assessment of the structural-dynamic effects caused by the core compaction	R. Lo Frano
2-5	16,50-17,10	Numerical Analysis of Flow Blockage phenomena in the ALFRED FA: preliminary study on neutronic feedback	I. Di Piazza
2-6	17,10-17,30	Studio teorico dell'interazione chimica tra combustibile e refrigerante in sistemi LFR	M. Cerini
2-7	17,30-17,50	Studio delle interazioni fra prodotti di fissione e refrigerante in sistemi LFR	G. De Angelis
2-8	17,50-18,10	Studio di fattibilità di sonde per la misura dei flussi neutronici di un reattore LFR.	L. Lepore
2-9	18,10-18,30	Development and validation of thermal-hydraulic numerical models for FBR	F. Giannetti
	18,30	Fine dei Lavori	

Cena (ore 20,00)

VENERDÌ 16 GENNAIO, 2015

	Ora	TITOLO	SPEAKER
	SESSIONE 3	CHIMICA DEL REFRIGERANTE E MATERIALI STRUTTURALI	CHAIR: M. ANGIOLINI
3-1	9,00-9,20	Strategia per il controllo della chimica nei sistemi LFR. Stato attuale e futuri sviluppo.	S. Bassini
3-2	9,20-9,40	Double Stabilized Steels. Production of DS4 sheets	C. Cristalli
3-3	9,40-10,00	Qualifica coating e materiali strutturali per sistemi LFR	M. Angiolini
3-4	10,00-10,20	Overlay Coating & Diffusion Coating per sistemi LFR	A. Bellucci
3-5	10,20-10,40	Pulsed Laser Deposition. Potenzialità e stato dell'arte.	F. Garcìa Ferrè
	10,40-11,00	Coffee Break	
3-6	11,00-11,20	Rivestimenti nanoceramici: performance sotto irraggiamento.	F. Garcìa Ferrè
3-7	11,20-11,40	Metodiche per la caratterizzazione dei coating.	M. Bragaglia
	SESSIONE 4	Termoidraulica del Refrigerante	Chair: M. Tarantino
4-1	11,40-12,00	ALFRED-SGBT. Preliminary characterization by the HERO test section.	D. Rozzia
4-2	12,00-12,20	12,00-12,20Studio di fattibilità teorico-sperimentale sull'analisi TDR per la misura di livello di un sistema bifaseF. Cordella	
4-3	12,20-12,40	SGTR analysis on large scale facility	A. Pesetti
4-4	12,40-13,00	Pool Thermal-Hydraulic Investigation in CIRCE facility	M. Tarantino
4-5	13,00-13,20	Fuel Pin Bundle Characterization in the NACIE-UP HLM facility	I. DI Piazza
	13,20-14,20	Pranzo	
	SESSIONE 5	ACCOPPIAMENTO CODICI DI CALCOLO	Chair: P. Meloni
5-1	14,20-14,40	Validation of the coupled calculation between RELAP5 STH code and Ansys FLUENT CFD code	N. Forgione
5-2	14,40-15,00	Integration of the FEM-LCORE code in the SALOME platform	S. Manservisi
5-3	15,00-15,20	Development of the neutronic module and benchmark and validation of the thermal-hydraulic module of the FRENETIC code	R. Bonifetto
5-4	15,20-15,40	Progressi nella validazione del codice T/H CATHARE2 attraverso il benchmark LACANES	M. Polidori
		CONCLUSIONI E SVILUPPI FUTURI	Chair: P. Agostini
	16,30	Fine del Workshop	

		Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEN Ricerca Siste	ema Elettrico	ADPFISS – LP2 – 112	0	L	13	620

Allegato 3.

Presentazioni dei partecipanti

Sviluppo dei sistemi LFR in Europa. Strategie e prospettive

P.Agostini AdP LP2 - Brasimone – 15 gennaio 2015

Introduzione

Il reattore veloce refrigerato a piombo rappresenta la miglior soluzione per associare i vantaggi di sostenibilità dei neutroni veloci con la sicurezza assicurata dall'impiego del piombo.

Alcuni vantaggi del piombo sono:

- Temperatura di ebollizione elevata (1749°C). Assieme al doppio contenimento garantisce che in caso di incidente non venga mai scoperto il nocciolo
- Assenza di reattività chimica. Sono evitati fenomeni esplosivi
- Capacità di pozzo termico (densità e temperatura di ebollizione).
 Consente di accumulare energia termica in eccesso in caso di incidente senza danneggiare le strutture
- Circolazione naturale (alta espansione termica e bassa viscosità).
 Garantisce la circolazione naturale e quindi il raffreddamento di emergenza
- Scarsa moderazione dei neutroni. Consente di progettare ampi canali di passaggio del refrigerante favorendo ulteriormente la circolazione naturale

Sostenibilità del reattore LFR

Il reattore veloce a piombo consente la chiusura del ciclo del combustibile. Ciò significa:

- Riciclo multiplo delle scorie ad alta radiotossicità e a lunga vita
- Scarico dei soli Prodotti di Fissione (500 kg/anno) per un più semplice Stoccaggio (decadimento in 400 anni)
- Fabbricazione di combustibile fresco tramite aggiunta di solo Uranio naturale - con un consumo delle risorse almeno <u>100 volte inferiore</u> a quello attuale - o depleto - senza intaccare le risorse naturali

Chiusura del ciclo

Alternatively: Depleted Uranium The actual Adiabatic reactor closure of the fuel cycle Fuel cooling requires a interim storage reactor able Fuel fabrication to manage a Uranium 238 02891 fuel whose composition Uranium is the one conversion Fuel reprocessing resulting from the Homogeneous 101 (DI LI) (DI SO reprocessing reprocessing: Geological repository of its own Actinides Interesting also for waste. VS Uranium mine all the rest proliferation resistance

Sicurezza dei reattori a piombo in condizioni incidentali

Unprotected transient over-power (UTOP): CATHARE results

Results by Grasso and Bandini

circulation in primary system \rightarrow no clad failure in the short and long

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

has been evaluated against a reactivity insertion of 250 pcm within 10 s to envelop all the possible cases

 \rightarrow no clad failure in the short and long term

Accumulo di energia potenziale in vari refrigeranti Toshinsky ICAPP 2011

L'energia potenziale totale (chimica, termica e meccanica) accumulata per metro cubo di refrigerante è il **maggior indicatore per valutare il rischio di diffusione dei radionuclidi in caso di incidente.** Anche in questo ambito il piombo si conferma il refrigerante più sicuro

Coolant	Water	Sodium	Lead, Lead-bismuth
Parameters	P = 16 MPa T = 300 °C	T = 500 °C	T = 500 °C
Maximal potential energy, GJ/m ³ , including:	~ 21,9	~ 10	~ 1,09
Thermal energy <i>including</i> compression potential energy	~ 0,90 ~ 0,15	~ 0,6 None	~ 1,09 None
Potential chemical energy of interaction	With zirconium ~ 11,4	With water 5,1 With air 9,3	None
Potential chemical energy of interaction of released hydrogen with air	~ 9,6	~ 4,3	None

Principali obiettivi di tecnologia del refrigerante (Ulyanov)

Several methods and instruments of coolant technology have been the first to be applied during startup and operation of NPS of Design 705 (1968 - 1990). This allowed avoid previous emergencies (having place in Design NPS K-27 and test facility 27 BT5). Positive experience available is taken into account in the development of modern methods and instruments of coolant technology for reactor facilities with Pb and Pb-Bi coolants.

Main goals of heavy coolant technology (Pb-Bi, Pb) in civil reactor facilities:

 Provision of coolant purity and cleanliness of circulation circuit surfaces of tank arrangement to maintain the designed thermal and hydraulic parameters during long-term operation (several tens years when nuclear power plant operates at nominal power and up to 100%).

2. Prevention of corrosion and erosion of structural materials during long-term operation. (several tens years when NPP operates at nominal power and up to 100%).

3. Meeting of modern safety requirements at different phases of reactor facility operation (coolant preparation, RF startup, current operation, repair and reloading, depressurization, deviation of rated operation modes).

Controllo dell'ossigeno per ottenere ossidazione protettiva (BREST)

Control and regulating of oxygen potential in heavy liquid metal coolant

Oxygen is needed for generating and maintenance of strong protective coating on the surfaces of structural materials.

Excess of oxygen in the coolant results in slag deposition. Low oxygen can result in development of liquid metal corrosion.

Controllo dell'ossigeno tramite immissione di idrogeno e dissoluzione di ossido di Pb (BREST)

Dependence of dissolution rate factor of PbO spheroids on temperature and rate of lead coolant

Pb +[0] Pb0 d_{sph} Pb T, W

 β – mass transfer coefficient, m/s;

*a*_[0] – oxygen thermodynamic activity;

ρ-lead density, kg/m³;

- C_s oxygen saturation concentration in lead, in mass fractions of 1;
- v kinematic viscosity, m²/s;
- D oxygen molecular diffusion coefficient in lead, m^2/s ;

 ϵ – porosity of PbO spheroid layer (accepted as 0.4 for layer of spherical particles);

d_{sph} – spheroid diameter, m;

```
S_P – dissolution surface of PbO, cm<sup>2</sup>.
```

Experimentally proved disc gas handler as the main device for hydrogen purification

Rischio di formazione di slags ostruttivi

Absence of coolant technology instruments can result in negative consequences: slag deposit on heat transfer surfaces, blocking of coolant flow rate along separate circuit sections; high corrosion severity; reduction of facility operation durability, deterioration of radiation situation, etc.

Gli slags sono costituiti da ossidi di piombo e depositi di elementi metallici disciolti

The first submarine "K-27" with Pb-Bi coolant Startup - in 1963 Accident – in 1968 Cause of accident – absence of coolant technology systems

Result of test facility operation without application of methods and instruments of heavy coolant technology

Slag in pipeline

Slag deposit in the circuit during circulation pump tests

Slag deposit in heat exchanger

Such circuit surface conditions have not been observed since the introduction of coolant technology systems into circulation circuits.

Cattura degli slags tramite filtri (BREST)

Filtration of HLMC

Continuous cleaning filter is intended for HLMC purification from mechanical impurities generated in primary circuit as result of HLMC interaction with constructional steels.

Filter operation principle is based on continuous retention of suspended impurities independently on their nature, concentration and sizes in the volume of filtering material.

Filter can be improved to make possible HLMC simultaneous purification from suspended polonium compounds.

Filtering materials of space-occupying type

Fiber glass MKTT-2,2A SIO₂ >95 %, Fiber diameter ~ 6mkm, Heat resistance - 450°C

Metal fabric thickness 2-6 mm, Fiber diameter – 40mkm, Heat resistance – up to 600°C

Fused corundum (screened size Al₂O₃) Granular size - 0.8-1.2 mm, Heat resistance >1000°C

Approccio ENEA alla protezione dalla corrosione

- Sfortunatamente la presenza negli acciai di elementi di lega resistenti alla corrosione (Si ed Al), può conferire fragilità.
- Dall'osservazione di test sperimentali ancora in corso sono stati individuati tre possibili rivestimenti protettivi particolarmente validi:
 - Ossido di alluminio (IIT)
 - Tantalio (Tantaline)
 - Nitruri di Titanio (CSM)
- I tre rivestimenti vengono apportati con tecniche completamente diverse
- Ossido di Alluminio e Tantalio sono stati anche esposti con successo a danneggiamento da neutroni o da ioni pesanti

Coated samples by Al2O3 (IIT)

double irradiation with Au and W @ 600 \degree => NO MAJOR FAILURE OF THE COATINGS: NO CRACKING, NO DELAMINATION

Approccio ENEA alla tecnologia del refrigerante e prospettive

- Saranno completate le verifiche sperimentali sulla validità e affidabilità delle tecnologie di rivestimento protettivo: resistenza a dpa elevati, a sollecitazione meccanica, termica e corrosiva.
- Se le risposte saranno positive, sarà spostato il target del controllo dell'ossigeno, da 10⁻⁶ % wppm a 10⁻⁸ %wppm;
- In questo modo saranno conseguiti interessanti vantaggi:
 - 1. Maggiore facilità di controllo dell'ossigeno in grande volume
 - 2. Maggiore omogeneità del contenuto di ossigeno nelle varie regioni di impianto/reattore
 - 3. Minore rischio di formazione di ostruzioni
 - 4. Minore rischio di depositi e incrostazioni su superfici dedicate allo scambio termico
 - 5. Non necessità di impiegare filtri
 - 6. Semplificazione complessiva della tecnologia del refrigerante
- <u>Dovrà essere sviluppata e messa a punto a tempi brevi una tecnica affidabile per</u> <u>la purificazione del Pb; in particolare per la rimozione dell'ossigeno</u>.
- Dovrà essere confermata la validità delle sonde per ossigeno attualmente in uso

Roadmap della sperimentazione in appoggio

Prima della realizzazione di ALFRED dovranno essere sperimentati i seguenti aspetti:

- Termoidraulica dei transitori incidentali
- Casi specifici di sicurezza (Steam Generator Tube Rupture, Coolant Freezing, Flow Blockage, ...)
- Interazione del refrigerante con il combustibile
- Funzionalità dei componenti
- Ispezione e manipolazione/riparazione/sostituzione
- Protezione da corrosione e tecnologia del metallo liquido
- Resistenza e funzionalità dei materiali strutturali (anche al danno neutronico)

LEADING GEN. IV FACILITIES AT BRASIMONE RC

HELENA

LIFUS5

Facility with several test sections to investigate *water/LBE interaction* and SGTR phenomena

CIRCE 90 LBE tons pool with instrumented bundle and 1to1 scale HX. FPS power 900 kW

NACIE-UP Natural/gas-lift circulation LBE loop with 19-pin instrumented pin

bundle.

CFD

SYS-TH

SIMMER-III and IV

Forced circulation Lead loop with mechanical pump, corrosion test section and valve test section

> Neutronic Fuel Coupling

Other large and small scale exp facilities

Termoidraulica dei transitori incidentali (CIRCE)

Casi di sicurezza (LIFUS 5)

Main purpose of the activity is to perform tests of SGTR in simple geometry in order to collect data for validation of numerical models in MYRRHA relevant conditions

Lifus 5 tests in FP7 THINS Project

Typical results T PbBi 400° T water 240° Pwater 40 bar Duration 3s Injector 4 mm 420g injected

ENE

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Protezione da corrosione e tecnologia del metallo liquido (HELENA e LECOR)

Preparazione ad ALFRED: Consorzio FALCON

- Scambio delle informazioni e revisione tecnica del progetto
- Studi preliminari di licensing e di localizzazione
- Stima dei costi e dei tempi di realizzazione
- Valutazione degli strumenti finanziari disponibili
- Roadmap e piano di implementazione
- Promozione di iniziative e azioni coordinate

In Novembre 2014 anche l'istituto Ceco CVRez ha aderito a pieno titolo al consorzio FALCON.

Vari altri istituti hanno chiesto di aderire ad un «memorandum of agreement» che comporta la sola contribuzione «in kind» allo sviluppo tecnologico

Principali azioni in corso

Inizialmente era previsto che il consorzio FALCON durasse 18 mesi, tuttavia la durata verrà prolungata per consentire il completamento delle principali attività in corso:

- Inserimento di ALFRED in ESFRII,
- partecipazione alla prima call di fondi strutturali per la Romania,
- Redazione della roadmap
- Sottoscrizione del MoA da parte di altri partners internazionali,
- Avvio di progetti H2020 correlati ad ALFRED
- Collaborazione con NIKIET (Russia)

Conclusioni

- Il concetto LFR associa i vantaggi della sostenibilità del ciclo del combustibile all'elevata sicurezza garantita dal piombo
- Le tecnologie di impiego del piombo sono state studiate dai Russi ma non sono ancora state consolidate in modo soddisfacente
- L'approccio tecnologico di ALFRED sarà per certi aspetti diverso da quello seguito dai Russi
- La sperimentazione in appoggio al dimostratore LFR è complessa e richiede un impegno più ampio di quello che attualmente può essere fornito solamente dall'Italia
- Allo scopo di coinvolgere altri attori europei e di attingere ai fondi strutturali dei New Member States è stato costituito il "Consorzio FALCON"
- Sono in corso numerose azioni necessarie ad allargare la presenza straniera in ALFRED ed a rafforzare le opportunità di finanziamento

DEMO-LFR ALFRED: Technical Overview

WORKSHOP TEMATICO

LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

ADP ENEA-MSE (PAR2013-LP2)

Bologna, 15-16 Gennaio, 2015 Centro Ricerche ENEA "Ezio CLEMENTEL", Bologna, Italia

Michele Frignani

michele.frignani@ann.ansaldo.it

CONTENTS

- Introduction and Design Guidelines
- Technical Overview of Main SSCs
 - Reactor Configuration
 - Core Configuration
 - Reactor Control and Shutdown System
 - Inner Vessel and Upper/Lower Core Support Plates
 - Steam Generator
 - Primary Pump
 - Reactor Vessel
 - Decay Heat Removal Systems
 - Secondary System
 - Reactor Building
- FALCON: Technical Activities and Future Developments

INTRODUCTION

TRL concept applied to a new Reactor Technology

- Technology Readiness Level concept: gradual approach to reach maturity from observation of basic principles (TRL1) to mission proven (TRL9)
 - When applied to the development of a new reactor technology, the main progressive steps are:
 - Identification of main issues related to the technology
 - Small scale to Large scale experimental facilities
 - Irradiation tests, fuel and materials development
 - And the main goals are:
 - Exploit full potential of the coolant
 - Include from the beginning Safety in the Design
 - Show sustainability of the fuel cycle
 - Define and evolve a reference conceptual design of the FOAK

MAIN DESIGN GUIDELINES

Top-level Technical Requirements for the ALFRED Design

- ALFRED will be connected to the electrical grid (Reactor Power ~125 MWe)
- ALFRED design should be based on available technology as much as possible, in order to speed up the construction time
- ALFRED shall use structural materials compatible with the corrosive Lead used as coolant (Selected material AISI 316LN, T91, 15-15/Ti)
- ALFRED design shall limit coolant flow velocity to values compatible with the erosive Lead used as coolant
- ALFRED design solutions shall allow components to be removed from the Reactor Vessel to facilitate inspection, maintenance, replacement
- ALFRED design solutions (especially for Safety and Decay Heat Removal function) should be characterized by very robust and reliable choices to smooth the licensing process
- ALFRED Decay Heat Removal Systems shall be based on passive technology to reach the expected high Safety level (low primary system pressure drops to enhance natural circulation)

REACTOR CONFIGURATION

CORE CONFIGURATION

CR

REACTOR CONTROL AND SHUTDOWN SYSTEM

- **Two redundant, independent and diverse shutdown systems** (derived from MYRRHA design)
- The Control Rod (CR) system used for both normal control of the reactor (start-up, reactivity control during the fuel cycle and shutdown) and for SCRAM in case of emergency
 - CR are extracted downward and rise up by buoyancy in case of SCRAM
 - During reactor operation at power CR are most of the time partly inserted allowing reactor power tuning (each rod is inserted for a maximum worth less than 1\$ of reactivity)
- The Safety Rod (SR) system is the redundant and diversified complement to CR used only for SCRAM
 - SR are fully extracted during operation at power
 - SR are extracted upward and inserted downward by the actuation of a pneumatic system (insertion by depressurization – fail safe)
 - A Tungsten ballast is used to maintain SR inserted
 - Reactive worth of each shutdown system is able to shut down the reactor even if the most reactive rod of the system is postulated stuck
- At refuelling both systems are inserted

UPPER AND LOWER CORE SUPPORT PLATES

Lower core support plate

Box structure with two horizontal perforated plates connected by vertical plates. Plates holes are the housing of FAs foots. The plates distance assures the verticality of FAs

Upper core support plate

Box structure as lower grid but more stiff

It has the function to push down the FAs during the reactor operation

A series of preloaded disk springs presses each FA on its lower housing

STEAM GENERATOR

SG GEOMETRY AND PERFORMANCES

Steam Generator Geometry					
Number of coaxial tubes	4				
Slave tube O.D	9.52 mm				
Slave tube thickness	1.07 mm				
Inner tube O.D	19.05 mm				
Inner tube thickness	1.88 mm				
Outer tube O.D	25.4 mm				
Outer tube thickness	1.88 mm				
Outermost tube O.D	31.73 mm				
Outermost tube thickness	2.11 mm				
Length of exchange	6 m				
Number of tubes	510				

Steam Generator Performance			
Removed Power [MW]	37.5		
Core outlet Lead Temperature [°C]	480.0		
Core inlet Lead Temperature [°C]	401.5		
Feedwater Temperature [°C]	335.0		
Immersed bayonet steam outlet T [°C]	451.5		
Steam Plenum Temperature [°C]	450.1		
SG steam/water side global ∆p [bar]	3.3		

PRIMARY PUMP

Primary pump is an axial mechanical pump, always running at constant speed, with blade profile designed to achieve the best efficiency

Parameters	Value
Flow rate	3247.5 kg/s
Head	1.5 m
Outside impeller diameter	0.59 m
Hub diameter	0.39 m
Impeller speed	315 rpm
Number of vanes	5
Vane profile	NACA 23012
Suction pipe velocity	1.12 m/s
Vanes tip velocity	9.8 m/s
Meridian (at impeller entrance and exit) velocity	2.0 m/s

REACTOR VESSEL

- Cylindrical with a torospherical bottom head anchored to reactor pit from top
- RV closed by a roof supporting core and all primary components
- RV upper part divided in two branches by a "Y" junction: the conical skirt (cold) supporting weight and the cylindrical (hot) supporting the Reactor Cover
- Cone frustum welded to the bottom head as radial restraint of IV

C Steam line line

DECAY HEAT REMOVAL SYSTEM

- One non safety-grade system, the secondary system, used for normal decay heat removal
- Two independent, high reliable passive and redundant safety-related DHR systems:
 - in case of unavailability of the secondary system, the DHR1 is called to operate and
 - in the unlike event of unavailability of the first two systems, the DHR2 is called to operate
- DHR-1:

Large Pool-

dain steam

- Isolation Condenser system connected to 4 out of 8 SGs
- DHR-2:
- Isolation Condenser system connected to the other 4 SGs
- Considering that, each SG is continuously monitored, ALFRED is a demonstrator and a redundancy of 266% is maintained, the Diversity concept could be relaxed

DHR Systems features:

- Independence: two different systems with nothing in common
- Redundancy: three out of four loops (of each system) sufficient to fulfil the DHR safety function even if a single failure occurs
- Passivity: using gravity to operate the system (no need of AC power)

Isolation condens

Lout of 4 systems

Condensate Isolation Valve

Workshop Tematico LFR Gen-IV

DHR SYSTEM PERFORMANCES

4 Loops in operation (Maximum performances) Lead temperature < nominal Time to freeze ~ 4 hours 3 Loops in operation (Minimum performances) Lead Peak Temperature ~ 500°C Time to freeze > 8 hours

ISOLATION CONDENSER

Parameter	Value
Upper and lower spherical header diameter	560 mm
Tube diameter	38.1 mm
Number of tubes	16
Average tube length	2 m
Material Inconel	600

SECONDARY SYSTEM

- Power conversion system based on superheated cycle
- Dual turbine configuration, 3 extractions in HP and in LP with an axial outlet
- Net cycle efficiency greater than 41%

Parameter	Value	
Plant net output	125 MWe	
Cycle Net Efficiency	41%	
SG Mass Flow	192.7 kg/s	
SG Pressure outlet	18.2 Mpa	
SG Pressure inlet	18.8 Mpa	
SG Temperature outlet	450°C	

REACTOR BUILDING

FALCON

A way to organize and find solutions

- FALCON consortium set-up on 18-Dec-2013 by: Ansaldo Nucleare, ENEA and ICN
 - Construction Site of ALFRED: Mioveni (ROMANIA)
 - EU organizations invited to join FALCON or tech. agreement (MoA).

•	Sharing of information and technical review – Main activity include a technical review of ALFRED	ANSALDO
•	Licensing and siting preliminary review – First steps with the Safety Authority	ICN
•	Cost estimate and schedule review – Overall project cost and schedule	ANSALDO
•	Assessment of financial instruments Pave the way for infrastructural funds 	ICN
•	Roadmap and implementation plan Overall Roadmap and ancillary facilities 	ENEA
•	Promotion initiatives and coordinated actions Dissemination and coordinated actions 	ENEA

OPEN ISSUES

ALFRED Technical Review...

- Open issues that need to be carefully addressed before defining the reference conceptual design:
 - Primary side design (unused lead above SG outlet...)
 - SG design (structural problems but also T/H distribution)
 - Primary pumps (location, reduce high speed)
 - Diversity of DHR2 (need to differentiate respect to DHR1)
 - Core design not yet finalized
 - Corner fuel pin
 - Effective fuel pin support
 - By-pass flow and mixing
 - Core outlet temperature differences and mixing
- The LEADER Project was able to give a reference configuration but much work has yet to be done before a final configuration is available.

FALCON AND MOA

- Strong interest by several European Organizations
- Memorandum of Agreement (MoA) defined to anticipate technical work already scheduled for the second phase of FALCON:
- The interested organization can:
 - Contact one of the FALCON members
 - Agree on a technical activities program
 - Sign the MoA with the FALCON member
- All contributions in this phase are expected to be of an in-kind nature.
- Goal: constitute a pan-European network of organizations interested in the LFR technology development and ALFRED construction well coordinated by FALCON.

ORGANIZATIONS JOINING THE MOA

- CRS4 (Sardinia Italy): MOA SIGNED ACTIVITY STARTED
- NRG (Petten, The Netherlands): MoA final text (Sept. 2)
- SRS (Rome, Italy): MOA SIGNED ACTIVITY STARTED
- **IIT** (Milan, Italy): activity Agreed under signature
- **KIT** (Karlsruhe, Germany): activity Agreed under signature
- **CIRTEN** (Consortium of Universities, Italy): under signature
- GRS (TSO, Germany): contacts on going
- IRSN MOA info sent to IRSN
- CV-REZ joined FALCON becoming a full member of the consortium
- Activities will be re-distributed accordingly and new activities will be possible.

FALCON INITIATIVES

- FALCON is presently considering the following steps to be done in the short term:
- Present a proposal to the next call for Romania structural funds with a request of about 30 M€ for the construction and testing of several Lead facilities in Mioveni (this can be considered just a starting point)
- Present a proposal to ESFRI (the European Strategy Forum on Research Infrastructures) to include ALFRED and its technology develoopment in the frame of ESFRI. This will permit to highlights the importance of the project at European level and provide added value in terms of possibility to ask for additional funds.

WORKSHOP

"LFR - GEN IV Stato Attuale della Tecnologia e Prospettive di Sviluppo"

Il contributo CIRTEN allo sviluppo dei sistemi LFR

G. Forasassi

Centro Ricerche ENEA, Brasimone, 15 Gennaio, 2015

CONTENUTI

Cos'è il CIRTEN

Temi di Ricerca

Attività tecnico-scientifiche

Roma 26 Novembre 2010 •

Cos'è il CIRTEN

Scopi Principali:

- 1. <u>Promozione</u> della <u>ricerca</u> scientifica e tecnologica nelle università;
- 2. <u>Mantenimento</u> e <u>aggiornamento</u> delle conoscenze nel settore nucleare
- 3. Partecipazione a <u>programmi</u> <u>di ricerca a livello</u> <u>internazionale e nazionale</u> (EURATOM ; EU Framework Programs; AdP, ecc.)
- 4. Collaborazione con Enti di Ricerca e Industria per le <u>attività di R&D</u>

Fra le principali attività e progetti di ricerca svolti in ambito Nazionale ed Internazionale ed attinenti allo sviluppo tecnologico e lo sviluppo delle competenze/E&T dei reattori a metalli liquidi refrigerati a piombo, si ricordano:

- 6th FP "ELSY"
- 7th FP "LEADER"
- 7th FP "ESNII+"
- PRIN 2007
- **4** AdP MSE ENEA 2007-2008
- **AdP MSE ENEA 2008-2009 (1° e 2° annualità)**
- 🔸 PAR 2011
- PAR 2012
- AR 2013

x mm

Misurazione dei profili di velocità (tecnica agli ultrasuoni): i risultati sono stati confrontati con quelli numerici CFD (Fluent e CFX). Attività sviluppata in collaborazione con Ansaldo Nucleare

Circuito sperimentale con acqua (scala 1:1)

Studio fluidodinamico del bersaglio di spallazione windowless del reattore ADS

Studi di sostenibilità volti a massimizzare l'utilizzo del combustibile e a minimizzare le scorie nucleari con i sistemi veloci refrigerati a piombo

Attività POLIMI: studi di neutronica e di bruciamento del combustibile nucleare del reattore adiabatico ELFR. I risultati riguardano l'evoluzione dei parametri principali del reattore (fattore di moltiplicazione, flusso, spettro energetico e massa dei maggiori nuclidi di interesse) in diversi scenari (5 anni – 10 anni di bruciamento).

Modellazione del nocciolo (codice Monte Carlo SERPENT)

Evoluzione temporale del coefficiente di moltiplicazione e di alcuni nuclidi durante l'irraggiamento nel nocciolo e il raffreddamento nell'impianto di riprocessamento.

Modellazione e analisi del comportamento integrale di barretta di combustibile per il progetto di reattori a piombo innovativi

Supporto alla progettazione del combustibile nucleare per reattori veloci

Attività POLIMI:

Revisione critica dei principali modelli fenomenologici (piombo e AIM1)

Estensione del codice di fuel pin performance TRANSURANUS per l'analisi dei reattori veloci a piombo (es. ALFRED)

Analisi di interazione fluido-struttura nei reattori LFR-UniPi

La propagazione delle sollecitazioni dinamiche dal contenimento esterno al RV, sebbene isolato (riduzione delle accelerazioni fino al 40%), determina tensioni localizzati di Von Mises (σ_{max}) che eccedono il limite massimo ammissibile: si propongono modifiche del progetto o layout.

TH module validation

Attività svolta da Polito

1D axial analysis: validation against data from ICE test section @ Brasimone (2012)

2D inter-assembly coupling: benchmark against RELAP5-3D on EBR-II simplified geometry (2013)

Le distribuzioni di tensione e spostamenti indicano una deformazione locale nella zona centrale dell'inner vessel.

Validation of the Coupled Calculation between RELAP5 STH Code and Ansys FLUENT CFD Code

- A coupled STH/CFD tool is developed at DICI-UniPi since 2012 in the framework of the cooperation CIRTEN/ENEA. In the report **CERSE-UNIPI RL 1536/2014** the last developments of the coupling methodology are exposed:
- •Coupled simulation (Explicit coupling scheme) of NC test and comparison with experimental data on test performed on the NACIE facility;
- Optimization of the coupling scheme in order to improve the stability of the model. To achieve this aim an implicit coupling scheme was developed and implemented in the developed tool → reduced CPU time (larger time step), increased stability.
- Parallelization of the User Defined Function (UDF) realized for the Fluent code to receive b.c. data from RELAP5 and to send b.c data to RELAP5 for each CFD time step → allows the use of FLUENT parallel solver reducing the CPU time.
- •Coupled simulations (Implicit coupling scheme + Fluent parallel solver) of FC test and comparison with experimental data on test performed on the NACIE facility and with previous simulations performed using the explicit coupling scheme and the Fluent serial solver.

Sviluppo Piattaforma SALOME LFR

Piattaforma di calcolo ENEA-UNIBO (per LFR)

nascita -> SALOME + FEMLCORE + integrazione + codice di sistema
sviluppo -> SALOME +

multifisica	scala 1	scala 2
termoidraulica	CFD 3D	sistema 1D
strutturale multifase (VOF) neutronica (DRAGON-DONJON)	fluido-struttura interfaccia sez urto medie	modello due fluidi reticolo assembly

DIGJITIONO, ZI-ZZ NOVOLIDIO, ZOIO

PIAT TAFORMA SALUME termoidraulica 3D									
SOFTW	i/o format	Integrazione							
CAD	MED,UNV	LIBMED							
MESH GEN	MED, UNV	LIBMED							
fluidi	MED, HDF5	LIBMED							
fluidi (core)	MED, HDF5	LIBMED							
CFD	CEA-EDF, VARI	LIBMED							
CFD	VARI	LIBMED							
VIS	VARI	LIBMED							
CFD	CEA-EDF VARI	LIBMED							
BIFASE	CEA-EDF VARI	LIBMED							
	SOFTW CAD MESH GEN fluidi fluidi (core) CFD CFD VIS CFD BIFASE	SOFTWi/o formatCADMED,UNVMESH GENMED, UNVfluidiMED,HDF5fluidi (core)MED,HDF5CFDCEA-EDF, VARICFDVARIVISVARIBIFASECEA-EDF VARI							

. .

. ...

50 -P F - 81 LOOP PRIMARS UPPER PLENUM 3D-CPD ID-per ID-seems CORE D-porou

LOWER PLENUM SD-CPD

Piattaforma termoidralica 3D (scala 1)

Attività tecnico-scientifiche

Sviluppo Piattaforma SALOME LFR

Sviluppo Piattaforma SALOME LFR

Piattaforma termoidraulica 1D (sistema)

PIATTAFORMA SALOME termoidraulica 1D

moduli	SOFTW	i/o format	Integrazione
SATURNE 1D	fluidi	CEA-EDF, VARI	LIBMED
SALOME-YACS	sistema	VARI	python
FEMLCORE 1D-CFD	fluidi	MED, HDF5	LIBMED
FEMLCORE 1D-porous fluidi (core)		MED, HDF5	LIBMED
LIBMESH 1D-poroso	fluidi (primario)	VARI	LIBMED
PARAVIEW	VIS	VARI	LIBMED
SALOME-GUITHARE	CAD	CEA-EDF VARI	L-CALCIUM
CATHARE	sistema	CEA-EDF VARI	L-CALCIUM

Integrazione FEMLCORE(3D)-LIBMESH (1D) in SALOME

ALFRED assembly optimization study with the subchannel code ANTEO- UniBo

ANTEO

From the Italian ANalisi TErmoidraulica Ottimizzata

It is a subchannel code, originally developed by ENEA, for liquid metal cooled fuel pin bundles

Achieved Objectives:

1 enhanced geometric description capabilities (hexagonal, square, guide tubes, etc ..)

2 improved modeling for pressure drops and thermal mixing calculation

3 capabilities for predicting clad circumferential temperature distributions and bypass flow

4 definition of an optimized assembly configuration for ALFRED

Pressure Drop calculated by ANTEO [kPa]

Studio di fattibilità di sonde per la misura dei flussi neutronici di un reattore LFR. Concettualizzazione di test sperimentali preliminari sul reattore TAPIRO- UniRoma

Come prevedibile, spostandosi radialmente ed assialmente dal centro del reattore, il flusso neutronico si riduce in entità producendo una riduzione della popolazione neutronica che potrebbe potenzialmente interagire con il rivelatore, causando quindi una riduzione del segnale elettrico potenzialmente ottenibile. Sul piano mediano di nocciolo si ha un andamento 'a cupola', con riduzione del valore medio del flusso, dal centro verso la periferia, di un ordine di grandezza.

Vista in sezione, piano xz, del reattore ALFRED in MCNPX

21/09/2011

Studi di sostenibilità volti a massimizzare l'utilizzo del combustibile e a minimizzare le scorie nucleari con i sistemi veloci refrigerati a piombo

Hp: installazione ADS tipo EFIT in Romania tra 2060 e 2120.

La Romania potrebbe importare MA diventando centro di riferimento per lo smaltimento di MA prodotti anche in regioni limitrofe al costo di 1.3 M€/kg di MA.

Progettazione di una facility in Pb per misure di trasporto neutronico nel reattore TAPIRO

confronto tra lo spettro ottenuto dai **dati sperimentali** e da simulazione **MCNPX**. Flusso totale per 2 kW di potenza alla distanza data:

 $MCNPX = 5E+11 n/cm^2/s$

da procedura di unfolding =5.8E+11 n/cm²/s.

Buon accordo tra dati simulati e 21 • sperimentali

Valutazione della rappresentatività di esperimenti di trasporto neutronico in piombo in una facility collocata nel vano colonna termica del reattore TAPIRO

Il presente lavoro è incentrato sull'analisi di sensitività e correlazione effettuata secondo le procedure di calcolo ERANOS GPT in relazione al reattore di riferimento LFR ELSY ed all'impianto sperimentale (colonna di piombo) del TAPIRO (TLF).

I risultati ottenuti in questo studio preliminare sono incoraggianti poiché indicano un significativo grado di correlazione tra le quantità integrali considerate in questi due sistemi.

confronto tra spettri neutronici nei sistemi TAPIRO (DET1) ed ELSY in corrispondenza delle posizioni considerate per il calcolo dei coefficienti di correlazione. Si possono notare notevoli differenze tra i due profili, anche se nella zona veloce si riscontrano delle analogie.

AdP ENEA-MSE (PAR2013-LP2)

AdP LP2 Analisi di sicurezza

NUMERICAL ANALYSIS OF FLOW BLOCKAGE PHENOMENA IN THE ALFRED FA: PRELIMINARY STUDY ON NEUTRONIC FEEDBACK

Ivan Di Piazza – ENEA ivan.dipiazza@enea.it Patrizio Console Camprini – ENEA

LFR-GEN IV Workshop, ENEA R.C. Bologna, January 15-16, 2015

INDEX: FLOW BLOCKAGE IN LFR FA

- Framework
- Aim of the work
- Previous work
- Literature review
- Plan of the work
- Coupling methodology
- Neutronic model
- CFD model
- **Results**
- Conclusions

The *flow blockage accident* in a Fuel Assembly (FA) of a nuclear reactor consists in a *partial or total occlusion of the flow passage area*. This leads in general to a *reduced heat transfer* between the FA and the coolant and/or *reduced mass flow rate* potentially causing a temperature peak in the clad which can eventually lead to the fusion of the clad itself.

While a partial blockage at the *fuel assembly foot* may be dangerous for the integrity of the FA (e.g. *Fermi 1 fuel meltdown accident*), see NRC (2011) and Bertini (1980), the phenomena can be investigated and assessed by an integral system code in order to devise proper mitigation actions. On the other hand, **an internal blockage can be even more dangerous** and it is not easy to detect; this kind of blockage can be more effectively modeled and studied by a proper use of a **CFD** code.

Regarding the *sodium fast reactors*, they adopt generally wire-spaced bundles, and the accumulation of debris from failed fuel pins or broken wires, generally occurs **along the wire**. Therefore, in this case, the preferential shape of the blockage is elongated *and it follows the helicoid wire* (Schultheiss, 1987).

For **grid-spaced fuel assemblies**, experimental results on blockage growth by particles show that particles with sizes spread around the subchannel dimensions are collected at the spacer grid. A horizontal *plate like* particle bed with strong radial growth tendency has been found (Schultheiss, 1987).

FRAMEWORK: FLOW BLOCKAGE IN LFR FA

Nell'ambito del precedente PAR 2012, è stato già messo a punto una metodologia di analisi numerica attraverso la fluidodinamica computazionale (CFD) sul flow-blockage in elementi di combustibile (FA) refrigerati a metallo liquido pesante in ambito tecnologia LFR.

L'elemento esagonale chiuso del progetto di dimostratore LFR ALFRED è stato preso in esame per lo studio. Il modello CFD presenta un elevato livello di dettaglio ed include le diverse regioni del FA: ingresso, zona attiva, follower, FA plenum. I risultati sono in linea con le aspettative e sono oggetto di pubblicazione su riviste internazionali (NED).

PAR 2013-2014

- Le analisi suddette, pur essendo molto dettagliate ed accurate sul piano geometrico e termo-fluidodinamico, presentano il limite di **non tenere conto della retroazione neutronica locale** dovuta al riscaldamento anomalo nei sottocanali bloccati.
- Per tener conto di questo effetto e nella direzione di una metodologia integrata CFD-neutronica, nel presente anno si svilupperà un accoppiamento della CFD (ANSYS CFX) con un codice di neutronica.
- Si opta per il codice deterministico di trasporto **ERANOS** (European Reactor Analysis Optimized System), che costituisce il riferimento europeo nella reattoristica veloce.

AIM OF THE WORK

From these remarks, the most likely internal blockage in a grid-spaced bundle is *at the lower spacer grid*, and, if the spacer grid is positioned in the active region, a remarkable effect can be evidenced and a possible damage can occur.

In principle, in the latter case, two different effects can be distinguished:

- A *local* effect due to the stagnation-recirculation/wake region downstream of the blockage, with a local <u>minimum of the heat transfer</u> and a clad temperature peak;
- A *global* 'subchannel' effect due to the <u>lower mass flow rate</u> in the blocked subchannels; this effect leads to an increase of the bulk fluid temperature with respect to the 'unblocked' regions and a consequent peak in the clad temperature at the end of the active region.

A CFD study has been carried out on fluid flow and heat transfer in the HLM-cooled Fuel

Pin Bundle of the ALFRED LFR DEMO.

Wrap.

Clad

A CFD study has been carried out on fluid flow and heat transfer in the HLM-cooled Fuel Pin Bundle of the **ALFRED LFR DEMO**.

Rod diameter d	10.5 mm
Pitch to diameter ratio p/d	1.3238
Subchannel Equivalent Diameter D _{eq}	9.68 mm
Number of fuel rods	127
Clearance between assemblies	5 mm
Assembly pitch	171 mm
Mean Assembly Power	1.75 MW
Mean Rod Power	13.814 kW
Mean Wall Heat Flux q _{wall}	0.7 MW/m ²
Conservative Wall Heat Flux	1 MW/m ²
(for engineering computations)	
Axial Linear power peak factor	1.15
Active Height L	0.6 m
Lead Inlet Temperature T _{inlet}	400 °C
Lead Outlet Temperature T _{outlet}	470 °C
Lead Bulk Velocity	1.4 m/s
Lead flow average FA	144.1 kg/s
Bypass flow average FA (3%)	2.76 kg/s
Clad Maximum Temperature	550 °C
(expected under nominal conditions)	
Total number of FA in the CORE	171
Total Reactor Thermal Power	300 MW

Blockage at the beginning of the active region

Conjugate heat transfer in clad (Ti1515), wrap(T91) and bypass

Table 6 Power density due to the gamma release in the FA.

Table 1 Physical properties of Lead at 450 °C.

$\rho [kg/m^3]$	Density	10503
$v[m^2/s]$	Kinematic viscosity	1.9.10-7
k [W/mK]	Thermal Conductivity	17.15
$c_p \left[J/kgK \right]$	Specific heat at constant pressure	145.9
Pr	Prandtl number	0.01697
α[1/K]	Thermal expansion coefficient	1.137.10-4

Table 2 Physical properties of Ti1515 (Clad material) at 450 °C.

$ ho [kg/m^3]$	Density	7800
k [W/mK]	Thermal Conductivity	20.2
$c_p \left[J/kgK \right]$	Specific heat at constant pressure	565

Table 3 Physical properties of T91 (Wrap material) at 450 °C.

$\rho [kg/m^3]$	Density	7600
k [W/mK]	Thermal Conductivity	28.3
$c_p \left[J/kgK \right]$	Specific heat at constant pressure	600

Mass flow rate mextracted from RELAP simulations by Bandini et al. (2013, FR13); The accuracy is not very important ______ for most of the cases ($m \sim m_0$)

Table 7 Test matrix adopted for the flow blockage computations in the ALFRED FA

CASE Number	ТҮРЕ	BlockTYPE	N _{block}	β	[kg/s]	m/ m ₀
0	STATIONARY	-	0	0.000	144.14	1.00
OTRANS	TRANSIENT	-	0	0.000	144.14	1.00
1	STATIONARY	CENTRAL	1	0.008	144.14	1.00
2	STATIONARY	CENTRAL	7	0.055	144.14	1.00
11	STATIONARY	CENTRAL	19	0.150	136.93	0.95
12	STATIONARY	CENTRAL	37	0.291	129.72	0.9
13	STATIONARY	CENTRAL	61	0.480	108.10	0.75
19	TRANSIENT	SIDE	3	0.024	144.14	1
20	STATIONARY	CORNER	3	0.024	144.14	1
21	STATIONARY	CENTRAL	19	0.150	136.93	0.95
28	TRANSIENT	CENTRAL	1	0.008	144.14	1
29	TRANSIENT	CENTRAL	7	0.055	144.14	1
30	TRANSIENT	CENTRAL	19	0.150	136.93	0.95

Computational mesh adopted

- ANSYS CFX 13
- SST k-ω Menter (1994)
- $y^+ \sim 1$ at the wall
- $N_{nodes} \sim 22 \cdot 10^6$ (160 axial)
- $\Delta t \sim 1 \text{ ms} (CFL \sim 1)$
- q_{wall}=1 MW/m²

Unperturbed condition (case 0)

Nblock=1, β =0.008, case 1, stationary

Nblock=7, β =0.055, case 2, stationary

ENE

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

AGENZIA NAZIONALE

ANSY

Nblock=19, β =0.15, case 11, stationary

Nblock=37, β =0.29, case 12, stationary

- Local effect vs subchannel 'global' effect
- Basic phenomenology addressed: recirculation vortex downstream the blockage
- Local phenomena dominant for 'high' blockage parameter $\boldsymbol{\beta}$

Transient solutions

... very long run..

CASE Number	ТҮРЕ	BlockTYPE	N _{block}	β	[kg/s]	m/ m _o
1	STATIONARY	CENTRAL	1	0.008	144.14	1.00
2	STATIONARY	CENTRAL	7	0.055	144.14	1.00
11	STATIONARY	CENTRAL	19	0.150	136.93	0.95
28	TRANSIENT	CENTRAL	1	0.008	144.14	1
29	TRANSIENT	CENTRAL	7	0.055	144.14	1
30	TRANSIENT	CENTRAL	19	0.150	136.93	0.95

Transient solutions

CASE Number	ТҮРЕ	BlockTYPE	N _{block}	β	[kg/s]	m/ m ₀
28	TRANSIENT	CENTRAL	1	0.008	144.14	1
29	TRANSIENT	CENTRAL	7	0.055	144.14	1
30	TRANSIENT	CENTRAL	19	0.150	136.93	0.95

CASE Number	ТҮРЕ	BlockTYPE	N _{block}	β	[kg/s]	m/ m0	T _{max,loc} [°C]	T _{max,end} [°C]	ΔT _{out} [°C]
0	STATIONARY	-	0	0.000	144.14	1.00	442	563	18
1	STATIONARY	CENTRAL	1	0.008	144.14	1.00	450	580	21
2	STATIONARY	CENTRAL	7	0.055	144.14	1.00	584	605	55
11	STATIONARY	CENTRAL	19	0.150	136.93	0.95	734	722	108
28	TRANSIENT	CENTRAL	1	0.008	144.14	1.00	450	584	25
29	TRANSIENT	CENTRAL	7	0.055	144.14	1.00	565	657	55
30	TRANSIENT	CENTRAL	19	0.150	136.93	0.95	800	722	90
12	STATIONARY	CENTRAL	37	0.291	129.72	0.9	1030	820	135
13	STATIONARY	CENTRAL	61	0.480	108.10	0.75	1550	1250	140

Detectability By TC in the plenum region

 Nuclear Engineering and Design 276 (2014) 202-215

 Contents lists available at ScienceDirect
 Indue Engineering

 Nuclear Engineering and Design
 journal homepage: www.elsevier.com/locate/nucengdes

A CFD analysis of flow blockage phenomena in ALFRED LFR demo fuel assembly

Ivan Di Piazza^{a,*}, Fabrizio Magugliani^b, Mariano Tarantino^a, Alessandro Alemberti^b ^a Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Italy ^b Ansaldo Nucleare, ANN, Corso Perrone n.25, Cenova, Italy

HIGHLIGHTS

FLOW BLOCKAGE CFD: CONCLUSIONS

• A CFD analysis by fully resolved RANS simulations has been carried on **fluid flow and heat transfer in the case of flow blockage in heavy liquid metal cooled fuel assemblies**. The **hexagonal closed ALFRED FA** have been considered for the study. The model includes the different *FA regions* (entry, active, follower, plenum), the *conjugate heat transfer* in the clad and the wrap, the bypass and power released by gamma. All the pins of the FA have been modeled and no special symmetry planes have been considered.

PER LE NUOVE TECNOLOGIE, L'ENERGI LO SVILUPPO ECONOMICO SOSTENIBILI

- Two main effects can be distinguished in a flow blockage: a local effect in the wake/recirculation region downstream the blockage and a global effect due to the lower mass flow rate in the blocked subchannels; the former effect gives rise to a temperature peak behind the blockage and it is dominant for large blockages (β >0.1-0.2), while the latter effect determines a temperature peak at the end of the active region and it is dominant for small blockages (β <0.1).
- *The blockage area has been placed at the beginning of the active region*, so that both overmentioned phenomena can fully take place. The mass flow rate at the different degree of blockage has been imposed from preliminary *system code simulations* (minor influence).
- Results indicate that a blockage of ~15% (in terms of area) leads to a maximum clad temperature around 800 °C, and this condition is reached in a characteristic time of 3-4 s without overshoot. Local clad temperatures around 1000 °C can be reached for blockages of 30% or more.
- CFD simulations indicate that *Blockages* >15% could be detected by putting thermocouples in the plenum region of the FA.

FLOW BLOCKAGE: LITERATURE REVIEW (NC)

Neutron Kinetics (NK) analysis supporting core design:

- 1. Whole-core feedback effects for main operative parameters;
- 2. Local variations and related feedback for main operative parameters;

Multi-step approach towards design enhanced assessments:

✓ Semi-analytical coupling evaluations (design phase)

FD analysis of the dynamic behaviour of a fuel rod subchannel in percritical water reactor with point kinetics

nanuel Ampomah-Amoakoª, Edward H.K. Akahoª, Benjamin J.B. Nyarkoª, Walter Ambrosini

Whole core feedback coefficients weighted by importance function (point kinetics)

Computed parameter	Unit	BoC	
Effective delayed neutron fraction	pem	336	
Control rods upshift of 1 mm	pem	-19.2	
Safety rods upshift of 1 mm	pem	0.225	
Lead expansion coefficient ⁸	pem/K	-0.271	
Axial clad expansion	pcm/K	0.037	
Axial wrapper tube expansion	pcm/K	0.022	
Radial clad expansion	pcm/K	0.008	
Radial wrapper tube expansion	pcm/K	0.002	
Grid expansion	pcm/K	-0.762	

Global core feedback Coefficients (global properties) Neutron importance (adjoint) (local effect)

Complete coupling through chain codes (extended simulations)

CFD + **neutron transport** for local and global insights

high-fidelity for systems response and overview but time-consuming An immersed body method for coupled neutron transport and therma

PLAN OF WORK

Reactivity feedback coefficients regarding single channel Investigated through following procedure:

• Core volume is partitioned

- radial *domain split*
- axial domain split

Main system parameters concerned:Fuel Doopler impact (+350 °C variation)Lead density (5% variation)Fuel density (5% variation)Structural steel density (5% variation)Coolant void (absorpion / spectrum)

Feedback coefficients are obtained

• Flux amplitude transported according to pseudo-lumped parameters applied *locally*

$$\frac{dA(t)}{dt} = \frac{\Delta\rho(T) - \beta_{eff}}{\Lambda} A(t) + \sum_{i} \lambda_{i} C_{i}$$
$$\frac{dC_{i}(t)}{dt} = -\lambda_{i} C_{i} + \frac{\beta_{i}}{\Lambda} A(t)$$

 $\Delta \rho(T) = \text{inserted reactivity}$ $\beta_{\text{eff}} = \text{delayed neutron fraction}$ $\Lambda = \text{prompt neutron lifetime}$

ALFRED core is simulated ERANOS 2.1 reference fast reactor European code

NEUTRONIC ISSUES

- Neutron point kinetics main features:
 - flux shape kept constant during transient
 - **controlling parameters** obtained as lumped system quantities <u>(global information)</u> (reactivity, delayed fraction, delayed groups, neutron lifetime)
- Present coupling evaluations:
 - flux shape kept constant through heat generation term
 - parameters with local variations embedded (local insight)

Classical approach

- Nominal shape (reactivity)
- Nominal shape (heat generation)
- Global parameters variation
- All-core effects

<u>All-flux tuned</u> <u>through all-core parameters</u>

Present proposed method

- Modified shape (reactivity)
- Nominal shape (heat generation)
- Local parameters variation
- Local effects

<u>All-flux tuned</u> <u>through channel parameters</u>

COUPLING METHODOLOGY

Schematic representation of the method used to quantify the neutronic feedback effect for the flow blockage. The effect of the reactivity insertion on the power is then evaluated by the implementation of the 6-groups point kinetic equations into the CFX code. This scheme opens the possibility of a future two-way coupling between codes.

COUPLING METHODOLOGY

Going in some details, the ERANOS code provides the feedback coefficients c_i with respect to previously listed: Doppler effect in the fuel, fuel density, coolant density, steel density and coolant void. The feedback coefficients and their meaning are summarized in Table 10. Table 10 Feedback coefficients provided by the ERANOS code.

	Doppler	Fuel Density	Coolant Density	Steel Density
Name	C ₁	c ₂	c ₃	C ₄
Phys. Unit	[pcm/K]	[pcm/%density]	[pcm/%density]	[pcm/%density]

In our case, the coolant void coefficient is not of interest because the boiling of the lead during a blockage is virtually impossible due to the very high boiling temperature (T_{boil} ~1700 °C). The density coefficients c_2 , c_3 , c_4 are here expressed with respect to the percentage variation of the density, i.e. they express numerically the reactivity insertion due to a positive variation of density of 1%.

The reactivity insertion due to the transient is then evaluated by multiplying coefficients times the relative variation of temperature or densities derived by the CFD simulation without feedback.

All the contributions are then cumulated together in a total reactivity insertion $\Delta \rho_{tot}[pcm] = c_1 \cdot \Delta T_{fuel} + c_2 \cdot \Delta \hat{\rho}_{fuel} + c_3 \cdot \Delta \hat{\rho}_{coolant} + c_4 \cdot \Delta \hat{\rho}_{steel}$

This latter reactivity is now inserted as forcing term in the point kinetic equations solved by CFX multiplied by the normalized temperature variation in the transient:

$$\Delta \rho(t) = \Delta \rho_{tot} \cdot \frac{\Delta T(t)}{\Delta T_{max}}$$

 ΔT_{max} is the coherent temperature variation. According to previous, linear effects are superimposed for configurations close to nominal.

ERANOS MODEL

ALFRED core model considered within the framework of the present study is implemented according to design progress report (Petrovich (2013)). Main core parameters are as listed in table 11.

Table 11 Main core neutronic parameters for ERANOS code model implemented.

Fuel assembly concerned by neutronic analysis is the **central one** - coherent with the thermal-hydraulic model. Material properties and operating conditions are resumed in table 12.

Table 12 Main core operating temperature parameters and material density.

Material	Density	Mean Temperature
Fuel (inner-outer)	10.49 g/cm3	900°C
Cladding (1515Ti)	7.95 g/cm3	460°C
Structural (T91)	7.73 g/cm3	460°C
Coolant (inlet)	11.01 g/cm3	400°C
Coolant (core midplane)	11.01 g/cm3	440°C
Coolant (outlet)	11.01 g/cm3	480°C

Core Power	300 MW _{th}
Core configuration	Hexagonal FA pattern
Inner Core Region	57 FA – 21.7% Pu enriched
Outer Core Region	114 FA – 27.8% Pu enriched
Fuel type	MOX fuel (U/Pu-O ₂)
Control Rod Positions	$12 \text{ FA} (B_4 \text{C rods})$
Safety Rod Positions	$4 \text{ FA} (B_4 \text{C rods})$
Cladding material	1515Ti alloy
Active height	60 cm
Active radius	53 cm (8 annular hex slots)
Coolant/reflector	Liquid lead
Fuel burnup considered	Fresh (BOL)

ERANOS MODEL

First, deterministic calculations were carried out starting from cell code **ECCO** which is a part of ERANOS 2.1 package. Computational domain is divided in several cells, both treated in homogeneous and in heterogeneous way. A cell is intended as a reactor region in which a particular neutron spectrum is present – dedicated neutronic calculations are performed.

Figure 1 ERANOS model for neutronic calculation for cell code ECCO.

ERANOS MODEL: RESULTS

Simple variations are considered, regarding most impacting thermal-hydraulic perturbations occurring during the flow blockage transient – reported in table 14.

Perturbation	Intensity Considered
Fuel Doppler broadening	$\Delta T = +350^{\circ}C$ (Ref. 950°C)
Fuel density	$\Delta \rho = -5\%$
Structural density	$\Delta \rho = -5\%$
Coolant density	$\Delta \rho = -5\%$

		DELTA RHO	DELTA RHO	DELTA RHO	DELTA RHO
		Doppler	Fuel Density	Coolant Density	Steel Density
		+ 350°C	-5%	-5%	-5%
		[pcm]	[pcm]	[pcm]	[pcm]
Slot	1	-0.7	-8	-1.5	0.0
Slot	2	-0.6	-9	-0.1	0.4
Slot	3	-0.5	-10	1.0	0.7
Slot	4	-0.5	-11	1.8	1.0
Slot	5	-0.5	-11	2.1	1.1
Slot	6	-0.4	-11	1.9	1.1
Slot	7	-0.4	-10	1.4	0.9
Slot	8	-0.3	-9	1	0.8
Slot	9	-0.3	-7	0.5	0.6
Slot	10	-0.1	-6	-0.1	0.4
Slot	11	-0.1	-5	-0.9	0.1
Slot	12	-0.1	-4	-1.5	-0.1
		-4.5	-101	5.6	7

POWER EVALUATION: CFX IMPLEMENTATION

To compute the neutronic feedback on the FA power in the case of blockage, the 6 groups point kinetic equations (Henry (1975)) were implemented in the ANSYS CFX 15:

$$\frac{dA(t)}{dt} = \frac{\Delta\rho(t) - \beta_{eff}}{\Lambda} \cdot A(t) + \sum_{i=1}^{6} \lambda_i C_i$$
(2)

$$\frac{dC_i(t)}{dt} = -\lambda_i C_i + \frac{\beta_i}{\Lambda} \cdot A(t)$$
(3)

where A(t) is the dimensionless normalized power, $\Delta \rho(t)$ is the reactivity inserted (forcing term), C_i is the *i*th populations of precursors, λ_i is the decay constant of the *i*th precursor group, β_i is the fraction of all fission neutrons emitted that appear from the *i*th precursor group, $\beta_{eff} = \sum \beta_i$ is the total fraction of fission neutrons which are delayed, Λ is the prompt neutron lifetime.

β ₁ [pcm]	11.6	
β ₂ [pcm]	101	
β ₃ [pcm]	71.5	
β ₄ [pcm]	110	
β ₅ [pcm]	28.8	
β ₆ [pcm]	15	Nuclear parameters relative to the point kinetic equations in the
$\boldsymbol{\beta}_{eff}$	338	ALFRED reactor.
[pcm]		
λ_1 [1/s]	0.01247	
λ_2 [1/s]	0.0305	
λ ₃ [1/s]	0.1114	
λ ₄ [1/s]	0.3014	
λ ₅ [1/s]	1.1363	
λ ₆ [1/s]	3.0137	

POWER EVALUATION

To test the method, a simplified version of the point reactor kinetic equations with 1 group was implemented for which analytical solution yields:

$$\frac{dA(t)}{dt} = \frac{\Delta\rho(t) - \beta_{eff}}{\Lambda} \cdot A(t) + \lambda C$$
(4)

$$\frac{dC(t)}{dt} = -\lambda C + \frac{\beta_{eff}}{\Lambda} \cdot A(t)$$
(5)

Two test cases, namely C01 and C02, were solved for negative and positive reactivity insertion with the parameters in Table 17, representative of a typical thermal reactor.

	C01	C02
Λ [s]	10-3	10-3
β_{eff} [pcm]	750	750
λ [1/s]	0.08	0.08
$\Delta \rho$ [pcm]	250	-250

Good agreement with analytical results

POWER EVALUATION

After this validation, the full system of 6 equations were integrated for the ALFRED reactor in case of blockage. The reference case chosen for the evaluation is case 30 in Table 7, i.e. a central blockage with 15% of the flow area blocked. The reactivity insertion can be deduced by the ERANOS coefficients according to a conservative fuel density variation of about 1%. Actually, coefficients c_1 , c_2 and c_4 are too small to give a significant reactivity insertion during the transient. The only relevant contribution is due to the density variation of the fuel. This result is important and provides useful information on the neutronic feedback behaviour in case of different transients. If conservatively, 1% of variation in fuel density is assumed, about -20 pcm are introduced in the FA due to the flow blockage transient. The integration of the point kinetics with this forcing term, leads to the normalized power behaviour shown in Figure.

- In 10 s of transient, a variation of power around 10% can be assessed conservatively.
- According to these numbers, it is clear that the neutronic feedback in the case of blockage can be considered as slightly impacting the design as far as safety calculations are concerned.

CONCLUSIONS

- A CFD analysis by fully resolved RANS simulations has been carried on **fluid flow and heat transfer in the case of flow blockage in heavy liquid metal cooled fuel assemblies**. The **hexagonal closed ALFRED FA** have been considered for the study. The model includes the different *FA regions* (entry, active, follower, plenum), the *conjugate heat transfer* in the clad and the wrap, the bypass and power released by gamma. All the pins of the FA have been modeled and no special symmetry planes have been considered;
- A first step towards the coupling between NK and CFD is ongoing this year;
- The codes are: **ERANOS** and **CFX**;
- **ERANOS** is used to implement a *local effect* due to the overheating of the FA in a blockage;
- Reactivity feedback coefficients are obtained and the 6 groups point kinetics is used in CFX;
- The **feedback effect is therefore quantified** in a transient CFD simulation;
- In 10 s of transient, <u>a variation of power around 10% can be assessed conservatively</u>.
- According to these numbers, it is clear that the neutronic feedback in the case of blockage can be considered as <u>slightly impacting the design</u> as far as safety calculations are concerned.

FUTURE WORK

• A potential TH experiment of flow blockage with electrical pins has to be carried out on a 'scaled' FA with 19 or 37 pins (economic constraint) (SESAME H2020 project); (*Exp data + code validation for specific geom and conditions*)

• The scalability of the experiment to the blockage in the ALFRED FA must be investigated;

• The role of conduction through the wrap towards the neighboring FA should be investigated (7 FA);

PER LE NUOVE TECNOLOGIE, L'ENERO E LO SVILUPPO ECONOMICO SOSTENIBI

WORKSHOP TEMATICO

LFR-Gen IV: stato attuale della tecnologia e prospettive di sviluppo

ADP ENEA-MSE (PAR2013-LP2)

Studio teorico dell'interazione chimica tra combustibile e refrigerante in sistemi LFR

E. Macerata, E. Mossini, M. Cerini, M. Negrin, A. Tosolin, M. Giola, M. Mariani

Bologna, 15-16 Gennaio, 2015

- 1. Introduzione
- 2. Obiettivi e Approccio
- 3. Stima di grandezze termodinamiche
 - 1. Risultati PAR precedenti
 - 2. Progressi PAR 2013
- 4. Composizione all'equilibrio termodinamico
 - 1. Risultati PAR precedenti
 - 2. Progressi PAR 2013
- 5. Conclusioni e Attività future-PAR2014

1/2

POLITECNICO DI MILANO

Composizione del combustibile Coinvolgimento della guaina Temperatura del sistema Dimensione della fessurazione Presenza di ossigeno nel refrigerante

Studio sperimentale costoso e difficoltoso

Studio computazionale

di supporto per indirizzare gli esperimenti

- Concentrazione di FP variabile con l'irraggiamento;
- Variazione di proprietà chimiche durante l'irraggiamento;
- Aumento del rapporto O/M nel combustibile col burn-up;
- Gradienti di composizione dovuti a gradienti termici.

Sistema multicomponente e multifase

Per un sistema multicomponente e multifase a T e p

Stima di grandezze termodinamiche: Risultati PAR precedenti

• Compilazione di un Database di parametri termodinamici per i sistemi: $U_{metallico} - Pb$ $Pu_{metallico} - Pb$ $UO_2 - Pb$ $(U_{0.8}Pu_{0.2})O_2 - Pb$

Metodi **semi-empirici**

- Individuazione di diversi metodi semi-empirici per la stima di parametri termodinamici
- Valutazione di entalpia di formazione ΔH^f e entalpia di soluzione ΔH^{sol} mediante metodo Miedema e sua estensione (di Neuhasen) al gruppo dei calcogeni
- Validazione del metodo su ossidi e intermetallici di U, Pu e Pb

Composto	Δ _f H _{298K} ⁰ _{calc} [kJ/mol]	Δ _f H _{298K} ⁰ _{exp} [kJ/mol]	Δ
Pb ₃ U	-79.2	-73.7 ± 16.7	\checkmark
U ₄ O ₉	-3841.5	-4510.4	-15%
Pu ₂ O ₃	-1578.5	-1799.1	-15%
PbO	-220.2	-220.0	\checkmark
PuFe ₂	-25.2	-27.2 ± 5.0	\checkmark

<u>Valutazione</u> dell'entalpia di formazione per i composti Pu-Pb

Composto	$\Delta_{\rm f} H_{\rm 298K}^0$ [kJ/mol]
PbPu ₃	-146.4
Pb ₂ Pu	-109.8
Pb ₃ Pu	-110.8

Entalpia di formazione e di soluzione - ossidi e intermetallici binari

in fase solida ottenuti dalla combinazione del Pb con :

- •U, Pu e O (fuel);
- •Ag, Ba, Cd, Cs, Sr, Y, Iantanidi, Pd, Rb, Ru, Sb, Sn, Zr (MOX_{irr})
- Fe, Cr, Mo, Mn, Si, Ni, Co, N, C, S, P, W, Nb, V, Ti, B, Cu, Al (guaina).

Entalpia di formazione:

- ΔH^f positive per Pb Guaina
- ΔH^f negative per Pb FPs, U, Pu

Entalpia di soluzione

in accordo con il dato sperimentale dove disponibile

Entalpia di formazione - ossidi e intermetallici ternari

Approssimazione di Gallego

 $\Delta H^c_{ABC} = \Delta H^c_{AB} + \Delta H^c_{BC} + \Delta H^c_{AC}$ dove

 $\Delta H_{ij}^c = x_i x_j \left(x_j \Delta h_{i \ in \ j}^c + x_i \Delta h_{j \ in \ i}^c \right)$

Δh^c è l'entalpia a diluizione infinita per i sistemi binari

Approssimazione di Ray

$$\Delta H_{ABC} = \Phi_1 \Delta H_{AB}(\alpha) + \Phi_2 \Delta H_{BC}(\beta) + \Phi_3 \Delta H_{CA}(\gamma)$$

 $\alpha,\,\beta$ e γ sono le frazioni atomiche delle specie A, B e C nei composti AB, BC e CA

 $\Phi_1 \ \Phi_2 \ \Phi_3$ sono i coefficienti assegnati ai composti binari

Estensione di Gallego da risultati più accurati

•Pb-U-Pu;

- Pb-Cs-Sr, Pb-Cs-Y, Pb-Cs-Tc, Pb-Sr-Y, Pb-Sr-Tc, Pb-Y-Tc, Pb-Cs-U, Pb-Cs-Pu, Pb-Sr-U, Pb-Sr-Pu, Pb-Y-U, Pb-Y-Pu;
- Pb-O-Cr/Mo/Ti;
- Pb-O-Cu/Mo/Ni/Ti

Entropia - intermetallici binari

Metodo *Witusiewicz-Sommer* → Entropia di miscelamento per leghe liquide binarie

$$\Delta \overline{S}^{XS}(x,T) = \Omega \left[\frac{\Delta H(x,T)}{T} + x(1-x)^2 R P_T \right]$$

dove:

$$\Omega = \frac{1}{2\pi} \left(\frac{T_m}{T_b} + 1 \right)^e$$
$$P_T = \frac{1}{2} + \frac{4\overline{T}_m}{3T} + 2\ln\left(\frac{T}{\overline{T}_b - \overline{T}_m}\right)$$

 Entalpia di soluzione equimolare calcolata col metodo Miedema
 T_b temperatura di ebollizione
 T_m temperatura di fusione

Entropia totale è calcolata combinando l'<u>entropia di miscelamento</u> con l'<u>entropia</u> ideale, considerando il numero di atomi nel composto

Entropia - intermetallici binari

Validazione dell'approccio per confronto con la letteratura

Composto	Entropia totale, S _{tot} [J/Kmol]				
	calcolata	sperimentale			
AuSn	75.83	98.115			
AuSn ₂	115.23	135.562			
AuSn ₄	193.98	250.622			
Cu ₂ Sb	108.01	126.482			
CdSb	89.13	94.558			
InSb	66.47	86.199			
Mg ₂ Pb	84.59	110.876			

<u>Entropia totale</u> in fase solida per i sistemi: La-Pb, Fe-Pu, Sr-Pb e Cs-Pb.

Data la complessità nella stima di questa grandezza l'accordo col dato sperimentale si può considerare accettabile

Sistema	Composto	ΔS _{Tot} [J/Kmol]
La-Pb	La_5Pb_3	68.1
	La ₄ Pb ₃	63.9
	La ₅ Pb ₄	83.6
	La ₃ Pb ₄	71.8
	LaPb ₂	31.7
	LaPb ₃	42.2
Fe-Pu	Fe ₂ Pu	323.3
	FePu ₆	109.1

Calore Specifico - intermetallici binari

Implementazione del Database di dati termodinamici nelle fasi solida e liquida

Stima di grandezze termodinamiche: Risultati PAR precedenti

Metodo <u>DFT</u>

- Valutazione di entalpia, entropia e calore specifico mediante la teoria del funzionale di densità con l'approssimazione del gradiente generalizzato (DFT-GGA)
- Studio dei composti in fase gas mediante Gaussian09 (a 298.15 K e 1 bar)
- Funzionale B3PW91 e diversi pseudopotenziali e basis set a seconda dell'elemento in analisi
- Scelta combinazione funzionale/basis-set B3PW91/Stuttgart Small-Core ECP
- Validazione con Pb, Pu, U O

Composto	Frequenza armonica vibrazionale [cm ⁻¹]		Entropia [J/m	a 298.15K nol∙K]	Calore specifico (c _P) a 298.15K [J/mol·K]		
	Calc. Sper.		Calc.	Sper.	Calc.	Sper.	
PuO ₂	768,97	786,8	274,94	278,0±5.0	51,58	-	
UO ₂	775,88	776,1	272,02	274,6	50,31	51,35	
PbO	701.74	721,0	240.95	240	32.56	32.44	

- Su composti ignoti:
- ✓ ottimizzazione geometrica per individuare la configurazione di minima energia;
- ✓ entropia S e calore specifico c_p in fase gas, a partire dalle frequenze vibrazionali e dal momento d'inerzia ottenuti in output
- ✓ energia di dissociazione D0 e entalpia di formazione ∆H_f in fase gas, dalle energie SCF, ZPE e H_{corr} in output .
 ✓ Entropia a 295

Ossidi di U, Pu e intermetallici U-Pb

POLITECNICO DI MILANO

M. Cerini

Stima di grandezze termodinamiche: Risultati PAR 2013

- <u>Ossidi di Pb</u>: PbO, PbO₂, Pb₃O₄;
- Intermetallici Pu-Pb: PuPb, PuPb₃, Pu₃Pb;
- Ossidi dell'Am: AmO, AmO₂, AmO₃, Am₂O₃;
- Intermetallici Pb-FP: LaPb₃, SrPb₃, Cs₂Pb₃;
- Intermetallici: UFe₂, UNi₂, PuFe₂, PuNi₂;
- Intermetallici Am-Pb: AmPb, AmPb₃, Am₃Pb;
- Intermetallici Pb-guaina: PbFe₂, PbAl₂, PbAl₃, PbNi₂, PbNi₃, PbNi₄, PbCr, PbCrO₄

Metodo **DFT**

13

Studio semi-sistematico

Molecule	Vibrational frequenciesEntropySpecific Heat[cm ⁻¹][J/K mol][J/K mol]		Specific Heat [J/K mol]		Specific Heat [J/K mol]		Formation Enthalpy [kJ/mol]	Dissociation Energy [kcal/mol]
		Calc.	Lit.	Calc.	Lit.			
Fe ₂ Pb	148.8; 204.9	343.4	-	56.9	-	560.1	108.9	
Cs ₂ Pb ₃	60.8; 68.5; 69.7; 128.3	538.8	-	107.5	-	-124.3	204.8	
AmO ₃	422.7; 849.1; 945.9	324.7	317.7 ^[1]	65.9	71.5 ^[1]	-238	64.0	

[1] B.B. Ebbinghaus, U.S. Department of Energy, Oct. 2002

M. Cerini

Composizione all'equilibrio termodinamico: Risultati PAR precedenti

Studio dei sistemi Combustibile-Pb all'equilibrio termodinamico

Sistemi semplificati:

- $U_{metallico} Pb$
- Pu_{metallico} Pb

Sistemi semplificati:

UO₂ – Pb

Totale <u>instabilità</u> chimica Accordo con i diagrammi di fase

Chimicamente stabile in tutte le condizioni

• MOX – Pb

Caso nominale

T [K]	650	700	750	800	850	900	950
Pb _{liq} [mol]	0.4255	0.4255	0.4255	0.4255	0.4255	0.4255	0.4255
UO ₂ [mol]	0.1533	0.1533	0.1533	0.1533	0.1533	0.1533	0.1533
PuO ₂ [mol]	0.0382	0.0382	0.0382	0.0382	0.0382	0.0382	0.0382
U ₄ O ₉ [mol]							9.34·10 ⁻⁶
Pu ₂ O ₃ [mol]		Pi	resenti in	tracce <10	-0		1.05·10 ⁻⁵

Sistema chimicamente stabile

Caso incidentale (ULOF)

Т [К]	750	850	950	1050	1150	1250	1350
Pb _{liq} [mol]	0.4219	0.4219	0.4219	0.4219	0.4219	0.4182	0.4218
PbO _{liq} [mol]	-	-	-	-	-	0.0037	0.0001
UO ₂ [mol]	0.1543	0.1543	0.1543	0.1543	0.1543	0.1541	0.0805
PuO ₂ [mol]	0.0384	0.0384	0.0384	0.0384	0.0384	0.0309	0.0012
Pb ₃ U [mol]	0	<10 ⁻⁶	0	0	0	0	1.51·10 ⁻⁶
U ₃ O ₈ [mol]	0	0	0	0	0	6.57·10 ⁻⁶	<10 ⁻⁶
U ₄ O ₉ [mol]		Draca	4.00.10-5	0.0185			
Pu ₂ O ₃ [mol]		Prese	nu in tracc	0.0038	0.0186		

Modesta instabilità a T ≥ 1250 K

con possibile formazione di ossidi di U e Pu

Composizione all'equilibrio termodinamico: Risultati PAR 2013

Studio dei sistemi Combustibile-Pb all'equilibrio termodinamico

Sistemi semplificati:

• $PuO_2 - Pb$

Comportamento diverso dal sistema UO₂-Pb Non stabile chimicamente \rightarrow formazione di PbO e Pu₂O₃ Risultati non coerenti con quelli del sistema MOX–Pb \rightarrow

decomposizione degli ossidi di Pu

incapacità di descrivere la

MOX_{irr} – Pb

 MOX_{irr} simulato aggiungendo al MOX La, Cs e Sr \rightarrow in proporzione pari a FPs nel fuel scaricato da LWR

Studio dei sistemi:

Composizione all'equilibrio termodinamico: Risultati PAR 2013

Sistema La-Pb

Sistema MOX-La-Pb

- Comportamento simile al sistema MOX -Pb
- Già a 900K si formano ossidi di U, Pu e Pb con elevato contenuto di O
- No formazione di composti La-U/Pu

Moli La	0.8	0.6	0.5	0.4	0.2	
Moli Pb	0.2	0.4	0.5	0.6	0.8	
Temperatura	Temperatura 600 K					
Fase Solida						
La₅Pb₃	0.0667	0.0667				
La ₄ Pb ₃		0.0665				
La ₅ Pb ₄			0.0625			
La ₃ Pb ₄			0.0625	0.1000		
LaPb ₂				0.0999		
LaPb ₃					0.2	
La	0.4667					
Pb					0.2	
Temperatura			800 K			
		Fase Liqui	da			
Pb					0.2	
		Fase Solid	la			
La ₅ Pb ₃	0.0667	0.0667				
La ₄ Pb ₃		0.0666				
La ₅ Pb ₄			0.0625			
La ₃ Pb ₄			0.0625	0.1000		
LaPb ₂				0.0999		
LaPb ₃					0.2	
La	0.4667	0.2				
Temperatura	1200 K					
		Fase Liqui	da			
La	0.4667					
Pb					0.2	
		Fase Solid	la			
La ₅ Pb ₃	0.0667	0.0667				
La ₄ Pb ₃		0.0667				
La ₅ Pb ₄			0.0625			
La ₃ Pb ₄			0.0625	0.1		
LaPb ₂				0.1		
LaPb					0.2	

Implementazione del Database di informazioni termodinamiche

- ✤ in <u>fase liquida e solida:</u>
 - entalpia di formazione, entalpia di soluzione, entropia e calore specifico di:
 - Ossidi e intermetallici binari
 - Ossidi e intermetallici ternari
- ✤ in <u>fase gas:</u>
 - entalpia di formazione, entropia e calore specifico di:
 - Ossidi di attinidi
 - Intermetallici Pb-An/FPs/Metalli

Composizione del sistema all'equilibrio termodinamico

- Diversamente dal sistema UO₂-Pb, i sistemi <u>MOX-Pb</u> e <u>MOX-La-Pb</u> mostrano una certa instabilità chimica
- Lo studio del sistema <u>PuO₂-Pb</u> ha suggerito come l'instabilità chimica osservata potrebbe essere riconducibile all'incapacità del codice di descrivere composti che decompongono.
- ✤ Lo studio del sistema MOX_{irr}-Pb, simulato con la presenza di La, Cs e Sr, è in progress.

LP2.A3_a Studio delle interazioni tra combustibile, prodotti di fissione, e refrigerante in sistemi LFR

- Applicazione del metodo Witusiewicz-Sommer per il calcolo dell'entropia di ossidi binari
- Valutazione del metodo Witusiewicz-Sommer per il calcolo del c_p e confronto con altri metodi
- Stima delle proprietà termodinamiche (ΔH_f , S_0 , c_p) in fase gas mediante il metodo **DFT-GGA** per:
 - ossidi e intermetallici di Pb/Np e Cm
 - composti ternari: uranato di Cs e Pb

Molecule	Entropy [J/K mol]	Specific Heat [J/K mol]	Formation Enthalpy [kJ/mol]
NpO ₂	271.6	46.5	-435.7
PbUO ₄	385.9	104.1	-853.8

Studio dell'equilibrio termodinamico del c_{n} CmPb₃ c_p CsUO₄ sistema in fase gas 84 160 []0 82 80 5 ^d 78 []ou 14(120 100 1/[] 120 76 80 1000 2000 0 3000 50 550 1050 1550 2050 T [K] T [K]

- POLITECNICO DI MILANO
- Determinazione delle proprietà termodinamiche (ΔH_f, S₀, c_p) in fase condensata mediante il metodo DFT-GGA implementato dal codice VASP (Vienna Ab-initio Simulation Package) per:
 - ossidi di attinidi
 - Intermetallici FPs, U, Pu Pb
 - Collaborazione col CINECA (Consorzio Interuniversitario di calcolo)
 - Collaborazione con Dipartimento di Chimica del Politecnico di Milano

Molecule	Entropy [J/K mol]		Specific Heat [J/K mol]	
	Calc.	Exp.	Calc.	Exp.
UO ₂	80.20	77	63.71	63.57
PuO ₂	82.37	66	64.31	66.25
BaUO ₃	160.26	149.1	112.36	110.36

 Determinazione del ΔG di solvatazione attraverso metodo DFT → solubilità dei composti in <u>fase</u> <u>gas</u> in Pb liquido

Molecule	Solubility [g/L * 100] a 500 °C			
	Calc.	Exp.		
0	3.183	3.807		
I	39.456	-		

- Modifica del codice \rightarrow Studio MOX_{irr}- Pb
- Progettazione di una facility e di prove sperimentali a supporto dello studio teorico

L'attività si è avvalsa del contributo di 2<u>studenti di Laurea Magistrale, 1 studente di Laurea Triennale, 1 studente di dottorato</u> e <u>un'assegnista di ricerca</u>, contando su strumenti di calcolo selezionati ad hoc e appoggiandosi ad un centro di supercalcolo d'eccellenza.

Grazie per l'attenzione

Contatti:

elena.macerata@polimi.it

marta.cerini@polimi.it

M. Cerini

WORKSHOP TEMATICO LFR-GEN IV, Bologna, 15-16 Gennaio 2015

Accordo di Programma ENEA - MISE

LP2.A.4: Studio delle interazioni fra combustibile e refrigerante

Task leader: Giorgio De Angelis – ENEA, UTFISST

C.R. Casaccia, UTFISST

G. De Angelis M. Capone C. Fedeli G.A. Marzo

ENEA,

- M. Mariani E. Macerata M. Negrin A. Tosolin E. Mossini
- M. Cerini
- M. Giola

Laboratorio di Radiochimica e Chimica delle Radiazioni

POLITECNICO DI MILANO,

A4: Studio delle interazioni fra combustibile e refrigerante

Interazioni tra refrigerante e prodotti di fissione

1) Scopo dell'attività e risultati attesi Determinazione, mediante prove sperimentali, delle interazioni tra prodotti di fissione (ossido di lantanio, nitruro di alluminio, ioduro di cesio) e refrigerante (piombo fuso);

2) Continuità delle attività previste con le precedenti annualità Utilizzo della glove-box in atmosfera controllata (Argon a basso tenore di umidità), già impiegata nel PAR 2011 e 2012;

3) Implementazione del lavoro previsto Prove in scatola a guanti fino a 1000 °C;

 Contributo dell'università rispetto a quello ENEA
 Prove sperimentali in ENEA; valutazioni e analisi termodinamiche da parte di PoliMi;

A4: Studio delle interazioni fra combustibile e refrigerante

Interazioni tra refrigerante e prodotti di fissione

Scatola a guanti in atmosfera controllata

Campioni di Pb cristallizzato al termine delle esperienze

Fornetto a 600°C

Fornetto a 1000°C

A4: Studio delle interazioni fra combustibile e refrigerante

Interazioni tra refrigerante e prodotti di fissione

Pellets di CeO₂

Pellets di CsCl

Sferette di Sb

ENE

Pellets di Al₂O₃

Granuli di CeO₂

Pellets di KI

Granuli di Eu₂O₃

Pellets di AlN

Interazioni tra refrigerante e prodotti di fissione volatili

1) Scopo dell'attività e risultati attesi Messa a punto delle tecniche di abbattimento dei gas di fissione (in particolare cesio e <u>iodio</u>);

2) Implementazione del lavoro previsto

Saranno effettuati studi atti ad evidenziare le caratteristiche della mordenite rivestita con argento, nonché quelle del MOF-5 (molecola di recente formulazione) per la cattura dello iodio, con la collaborazione del CIRTEN (Politecnico di Milano), per quanto riguarda le analisi di caratterizzazione del MOF-5;

3) Contributo dell'università rispetto a quello ENEA Prove sperimentali in ENEA; analisi di caratterizzazione da parte di PoliMi;

4) Criticità attese

Sintesi del MOF-5 condizionata ai tempi di approvvigionamento dei necessari reattivi;

A4: Studio delle interazioni fra combustibile e refrigerante

Interazioni tra refrigerante e prodotti di fissione volatili

Veduta d'insieme dell'impianto OGATA

Interazioni tra refrigerante e prodotti di fissione volatili

Interazioni tra refrigerante e prodotti di fissione volatili

Interazioni tra refrigerante e prodotti di fissione volatili

Pellets di Ag-MOR prima (*a sinistra*) e dopo (*a destra*) il trattamento con vapori di iodio

Scopo dell'attività e risultati attesi Messa a punto delle tecniche di abbattimento dei gas di fissione (in particolare cesio e iodio);

2) Implementazione del lavoro previsto

Saranno effettuati studi atti ad evidenziare le caratteristiche della mordenite rivestita con argento, nonché quelle del MOF-5 (molecola di recente formulazione) per la cattura dello iodio, con la collaborazione del CIRTEN (Politecnico di Milano), per quanto riguarda le analisi di caratterizzazione del MOF-5;

3) Contributo dell'università rispetto a quello ENEA Prove sperimentali in ENEA; analisi di caratterizzazione da parte di PoliMi;

4) Criticità attese

Sintesi del MOF-5 condizionata ai tempi di approvvigionamento dei necessari reattivi;

Sintesi di MOF-5

Formazione di un precipitato lattiginoso	Filtrazione del precipitato sotto aspirazione
sotto costante agitazione	
Precipitato sul filtro	Precipitato sotto cloroformio per 24 ore
Eniremine del proviniente e 120% in	
Essiccazione del precipitato a 120°C in	Conservazione del precipitato in essiccatore sotto
stufa da vuoto per 2 ore	vuoto

Sintesi di MOF-5

1) Scopo dell'attività e risultati attesi

Messa a punto delle tecniche di abbattimento dei gas di fissione (in particolare <u>cesio e iodio</u>), e determinazione delle interazioni tra i suddetti gas ed il refrigerante (piombo fuso), finalizzate a stabilire la solubilità dei volatili nel piombo in condizioni di esercizio (400°C) ed il successivo rilascio degli stessi nelle medesime condizioni;

Continuità delle attività previste con le precedenti annualità
 Utilizzo dell'impianto OGATA (Off-GAs Treatment Apparatus), realizzato nel PAR
 2011 e 2012, per l'esecuzione delle prove sperimentali;

3) Implementazione del lavoro previsto Prove sull'impianto in diverse condizioni sperimentali;

Contributo dell'università rispetto a quello ENEA
 Prove sperimentali in ENEA; analisi dei risultati ottenuti da parte di PoliMi;

5) Criticità attese Attività sperimentale limitata a Cesio e Iodio;

Interazioni tra refrigerante e prodotti di fissione volatili

Veduta d'insieme dell'impianto OGATA

Quantità di cesio sciolta in Pb a 400C: 0.240 mg Cs/g Pb $0.49 \cdot 10^9$ Bq/g

Quantità residua di cesio sciolta in Pb a 400C dopo flussaggio di Argon: 0.175 mg Cs/g Pb $0.36 \cdot 10^9 \text{ Bq/g}$

Quantità di cesio rilasciata dal Pb a 400C dopo flussaggio di Argon: 0.065 mg Cs/g Pb $0.13 \cdot 10^9$ Bq/g

A4: Studio delle interazioni fra combustibile e refrigerante PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Grazie per l'attenzione

Contatti:

giorgio.deangelis@enea.it

ENE

Studio di fattibilità di sonde per la misura dei flussi neutronici di un reattore LFR. Concettualizzazione di test sperimentali nel reattore TAPIRO. (ADPFISS-LP2-052)

by <u>L. LEPORE¹</u>, R. REMETTI¹, M. CAPPELLI²

Bologna, January, 15th 2015

1: Sapienza, University of Rome 2: ENEA, UT-FISST\MEPING

AIM OF THE WORK

The work faces <u>neutron instrumentation issues for Lead Fast</u> <u>Reactor</u> oriented to the control of the plant. Neutron flux detectors used in Sodium Fast Reactor could not completely fit the needs of LFRs.

AIM OF THE WORK

I&C OPEN ISSUES:

- What is the best control strategy (in/out-of-core; in/out-of-vessel) and instrumentation technology for LFR?
- SFR and LFR <u>reference</u> spectra are not so different, but spectral differences must be evaluated in the positions where instrumentation is supposed to be installed.
- Instrumentation & control issues may need to come in parallel with neutronics and thermal-hydraulics in reactor projecting, in order to optimize the I&C instrumentation/system or customize the reactor design.

REFERENCE LFR REACTOR ENVIRONMENT

RESULTS:

The LFR reactor modeled into MCNPX is based on **LEADER Project (ALFRED)**.

High temperatures for coolant into the core limit the selection of neutron control instrumentation to some kinds of **fission chambers** and **Self Powered Neutron Detectors**.

SELECTED INSTRUMENTATION

RESULTS:

Instrumentation analyzed consists of:

Fission Chambers (FC):

- Manufacturer: **PHOTONIS**
- 2 normal sized: CFUC06 CFUC07 (out-of-core use only)
- 2 miniaturized: CFUE32 CFUE43

> Self Powered Neutron Detectors (SPNDs):

Manufacturer: KWD Instruments

- 1 Rhodium-type: 5503-Rh-50
- 1 Vanadium-type: 5503-V-100
- 1 Cobalt-type: 5503-Co-210 (prompt detector)

Manufacturer: ARi Industries

- 1 Rhodium-type
- 1 Vanadium-type
- 1 Cobalt-type (prompt detector)

RESULTS:

DETECTOR SENSITIVITIES (in CURRENT MODE) INTO ALFRED vs POSITIONING

Each curve represent a detector: **local sensitivity**, S(**r**), <u>increases</u> moving away from the core center because of the energy spectrum variation from a position to another.

S(r) variation on core plane are more important than correspondent on nose plane.

But **detector response R(r)** depends on neutron flux local values also...

RESULTS:

CFUE32 FISSION CHAMBER RESPONSE (in CURRENT MODE) IN LFR ENVIRONMENT

Detector response, R(**r, Power**), **depends on detector position**, especially on core plane: the gain in the reflector position is due to gain in sensitivity.

Small modification in the neutron spectrum **low energy tail can significantly affect detector response** because of the detector sensitive material cross-section.

Power from 300 kW to 300 MW can be monitored by the CFUE32 fission chamber.

RESULTS :

CFUE32 FISSION CHAMBER DURABILITY IN LFR ENVIRONMENT

- According to the maximum burn-up allowed for the instrument (provided by the supplier), at full power (300 MW_{th}) the detector lasts from 1 to 3 months depending on the installation position.
- Fission chambers could fit reactor control needs at start-up and intermediate range; they do not follow the power range.

KWD 5503-Co-210 SPND RESPONSE IN LFR ENVIRONMENT

Detector response, R(**r, Power**), **depends on detector position**, especially on core plane: the gain in the reflector position is due to gain in sensitivity.

The instrument can follow full power only (300 MW).

Out-of-core installation for prompt-SPND can monitor reactor full power. However, **better performances can be reached**, increasing signal-to-noise ratio.

RESULTS:

KWD 5503-Co-210 SPND DURABILITY IN LFR ENVIRONMENT

About KWD 5503-Co-210 durability, no official data are available about maximum burn-up allowed, but the sensitivity is low enough to ensure greater lifetime in comparison with fission chambers.

Prompt-SPNDs seem to be the best solution for power range monitoring.

FUTURE WORK:

PROPOSAL for NEUTRON DETECTOR DEVELOPMENTS in LFR APPLICATION

➢ Fission chambers improvements:

- substitution of the insulant;
- fissile with fertile breeding layer;
- double pressure chamber;
- venting channel for instrument purge and pressure variation.

SPND modification:

- prompt-Co-SPND assembly;
- innovative designs.
- Diamond detector study:
 - performance and capability analysis;
 - feasibility study for LFR applications.

FUTURE WORK:

PROPOSAL for IRRADIATION AND TESTING IN TAPIRO

<u>Prompt-SPND</u> could be investigated into the fast neutron flux of TAPIRO.

Experiment in **diametral channel** can give:

- minimum reliable current;
- neutron sensitivity measurement;
- gamma sensitivity measurement.

Experiment in radial channel 1 can:

- evaluate the Pb effect on instrument gamma sensitivity;
- update the current minimum value representative of neutron flux;

The experiment aim to test **instrument performances and detection capability**. Stress-tests at detector maximum burn-up cannot be experimented in TAPIRO.

STUDY SCHEDULE

STUDY SCHEDULE

- **1**st **year:** *analysis of performances* of current instrumentation (PAR 2013) in LFR environment (ALFRED) by MCNPX.
- 2nd year: validation of simulation technique into MCNPX and (PAR 2014) customization of detector designs for prototyping; □
 development of a nuclear electronic chain for signal acquisition from detectors.□
- **3rd year:** design of the **experimental setup** for detector (PAR 2015) irradiation into TAPIRO Reactor;□ - detector prototype construction and irradiation.□

Thank you for your attention!!!

Final Meeting LP2 PAR 2013

NACIE tests simulation with RELAP5-3D

UNIVERSITÀ DEGLI STUDI DI ROMA "LA SAPIENZA"

Dipartimento DI Ingegneria Astronautica, Elettrica ED Energetica

PAR 2013

- Nell'ambito del PAR 2013 ENEA ha messo a disposizione di UNIROMA1 alcuni risultati sperimentali della facility NACIE installata presso Brasimone.
- Questo ha permesso di iniziare attività di validazione dei codici di calcolo (R5-3D) che saranno svolte nel corso del 2015 (PAR 2014).

Strumenti di calcolo

- RELAP5-3D ver. 4.2.1
- Analisi di sensibilità e UQ tramite RAVEN

PAR 2013 - LP2 Final Meeting

Dati sperimentali

PAR 2013 - LP2 Final Meeting

24/09/2015

Transitorio analizzato

- Temperatura in ingresso e portata acqua
- Portata di argon (lift)
- Potenza termica
- K powder=1.35 W/(mK)

Condizioni al contorno

PAR 2013 - LP2 Final Meeting

Workshop tematico LFR-GenIV 16/01/15

Acciai austenitici doppio-stabilizzati; produzione dei laminati di DS4 e caratterizzazione preliminare

C. Cristalli, L. Pilloni, C. Testani (CSM)

Workshop tematico LFR-GenIV, 16/01/2015

- Introduzione sullo sviluppo storico degli acciai DS; Risultati dei test di irraggiamento(1988, CEA-Saclay)
- Processo produttivo CSM; Colata del lingotto e laminazione
- Analisi ottiche e caratterizzazione (durezza e tensile) del laminato allo stato solubilizzato e allo stato incrudito 20%
- Conclusioni e sviluppi 2015

Introduzione sullo sviluppo storico degli acciai DS

All'inizio degli anni 80, all'interno di un programma sperimentale portato avanti a Saclay, una serie di test di irraggiamento (1 MeV) dimostrò l'efficacia della contemporanea presenza di Ti e Nb sulla resistenza a swelling di matrici austenitiche 316 e 15-15.

Realizzazione della **Prima Generazione** di Acciai Doppio Stabilizzati:

316DS 15-15DS

Nei doppio-stabilizzati di prima generazione la temperatura di ricottura utilizzata, 1125°C, non risultò sufficiente a ottenere una buona solubilizzazione di Ti e Nb anche a causa dell'alto rapporto di stabilizzazione (3,18 per il 316DS e 2,04 per il 15-15DS)

Rapporto di Stabilizzazione:

Revisione della composizione

 $R = \frac{[Ti] + [Nb] - [N]}{[C]}$

Nascita della Seconda Generazione di Acciai Doppio Stabilizzati:

DS3 (15Cr-15Ni); R=1,38 DS4 (15Cr-25Ni); R=0,55 DS5(15Cr-25Ni)

Risultati: Swelling dei Doppio Stabilizzati

Risultati: Fragilità dei DS (irraggiati e no)

Risultati: Creep dei DS

acciaio	Voto (da * a ***)
15-15 std	**
DS3 (15-15)	***
DS4 (15-25)	***
DS5 (15-25)	No dati

Corrosione dei DS in atmosfera ossidativa

Vari austenitici di matrice 15-15 testati a 10^-6 wt% Ossigeno

In DS3 e DS5 notiamo uno spessore di 8-10 μ m, solamente qualche μ m più ampio di quello che si misura in AISI 316 and 15-15 Ti dopo 1000 h a 500° C in Pb-Bi.

Nel DS4, invece, l'ampiezza dell'ossido risulta 15-20 μ m. Questo fenomeno può essere collegato <u>al più basso contenuto</u> <u>di Nb e al doppio contenuto di N</u> (minore resistenza a corrosione) del DS4 rispetto a DS3 e DS5.

acciaio	Voto (da * a ***)
15-15 std	***
DS3 (15-15)	**
DS4 (15-25)	*
DS5 (15-25)	**

DS4 = 15-20 μm

DS3 e DS5 = 8-10 μm

DS: Pianificazione attività

Line	ea: Lingotto						20	14					
	Tasks	g	f	m	apr	mag	giu	lug	ago	set	0	n	d
		e	е	а							t	ο	i
		n	b	r							t	v	С
1.	Scelta della composizione												
	definitiva da produrre (DS4)												
1. Realizzione lingotto DS (50 Kg) e													
laminazioni per CW 20%													
1.	Inizio caratterizzazione									M/D			
	microstrutturale e meccanica												

• Settembre 2014: Rapporto Tecnico che descriva il processo di produzione seguito per l'ottenimento di 50 kg di acciaio DS.

Produzione lingotto DS4; processo fusorio VIM

Impianto VIM (Vacuum Induction Melting) CSM

Lingotto DS4

Certificato composizione chimica

Rapporto d'analisi N. 8352

0105 JW 2002

Data di richiesta : 2014-07-15

0100-001	000										
CAMP. Fe	BAL B	c	5	े भ	P ST	Mc No		\$ Co	°r	si si	t Ti
-0195-	BAL	0.041	0.0082	0.01	3 0.0	37	1.46	<0.01	14.8	0.88	0.17
MINIMO	BAL	0.0400	0	1	0 0.03	50	1.20	0	14.0	0.80	0.100
MAXIMO	BAL	0.060	<0.015	<0.0	2 0.04	50	1.80	<0.1	16.0	1.00	0.300
CAMP.	k n	% Cu	% Nb	в*	A1	a Zr		а <u></u>	% Ca	\$ та	≹ Ni
-0195-	1.48	0.06	0.20	1	0.0	13	1	<0.05	I		24.6
MINIMO	1.20	0	0.100	1	0	0	0	0	0	0	24.5
OMIXAM	1.80	<0.1	0.300	1	0 0.0	15	0.03	0.03	0.03	0.03	25.5
											And and a second se

ESEGUITO DA : /MARCHESINI/PACIELLO

Responsab Firma

Produzione lingotto DS4; laminazione a caldo

					Temperatura ℃				*			Course								
	NP pass	pass Tipo di prova Campione Materiale				Laminazione	aminazione		Spess ore (mm)			applicata								
					Riscaldo	Richiesta	misu	irata					(1)							
						Tela ne ses	Pirometro	Termocop.	Calcolata	Inizi ale	Finale	Ottenuto								
	1						nd		20,0	120,0	96,0		53,4							
	2						1078		25,0	96,0	72,0		66,3							
	3	1							1068		25,0	72,0	54,0		82,6					
	4	1 1 1 2 2	<				1034		25,0	54,0	40,5		88,1							
	5		8	2	1200		1029		22,0	40,5	31,6		97,3							
	6	at a	8	8	1200		1018		22,2	31,6	24,6		95,3							
	7	들려									850	1011		21,1	24,6	19,4		106,6		
]							
												21,0								
ľ	1						~		20.0	120.0	96.0		49.9							
	2						1096		20,0	96.0	72.0		60.9							
	-						1071		25.0	72.0	54.0		77.3							
	4	e e e e e e e e e e e e e e e e e e e	_				10.46		25,0	540	40.5		02.4							
	-	25	2				1040		22.0	40.5	90,5		03/4							
	6	288 bezato	8	ŏ	1200		1076		22,0	21.6	24.6		91,5							
	•		CV I			050	1036		24,2	34,6	64/0		30,7							
	/	Ę				850	1021		21,1	24,6	19,4		106,8							
		-																		
												21,0								

Inizio laminazione lingotto (Preriscaldato a 1200°C)

laminato finale dopo l'ultima riduzione (919°C) spessore 20 mm

Produzione lingotto DS4; incrudimento 20%

- AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA ELO SVILUPPO ECONOMICO SOSTEMBILE
- Solubilizzazione delle lamiere; <u>5 minuti a 1135°C</u>

• Laminazione a freddo; 20% riduzione spessore (ca. 20 passate da 1%)

Lamiera finale (s=15 mm) dopo cold-working

Effetto di *«waving»* sulla direzione di laminazione della lamiera

Produzione lingotto DS4; Durezza HV

solubilizzato (sezione trasversale)

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

laminato a freddo (sezione longitudinale)

Lotto anni '80 (DS4): 260 HV

Grain Size sezione longitudinale

Materiale solubilizzato

Materiale incrudito al 20%

Grain Size sezione trasversale

Materiale solubilizzato

Materiale incrudito al 20%

Grain Size; confronto

Prove di Trazione; Curve Tensile

Materiale solubilizzato (RT, 550° C, 650° C)

Materiale Laminato a freddo 20% (RT, 550° C, 650° C)

16

Prove di Trazione (RT, 550,650°C)

Materiale solubilizzato

Materiale Laminato a freddo 20%

T (°C)	YS (MPa)	UTS(MPa)	A(%)	Z(%)	E (GPa)
RT	209	579	50	68	209
RT	204	577	50	69	197
RT	209	584	51	68	209
MEDIA	207	580	50	68	205
550	160	503	-	46	180
550	163	512	-	46	182
550	156	496	-	47	173
MEDIA	159	503	nd	46	178
650	139	379		59	155
650	137	390		58	165
650	137	386		58	160
MEDIA	137	385	nd	58	160

T (°C)	YS (MPa)	UTS(MPa)	A(%)	Z(%)	E (GPa)
RT	609	681	27	63	210
RT	585	665	30	65	205
RT	608	688	27	63	203
MEDIA	600	678	28	63	206
550	489	560		42	181
550	468	560		44	185
550	468	561		44	186
MEDIA	475	560	nd	43	184
650	405	459		54	167
650	421	466		52	164
650	414	459		51	167
MEDIA	413	461	nd	52	166

Confronto DS4; laminato 1987-laminato 2014

Conclusioni

 Prodotti 80 Kg di acciaio DS4; eseguite le laminazioni a caldo e a freddo (incrudimento 20%);

 Sui laminati (sia allo stato solubilizzato che incrudito) eseguite analisi ottiche, prove di durezza HV, prove di trazione. I Risultati mostrano un affinamento della dimensione del grano austenitico a seguito del processo di deformazione a freddo. Tale affinamento è più evidente in prossimità delle superfici esterne e giustifica la maggior durezza lì registrata. La dimensione del grano nel solubilizzato varia da 35 a circa 50 micron e nel laminato a freddo varia da 30 a 35 micron. Tali caratteristiche hanno influito sulle variazioni delle proprietà meccaniche registrate sul materiale prima e dopo la laminazione a freddo. In generale si nota un leggero decremento delle proprietà meccaniche rispetto al lotto del 1987.

Sviluppi Attività 2015

Irraggiamento con Ioni: In data 12/12/2014 è stata inviata la Proposta a LNL (Laboratori Nazionali di Legnaro) per ottenere un irraggiamento a 100 dpa con ioni pesanti (58 Ni, 110 MeV). Periodo previsto: Giugno/Dicembre 2015.

Prove Creep: Prove previste: 550-650 ° C, fino a 8000 ore. Necessario ripristinare il funzionamento delle macchine obsolete trasferite dai laboratori di Casaccia a quelli di Brasimone. Inizio plausibile prima prova: previsto estate 2015. Fabbricazione campioni.

Prove Corrosione: Prove 550 °C, atmosfera ossidante, fino a 3000 ore. Necessaria operatività dell'impianto a Pb fluente LECOR. Inizio plausibile prima prova: settembre 2015. Fabbricazione campioni.

Coating PLD: Ricoprire provini da trazione e corrosione con allumina amorfa (Pulsed Laser Deposition, IIT). Sui provini tensile campagna di test per verificare l'adesione coating-substrato.

Grazie dell'attenzione

Diapositive di riserva

Introduzione

Concetto chiave 2 : Precipitazione primaria e secondaria dei carburi:

Una buona resistenza a creep alle alte temperature per un acciaio austenitico è essenzialmente dovuta alla microprecipitazione dei carburi, i quali vanno a formare una fine dispersione sul reticolo dislocativo;

- <u>Precipitazione primaria</u>, quella che ha luogo durante il trattamento termico dell'acciaio. Bassa precipitazione primaria significa sufficiente contenuto "libero" di Carbonio, Ti e Nb in soluzione solida per garantire una benefica precipitazione secondaria (in esercizio).
- <u>Precipitazione secondaria</u>, cosiddetta <u>"in-service"</u>, che ha luogo per effetto dell'esposizione ad alta temperatura all'interno del reattore. Questa sorta di precipitazione "in esercizio" risulta altamente efficace come <u>inibitore di movimento</u> per I difetti lineari.

La precipitazione dei carburi non agisce solo sulla resistenza a creep del materiale; influenza anche positivamente la stabilità sotto wt%di irraggiamento. E' qui riportato il risultato grafico (Ti,Nb)c di un analisi condotta nei primi anni 90 riguardante la dipendenza del comportamento a swelling dalla precipitazione primaria e dal rapporto di stabilizzazione per una matrice 15Cr-15Ni. Tanto la precipitazione primaria risulta bassa (tenendo il rapporto di stabilizzazione vicino a 1) tanto più quella secondaria desiderabile) (altamente verrà favorita mantenendo basso lo swelling.

Results; DS4

°C	0.2% PS MPa	U.T.S. MPa	U.Elon. %	T.Elon. %	R.A. %		800
20 200 400	673 601 570	708 666 650	6.55 3.26 10.82	20.69 15.01 17.28	70.68 64.23 55.5	(Pa)	700 DS4 (25Ni-15CF I(+Nb)) 600 D B B B B
450 500	560 548	639 624	11.2 10.64	21.44 21.79	56.67 54.79	SSS (M	500
600 650	506 474	570 529	9.2 7.05 4.49	19.22 19.51 19.87	54.16 56.66 60.64	Stre	400 □ 0.2 % P.S. 300 □ U.T.S.
700 750 800 850	434 383 320 245	476 410 329 263	0.86 0.67 0.36 0.32	29.85 29.69 36.68 33.36	70.53 78.39 84.62 86.04		200 0 100 200 300 400 500 600 700 800 900 Test Temperature (°C)

No relevant differences in UTS and 0,2% PS in the two DS steels

Comparison Total and Uniform Elongation

At room temperature and at higher test temperature (850° C), the total elongation of the lower Nichel content steel (DS3) is higher than that of DS4 (25% Ni), in the intermediate range DS4 shows a higher total thoughness. Concerning the uniform elongation DS4 behaviour is excellent. In the interval between 400 and 600-650° C the steel performs values that are almost twice respect to those of the other steel. This behavior, similar to the best ones for the stainless steels with high yield strength, is symptomatic of good characteristics of stretchiness, performing delayed onset of mechanical instability.

Caratterizzazione meccanica: Prove di Creep

Proprietà a Creep; Confronto con altri acciai austenitici 15-15

Caratterizzazione meccanica: Prove di Creep

Proprietà a Creep; Confronto con altri acciai austenitici 15-15

Test di corrosione-ENEA Brasimone

Parametri di prova:

Il provino è immerso per metà della sua lunghezza in un bicchiere in Al2O3 riempito di Pb; il forno è flussato internamente con Argon.

	Provini testati	DS3 (15Cr-15Ni) DS4 (15Cr- 25Ni) e DS5 (15Cr-25Ni)		
	Ambiente	Piombo Stagnante		
	Temperatura([°] C)	550		
	O wt%	10^-6 / 5.10^-4		
	Durata di prova (h)	900 (DS3) 1000 (DS4 and DS5)		

Accordo di Programma ENEA-MSE PAR2013/15-LP2

WORKSHOP TEMATICO LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

Qualifica coatings e materiali strutturali per sistemi LFR

Massimo Angiolini

Bologna, 15-16 Gennaio, 2015 C.R. ENEA "Ezio CLEMENTEL"

Introduction

Compatibility of material with liquid lead represents the main issue in the development of lead cooled systems.

- \checkmark Dissolution of the steel constitutive elements
- ✓ Oxidation i.e. the reaction of the steel constitutive elements with the dissolved oxygen with the formation of an outer oxide scale not stable/internal oxidation
- ✓ Liquid metal embrittlement

Surface oxidation can be used to protect the steel from dissolution (Active Oxygen Control): maintaining a low level of oxygen in the liquid lead, allow the formation of a protective oxide layer on the steel surface thus eliminating the direct contact between the steel and liquid metal

- AOC was found to work at relatively low temperatures but for temperatures above 500° severe corrosion attack are observed both in both austenitic and F/M steels, with the formation of thick oxide layers which spall off leaving the steel surface exposed to the coolant
 - Dissolution
 - LME

Difficult to control the oxygen content on large volumes

Additional protection methods must be adopted to protect the parts of the reactor that operate at high temperature (cladding, spacers etc.)

Surface oxidation

316 SS 10000 h Lead 500 $^\circ\,$ C

- Growth with parabolic kinetics, where the diffusion of Fe ions through the oxide scale is the rate determining factor
- Since lattice or GB diffusion of oxygen through the oxide layers is too slow to account for the observed growth kinetic, it is supposed an oxygen transport mechanism via pores, nano-channels or thermally induced cracks filled with the liquid metal, acting as fast diffusion paths
- In support of this, it is reported the experimental fact that the oxide scale contains lead (or lead bismuth) as revealed by EDS, GD-OES and SIMS analyses
- Nanochannels have never been observed and, on the contrary, their existence is excluded by recent impedance spectroscopy measurements
Surface oxidation

- With the exception of some vesciculae filled with lead in the outer layer, Pb is uniformly distributed in the oxide.
- It is not possible to associate microstructural features (cracks, nanochannels) to the presence of lead, suggesting that it is incorporated in the oxide matrix during the growth of the scale, according to the Pb-O-(Fe, Cr) phase diagram.
- The enhanced oxygen diffusion

A. J. MOUNTVALA and S. F. RAVITZ Journal of the American Ceramic Society 45 (1962) 6 285–288

Coatings materials Dev. and testing

- The most viable solution is the development of surface treatments
- Compared to the development of corrosion resistant alloys this approach has the obvious advantage to employ structural materials with known properties and codified in reference standards
 - o Alumina forming coatings
 - Ceramic coatings (Alumina, TiN)
- Corrosion Resistance
- Reliability , durability , low cost
- High degree of microstructural reproducibility
- Good adhesion and mechanical compatibility with the substrate
- Self-healing
- Resistance to radiation
 - o Swelling
 - o Chemical and microstructural stability
 - o Mechanical properties
- Cost-effectiveness, feasibility and reproducibility with 350 400 technologies already available

RTIn(po2/bar) (kJ/mol)

(mass⁰/

Coatings materials Dev. and testing

- AIFeCR+AI2O3 arc PVD + Mag. sputtering Depositions performed in 2012 showed poor quality New samples have been produced on the basis of the lesson learned have been already irradiated with Ni ions at RT and 500° C Will be submitted to testing (corrosion, etc)
- AlFeCr

- Pack cementation FeCrAl on 15-15 Ti and P91
- P91 Heat treatment needs improvements + Surface roughness
- 15-15 Ti Good quality
- Process improvements and refinements are needed
- AlFeCrY+ Al2O3 Mag. sputtering + PLD Good quality coatings Good adhesion
 - Cracks at 25 cycles (380° C 600° C) + crystallization (XRD)
 - irradiated with Ni ions at RT and 500 $^\circ$ C
 - Irradiations performed at EMIR show good crystallinity at 20 dpa

Coatings materials Dev. and testing

Characterizations

- SEM+EDS
- Adhesion Strength by 3 point bending
- Indentation tests
- Thermal aging (in air)
- Thermal cycle tests (in air)
- Ions irradiations
- Corrosion in lead *
- Creep in lead *

Pending

- 4-point fatigue testing
- Impact Testing
- Fretting testing

Irraggiamenti con ioni pesanti

E' stata progettata ed iniziata una nuova campagna di irraggiamenti con ioni pesanti, presso i Laboratori Nazionali di Legnaro dell'INFN

- rivestimento composito buffer FeCrAlY+ Al2O3 PLD
- rivestimenti FeCrAl + top allumina PVD

Progettato e realizzato un porta-campioni termostatato per irraggiamenti in vuoto a temperatura fino a 600° C

E' stato inoltre progettato e realizzato un sistema a Faraday Cup per la misura della dose

La campagna di irraggiamenti è terminata a Dicembre

16 DPA a TA ed a 550 $^\circ$ C

0 0

0

0

0 0

MD Modelling of LME

- Developed a first principle MD model to study LME and corrosion
- The first interface has been a surface of Iron in contact with stagnant liquid Pb.
- The first simulations show that the system, let free to evolve, reaches a configuration quite stable where the Pb atoms tend to continue the iron bcc lattice, with vacancies due to the size mismatch.
- This configuration induces a stress state on the iron atoms close to the surface.
- This behaviour seems to indicate a complete wetting of iron by lead
- The model will be further implemented considering an iron chromium alloy
- The interactions with defects will be addressed and characterized also

Densità elettronica per l'interfaccia nella configurazione iniziale per due valori di n(r).

Configurazione del sistema ferropiombo alla fine della simulazione. In verde gli atomi di Piombo in prossimità dell'interfaccia.

ADP PAR2013-LP2 Deliverables

- Sviluppo di ricoperture CVD a base Al-Fe per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo"
- Studio del comportamento di rivestimenti sottoposti a ciclaggio termico
- Sviluppo di Ricoperture per la protezione di materiali strutturali operanti in sistemi nucleari refrigerati a piombo mediante tecniche di ablazione laser
- Report sulla caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari: definizione dei criteri di fallimento dei rivestimenti per deplezione dell'elemento passivante
- Report sulla caratterizzazione delle proprietà meccaniche di ricoperture per applicazioni nucleari
- Report sulla caratterizzazione di rivestimenti mediante prove di irraggiamento con ioni pesanti
- Modellazione dei fenomeni di corrosione/dissoluzione da metallo liquido pesante
- Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante

Attività 2014/15

- Continuazione delle attività di sintesi e qualifica iniziate nelle scorse annualità
- Al2O3 amorfa/nanocristallina PLD
 - Sviluppo dei rivestimenti su supporti cilindrici.
 - Ottimizzazione buffer layer
 - Produzione di provini da trazione e provini per prove di corrosione di acciaio DS4 ricoperti
- > FeCrAl CVD per pack cementation sui substrati P91 e 15-15 Ti:
 - Ottimizzazione del processo di deposizione sulla base dei risultati ottenuti
 - Ottimizzazione dei processi termici post deposizione
- Per entrambe le linee di attività verranno prodotti campioni da sottoporre a testing

Summary

- > Need for more accurate microstructural characterization of
 - The oxides structures
 - Molten lead steel interfaces
- Assessment of the low temperature Pb-X-O phase diagrams
 X= Fe, Cr, stability of the phases, low melting point oxides
- More accurate assessment of solubility and diffusivity data
- More accurate assessment of Pb chemical and thermophysical properties
- Assessment of the design specifications for materials selection and testing

- It is needed the assessment of the thermal and mechanical loads in normal and transitory conditions in order to
- > Design testing campaigns
- > Evaluate the materials performances

Transient events behavior and frequency

- Mechanical loads in handling
- Break in coolant system piping
- Ejection of reactor control rods
- Inadvertent opening of a valve
- Loss of off-site power

- Water into the coolant
- Formation of voids in the coolant
- Blockage of coolant flow

Liquid Metal Embrittlement

- LME is a phenomenon where ductile metals undergo brittle fracture when tested in the presence of liquid metals. Unaffected the other mechanical properties.
- LME failure occurs by nucleation of a crack at the wetted surface of the solid and its propagation with little resistance into the bulk
- Despite the large amount of experimental data LME is a phenomenon not understood even qualitatively
- Key point and prerequisite for LME is the wetting and intimate contact of the embrittler and the embrittled.
- A stable oxide layer makes the difference
 - Large scattering of the data in wetting and LME experiments
 - Martensitic/austenitic steels behavior

The experience gained with the leaded steels indicates that lead segregate at GB and embrittles the steels

Lack of HR Microstructural characterizations

WORKSHOP TEMATICO

DIODORARE CIRTEN COLOORAD INTERUM

LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

ADP ENEA-MSE (PAR2013-LP2)

Bologna, 15-16 Gennaio, 2015

Centro Ricerche ENEA

"Ezio CLEMENTEL", Bologna, Italia

"Metodiche per la caratterizzazione di coating superficiali"

M. Bragaglia, F.R. Lamastra, F. Nanni and G. Forasassi

Tecniche di caratterizzazione di rivestimenti superficiali

Caratterizzazione microstrutturale e compositiva

- Microscopia a scansione elettronica (SEM)
- Microanalisi EDS
- Diffrattometria dei raggi X (XRD)

Caratterizzazione meccanica

- Test di microdurezza Vickers
- Test di nanoindentazione
- Scratch test

Microscopia a scansione elettronica

Il microscopio elettronico a scansione (SEM) sfrutta la generazione di un fascio elettronico ad alta energia focalizzato e deflesso da un sistema di lenti nel vuoto per scansionare un'area del campione.

L'interazione fascio-campione genera elettroni secondari e retrodiffusi. Questi sono raccolti da opportuni detectors e convertiti in segnali elettrici. Tali segnali vengono amplificati ed elaborati da un computer fino a formare un'immagine a livelli di grigio.

Permette:

- Analisi morfologica della superficie del campione
- Analisi Elementare EDS

(Energy Dispersive Spectroscopy)

Elettroni secondari:

L'elettrone del fascio espelle dal suo orbitale l'elettrone di un atomo del campione. Emessi dagli atomi che si trovano ad una profondità di circa 10 nm dalla superficie (E<50 eV).

Elettroni retrodiffusi (Backscattered):

Prodotti da interazioni elastiche del fascio primario con i nuclei degli atomi del campione. Energia molto vicina a quella degli elettroni incidenti. Direzione quasi parallela a quella degli elettroni incidenti

Microscopia a scansione elettronica

Le immagini al SEM vengono ottenute utilizzando elettroni retrodiffusi e/o secondari (meno energetici ma più numerosi dei precedenti).

Elettroni secondari danno informazioni sulla morfologia del campione e non danno alcuna informazione sulla composizione chimica del campione

Elettroni retrodiffusi danno informazioni sia sulla morfologia del campione sia sulla eterogeneità chimica. Il coefficiente di emissione dipende anche dal numero atomico Z degli elementi del materiale.

CARATTERISTICHE DEL SEM

• Alta risoluzione (limite 2nm) determinata dal diametro del fascio elettronico sul campione.

- Elevata profondità di campo.
- Alti ingrandimenti

Microscopia a scansione elettronica

Micrografia SEM Lega Sn-Pb (SE)

Il campione deve essere conduttivo, o deve essere reso conduttivo almeno nel suo strato superficiale mediante ricopertura con un sottile strato di oro (coating o metallizzazione). Viene scelto Au perché che ha un'elevata efficienza di emissione di elettroni secondari.

Microscopia a scansione elettronica

Acciaio Inox 1515-Ti alluminizzato per *pack cementation*(CSM).

Microstruttura a grani poligonali di dimensioni micrometriche.

Rivestimento Al2O3 + bonding layer FeCrAlY su Acciaio Inox 1515Ti (IIT)

Microanalisi EDS

Microanalisi EDS o EDX (Energy Dispersive X-ray spectroscopy) sfrutta l'emissione dei raggi X provenienti dal decadimento degli elettroni secondari e consente di determinare in modo qualitativo e quantitativo la composizione elementare di un campione.

- Il fascio elettronico primario causa la ionizzazione dell'atomo
- Emissione di un elettrone secondario dagli orbitali interni (K, L, M)
- L'atomo è energicamente instabile
- Diseccitamento tramite decadimento di un elettrone appartenente a un orbitale superiore che va a occupare la lacuna formatasi.

 Durante il salto energetico dell'elettrone c'è l'emissione di un fotone X di energia uguale al salto stesso.

Microanalisi EDS

•L'emissione dei raggi X è caratteristica degli elementi chimici che costituiscono il materiale, pertanto dall'analisi dello spettro di emissione di tali raggi si può risalire agli elementi che compongono il materiale.

•Per la raccolta dei dati è utilizzato l'EDS (Energy Dispersive Spectrometer). Con questo sistema è possibile effettuare un'analisi di tipo puntuale, di linea o di superficie.

Diffrattometria dei raggi X (XRD)

XRD: Processo di scattering elastico coerente dei raggi X da parte degli elettroni degli atomi disposti su piani paralleli ed equidistanti, che ha luogo quando vale la legge di Bragg.

Tecnica di analisi non distruttiva che misura gli effetti di interazione tra un fascio di raggi X e la materia cristallina.

Diffrattometria dei raggi X (XRD)

Applicazioni Analitiche:

•Riconoscimento fasi (analisi qualitativa)

- •Analisi quantitativa dei componenti
- •Struttura cristallina
- •Determinazione dei parametri di cella
- •Analisi microstrutturale

•Caratterizzazione delle transizioni di fase (HT-XRD)

• Determinazione dei coefficienti di dilatazione termica (HT-XRD)

Diffrattometria dei raggi X (XRD)

Diffrattometro Philips X'Pert PRO

- Goniometro verticale θ : θ
- Tubo a raggi X con anodo in rame Cu-K α (λ =1.54056 Å).
- Cristallo monocromatore curvo in grafite.

Portacampioni standard per polveri

Portacampioni per massivi e rivestimenti a film sottile

Camera riscaldante Anton Paar HTK 1200 $T_{\rm MAX}$ 1200°C

XRD: rivestimento PLD Al2O3/1515-Ti

Università di Roma

Tor Vergata

Influenza del ciclaggio termico sulle fasi cristalline

XRD: alluminizzazione Acciaio Inox 1515-Ti

Università di Roma

Tor Vergata

Inox 1515-Ti alluminizzazione per pack cementation(CSM). Presenza della fase FeAl attesa. Resiudi del sale attivatore AIF₃.

Test di microdurezza

Durezza: resistenza di un materiale alla deformazione plastica localizzata.

Microdurezza Vickers: utilizzata per la caratterizzazione di materiali molto duri e tipicamente per il controllo dei trattamenti superficiali.

Modalità di prova: ISO 6507-1:2005

 ✓ Penetratore Vickers compresso ortogonalmente contro la superficie del provino applicando un determinato carico per un tempo stabilito (2000g – 10g).

✓ Rimozione dell'indentatore.

✓ Misura delle diagonali dell'impronta tramite microscopio ottico.

✓ Calcolo della durezza.

Test di microdurezza

Future – Tech FM700

Indentatore Vickers Indentatore Knoop Ottiche 10X, 50X Carico [2000gf-10gf]

- Prova non distruttiva
- Eseguibile su pezzi finiti
- Poco costosa

- Preparazione accurata della superficie da testare
- Errore nel calcolo della superficie dell'impronta
- Recupero elastico del materiale.
- Influenza del substrato su provini rivestiti

Applicazione di modelli matematici per la determinazione della durezza del rivestimento.

Test di microdurezza

Variazione HV lungo sezione Inox 1515-Ti (CSM) Impronta Vickers Al₂O₃ su inox 1515-Ti (IIT)

Test di nanoindentazione

Estrapolazione delle proprietà meccaniche del rivestimento superficiale indipendentemente dalle proprietà del substrato (senza la sua influenza) **Modulo elastico del rivestimento E Durezza del rivestimento**

Funzionamento della prova: UNI EN 14577/1-2

Lenta penetrazione di un indentatore piramidale Berkovich tramite l'applicazione controllata (e misura in controreazione) del carico normale *P* **[mN]** e la misura continua della penetrazione *h*.

Nano test micro materials LTd WREXHAM6

Test di nanoindentazione

Si ottiene la curva **P/h**

1 **Tratto di carico** (loading): si hanno deformazioni di tipo elasto-plastico, il cui ammontare relativo varia al variare del carico massimo applicato;

2 **Tratto di scarico** (unloading): si ha il recupero elastico del materiale a seguito della rimozione controllata dell'indentatore.

Test di nanoindentazione

Rivestimento Al2O3 su inox 1515-Ti (IIT)

Parametri di prova:

-100 nanoindentazioni per provino

- P = 15 mN

Provino	H _f (GPa) (mod. J-H)	H _f (GPa) (nano 15mN)	E _r (GPa)	E (GPa)
0 dpa	16.13±3.8	12.2±1.6	150 ± 11	165
50 dpa	12.51±2.5	15.1±1.4	156 ± 7	173
150 dpa	9.51±5.3	12.7±3	140 ± 17	152

Tecnica di caratterizzazione meccanica per valutare l'adesione di un rivestimento al substrato.

Se l'adesione tra il rivestimento ed il substrato è insufficiente può verificarsi un cedimento a causa del distacco del rivestimento.

Lavoro di adesione: misura del legame chimico attraverso l'interfaccia.

Ad oggi non esiste alcun test che permetta di ricavare il valore del lavoro di adesione.

Lo scratch test misura l'adesione del sistema rivestimentosubstrato.

Rivestimenti ceramici duri: carburi, nitruri, ossidi, DLC.

Consiste nel generare delle incisioni (scratch), su provini rivestiti, mediante l'utilizzo di un indentatore con profilo "Rockwell C" di diamante in moto relativo rispetto al provino sotto l'azione di un carico normale crescente. **UNI EN 1071-3:2005.**

- •Microscopio ottico
- •Emissioni acustiche
- Profondità di penetrazione dello stilo
- Forza d'attrito tra punta e campione
- Variazione del coefficiente di attrito

Scratch test Rivestimento Al2O3 su inox 1515-Ti

Sotto l'azione di un determinato carico detto carico critico Lc si verifica un determinato modo di cedimento.

Lc è una misura semiquantitativa dell'adesione del rivestimento.

Si determinano più carichi critici lungo la traccia di scratch:

Lc1: Prima cricca che si propaga lungo la traccia senza esposizione del substrato.

Lc2 : Distacco del rivestimento che espone il substrato ai bordi della traccia.

Lc3 : Esposizione del substrato all'interno della traccia di scratch.

Gli Lc dipendono dai parametri di prova e non vanno considerati in modo assoluto ma come valori comparativi dei diversi provini.

Adesione rivestimenti Al2O3 sottoposti a

irraggiamento ionico

Al2O3 su acciaio 1515 Ti 0 dpa

 $\textbf{Lc1}~3.2\pm0.3~\text{N}$

Lc2 4.2 ± 0.4 N

 $\textbf{LC3}~25.6\pm2.9~\text{N}$

Al₂O₃ su acciaio 1515 Ti 150 dpa

LC2= 2.41 ± 0.2 N

LC3 28.87 ± 5 N

Sviluppi futuri

Caratterizzazione di provini PLD in Al₂O₃ sottoposti a ciclaggio termico in atmosfera di Argon.

- -Analisi SEM
- -Microanalisi EDS
- -Analisi XRD

Caratterizzazione di provini PLD in Al₂O₃ sottoposti a prove di corrosione in Pb fuso. -Analisi SEM

- -Microanalisi EDS
- -Analisi XRD

Caratterizzazione meccanica e microstrutturale di provini alluminizzati.

WORKSHOP TEMATICO

DIODORARE CIRTEN COLOORAD INTERUM

LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

ADP ENEA-MSE (PAR2013-LP2)

Bologna, 15-16 Gennaio, 2015

Centro Ricerche ENEA

"Ezio CLEMENTEL", Bologna, Italia

"Metodiche per la caratterizzazione di coating superficiali"

M. Bragaglia, F.R. Lamastra, F. Nanni and G. Forasassi

UNIVERSITY OF PISA

DIPARTIMENTO DI INGEGNERIA MECCANICA, NUCLEARE E DELLA PRODUZIONE

Largo Lucio Lazzarino, 1 – 56126 - Pisa Italy

CR Brasimon

WORKSHOP ADP ENEA-MSE

PAR – LP2 – 2013 LFR-GEN IV: STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

Bologna, 15h -16th January 2015

ALFRED-SGBT: Preliminary Characterization by the HERO Test Section

Rozzia Davide (UNIPI-ENEA) Del Nevo Alessandro (ENEA) Tarantino Mariano (ENEA) Martelli Daniele (UNIPI) Gaggini Pierantonio (ENEA) Sermenghi Valerio (ENEA) Polazzi Giuseppe (ENEA) Fasano Giuseppe (ENEA)

Test section CIRCE-HERO:

Heavy liquid mEtal - pRessurized water cOoled tube

The main aim of the test section is

- ➤ To study a bundle of 7 1:1 bayonet tubes under conditions that represent, as much as possible the operation in the ALFRED SG.
- > To sustain the design of the ALFRED SG
- ➤ The facility is expected to be a suitable tool to support the validation process of TH-Sy codes and CFD codes two way coupled simulations.

THE DOUBLE WALL SG BAYONET TUBE

			Description	Quantity	Description	Quantity
Steam		0.047	Removed Power [MW]	37.5	Number of tubes	510
Helium		kg/s	Feed-water flow rate [kg/s]	24.1	Water pressure [bar]	180
			Bundle geometry	triangular	Pitch / tube diameter	1.42
			Feed-water temperature [°C]	335	Steam outlet temperature [°C]	450
	v		Lead inlet temperature [°C]	480	Lead outlet temperature [°C]	400
Argon	450			Bayonet	tube geometry	
480°(Description	Quantity	Description	Quantity
			Slave tube outer diameter [mm]	9.52	Slave tube thickness [mm]	1.07
			Inner tube outer diameter [mm]	19.05	Inner tube thickness [mm]	1.88
).35m			Second tube outer diameter [mm]	25.40	Second tube thickness[mm]	1.88
6.36			Third tube outer diameter [mm]	31.37	Third tube thickness [mm]	2.11
kg/s			Powder annular gap width [mm]	1.07	Length of heat exchange [mm]	6000
	18.00	-	Argon plenum height [mm]	1000	He plenum height [mm]	800
	111 '		Steam plenum height [mm]	800	T91 plates thickness [mm]	250
00			Feed-water flow rate [g/s]	47.3		

WHAT WAS EXISTING IN NUCLEAR TECNOLOGY?

Reactor	Classification	Th. Power	SG type	Operation
RAPSODIE (France)	Exp. reactor	40 MWth	No SG	1967 - 1983
KNK-II (Germany)	Exp. reactor	58 MWth	Once-through evaporator, twin tubes	1971 - 1991
FBTR (India)	Exp. reactor	40 MWth	Once through; triple S shaped tubes	1985 -
PEC (Italy)	Exp. reactor	120 MWth	No SG	Never operated
JOYO (Japan)	Exp. reactor	140 MWth	No SG	1977 -
DFR (UK)	Exp. reactor	60 MWth	Parallel tubes in copper heat transfer block	1959 - 1977
BOR-60 (Russia)	Exp. reactor	55 MWth	7 types of once through SGs	1968 -
EBR-I (USA)	Exp. reactor	4 MWth	Once through; straight double wall tubes	1951 - 1970
EBR-II (USA)	Exp. reactor	62.5 MWth	Once through; straight double wall tubes	1964 - 1994
FFTF (USA)	Exp. reactor	200 MWth	No SG	1980 - 1996
BR-10 (Russia)	Exp. reactor	8 MWth	No SG	1958 - 2003
CEFR (China)	Exp. reactor	65 MWth	Once through; straight tubes, evaporator and super-heater	2011 -
Phenix (France)	DEMO	350 MWth	Once-through, vertical bank of large S-shaped tubes, each containing small pipes for water	1973 - 2010
SNR-300 (Germany)	DEMO	762 MWth	Once-through evaporator and separate super-heater, tubes straight in 2 loops, helical in 3rd	Never operated
MONJU (Japan)	DEMO	714 MWth	Once-through evaporator and separate super-heater; helical coiled; intermediate coolant on shell side	1994 - ?
PFR (UK)	DEMO	650 MWth	Forced recirculation evaporator and drum separate super-heater; separate re-heater	1974 - 1994
BN-350 (Kazakhstan)	DEMO	750 MWth	Shell and tubes, Fild's tubes in evaporator, U-tubes in super-heater	1972 - 1999
BN-600 (Russia)	DEMO	1470 MWth	Shell and straight tubes, module type	1980 -
Super-Phenix	Commercial	2990 MWth	Once-through evaporator and super-heater with helical tubes	1985 - 1998
BN-800 (Russia)	Commercial	2100 MWth	Shell-and straight tubes, module type	2012 -

HERO SG TUBE BUNDLE DESIGN

ENEA CR Brasimone

HERO SG TUBE BUNDLE DESIGN

- Due to the use of <u>AISI-316 as powder</u> and the use of <u>SS as tube material</u> it is expected a steam maximum temperature of about <u>400°C</u> instead of 450°C: this is acceptable for a scaled down prototype.
- ➤ R&D is still necessary to develop this configuration as SG

HERO SG TUBE BUNDLE DESIGN

Description	Unit	Steam line	Helium line	LBE side
Fluid		Water - steam	Helium	LBE
Circulation mechanism		Axial pump +	Storage tank for	Gas
		accumulator	leakage refilling	enhanced
Main components		7 bayonet tubes,	Helium chamber	SGBT unit
		steam chamber		shell
Bundle type and P/D	-	Triangular		Shell
Operating inlet temperature	°C	335		480
Operating mass flow	kg/s	0.330785	stagnant	44.573529
Design pressure	bar	172	5.0	As CIRCE
Operating pressure	bar	170	4.5	Hydraulic
				head
Hydraulic head in design condition	bar	0.7		
Hydraulic head in test condition	bar	0.7		
Test pressure	bar	180		
Design temperature	°C	432	432	As CIRCE
Volume	m ³	0.0083	0.0054	
Empty weight	kg	135		
Code		EN13445		
Welding joint efficiency		1		
Notified body		TUV0948		
Welding specification		WKF/3479/1		
Serial number		13173		
CE - PED		III Category	B1+F Module	

9

HERO SG TUBE BUNDLE CONSTRUCTION

ENEA CR Brasimone

HERO SG TUBE BUNDLE CONSTRUCTION

Central tube

- Fluid flow: 1 TC at inlet, 1 TC at the end of the descendent tube, 1 TC at the end of the active height and 1 TC its outlet. These TC are located at the center of the channel.
- Boiling height: 10 TC in the center of the riser (pitch 300mm).
- Condensation?: 1 TC at the riser outlet located in the descendent tube outer surface.
- ➢ <u>Si-C side</u>: 4 TC at four heights.
- Lead side: 12 TC at the same heights of Si-C side and 3 azimuth.
- In total 31 TH (19 TC-0.25mm, <u>12-1mm</u>)

Remaining tubes tube

Fluid flow: 1 TC at inlet, and 1 TC at its outlet. These TC are located at the center of the channel.

13

- ➢ In total 12 TH (0.5mm)
- ➤ <u>+4 TC in the steam chamber</u>

Lead channel

- Sub-Channel monitoring: Two TC at 120° respect to the central tube and 1 TC at the center of the triangle.
- Boundary effects: three TC at the center of the outer sub-channels
- This is repeated for three elevation in the active length

14

In total 18 TCs (1mm)

21 pressure transducers

- The differential pressure transducers allow to measure, per each tube, the pressure drop across the orifice, the pressure drop along the tube (feed-water tube and annular riser), the descended pressure drop (feed-water tube only) and the ascendant pressure drop (annular riser only).
- Absolute pressure is measured in the steam chamber and in the feed-water collector.

16

HERO SECONDARY SIDE

To design the secondary loop

- <u>Water 20°C 1 bar</u> \rightarrow 0.331kg/s water <u>335°C 172 bar</u>
 - Pump
 - Power about 500kW: Electrically heated
 - **Open loop**

HERO SECONDARY SIDE START-UP

- A) Stabilire la portata iniziale (minore della portata nominale)
- B) Fornire la quantità di potenza necessaria all'ebollizione (1 bar 100°C)

ENEA **2.PASSAGGIO IN PRESSIONE**

25

- A) Assicurarsi che all'ambiente venga rilasciato solo vapore \geq
 - B) Strozzare valvola V-6 salendo in pressione ed adeguando la potenza necessaria a mantenere vapore
 - C) Continuare la salita in pressione gradualmente adeguando la potenza fino a raggiungere la temperatura (la pressione) compatibile con lo stato di CIRCE

□ 3. PRESSURIZZAZIONE HERO-SG

A) Aprire valvola V-5 pressurizzando HERO-SG in reverse flow adeguando la \succ potenza richiesta a mantenere vapore alla pressione data

HERO SECONDARY SIDE : PREHEATER

Electrically heated

HERO SECONDARY SIDE : PREHEATER

HERO SECONDARY SIDE: PREHEATER

CR Brasimone

ENEA

CONCLUSIONS AND DEVELOPMENTS

- □ HERO SGBT has been constructed, instrumented and mounted in to CIRCE
- □ The design of the secondary loop is ongoing, up to now
 - > The axial pump with accumulator has been acquired
 - > The spiral heater has been designed and constructed
 - > The electrical board has been acquired
- □ The design of the spiral heater shell and supports is ongoing
- □ The selection of the control valves is on-going
- □ The collector should be designed and constructed
- □ The development of a RELAP-5 model of the secondary loop is under planning with the aim to drive the selection of the instrumentation and specify the start up procedure

Theoretical and experimental feasibility study on the TDR analysis for the level measure of a biphasic system

(Studio di fattibilità teorico-sperimentale sull'analisi TDR per la misura di livello di un sistema bifase)

(ADPFISS-LP2-073)

by **<u>F. CORDELLA</u>***, **M. CAPPELLI***

Bologna, January, 16th 2015

(*) ENEA, UTFISST-MEPING

PROJECT CONTEXT

- In the context of <u>ALFRED SG project</u>, HERO facility aims to study a 1:1 bayonet tube/s under the conditions of interest
- The present work goal is to give a <u>theoretical</u> and <u>experimental</u> support to the development of a new kind of level sensor for HERO and, in general, for an OTSG that will be, at the same time, through the TDR technique also a self-level measuring sensor

Level monitoring in a <u>Once Through Steam Generator</u> (OTSG) of a Nuclear Power Plant is extremely important but what could be a non invasive, fast and steam/liquid interface independent level measurement system?

A possible approach is to use the time or frequency response to an input signal using the reflectometry principle (like the RADAR). When the focus is on time measurements, the well-known technique is called Time Domain Reflectometry (TDR). If we inject a step signal into a lossless coaxial cable of length *d*:

Since a OTSG bayonet type is very similar to a coaxial type of transmission line, we'll represent it with:

solid internal conductor of radius ra

ITALIAN NATIONAL AGENCY NEW TECHNOLOGIES, ENERGY AND

- filling dielectric (liquid, gas, mixture) with permittivity ε
- hollow external conductor of internal radius rb and external rc

On the transmission line, if there's a reflected signal, this is due only to the change in the dielectric found along the propagation path. That happens to the impedance when there's an air / water transition since:

Sensor length 10 m, water-air interface at 7 m from end, water 20°C, stainless steel AISI 316, $r_b \cong 2.3 r_a$

Pre-test, static (phase 1.B.1)

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

Pre-test, static (phase 1.B.1)

ITALIAN NATIONAL AGENCY

FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

> Different "static" level measurements (from right to left: baseline in air, 10.5 cm, 20.5 cm, 40 cm of water at 20°C)

Calibration procedure: velocity ratio **k** determination

measure no. n	optical measure [mm]	delay time between measure n and n-1 [ns]	velocity ratio k
1	0		
2	105	(2-1): 0.798	0.501
3	255	(3-2): 1.020	0.490
4	400	(4-3): 0.915	0.528
5	550	(5-4): 1.072	0.466
6	700	(6-5): 0.955	0.524
7	845	(7-6): 0.968	0.500
8	990	(8-7): 0.968	0.499
9	1140	(9-8): 0.955	0.524
10	1290	(10-9): 0.994	0.503
ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

description	value	
pump type	4 pistons (quadplex type)	
max flow	450 [l/h] = 125 [cm3/s]	
max press.	20 bar	
flow control	inverter	
motor type	electric motor	
motor power	0.37 kW	
seals	Parker, BD hydraulic rod seal	
fluids	water and all fluids compatible with polyurethane seals	
pump's material	anticorodal aluminium alloy and stainless steel (pistons, valves)	

M. Arabia, patent no. 0001391841.

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

r is a dimensionless parameter, expressing the action of tap R (r = 0 means tap open)

A low pulsatility pump is an essential feature to study short/medium term transients (especially for low values of r)

Simulations for $\Omega_A=37 \text{ cm}^2$, $\Omega_B=20*\Omega_A$, cond. diam. = 0.5 cm², L = 50 cm, Q =125 cm³/s

Theoretical prediction from Torricelli's law

ITALIAN NATIONAL AGENCY NEW TECHNOLOGIES, ENERGY AND FAINABLE ECONOMIC DEVELOPMENT

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

LV + Matlab user interface

vert. scale : vert. scale 2 oris. scale : boriz, scale 2 "THEMADY save baseline and the second second second 1000 Summer Strategies vert. scale vert. scale 1 do subtraction

Wolfram Mathematica user interface

Test at PTE, (phase 2.C)

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

future work

When the subcooled water produced by SWINGER enters into the sensor from the bottom, it will receive a controlled thermal flux through the sensor's heated walls. During the flow upstream, the thermal flux triggers the nucleate boiling evaporation phase at a certain level *L*₁, until water is completely turned into steam at another level *L*₂. By controlling both the thermal flux and the pump of the thermo-hydraulic loop is possible to vary the levels *L*_i

PROJECT ROADMAP

Phase 1 (PAR 2013)

- A. <u>Theoretical study</u>: investigation on the possibility to apply time domain reflectometric techniques (TDR) for the level measurement of a system with simulations support for the feasibility study and project design
- **B.** <u>Pre-test</u>: smaller scale experiment at PTA both in <u>static</u> (phase 1.B.1) and in <u>dynamic</u> conditions (phase 1.B.2) with a new kind of pump. The biphasic problem in not still faced

Phase 2 (PAR2014 and PAR2015)

C. <u>**Test**</u>: full scale experiment at PTE with SWINGER, located at ENEA-Casaccia for the evaluation of the sensor feedback in bi-phasic conditions.

LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

SGTR ANALYSIS ON LARGE SCALE FACILITY

<u>A. Pesetti</u>, M. Tarantino, P. Gaggini, N. Bettocchi, S. Storai (alessio.pesetti@for.unipi.it)

ADP PAR2013, 15-16 Gennaio 2015, CR ENEA Bologna

List of contents

- Introductory remarks
- MYRRHA-PHX
- CIRCE facility (ENEA Brasimone CR)
- Test Section design, components and instrumentation
- Preliminary numerical analysis by SIMMER-III (2D) code
- Detailed modelling by SIMMER-IV (3D) code
- Conclusive remarks and future work

- The SGTR scenario needs to be analysed in the integrated pool type HLMFR configuration, aiming to predict the hazardous consequences of the SG/PHX tube rupture taking place in the HLM pool (pressure wave propagation and cover gas pressurization, domino effect, steam dragged into the core, primary system pollution and slug formation)
- The SGTR event will be experimentally investigated on the large scale CIRCE facility, implementing a test section oriented to simulate a portion of the full scale tube bundle
- The design of the test section, the instrumentation foreseen to be implemented, the preliminary numerical study performed by SIMMER-III (2D) and the detailed modelling by SIMMER-IV (3D) codes are presented

MYRRHA-PHX

In the CIRCE facility a portion of the full scale bundle of the MYRRHA PHX will be host, with LBE inlet and outlet regions

 Two rupture positions will be experimentally investigated: Middle and Bottom positions

The main parameters of the MYRRHA PHX are listed in the table

Parameter	Unit	Value
Power of one HX	MW	27.5
Shroud external diameter	mm	~850
Shroud internal diameter	mm	~800
Feed water pipe external diameter	mm	~200
Number of water tubes	-	684
Pitch of water tubes	mm	26
External diameter of water tubes	mm	16
Internal diameter of water tubes	mm	14
Thickness of water tubes	mm	1
Length of water tubes	mm	~8500
HX LBE inlet temperature	°C	350
HX LBE outlet temperature	°C	270
HX LBE mass flow rate	Kg/s	~2500
HX water inlet temperature	°C	200
HX water outlet temperature	°C	201.6
HX water mass flow rate	Kg/s	~47
HX water pressure	bar	16

CIRCE facility (ENEA Brasimone CR)

Main Vessel S100

\rightarrow	Outside Diameter	1200 mm
\rightarrow	Wall Thickness	15 mm
\rightarrow	Material	AISI 316L
\rightarrow	LBE Inventory (max)	90 tons
\rightarrow	Height	8-10 m
\rightarrow	Design Pressure	16 bar
\rightarrow	Design Temperature	450°C

The largest LBE pool worldwide

Test section design, objectives

- Tube rupture propagation into the HX-tube bundle
- Pressure waves propagation into the HX-tube bundle and damping effect of the HX-shell towards the surrounding structures
- Assessment and performance evaluation of the safety-guard devices (rupture disk and fast valves) aiming to mitigate the effects of the SGTR event
- Steam trapping in the main LBE flow path and dragging towards the core inlet region
- Investigation on the solid impurities formation after the SGTR event, accompanied by a quantitative qualification of filtering performance in the pool
- Qualitative characterization of the LBE particulate discharged by water and rupture disk discharge lines

Test section design

Unit

°C

kg/s

°C

°C

bar

kg/s

bar

m³

m³

bar

mm

Value

350

~80

200

201.4

16

~0.07

1.05

~2.2

~7

16

~5200

Test section components

Test section components, centrifugal pump

Test section components, CIRCE cover

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

10/19

Test section instrumentation

5 **fast Pressure Transducers** (transient pressure) 12 **Bubble Tubes** (level, mass flow rate and stationary pressure)

~200 Thermocouples

~45 in each SGTR-TS

6 TCs at level (two level below, one level at and 5-6 levels above the rupture position) N 6 tubes 3x1 mm, 6" tube drilled Vapour path propagation

Test section instrumentation

Tube rupture characterization

10

Specimens	Specimens temperature	F _{max} [kN]	σ _{max} [N/mm ²]	Elongation [mm]
[1] PM 04812	200°C	8.95	488	1.29
[2] PM 04912	200°C	8.55	449	1.31
[3] PM 05012	200°C	9.31	607	1.44
[4] PM 05112	300°C	7.53	405	1.70
[5] PM 05212	300°C	6.69	351	1.77
[6] PM 05312	300°C	7.76	457	1.31
[7] PM 05412	400°C	7.20	398	1.84
[8] PM 05512	400°C	7.14	514	2.12
[9] PM 05612	400°C	7.21	470	1.96

P&ID of the secondary side circuit

14/19

AGENZIA NAZIONALE

Preliminary numerical analysis by SIMMER-III

Preliminary numerical analysis by SIMMER-III

16/19

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

- The design of the test section hosting 4 SGTR-TSs is completed
- The CIRCE cover, centrifugal pump and Venturi flowmeter are available
- The procurement of the test section is started and is ongoing
- The procurement of the instrumentation is ongoing (30 SGs available)
- Preliminary numerical study by SIMMER-III and detailed 3D modelling by SIMMER-IV are realized, the detailed numerical study is ongoing
- Test section is foreseen to be constructed, instrumented, and set into CIRCE facility by the first half of 2015 as well as the implementation of the secondary side (water supply line)

THANK YOU FOR YOUR ATTENTION

LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO

POOL THERMAL-HYDRAULIC INVESTIGATION IN CIRCE FACILITY

AGENZIA NAZIONALE

PER LE NUOVE TECNOLOGIE, L'ENERGIA LO SVILUPPO ECONOMICO SOSTENIBILE

> M. Tarantino, P. Agostini, I. Di Piazza, P. Gaggini (ENEA) N. Forgione, D. Martelli (Università di Pisa)

ADP PAR2013, 15-16 Gennaio 2015, CR ENEA Bologna

OVERVIEW

- **S** CIRCE Experiment
- **Test Section Overview**
- Results and Discussion

Remarks

CIRCE EXPERIMENT

Investigate HLM pool thermal-hydraulic

- Investigate the transition from forced to natural circulation in a HLM pool-type system (accidental scenario with DHR system)
- Characterize the heat transfer into HLM cooled fuel pin bundle under forced and natural circulation
- Support the qualification of CFD codes and models for the modeling of in-pool phenomena (convection patterns, thermal stratification and fluid-structure thermal exchange)
- Support the assessment of thermal-hydraulic system codes for the simulation of system dynamics in buoyancy influenced flow conditions

CIRCE EXPERIMENT

CIRCE Multipurpose Facility

Parameters	Value
Outside Diameter	1200 mm
Wall Thickness	15 mm
Material	AISI 316L
Max LBE Inventory	90000 kg
Electrical Heating	47 kW
Cooling Air Flow Rate	3 Nm ³ /s
Temperature Range	200 to 550 °C
Operating Pressure	15 kPa (gauge)
Design Pressure	450 kPa (gauge)
Argon Flow Rate	15 NI/s
Argon Injection Pressure	600 kPa (gauge)

Electrical Power (Pin Bundle) $\sim 1~\text{MW}$

FUEL PIN BUNDLE SIMULATOR

Ħ	Assembly:	Hexagonal
Ħ	Φ:	8.2 mm
Ħ	р/Ф:	1.8
Ħ	L _{att} :	1000 mm
Ħ	N _h :	37
Ħ	q":	1 MW/m ²
Ħ	P _h :	26 kW/pin

# Thermal Power:	up to 925 kW
¤ LBE mean T:	300 - 350 °C
¤ Core ΔT:	100 °C
# Core velocity:	1.0 m/s
# LBE Flow Rate:	55.2 kg/s

EXPERIMENT DESCRIPTION

	LBE	Argon	FPS	ΔΤ	ΔΤ	ΔΤ
Name	Mass flow	Mass flow	Electrical Power	(outlet-inlet)	(clad-bulk)	(clad-bulk)
	rate [kg/s]	rate [Nl/s]	[kW]	FPS [°C]	Mikityuk [°C]	Ushakov [°C]
1-FC	70	5.00	800	80	35.0	36.0
2-FC	65	4.40	760	80	37.0	39.0
3-FC	60	3.00	700	80	39.5	41.0
4-FC	55	2.40	640	80	41.6	43.5
5-FC	50	1.60	580	80	43.5	45.7
6-FC	45	1.45	525	80	45.4	47.8
7-FC	40	1.41	465	80	47.0	49.5

Nama	LBE	FPS	ΔΤ
Iname	Mass flow rate [kg/s]	Electrical Power [kW]	(outlet-inlet) FPS [°C]
1-NC	25	600	165
2-NC	23	500	151
3-NC	21	400	133
4-NC	19	300	109
5-NC	14	200	102
6-NC	12	100	58

RESULTS AND DISCUSSION

TEST 1-FC

Power 800 kW, 5.0 NI/s Average velocity in the FPS is 1.1 m/s

RESULTS AND DISCUSSION

TEST 1-FC

Cladding T (Sec_1, central sub-channel) is about 366°C while the bulk temperature is 312°C

TEST 1-NC

Cladding T (Sec_1, central subchannel) is about 434°C while the bulk temperature is 372°C

RESULTS AND DISCUSSION

The experimental results agree very well each other

General trend slightly underestimates values obtained by Ushakov and Mikityuk correlations

CFD calculations well agree with experimental results

The uncertainty of the obtained Nu is within $\pm 20\%$, while the uncertainty of the Pe is within $\pm 12\%$

REMARKS

- ICE has been preformed to reproduce the thermal-hydraulic behaviour of primary system pool-type nuclear reactor, cooled by HLM, in a relevant scale (1 MW)
- Nu along the FPS has been experimental evaluated. Thus, the results carried out have shown as the primary system of LFR nuclear system is technological feasible. The gained data confirms the correlation being adopted for HLM fuel pin bundle design
- The gained results represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both under forced and natural circulation
- Future and innovative nuclear systems based on the HLM technologies (ADSs, LFRs) will be supported by these experiments in their design, safety analysis and licensing phases

Fuel Pin Bundle Characterization in the NACIE-UP HLM facility

Ivan Di Piazza	– ENEA	ivan.dipiazza@enea.it

- Mariano Tarantino ENEA
- Giuseppe Polazzi ENEA
- Valerio Sermenghi ENEA
- Daniel Giannotti ENEA
- Lorenzo Laffi ENEA

LFR-GEN IV Workshop, ENEA R.C. Bologna, January 15-16, 2015

Summary

- □ The NACIE-UP facility: primary and secondary side
- NACIE-UP status
- Bundle Instrumentation and aim of the experimental campaign
- **Experimental range and test matrix**
- □ CFD model of the FPS test section
- □ Highlights for the experimental activity
- Revised experimental test matrix
- Conclusions

NACIE-UP P&ID

NACIE-UP

The reference for the piping and instrumentation is the P&ID reported, where all the instrumentation, components and pipes are listed and logically represented. The facility includes:

- The Primary side, filled with LBE, with 2 ½" pipes, where the main new components and instruments will be placed:
- A new Fuel Pin Simulator (19-pins) 250 kW maximum power; ok
- A new Shell and tube HX with two sections, operating at low power (5-50 kW) and high power (50-250 kW); ok
- A new low mass flow rate induction flow meter (0-3 kg/s) FM101; ok
- A new high mass flow rate induction flow meter (3-15 kg/s) FM102; ok
- 5 bubble tubes to measure the press. drops across the main components and the pipes; ok
- Several bulk thermocouples to monitor the temperature along the flow path; ok
- The Secondary side, filled with water at 16 bar, connected to the HX, shell side. It includes a pump, an air-cooler, by-pass and isolation valves, and a pressurizer (S201) with cover gas;
- An ancillary gas system, to ensure a proper cover gas in the expansion tank, and to provide gas-lift enhanced circulation;
- A LBE draining section, with ½" pipes, isolation valves and a storage tank (S300);
- The ancillary gas system is practically identical to the previous configuration of the NACIE facility and does not have significant upgrade. It has the function to ensure the cover gas in S101 and to manage the gas-lift system in the riser (T103) for enhanced circulation regime;

The new Induction Flow Meter

meter has

installed in July 2012

(range 0-20 kg/s)

flow

✓ The

FM102

Receiving Coil2 Channel Wall Induced Currents Magnetic Field $c_{p}\Delta T$ TEST203 ✓ A new Induction Flow Meter (IFM) has been 16 F101 (Ar-Injection) NI/min MP101 (IFM) [kg/s] 14 Mflow Thermal [kg/s] been calibrated 12 10 8 ✓ An experimental campaign to test the **IFM** has 6 been completed in Dec 2012

5000

10000

15000

20000

time [s]

25000

30000

35000

Transmit Coil

Flow

Receiving Coil1

The new Induction Flow Meter

Name	T _{av} [°C]	Power %	Power [kW]	Ramp t [min]	Heat Sink	Glift [NI/min]	Transition NC to GLC	Transition GLC to NC	
201	200-250	50	9.5	5	YES	0	NO	NO	
203	200-250	50	9.5	5	YES	5	NO	YES	
204	200-250	50	9.5	5	YES	2,4,5,6,8, 10,6,5,4,2	YES	NO	
206	200-250	0	0	-	NO	2,4,5,6,8, 10,6,5,4,3	NO	ark	
301	300-350	100	21.5	5	YES	0	NO		
303	300-350	100	21.5	5	YES	5	NO		
304	300-350	100	21.5	5	YES	2,4,5,6,8, 10,6,5,4,2	YES		
305	300-350	50	9.5	5	YES	0	NO		
306	300-350	0	0	-	NO	2,4,5,6,8, 10,6,5,4,2	NO		
406	350-360	25	3.5	5	NO	2,4,5,6,8, 10,6,5,4,2	NO		
				FI	M101		10	a la	

- ✓ A new Induction Flow Meter (IFM) has been designed (HZDR-Saas).
- ✓ The flow meter has a range 0-5 kg/s
- ✓ D~25 mm;
- ✓ It will be used in the next experimental campaign;

The new HX: 7 tube-in-tube (SS powder)

NACIE-UP LAYOUT : SECONDARY SIDE

NACIE-UP SECONDARY SIDE : PICTURES

ENER

NACIE-UP SECONDARY SIDE : PICTURES

NACIE-UP detailed status

- The primary side of NACIE-UP is completed and instrumented (incl. heating cables and insulation);
- The fill & drain system is completed;
- Primary Actuated valves were tested for mfr regulation (partially closed);
- Pressure test has been carried out;
- The cover gas auxiliary system is completed;
- The secondary side was completed including pressurizer and gas lines: Fully tested with water;
- The connection of the instrumentation to the DACS is ok (white tests OK);
- The FPS must be connected to the power panel (1 week work);

E NUOVE TECNOLO

From these issues, we expect that the first 'case' of the experimental test matrix will be carried out in 02/2015.

The whole experimental campaign will last <u>about one month;</u> We expect to collect the results before the end of March 2015;

NACIE-UP Status+Pictures...

- The primary side of NACIE-UP is completed and instrumented;
- The fill & drain system is completed;
- The cover gas auxiliary system is completed;
- The secondary loop is completed;

NACIE-UP Status+Pictures...

V142 can be partially open to regulate mass flow rate

Bundle Instrumentation

Instrumentation

- 11 pins instrumented;
- 5 subchannels instrumented;
- data on:
 - 1. wall temperature;
 - 2. bulk temperature;
 - 3. heat transfer coefficient;
 - 4. thermal stratification;
 - 5. (thermal entrance length);
 - 6. eventual hot spots.
- pins instrumented with:
 - a) Embedded-wall TCs 0.35 (52);
 - *b)* subchannel TCs 0.5 mm (15).

2·/ = 45.434 mm

Bundle Instrumentation

• **Pin 3** will be instrumented with wall embeddedd TCs (0.35mm) **every 43.66 mm**. This will allow to study *axial thermal development*, if present.

• All the *wall thermocouples* will be 0.35mm embedded on grooves 0.45mm deep and 0.4mm width.

•All the bulk thermocouples will be 0.5 mm with prolongation.

52 wall TCs + 15 bulk TC

Bundle Constructions details

Bundle Constructions details

EXPERIMENTAL RANGES

NACIE-UP range

Natural circulation

Forced 'gas lift' circulation

The Reynolds number range reproduced in NACIE *perfectly agrees* with the Re range required in the Myrrha HTC specification document by SCK.

A good overlap with Forced Convection is guaranteed by gas lift up to $Re_{sc} \sim 20000$

The *power range* of the *heaters* can reproduce what is required by the HTC specification document:

Liner power~ **950-2850 W/m**

Q_{19pinbundle}~11-35 kW

The test matrix will be coherent to what required by the HTC document SCK

EXPERIMENTAL MATRIX: NC

TEST	u sc[m/s]	$\dot{m}_{FA} [kg / s]$	ḿ _{NACIE} [kg / s]	⊿ <i>T</i> [°C]	Q [kW]	$Q_{lin}[kW/m]$
NC101	0.203	7.90	1.372	54	10.84	0.951
NC102	0.160	6.20	1.077	69	10.84	0.951
NC103	0.124	4.80	0.834	90	10.84	0.951
NC104	0.098	3.80	0.660	113	10.84	0.951
NC105	0.075	2.90	0.504	148	10.84	0.951
NC106	0.059	2.30	0.399	187	10.84	0.951
NC107	0.260	10.10	1.754	85	21.68	1.902
NC108	0.203	7.90	1.372	109	21.68	1.902
NC109	0.160	6.20	1.077	139	21.68	1.902
NC110	0.124	4.80	0.834	179	21.68	1.902
NC111	0.098	3.80	0.660	227	21.68	1.902
NC112	0.301	11.70	2.032	110	32.52	2.853
NC113	0.234	9.10	1.580	142	32.52	2.853
NC114	0.183	7.10	1.233	182	32.52	2.853
NC115	0.144	5.60	0.973	231	32.52	2.853

The experimental test matrix range to be performed in the next NACIE-UP campaign was provided by SCK-CEN in and it is resumed in the Table.

Moreover, in the original SCK matrix in most of the cases are repeated with two inlet temperatures: $T_{inlet}=200, 270$ °C; cases which differ only by the inlet temperatures have been collapsed, being the thermal-fluid dynamic behavior of the bundle largely independent by T_{inlet} .

EXPERIMENTAL MATRIX: FC-NC

TEST	$u_{sc}[m/s]$	$\dot{m}_{FA} [kg/s]$	$\dot{m}_{_{NACIE}} [kg / s]$	⊿ <i>T</i> [°C]	Q[kW]	$Q_{lin}[kW/m]$		
FC101	0.13	7.90	0.88	171	21.7	1.9		
FC102	0.26	10.10	1.75	85	21.7	1.9		
FC103	0.52	20.21	3.51	43	21.7	1.9		
FC104	0.78	30.31	5.26	28	21.7	1.9		
FC105	1.05	40.80	7.08	21	21.7	1.9		
FC106	1.31	50.90	8.84	17	21.7	1.9		
FC107	1.57	61.01	10.59	14	21.7	1.9		
FC108	1.87	72.66	12.62	12	21.7	1.9		
FC109	2.22	86.26	14.98	10	21.7	1.9		
FC110	0.27	10.49	1.82	205	54.2	4.8		
FC111	0.53	20.59	3.58	105	54.2	4.8		
FC112	0.79	30.70	5.33	70	54.2	4.8		
FC113	1.05	40.80	7.08	53	54.2	4.8		
FC114	1.31	50.90	8.84	42	54.2	4.8		
FC115	1.57	61.01	10.59	35	54.2	4.8		
FC116	1.87	72.66	12.62	30	54.2	4.8		
FC117	2.22	86.26	14.98	25	54.2	4.8		
FC118	0.53	20.59	3.58	209	108.4	9.5		
FC119	0.79	30.70	5.33	140	108.4	9.5		
FC120	1.05	40.80	7.08	106	108.4	9.5		
FC121	1.31	50.90	8.84	85	108.4	9.5		
FC122	1.58	61.40	10.66	70	108.4	9.5		
FC123	1.87	72.66	12.62	59	108.4	9.5		
FC124	2.23	86.65	15.04	50	108.4	9.5		
FC125	1.06	41.19	7.15	209	216.8	19.0		
FC126	1.32	51.29	8.91	168	216.8	19.0		
FC127	1.58	61.40	10.66	140	216.8	19.0		
FC128	1.88	73.05	12.68	118	216.8	19.0		
FC129	2.24	87.04	15.11	99	216.8	19.0		
FC130	0.13	5.05	0.88	171	21.7	1.9		
FC131	0.26	10.10	1.75	85	21.7	1.9		
FC132	0.53	20.59	3.58	42	21.7	1.9		
FC133	0.79	30.70	5.33	28	21.7	1.9		
FC134	1.06	41.19	7.15	21	21.7	1.9		
FC135	1.32	51.29	8.91	17	21.7	1.9		

The Table shows the experimental test matrix to be adopted to assess the coolability of the MYRRHA FA in forced circulation condition (SCK document). The experiment will take place at KIT within the SEARCH FP7-WP2.

The yellow evidenced test cases represents the cases that can be performed also in NACIE-UP and that guarantees an overlap of the results with the KIT experiment.

Therefore, a **test matrix extension** is proposed.

EXPERIMENTAL RANGES

NACIE-UP FPS: THE CFD MODEL

- The whole test section is modelled
- **36 million nodes High quality mesh**
- All the secondary flow features can be captured
- Conjugate Heat transfer phenomena are fully captured
- All the thermal structures are inside (wire, clad, etc.)
- The asymmetric entry effects are considered

INFLUENCE OF REYNOLDS NUMBER

Growing Reynolds

The pre-test CFD analysis of the NACIE-UP FPS shows some interesting features of the experimental test section and provided **highlights** on the experimental test matrix itself. The present work allowed us to access to *HiFifa INERI Benchmark* with *LES data* in Lead from ANL (invitation from NRG, CFD group in the SEARCH FP7 project).

The following points can be stressed:

- 1. The considerable effect of the **conjugate heat transfer** on the LBE thermal field in particular for the *lower mass flow rate cases*: *hexagonal pipe* creates a thermal bridge between the hot and the cold region;
- 2. The small difference between the pin temperature and the subchannel temperature that can be attained in the inner sub-channels especially at the lower mass flow rates of the experimental range (as the 0.5 and 1.0 kg/s results) (HTC experimental impact);
- 3. The **thermal field does not reach a fully developed** and stable **condition** in the heated/instrumented region and this phenomenon was predicted by other authors.

ORIGINAL EXPERIMENTAL TEST MATRIX

PEC TEST N	m _{NACIEUP} [kg/s]	m _{MYRRHAFA} [kg/s]	u _{sc} [m/s] Re _{sc} x10 ⁻	³ Pe _{sc}	NuUshakov	, HTC[W/m ² K]	Q[kW]	T _{inlet} [°C]	∆T _{io} [°C]	T _{outlet} [°C]	T _{av Bundle} [°C]	T _{max clad} [°C]	ΔT wall Bulk	T _{lwater} [°C]	T _{maxwallW} [°C]	T _{minwallLBE} [°C]	Regime	нх	TRANSITION	V142[°]	Observations
C00	0.00	0.0	0.00	0.00	0	0.0	0	0	180	0	180	180	180	0.00				-	NA	-	90	Opoint IFMs
C01	7	40.3	1.02	16.55	583	13.0	35324	30	180	29	209	195	213	3.62				GAS LIFT	LOW	STATIONARY	0	2point IFMs+ test LOW HX
C02	7	40.3	1.02	18.47	549	12.8	36756	100	180	97	277	229	289	11.60				GAS LIFT	HIGH	STATIONARY	0	2point IFMs + test High HX
C03	7	40.3	1.03	21.09	509	12.6	38717	200	180	195	375	277	397	22.02				GAS LIFT	HIGH	STATIONARY	0	2point IFMs + test High HX
C04	7	40.3	1.02	15.72	599	13.1	34694	0	180	0	180	180	180	0.00				GAS LIFT	HIGH	STATIONARY	0	GAS LIFT characterization m(mgas)
C05	7	40.3	1.02	15.72	599	13.1	34694	0	180	0	180	180	180	0.00				GAS LIFT	HIGH	STATIONARY	10,20,30,45,60,80,90	V142 characterization: m(X°)
C06	3	17.3	0.44	7.51	242	10.9	30492	28	180	64	244	212	248	3.91				GAS LIFT	LOW	STATIONARY	X°	Re-test FM101-FM102
P101	1.37	7.9	0.20	3.38	112	10.0	27634	10.8	180	54	234	207	236	1.67				NAT CIRC	LOW	STATIONARY	X°	
P102	1.08	6.2	0.16	2.72	87	9.8	27394	10.8	180	69	249	214	250	1.69				NAT CIRC	LOW	STATIONARY	X°	
P103	0.83	4.8	0.12	2.17	66	9.6	27328	10.8	180	89	269	224	270	1.69				NAT CIRC	LOW	STATIONARY	X°	
P104	0.66	3.8	0.10	1.78	51	9.5	27438	10.8	180	112	292	236	294	1.68				NAT CIRC	LOW	STATIONARY	X°	
P105	0.50	2.9	0.07	1.43	38	9.4	27780	10.8	180	147	327	253	328	1.66				NAT CIRC	LOW	STATIONARY	X°	
P106	0.40	2.3	0.06	1.19	29	9.3	28277	10.8	180	185	365	272	367	1.63				NAT CIRC	LOW	STATIONARY	X°	
P107	1.75	10.1	0.26	4.54	139	10.2	28912	21.7	180	84	264	222	268	3.20				NAT CIRC	LOW	STATIONARY	X°	
P108	1.37	7.9	0.20	3.68	107	10.0	28714	21.7	180	108	288	234	291	3.22				NAT CIRC	LOW	STATIONARY	X°	
P109	1.08	6.2	0.16	3.01	82	9.7	28752	21.7	180	137	317	249	321	3.22				NAT CIRC	LOW	STATIONARY	X°	
P110	0.83	4.8	0.12	2.46	61	9.6	29053	21.7	180	177	357	269	361	3.18				NAT CIRC	LOW	STATIONARY	X°	
P111	0.66	3.8	0.10	2.06	47	9.4	29579	21.7	180	224	404	292	407	3.13				NAT CIRC	LOW	STATIONARY	X°	
P112	2.03	11.7	0.30	5.45	158	10.3	29871	32.5	180	109	289	235	294	4.64				GAS LIFT	LOW	STATIONARY	X°	
P113	1.58	9.1	0.23	4.43	120	10.1	29716	32.5	180	140	320	250	325	4.66				NAT CIRC	LOW	STATIONARY	X°	
P114	1.23	7.1	0.18	3.65	91	9.8	29856	32.5	180	180	360	270	364	4.64				NAT CIRC	LOW	STATIONARY	X°	
P115	0.97	5.6	0.14	3.05	69	9.6	30273	32.5	180	228	408	294	412	4.58				NAT CIRC	LOW	STATIONARY	X°	

NEW EXPERIMENTAL TEST MATRIX: EXTENSION ON CONVECTIVE HEAT TRANSFER

		F	$ ECTESTN \ m_{NACLEUP}[kg/s] \ m_{MYRRHAFA}[kg/s] \ u_{\mathbf{x}}[m/s] \ Re_{\mathbf{x}} \times 10^{-3} \ Pe_{\mathbf{x}} \ Nu_{Ushekov} \ HTC[W/m^{2}K] \ Q[kW] \ T_{inlet}[^{*}C] \ \DeltaT_{IO}[^{*}C] \ T_{weile}[^{*}C] \ T_{mexcled}[^{*}C] \ \DeltaT_{weile}[^{*}C] \ L_{weile}[^{*}C] \ MU_{Ushekov} \ HTC[W/m^{2}K] \ Q[kW] \ T_{inlet}[^{*}C] \ D_{IO}[^{*}C] \ T_{mexcled}[^{*}C] \ T_{mexcled}[^{*}C] \ D_{weile}[^{*}U] \ MU_{Uhekov} \ MU_{Uh$									T _{maxwellW} [°C]	T _{minwellLBE} [°C]	Regime	HX TRANSITION	V142[°]	Observations							
			P201	7	40.3	1.02	16.28	588	13.1	35115	20	180	19	199	190	202	2.43	169	172	177	GASLIFT	LOW STATIONARY	0	
			P202	5	28.8	0.73	11 78	417	12.1	32624	20	180	27	207	194	210	2.61	171	175	177	GASLIFT	LOW STATIONARY	X°	
			P203	3	17.3	0.44	7.29	246	11.0	30119	20	180	45	225	203	228	2.83	175	180	178	GAS LIFT	LOW STATIONARY	X°	
			P204	1	5.8	0.15	2.79	76	9.7	28586	20	180	136	316	248	319	2.98				GAS LIFT	LOW STATIONARY	X°	
			P205	0.5	2.9	0.07	1.65	34	9.3	30128	20	180	273	453	316	455	2.83				NAT CIRC	LOW STATIONARY	X°	
			P206	7	40.3	1.02	16.50	584	13.0	35282	28	180	27	207	194	211	3.38	164	169	176	GAS LIFT	LOW STATIONARY	0	
			P207	5	28.8	0.73	12.01	413	12.0	32854	28	180	38	218	199	222	3.63	167	173	176	GAS LIFT	LOW STATIONARY	X°	
			P208	3	17.3	0.44	7.51	242	10.9	30492	28	180	64	244	212	248	3.91	172	180	178	GAS LIFT	LOW STATIONARY	X°	
			P209	1.5	8.6	0.22	4.13	115	10.0	29323	28	180	127	307	244	311	4.07	178	192	180	GAS LIFT	LOW STATIONARY	X°	
			P210	0.75	4.3	0.11	2.43	52	9.5	30325	28	180	254	434	307	438	3.94				NAT CIRC	LOW STATIONARY	X°	
			P211	7	40.3	1.02	16.72	580	13.0	35449	36	180	35	215	198	219	4.33	159	166	175	GAS LIFT	HIGH STATIONARY	0	
			P212	5	28.8	0.73	12.23	409	12.0	33083	36	180	49	229	205	234	4.64	163	171	175	GAS LIFT	HIGH STATIONARY	X°	
			P213	3	17.3	0.44	7.73	239	10.9	30862	36	180	82	262	221	267	4.97	170	180	177	GAS LIFT	HIGH STATIONARY	X°	
			P214	2	11.5	0.29	5.48	154	10.3	30088	36	180	123	303	241	308	5.10	175	189	179	GAS LIFT	HIGH STATIONARY	X°	
			P215	1	5.8	0.15	3.20	70	9.6	30652	36	180	245	425	303	430	5.01	455	462	474	NAT CIRC	HIGH STATIONARY	X°	
			P216	<i>.</i>	40.3	1.02	16.91	5/6	13.0	35594	43	180	42	222	201	227	5.15	155	163	1/4	GAS LIFT	HIGH STATIONARY	U	
			P217	5	28.8	0.73	12.42	406	12.0	33281	43	180	59	239	209	244	5.51	160	169	174	GAS LIFT		X	
			P218 D210	3	17.3	0.44	7.92	235	10.9	31183	43	180	98	2/8	229	284	5.88	108	180	177	GAS LIFT		X	
			P219 P220	1 25	7.2	0.29	2.00	101	10.5	20020	45	190	224	527	200	420	E 02	174	190	170			× v°	2 CED Post Tost cases by NPG
			P220	7	/0.3	1.02	17.16	572	13.0	35780	52	180	51	231	205	237	6.20	150	160	172	GASLIFT	HIGH STATIONARY	0	2 CID FOST-TEST Cases by NIG
			P222	, 5	28.8	0.73	12.67	401	12.0	33536	52	180	71	251	215	258	6.61	156	167	173	GAS LIFT	HIGH STATIONARY	x°	
			P223	4	23.0	0.59	10.42	316	11.4	32486	52	180	89	269	224	275	6.82	160	172	173	GAS LIFT	HIGH STATIONARY	X°	
			P224	2.5	14.4	0.37	7.03	189	10.6	31277	52	180	142	322	251	329	7.09	169	186	177	GAS LIFT	HIGH STATIONARY	X°	
			P225	1.5	8.6	0.22	4.75	106	9.9	31406	52	180	236	416	298	423	7.06	177	202	179	NAT CIRC	HIGH STATIONARY	X°	
			P226	7	40.3	1.02	17.38	568	12.9	35944	60	180	58	238	209	246	7.12	146	157	171	GAS LIFT	HIGH STATIONARY	0	
			P227	5	28.8	0.73	12.88	398	11.9	33760	60	180	82	262	221	269	7.58	152	165	172	GAS LIFT	HIGH STATIONARY	X°	
			P228	4	23.0	0.59	10.63	313	11.4	32762	60	180	102	282	231	290	7.81	157	171	173	GAS LIFT	HIGH STATIONARY	X°	
			P229	2.5	14.4	0.37	7.24	186	10.5	31702	60	180	164	344	262	352	8.07	168	187	176	GAS LIFT	HIGH STATIONARY	X°	
			P230	1.75	10.1	0.26	5.53	124	10.1	31795	60	180	234	414	297	422	8.04	174	200	178	NAT CIRC	HIGH STATIONARY	X°	
			P231	7	40.3	1.02	17.60	564	12.9	36108	68	180	66	246	213	254	8.03	141	153	170	GAS LIFT	HIGH STATIONARY	0	
			P232	5	28.8	0.73	13.10	394	11.9	33984	68	180	93	273	226	281	8.53	148	162	171	GAS LIFT	HIGH STATIONARY	X°	
			P233	4	23.0	0.59	10.84	309	11.4	33037	68	180	116	296	238	305	8.77	154	170	1/3	GAS LIFT	HIGH STATIONARY	X-	
			P234	3	17.3	0.44	6.58	141	10.8	32309	68	180	155	335	257	421	8.97	101	180	175	GASLIFT		X	
			P235	2	11.5	1.02	18.0/	557	12.9	36/33	84	180	87	262	290	272	9.01	132	197	167	GASLIFT		^	
			P237	5	28.8	0.73	13 53	387	11.9	34427	84	180	115	295	237	305	10.40	141	158	169	GASLIFT	HIGH STATIONARY	X°	
			P238	4	23.0	0.59	11.27	302	11.3	33580	84	180	143	323	252	334	10.66	148	167	171	GAS LIFT	HIGH STATIONARY	X°	
			P239	3	17.3	0.44	9.00	219	10.8	33014	84	180	191	371	275	382	10.85	157	180	173	GAS LIFT	HIGH STATIONARY	X°	
			P240	2.5	14.4	0.37	7.85	177	10.5	32952	84	180	229	409	295	420	10.87	163	189	175	GAS LIFT	HIGH STATIONARY	X°	
			P241	7	40.3	1.02	18.47	549	12.8	36756	100	180	97	277	229	289	11.60	123	141	165	GAS LIFT	HIGH STATIONARY	0	
			P242	5	28.8	0.73	13.95	380	11.8	34865	100	180	136	316	248	329	12.23	133	154	167	GAS LIFT	HIGH STATIONARY	X°	
			P243	4	23.0	0.59	11.69	296	11.3	34116	100	180	170	350	265	363	12.50	141	165	169	GAS LIFT	HIGH STATIONARY	X°	
			P244	3	17.3	0.44	9.40	213	10.7	33706	100	180	227	407	294	420	12.65	152	180	172	GAS LIFT	HIGH STATIONARY	X°	
			P245	7	40.3	1.03	18.87	543	12.8	37057	115	180	112	292	236	305	13.23	114	135	163	GAS LIFT	HIGH STATIONARY	0	
			P246	5	28.8	0.73	14.35	374	11.8	35272	115	180	157	337	258	351	13.90	126	150	165	GAS LIFT	HIGH STATIONARY	X°	
			P247	3.5	20.2	0.52	10.93	249	11.0	34408	115	180	224	404	292	418	14.25	141	170	169	GAS LIFT	HIGH STATIONARY	X°	
			P248	7	40.3	1.03	19.01	541	12.8	37156	120	180	117	297	238	311	13.77	111	133	162	GAS LIFT	HIGH STATIONARY	X°	
			P249	5	28.8	0.73	12.20	3/2	11.8	35407	120	180	204	344	202	358	14.45	124	149	167	GAS LIFT		X- V ⁰	
			P250 D251	4	23.0	1.02	10.27	526	12.2	27255	120	190	127	207	202	221	14.71	106	102	167	GASTIET		×°	
			P252	4.5	25.9	0.66	13.60	326	11.5	35352	130	180	197	377	243	393	15.68	124	153	164	GASLIFT	HIGH STATIONARY	x°	
			P253	7	40.3	1.03	19.60	531	12.7	37611	143	180	139	319	250	335	16.21	98	124	159	GASLIFT	HIGH STATIONARY	X°	
			P254	5	28.8	0.74	15.07	363	11.7	36020	143	180	195	375	277	392	16.92	113	143	162	GAS LIFT	HIGH STATIONARY	X°	
			P255	7	40.3	1.03	20.06	524	12.7	37944	160	180	156	336	258	354	17.98	89	118	156	GAS LIFT	HIGH STATIONARY	X°	
			P256	5.5	31.7	0.81	16.65	399	11.9	36778	160	180	198	378	279	397	18.55	100	132	158	GAS LIFT	HIGH STATIONARY	X°	
			P257	6	34.6	0.88	18.10	436	12.2	37402	172	180	195	375	278	395	19.60	89	123	156	GAS LIFT	HIGH STATIONARY	X°	
			P258	6.5	37.4	0.96	19.59	472	12.4	38064	186	180	195	375	278	396	20.83	78	112	153	GAS LIFT	HIGH STATIONARY	X°	
T TEST N	mKIT[kg/s]	QKIT[kW]	P259	7	40.3	1.03	21.09	509	12.6	38717	200	180	195	375	277	397	22.02	66	102	150	GAS LIFT	HIGH STATIONARY	0	
K60	1.12	39.4	P260	0.88	5.1	0.13	2.57	65	9.6	28963	21.7	180	168	348	264	351	3.19	180	197	180	NAT CIRC	HIGH STATIONARY	X°	
K62	2.25	39.4	P262	1.77	10.2	0.26	4.58	141	10.2	28926	21.7	180	83	263	222	267	3.20	178	187	179	GAS LIFT	HIGH STATIONARY	X°	
K64	4.5	39.4	P264	3.55	20.4	0.52	8.56	292	11.3	30859	21.7	180	42	222	201	225	3.00	173	178	178	GAS LIFT	HIGH STATIONARY	X°	
K65	4.5	98.5	P265	3.55	20.4	0.52	9.45	277	11.2	32138	54.3	180	104	284	232	292	7.20	162	175	175	GAS LIFT	HIGH STATIONARY	X°	CFD Post-Test case by NRG
K67	6.75	39.4	P267	5.32	30.6	0.77	12.55	443	12.2	33071	21.7	180	28	208	194	211	2.80	169	174	177	GAS LIFT	HIGH STATIONARY	X°	
K68	6.75	98.5	P268	5.32	30.6	0.78	13.44	427	12.1	33945	54.3	180	/0	250	215	256	6.81	154	165	173	GAS LIFT		X°	CED Post Test area hubble
VDA	0.75	197	P209	5.32	30.0	0.78	14.90	403	12.0	32301	108.5	180	139	319	250	332	13.08	127	149	100	GAS LIFT	HIGH STATIONARY	X	CFD Post-Test case by NRG

NEW EXPERIMENTAL TEST MATRIX: EXTENSION FOR PLOFA AND FOOT BLOCKAGE

PEC TEST N	m _{NACIEUP} [kg/s]	m _{MYRRHAFA} [kg/s]	u _x [m/s]	Re_x10 ⁻²	³ Pe _{sc}	Nuushakov	HTC[W/m ² K]] <u>Q[kW]</u>	T _{inlet} [°C]	Δ <u>Τ_{ιο}[°C</u>]	T _{outlet} [°C]	T _{ev Bundle} [°C]	T _{mexeled} [°C]	ΔT well-Bulk	T _{iweter} [°C]	T _{mexwelHW} [°C]	T _{minwelHBE} [°C]	Regime	HX	TRANSITION	V142[°]
P301	7	40.3	1.03	21.09	509	12.6	38717	200.0	180	195	375	277	397	22.02				GAS LIFT	HIGH	PLOFA	0
	1.20	6.9	0.18	3.02	97	9.9	27584	11.8	180	67	247	213	249	1.82				NAT CIRC	LOW		0
P302	7	40.3	1.03	21.09	509	12.6	38717	200.0	180	195	375	277	397	22.02				GAS LIFT	HIGH	PLOFA	0
	1.70	9.8	0.25	4.46	134	10.2	29018	23.5	180	94	274	227	278	3.45				NAT CIRC	LOW		0
P303	7	40.3	1.03	21.09	509	12.6	38717	200.0	180	195	375	277	397	22.02				GAS LIFT	HIGH	PLOFA	0
	2.00	11.5	0.29	5.46	154	10.3	30038	35.3	180	120	300	240	305	5.00				NAT CIRC	LOW		0
P304	7	40.3	1.03	21.09	509	12.6	38717	200.0	180	195	375	277	397	22.02				GAS LIFT	HIGH	PLOFA	0
	2.40	13.8	0.35	6.67	183	10.5	30954	47.0	180	133	313	247	320	6.47				NAT CIRC	HIGH		0
P305	7	40.3	1.03	21.09	509	12.6	38717	200.0	180	195	375	277	397	22.02				GAS LIFT	HIGH	PLOFA	0
	2.60	15.0	0.38	7.43	195	10.6	31675	58.8	180	154	334	257	342	7.91				NAT CIRC	HIGH		0
P306	7	40.3	1.03	21.09	509	12.6	38717	200.0	180	195	375	277	397	22.02				GAS LIFT	HIGH	PLOFA	0
	2.70	15.6	0.40	7.97	199	10.6	32298	70.5	180	178	358	269	367	9.31				NAT CIRC	HIGH		0
P401	7	40.3	1.02	18.47	549	12.8	36756	100.0	180	97	277	229	289	11.60				GAS LIFT	HIGH	STATIONARY	0,10,20,30,40
P402	7	40.3	1.03	21.98	496	12.5	39381	235.0	180	229	409	294	434	25.44				GAS LIFT	HIGH	FBLOCKAGE	0
	2.60	15.0	0.38	7.43	195	10.6	31675	58.8	180	154	334	257	342	7.91				GAS LIFT	HIGH		X°(da T401)
P403	7	40.3	1.03	21.98	496	12.5	39381	235.0	180	229	409	294	434	25.44				GAS LIFT	HIGH	FBLOCKAGE	0
	4.00	23.0	0.59	10.60	313	11.4	32719	58.8	180	100	280	230	288	7.65				GAS LIFT	HIGH		X°(da T401)

CONCLUSIONS

- An experimental campaign will be carried out in February 2015 at the ENEA Brasimone PEC Lab (NACIE-UP loop) on the bundle coolability in the context of the SEARCH FP7 EU project to support the MYRRHA design.
- A well instrumented 19-pin bundle test section was designed and constructed and is available for the experiment.
- The experiment will assess the coolability of the bundle and will provide a dedicated HTC correlation. Data on wall temperature, bulk temperature at different mass flow rate will be obtained in the range 0.5 to 7 kg/s up to 200 kW HS.
- Data will be post-processed and a data error analysis will be carried out (Matlab routines);
- A large experimental data set will be available for code validation (CFD, SYS-TH, SYS-TH+CFD)
- A CFD pre-test analysis was carried out on the fuel pin bundle simulator (FPS).
- The whole FPS test section was modelled (by CFD) including the inlet region, the entry region, the active region, the outlet region with the upper grid, and the hexagonal wrap. The total number of nodes in the model was 35 millions (Re_{max} 20000)
- The velocity field in the wire-wrapped assembly of NACIE-UP shows complex features and a strong secondary fluid flow due to the swirl. Results show that the hydrodynamic field is fully developed well before the beginning of the active region after one wire pitch about. Nevertheless, the thermal field is not fully developed in the active region.
- Several highlights for the experimental activity emerged by the pre-test CFD analysis. In particular, the fuel bundle power should be increased as much as possible in the low mass flow rate range to improve the accuracy on the heat transfer coefficient measurement. Moreover, the numerical evidence of the not fully developed thermal field in the bundle, implies that experimental results must be released with details on the experimental test facility and boundary conditions.
- The CFD model developed will be used for pre and post test analysis of SEARCH TM and blockage tests.

Thank you for your attention

University of Pisa

Dipartimento di Ingegneria Civile e Industriale (DICI)

Validazione dell' accoppiamento fra il codice di sistema RELAP5 e il codice CFD Fluent

(Validation of the coupled calculations between RELAP5 STH code and Ansys FLUENT CFD code)

D. Martelli, G. Barone, <u>N. Forgione</u> (UNIPI)

nicola.forgione@ing.unipi.it

- Introduction
- Brief Excursus on the Coupling tool development
- Natural Circulation Test
- Coupling procedure improvements
 - ✓ Implementation of an implicit coupling scheme
 - ✓ Parallelization of the FLUENT User Defined Function
- Forced circulation test

Introduction

1D System codes offer:

- Possibility to model behavior of large part of a NPP (at least the entire system)
- Tested physical models for two-phase applications and Phase transition

3D CFD Codes offer:

- Better techniques for modeling large "open" volume with complex flows
- Detailed information on 3D flows such as Turbulence, Flow Patterns (multidimensional phenomena in general)
- Fine phenomena can be represented: mixing, stratification....

The goal of UNIPI work is to:

Develop, **improve**, and **validate** System Thermal-Hydraulics (STH) and Computational Fluid Dynamics (CFD) **two-way coupling methodology**

Excursus

... 2012 LP3-C4 → Development of a Coupling tool between RELAP5 and FLUENT CFD codes.

... 2013 LP2-C1 → Coupled Numerical Simulations of Forced Circulation Tests performed in the framework of the NACIE experimental campaign.

... 2014 LP2-C1 → Improvements of the coupling tool and Code Validation.

Explicit coupling scheme

ADP ENEA-MSE, PAR 2013, Bologna 15-16 Gennaio, 2015

RELAP5/Mod3.3 Improvements

New transport properties (thermal conductivity, dynamic viscosity and surface tension) for LBE and lead are recently implemented directly inside the FORTRAN source file, in agreement with the Sobolev database and correlations (2010). Moreover, the new external file of thermodynamic properties, used by RELAP5, has been generated for both LBE and lead.

Specific convective heat transfer correlations for LMs have been implemented inside the RELAP5 code. In particular, in the current modified version of RELAP5/Mod3.3 there is the possibility to use one among four different correlations.

RELAP option	Authors	Correlation $Nu = 5 + 0.025 Pe^{0.8}$	
1, 100, 101	Seban and Shimazaki (uniform wall temperature)		
102	Cheng and Tak (uniform heat flux)	Nu = $A + 0.018 \mathrm{Pe}^{0.8}$ with $A = \begin{cases} 4.5 & \text{if } \mathrm{Pe} < 1000 \\ 5.4 - 9 \cdot 10^{-4} \mathrm{Pe} & \text{if } 1000 \le \mathrm{Pe} \le 2000 \\ 3.6 & \text{if } \mathrm{Pe} < 2000 \end{cases}$	
110 (set <i>P/D</i> on 801/901 card)	Ushakov (triangular lattice of fuel pins)	Nu = $7.55 \frac{p}{D} - 20 \left(\frac{p}{D}\right)^{-13} + 0.041 \left(\frac{p}{D}\right)^{-2} \text{Pe}^{(0.56+0.19\frac{p}{D})}$ $1 \le \text{Pe} \le 4000; 1.2 \le p/D \le 2.0$	
111 (set <i>P/D</i> on 801/901 card)	Mikityuk (triangular and square lattice of fuel pins)	Nu = 0.047 $\left[1 - \exp\left(-3.8 \left(\frac{p}{D} - 1 \right) \right) \right] \left(\text{Pe}^{0.77} + 250 \right)$ 30 ≤ Pe ≤ 5000; 1.1 ≤ p/D ≤ 1.95	

2D & 3D CFD Geometrical Domain

Natural Circulation Test

Coupling improvements: Implicit scheme

AMA DI

HUNG DICALITATIS

UDF parallelization: UDF parallelization

FLUENT serial solver composed by a Cortex and a single FLUENT process

Responsible for user interface and graphics

The fluent parallel architecture is composed by the Cortex a Host a Compute node-0 and n Compute node-n.

The Host interprets commands from Cortex and passes those commands to Compute node-0 which then distributes them to the other computer nodes

An UDF needed to be parallelized when it performs operations that require information located on different compute nodes, such type of operations are operations involving summation or addition (integration) commonly performed in general purpose define macros

Matrix of simulations

New Numerical simulations adopting the Implicit scheme were performed

Name	$T_{AV} [^{\circ} C]$	FPS Power	Glift [Nl/min]	Monitored variables
Test 206	200-250	0	2,4,5,6,8,10,6, 5,4,2	LBE flow rate P_{in} and P_{out} in the HS
Numerical simulations				
Name	Time Step	CFD Geometrical Ser Domain		rial/Parallel
Test 206-0	0.005 s	2D		serial
Test 206-1	0.025 s	2D		"
Test 206-2	0.025s	2D		Parallel
Test 206-3	0.025 s	3D		Serial
Test 206-4	0.025 s	3D		Parallel

TEST 206-FC

Coupled simulation (CFD 2D axialsymmetric domain) Coupled simulation (CFD 3D symmetric domain) + Parallel calculation

Implicit Vs Explicit coupling scheme: Test 206-FC

Implicit coupled simulation performed adopting the same time step of the Explicit coupled simulation were conducted to verify the new scheme (Test 206-FC)

Computational time reduced by the use of the implicit scheme

- Differences in the LBE mass flow rate obtained using the Explicit and the Implicit coupling tool are lower than 1%.
- Results of the coupled simulations overestimate results of RELAP5 stand alone calculation by less than 5%.
- A sensitivity analysis for the Time step value shows that the Implicit scheme allows the use of a time step 5x without loosing accuracy.

Obtained Results: Test 206-FC

Implicit coupling scheme adopted

LBE Mass Flow Rate

Pressure difference between the FPS outlet and inlet section

Experimental Mass Flow Rate overestimated by less than 10%

RELAP5 Stand-alone Vs Coupled simulations (differences lower than 1%)

Computational time reduced by the use of the FLUENT parallel solver

Obtained Results

Obtained numerical results for FC and NC tests shows good agreement with the available experimental data

Conclusions

- A "two way" explicit/implicit Coupling methodology was developed at DICI-UNIPI.
- Software Adopted → RELAP5/Mod.3.3 (STH code) Fluent (CFD code).
- The Implicit scheme developed in the frame of PAR-2013 allow the use of 5x time step without loosing in accuracy → improved numerical stability.
- UDF parallelized allowing the use of the FLUENT parallel solver → Reduced CPU time
- Obtained results are compared with two experimental tests representative of isothermal, gas enhanced circulation tests, and one representative of natural circulation test
 - Calculated LBE mass flow rate showed good agreement with experimental data for both FC and NC tests
 - Good agreement also found for the differential pressure between the inlet and outlet section of the FPS computed by stand alone RELAP5 and coupled simulations (Tests 206-306 FC)
 - Temperature time trends at inlet and outlet sections of the FPS and HX are well reproduced by the coupled simulation (Test 301-NC)

Integrazione del codice FEM-LCORE nella piattaforma SALOME

D. Cerroni, S. Manservisi, F. Menghini

Alma Mater Studiorum - Università di Bologna

16 Gennaio 2014, Centro Ricerche ENEA Bologna

Sviluppo piattaforma SALOME per sistemi LFR

Integrazione di codici in SALOME

Test di integrazione SALOME-FEMLCORE(3D)-LIBMESH(1D)

Conclusioni

Sviluppo del codice FEM-LCORE

Sviluppo piattaforma SALOME per sistemi LFR

Integrazione di codici in SALOME

Test di integrazione SALOME-FEMLCORE(3D)-LIBMESH(1D)

Conclusioni

Sviluppo piattaforma SALOME LFR

Piattaforma di calcolo ENEA-UNIBO (per LFR)

nascita -> SALOME + FEMLCORE + integrazione + codice di sistema sviluppo -> SALOME +

multifisica	scala 1	scala 2
termoidraulica	CFD 3D	sistema 1D
strutturale	fluido-struttura	
multifase (VOF)	interfaccia	modello due fluidi
neutronica (DRAGON-DONJON)	sez urto medie	reticolo

Sviluppo piattaforma SALOME LFR

Piattaforma termoidraulica 3D (scala 1)

PIATTAFORMA SALOME termoidraulica 3D

moduli	SOFTW	i/o format	Integrazione
SALOME-GEOM	CAD	MED,UNV	LIBMED
SALOME-SMESH	MESH GEN	MED, UNV	LIBMED
FEMLCORE 3D-CFD	fluidi	MED,HDF5	LIBMED
FEMLCORE 3D-porous	fluidi (core)	MED,HDF5	LIBMED
SATURNE	CFD	CEA-EDF, VARI	LIBMED
LIBMESH	CFD	VARI	LIBMED
PARAVIEW	VIS	VARI	LIBMED
TRIO_U	CFD	CEA-EDF VARI	LIBMED
NEPTUNE	BIFASE	CEA-EDF VARI	LIBMED

Sviluppo piattaforma SALOME LFR

Piattaforma termoidraulica 1D (sistema)

PIATTAFORMA SALOME termoidraulica 1D

moduli	SOFTW	i/o format	Integrazione
SATURNE 1D	fluidi	CEA-EDF VARI	LIBMED
SALOME-YACS	sistema	VARI	python
FEMLCORE 1D-CFD	fluidi	MED,HDF5	LIBMED
FEMLCORE 1D-porous	fluidi (core)	MED,HDF5	LIBMED
LIBMESH 1D-poroso	fluidi (primario)	VARI	LIBMED
PARAVIEW	VIS	VARI	LIBMED
SALOME-GUITHARE	CAD	CEA-EDF VARI	L-CALCIUM
CATHARE	sistema	CEA-EDF VARI	L-CALCIUM

Sviluppo del codice FEM-LCORE

Piattaforma SALOME integrazione

Integrazione nelle fasi: Preprocessing, Computing, Postprocessing

Preproc			
mesh	HDF5	MED	
GUI (dati)	HDF5	VARI,MED	
YACS	VARI	python script	
Computing			
integrazione	modo	i/o format	velocità esecuzione
indiretto file i/o	debole	VARI	lento
diretto memoria	forte	LIBMED	veloce
driver (YACS)	debole/forte	python script	lento
Postproc	integrazione		
PARAVIEW	HDF5	MED	

Sviluppo piattaforma SALOME per sistemi LFR

Integrazione di codici in SALOME

Test di integrazione SALOME-FEMLCORE(3D)-LIBMESH(1D)

Conclusioni

Classi c++ wrapper per la libreria LIBMESH (3D-1D)

Interfaccia LIBMESH <-> LIBMED

SALOME <- LIBMESH class -> ParallelMeshExtended -> LIBMESH MEDmesh - LIBMESH mappe superficiali e volumentriche LIBMESH class -> EquationsSystemExtended -> Problem(LIBMESH) funz. interfaccia (superficiale, vol)-> mesh, mappa (el,pt), campo (MED)

Accoppiamento 3D-3D. Dominio $\Omega_1 \cup \Omega_2$.

interfaccia libMED

Dominio complessivo $\Omega_1 \cup \Omega_2$

libMesh Ω_1

libMesh Ω_2

interfaccia input $\Omega_1 \rightarrow \text{mesh}(2D)$, $\sup(2D) \rightarrow \text{MED}$ (el), analitica interfaccia output $\Omega_2 \rightarrow \text{mesh}(2D)$, $\sup(2D) \rightarrow \text{MED}$ (el), analitica interfaccia sup $\Omega_1 \rightarrow \text{mesh}(2D)$, $\sup(2D) \rightarrow \text{MED}$ (el), campo LIBMED interfaccia sup $\Omega_2 \rightarrow \text{mesh}(2D)$, $\sup(2D) \rightarrow \text{MED}$ (el), campo LIBMED

Equazione Energia. Prob1 su Ω_1 Prob2 su $\Omega_2.$ Corrispondenza ad elementi per T

Navier-Stokes. Probl 1 su Ω_1 Probl 2 su $\Omega_2.$ Corrispondenza ad elementi

Sviluppo del codice FEM-LCORE

Probl 1 su Ω_1 Probl 2 su linea CB 1D. Corrispondenza con valori medi interfaccia superficiale A Ω_1 -> mesh, mappa (el), analitico interfaccia superficiale B Ω_1 -> mesh, B(2D)->B(0), campo (T)LIBMED interfaccia pt B linea CB -> 1pt, 1->1 (el), campo LIBMED(VMEDIO) interfaccia pt C linea CB -> 1pt, mappa (el), analitico

Integrazione del codice FEM-LCORE su SALOME

Classi c++ wrapper per la libreria FEM-LCORE (3D-1D)

Interfaccia FEM-LCORE(FEMus) <-> LIBMED

FEMus class -> EquationsSystemExtended -> Problem(FEM-LCORE) FEMus class -> LIBMED -> SALOME MEDmesh - FEM-LCORE mappe superficiali e volumentriche funz. (superficiale, vol)-> mesh(MED), mappa (el,pt), campo (MED)

Integrazione del codice FEM-LCORE su SALOME

Accoppiamento 3D-3D. Dominio $\Omega_1 \cup \Omega_2$.

Dominio complessivo $\Omega_1 \cup \Omega_2$ libMesh Ω_1 libMesh Ω_2

interfaccia 50 Ω_1 -> MEDmesh(2D), sup(2D)-> MED (el), analitica interfaccia 150 Ω_2 -> MEDmesh(2D), sup(2D)-> MED (el), analitica interfaccia 111 Ω_1 -> MEDmesh(2D), sup(2D)-> MED (el), sol LIBMED interfaccia 111 Ω_2 -> MEDmesh(2D), sup(2D)-> MED (el), sol LIBMED

Sviluppo del codice FEM-LCORE

D. Cerroni, S. Manservisi, F. Menghini

Integrazione del codice FEM-LCORE su SALOME

NS eqs. Prob 1 su Ω_1 Prob 2 su Ω_2 . Corr. a punti

Navier-Stokes. Probl 1 su Ω_1 Probl 2 su linea. Corr. valore medio

Sviluppo del codice FEM-LCORE

Sviluppo piattaforma SALOME per sistemi LFR

Integrazione di codici in SALOME

Test di integrazione SALOME-FEMLCORE(3D)-LIBMESH(1D)

Conclusioni

Parametri geometrici			
side	1 m		
height	$4.485 \ m$		
C_{in}	$1.3 \ m$		
C_{out}	3.245 m		
H_{in}	$2.25\ m$		
H_{out}	$3.15\ m$		
D_{eq}	$0.0129\ m$		
r^{-}	0.5408		
H_c	$1.945\ m$		
H_a	$0.9\ m$		

Condizioni al contorno-> interfaccia LIBMED <- codice 1D **Perdite di carico**-> interfaccia LIBMED (calcolo spaziale) <- codice 1D **Combustibile nel nocciolo** -> Interfaccia LIBMED <- codice 3D

Interfaccia LIBMED condizioni al contorno

condizioni al contorno-> interfaccia LIBMED interfaccia -> MEDmesh(2D), sup(2D)-> MED (el), analitiche MED

Interfaccia LIBMED perdite di pressione

Perdite di carico-> interfaccia LIBMED (calcolo spaziale) interfaccia -> MEDmesh(3D), vol(3D)-> MED (el), analitiche MED

Sviluppo del codice FEM-LCORE

Interfaccia LIBMED di combustibile nel nocciolo

combustibile nel nocciolo -> Interfaccia LIBMED <- codice interfaccia -> MEDmesh(3D), vol(3D)-> MED (el), analitiche MED $pf = (0.79 - 0.516 r^3 + 0.363 r^2 + 0.589 r) \cos\left(\frac{\pi (z-2.7)}{1.5}\right)$

Distribuzione pf verticale e su di un lato

Sviluppo del codice FEM-LCORE
Interfaccia LIBMED di combustibile nel nocciolo

Pressione, velocità e temperatura. Test con velocità di filtrazione $w = 0.85 \ m/s$ all'ingresso con proprietà variabili + p accidentali

D. Cerroni, S. Manservisi, F. Menghini

Parametro

 P_{nom}

 q_l

m

 T_{in}

Modello di Reattore LFR (dati di ELSY)

 $\begin{array}{c|ccc} T_{out} & \approx 753 \ K \\ \Delta T & \approx 80 \ K \\ w_{core}^* & \approx 1.5 \ m/s \\ A_{FA} & 0.086436 \ m^2 \\ A_{Coolant} & 0.046744 \ m^2 \\ r & 0.5408 \end{array}$

Valore

 $1482.235 \ MW$ $0.023753 \ MW/m$

 $\approx 124000 \ Kq/s$

673.15 K

Parametri condizioni nominali

Accoppiamento SALOME-FEMLCORE(3D)-LIBMESH(1D)

- CORE (3D-porous) + PLENUM (3D) -> modulo FEMLCORE(3D)
- Circuito Primario -> modulo LIBMESH(1D)
- inlet LOWER PLENUM -> interfaccia LIBMED (accoppiamento)
- outlet UPPER PLENUM -> interfaccia LIBMED (accoppiamento)
- **distribuzione combustibile** -> interfaccia LIBMED (sorgenti vol)
- distribuzione perdite di carico -> interfaccia LIBMED (sorgenti vol)

Modulo FEMLCORE. Rappresentazione vettoriale della velocità e temperatura in condizioni nominali.

Modulo FEMLCORE. Temperatura, pressione e velocità di filtrazione in condizioni nominali.

Sviluppo del codice FEM-LCORE

Modulo FEMLCORE (3D). Temperatura e velocità di filtrazione nelle sezioni a and b nel caso nominale stazionario

Sviluppo del codice FEM-LCORE

Modulo FEMLCORE. Pressione nelle sezioni a e b nel caso nominale

Temperatura del refrigerante (L1, L2, L3). Componenti della velocità (L2)

Circuito Primario accoppiato (1D) -> interfaccia LIBMED

Modulo circuito Primario (1D). Pressione e temperatura nel circuito primario in regime nominale. Rin, Rout: entrata e uscita reattore; SGin, SGout: entrata e uscita generatore di vapore; Pin, Pout; entrata e uscita pompa.

Sviluppo piattaforma SALOME per sistemi LFR

Integrazione di codici in SALOME

Test di integrazione SALOME-FEMLCORE(3D)-LIBMESH(1D)

Conclusioni

Conclusioni

Integrazione SALOME-FEMLCORE(3D)-LIBMESH(1D)

- Integrazione FEMLCORE-SALOME-LIBMED
- Integrazione LIBMESH-SALOME-LIBMED
- Test accoppiamento FEMLCOREmodulo<->FEMLCOREmodulo
- ► Test accoppiamento funzioni LIBMED <-> FEMLCOREmodulo
- Accoppiamneto Reattore/Plenum(3D)-Primario(1D)

Sviluppi futuri

- Integrazione altri codici open-source (ex DRAGON-DONJON neutronica, etc,...)
- ► Integrazione codici EFD-CEA (ex CATHARE, etc,..)
- Testing

Development, benchmark and validation of the FRENETIC code

R. Bonifetto¹, D. Caron¹, A. Del Nevo², S. Dulla¹,
P. Ravetto¹, L. Savoldi¹, R. Zanino¹

¹Dipartimento Energia, Politecnico di Torino ²ENEA Brasimone

Outline

- Introduction: the FRENETIC code
- Background and aim of the work
- TH module:
 - -Validation against EBR-II data
- NE module:
 - -Development of quasi-static method
- Conclusions and perspective

The FRENETIC code

[R. Bonifetto, et al., Nucl. Eng. Des. 261 (2013) 85-94]

<u>Fast REactors NEutronics – Thermal-hydraulICs</u>

Developed for **low cost** optimization, stability and sensitivity studies in **LFR with** <u>closed</u> hexagonal assemblies (HAs) (e.g.: ELFR, ALFRED)

Background and aim

TH module

Single HA (1D) **validation** against experimental data from CIRCE facility @ ENEA Brasimone (**Pb-Bi eutectic**) [R. Zanino, et al., *Transactions of the ANS*, 2012]

First steady-state **benchmark** against RELAP5-3D in a simplified EBR-II geometry (**Na**) [R. Zanino, et al., *Transactions* of the ANS, 2013]

NE module

Transient **point kinetic** analysis [R. Bonifetto, et al., *Fusion Science and Technology*, 2012]

3D neutron diffusion model [D. Caron, et al., *presented at ICENES*, 2013]:

- Physical model: multigroup diffusion with delayed neutron emissions
- Mathematical model: coarse-mesh 3D nodal method
- Temporal integration by direct inversion

Additional capabilities:

- <u>Adjoint multigroup nodal neutron</u> <u>diffusion equations</u>
- → Temporal integration by Quasi-Static methods (IQM, PCQM)

TH module validation: EBR-II computational domain

Multi-party benchmark coordinated by IAEA (Shutdown Heat Removal Test)

• Limited set of available measurements \rightarrow missing BCs from RELAP5-3D

FRENETIC

RELAP5-3D

Test case and BCs

SHRT-17 (1984): loss-of-flow followed by SCRAM, starting from full power and full flow -dm/dt

n

- Exp. BCs available only for subassemblies of instrumented HAs
- RELAP5-3D results available for all HAs, BUT
- Pump#2 behavior computed by RELAP5-3D in *blind* calculations slightly different from exp.
- Exp data for pump#1 not available

Assess the **sensitivity** of the FRENETIC results to the uncertainty in dm/dt_{in} input

Time (s)

Steady state (t \leq 0) validation

XX09 - Top of core

Compare local exp. data averaged on the subchannel area with the (HA averaged) comp. results

- Initial *T* increase similar for both dm/dt distributions, $(dm/dt_{min} \sim dm/dt_{max})$
- Measured temperature decrease bracketed by the two simulations.

Perspective (2015 activity):

• further development of some features (box-in-the-box, *T*(*r*) in pins) to improve the agreement

NE module development: quasi-static formulation

- Factorisation of the neutron flux into the product of an amplitude function and a shape function: $\phi(\mathbf{r}, E, \mathbf{\Omega}, t) \equiv T(t)\psi(\mathbf{r}, E, \mathbf{\Omega}, t)$
- Obtain separate equations for the amplitude and for the shape: $\frac{d}{dt}T(t) = \frac{\rho(t) - \tilde{\beta}(t)}{\Lambda(t)}T(t) + \sum_{i=1}^{R} \lambda_i \tilde{c}_i(t) + \tilde{s}(t),$ $\frac{d}{dt}\tilde{c}_i(t) = \frac{\tilde{\beta}_i(t)}{\Lambda(t)}T(t) - \lambda_i \tilde{c}_i(t), \quad i = 1, ..., R,$

$$\frac{1}{v(E)}\frac{\partial}{\partial t}\psi(\mathbf{r}, E, \mathbf{\Omega}, t) = -\left[\mathcal{L}(\mathbf{r}, E, \mathbf{\Omega}, t) + \frac{1}{v(E)}\frac{d}{dt}\log T(t)\right]\psi(\mathbf{r}, E, \mathbf{\Omega}, t) \\ + \mathcal{M}_{p}(\mathbf{r}, E, \mathbf{\Omega}, t)\psi(\mathbf{r}, E, \mathbf{\Omega}, t) + \frac{1}{T(t)}\left[\sum_{i=1}^{R}\frac{\chi_{i}(\mathbf{r}, E)}{4\pi}\lambda_{i}c_{i}(\mathbf{r}, t) + S(\mathbf{r}, E, \mathbf{\Omega}, t)\right], \\ \frac{\chi_{i}(\mathbf{r}, E)}{4\pi}\frac{\partial}{\partial t}c_{i}(\mathbf{r}, t) = T(t)\mathcal{M}_{i}(\mathbf{r}, E, \mathbf{\Omega}, t)\psi(\mathbf{r}, E, \mathbf{\Omega}, t) - \frac{\chi_{i}(\mathbf{r}, E)}{4\pi}\lambda_{i}c_{i}(\mathbf{r}, t), \qquad i = 1, \dots, R,$$

• Solve separately on relevant time scales

$$\Delta t_{\varphi} \geq \Delta t_{\rho} \geq \Delta t_{T}$$

Quasi-static results:

- 3D system
 - BC: zero incoming partial current
 - 2-group diffusion parameters
 - 1 delayed neutron precursor family
- **Transient driver**: instantaneous swapping of materials @ $t=0 \rightarrow flux tilt$

 \rightarrow Computational time reduction of factor ~10

Quasi-static results: coupled, divergent transient

- 3D system
 - BC: zero incoming partial current
 - 3-group diffusion parameters
 - 6 delayed neutron precursor families
- Adaptive time-stepping!
- **Transient driver**: instantaneous, localised (in space and energy) perturbation of cross sections @ *t*=0

	ρ(t) [pcm]	Relative total power, p(t)/p(0) [-]		
t [s]	REF.	REF.	IQM	PCQM
0.000e+00	0.0000e+00	1.0000	1.0000	1.0000
1.000e-03	1.1179e+02	1.4930	1.4930	1.4930
1.000e-02	1.1167e+02	1.4961	1.4961	1.4961
1.000e-01	1.1035e+02	1.5232	1.5233	1.5233
5.000e-01	1.0439e+02	1.6079	1.6080	1.6080
1.000e+00	9.6779e+01	1.6670	1.6671	1.6670

- Reactivity insertion @ *t*=0 → power increase
- Negative feedback:
 - power **↑**
 - \rightarrow T \uparrow
 - \rightarrow reactivity Ψ
- Both IQM and PCQM are able to reproduce the reference solution

Conclusions and perspective

- FRENETIC TH results are in reasonable agreement with EBR-II measured data, within the error bars allowed by relatively large input uncertainties
- Quasi-static method implemented in the NE module
 - Successfully checked against different transients
 - Computational time reduction
- In perspective, the validation of the coupled TH+neutronic model against data from EBR-II (IAEA exercise), is foreseen
- Start applying FRENETIC to ALFRED

Thank you for your attention

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

AdP PAR 2013

Progressi nella validazione del codice T/H CATHARE2 attraverso il benchmark LACANES

Massimiliano Polidori massimiliano.polidori@enea.it

WORKSHOP TEMATICO LFR-GEN IV ADP ENEA-MSE (PAR2013-LP2) Bologna – 16 Gennaio 2015

Laboratori UTFISSM-SICSIS (Bologna)

Benchmark LACANES

- Nel 2006 il benchmark LACANES (Lead-Alloy-Cooled Advanced Nuclear Energy Systems) è stato mutuato da OECD/NEA. ENEA partecipa al benchmark con il codice RELAP5.
- Scopi del benchmark:
 - Validazione di codici e modelli T/H per loop integrali a LBE
 - Stabilire linee guida per quantificare i parametri dei modelli (p.d.c., H.T.)
 - > Evidenziare problemi specifici sia di tipo sperimentale che di simulazione.
- Inizialmente sono stati usati i dati sperimentali provenienti dalla facility HELIOS (South-Korea).
- > Fase I (conclusa): caratterizzazione delle pdc sul loop isotermo in circolazione forzata.
- Fase II (in corso): studi di circolazione naturale.
- Nel 2013, a seguito di problemi con HELIOS e in attesa di nuovi dati sperimentali, è stato proposto e accettato di allargare il benchmark ai dati ottenuti con la facility NACIE durante una campagna di caratterizzazione di un flowmeter a induzione. Dati resi disponibili dai colleghi di Brasimone.

Planning dell'attività

Nelle precedenti attività all'interno del PAR, CATHARE ha dimostrato buone capacità di simulazione sia in circolazione forzata che naturale.

- Revisione dei modelli HELIOS e NACIE alla luce delle «best practices» acquisite nel benchmark.
- I dati sperimentali di riferimento:
 - A seguito di upgrade alla facility HELIOS, nuovi dati «ufficiali» per i test in circolazione naturale saranno rilasciati entro Giugno 2014 (Tempistica slittata a Marzo 2015). Nel frattempo (09/2014) è stato proposto l'approccio «calorimetrico» per la simulazione dei test in N.C.
 - I dati provenienti dalla campagna di caratterizzazione di un flowmeter a induzione di NACIE, resi disponibili da Brasimone per il benchmark LACANES.
- Il modello NACIE per CATHARE2 è stato confrontato con il modello RELAP5 del benchmark al fine di caratterizzare le perdite di carico del circuito (Test301 in circolazione naturale e Test 206 in gas-enhaced circulation).
- E' stata verificata la capacità del codice nel riprodurre un test integrale in circolazione naturale (Test301).
- E' stata testata l'ultima versione di CATHAREv2.5_3 mod2.1, la prima versione provvista nativamente delle proprietà HLM, rilasciata ufficialmente dal CEA.

WORKSHOP LFR-GEN IV (PAR2013-LP2) – Bologna – 16 Gennaio 2015

La facility NACIE

NACIE (Natural Circulation Experiment) permette di eseguire esperimenti termoidraulici su metalli liquidi (LBE), sviluppo di componenti e verifica di procedure.

Caratteristiche:

- Altezza: 8 m;
- Larghezza: 1 m;
- Diametro tubi: 2.5";
- Materiale AISI 304;
- Fluido primario: LBE; Fluido secondario: H2O
- Temperatura di esercizio: fino a 500 °

Fonti di incertezza sui dati sperimentali:

- Mancanza di misure di pressione e/o DP
- Proprietà termiche dello steel powder nell'HX
- MP101 flowmeter alle basse portate (N.C.)
- Strumentazione e procedure di prova

Modello NACIE per CATHARE

CARATTERISTICHE DEL MODELLO

- Modello monodimensionale
- Le strutture termiche sono simulate (FPS, dummy, etc)
- Le perdite di calore sono simulate attraverso i tubi circondati da uno strato di lana di roccia.
- L'HX è simulato e la conducibilità dello strato di polvere di acciaio è calibrata al 10.5% di AISI304.
- Circuito secondario (H2O) limitato all'HX con condizioni al contorno.
- Perdite di carico distribuite calcolate dal codice, le concentrate calcolate con correlazioni in letteratura (Idelchik), le stesse usate nel modello RELAP5.

PROPRIETA' TERMODINAMICHE DI LBE

CATHARE -> Correlazioni da Handbook on HLM (2007) RELAP5 -> Derivate da Soft-Sphere Model

WORKSHOP LFR-GEN IV (PAR2013-LP2) – Bologna – 16 Gennaio 2015

Area undisturbed (Ach-A4rod-A10wire)	2.8666E-03	m2
Grid Area	1.9935E-04	m2
Ref. Reynolds (core)	50000	

Rehme

$$K = C_{v} \left(\frac{A_{s}}{A_{v}}\right)^{2}, \ C_{v} = -7.65 \log_{10} \text{Re} + 49.0$$

k = 0.06313

7

Tank to Upper Horizontal Pipe

1st method – sudden contraction

Atank_ann	0.046689 m2
Ach	0.0030857 m2

$$k = 0.5 * \left(1 - \frac{A0}{A1}\right) = 0.467$$
 Adopted

2nd method – flow at entrance (Idelchik Chap.3)

δ1	5.16	mm	δ 1/Dh	0.082	
Dh	62.7	mm	b/Dh	0.8	
b	50	mm	h/Dh	0.64	
h	40	mm	σ1	0.12	

entrance in straight tube

if b/Dh≥0.5 => b/Dh = ∞ =>

k = 0.62

k

$$= k' + \frac{\sigma_1}{n^2}$$
 (k'=0.5; n=1) =>

WORKSHOP LFR-GEN IV (PAR2013-LP2) – Bologna – 16 Gennaio 2015

40 Codd Length

Area sudden contraction component

Ach_hor	3.0857E-03 m2
Ach_core	2.8634E-03 m2

$$k = 0.5 * \left(1 - \frac{A0}{A1}\right) = 0.036$$

Elbow sharp corner with recess component Idelchik Diag. 6.7 (rough walls, $Re \ge 10e4$)

k_Δ	1.255264837
k_{Re}	1.11985872
C1	1
А	1.2
k _{loc}	0.99

$$k = 1.2 * k_{\Delta} * k_{Re} * C_1 * A * k_{loc} = 2.004$$

 $k_tot = k_contr + k_tee = 2.04$

Adopted

Le pdc nei codici di calcolo

Determinazione delle pdc:

$$\Delta P_{totale} = \frac{1}{2} \rho \sum_{i} \bar{v}_{i}^{2} \left(f \frac{L}{D} + K \right)_{i}$$

RELAP5 (correlazione di Colebrook-White con approssimazione di Zygrang-Sylvester)

$$\frac{1}{\sqrt{f_T}} = -2\log_{10}\left\{\frac{\epsilon}{3.7D} + \frac{2.51}{Re}\left[1.14 - 2\log_{10}\left(\frac{\epsilon}{D} + \frac{21.25}{Re^{0.9}}\right)\right]\right\}$$

CATHARE l'effetto della frizione tra parete e fluido è considerata all'interno dell'equazione della quantità di moto con il termine:

$$-\chi C_K \rho_K \frac{|V_K|V_K}{2} \qquad \text{K si riferisce alla fase liquida o gassosa}$$
$$C_K = c_K \cdot f_K \qquad f_K = max \left\{ \frac{16}{Re_k}, \frac{0.079}{Re_k^{0.25}}, 0.003 \right\} \qquad Re_k = \frac{\alpha_K \rho_K |V_K| D_H}{\mu_K}$$

L'effetto di rugosità delle pareti non viene preso in considerazione da CATHARE, nonostante il codice permetta di inserire la rugosità dei tubi.

- La misura delle perdite di carico non sono disponibili, ma con una ragionevole confidenza sulle perdite di calore, l'approccio adottato è stato:
 - 1) caratterizzazione delle pdc con un confronto codice-a-codice del Test 301 (NC), in cui la portata può essere derivata per bilancio termico attraverso la sezione scaldante.

$$m = \frac{Q}{c_p \Delta T}$$

2) verifica della caratterizzazione effettuata con il Test 301 nel caso isotermo a circolazione assistita del Test 206 (potendosi avvalere anche di una misura dell'MP101 flowmeter affetta da minori incertezze).

Confronto Perdite di Carico CATHAREvsRELAP5

Test 301: Circolazione Naturale, Potenza 21.5 kW, portata stimata con bilancio termico 4.71 kg/s (media su 1h). La portata di MP101 è affetta da forti incertezze alle basse portate.

	Test301 (Circolazione Naturale)								
NACIE	Coeff. DP			RELAP5			CATHARE		
Componente	f*(L/D) RELAP5	f*(L/D) CATHARE	к	Portata LBE (kg/s)	Velocità (m/s)	Perdita di carico (Pa)	Portata LBE (kg/s)	Velocità (m/s)	Perdita di carico (Pa)
Sezione scaldante	0.6051	0.1525			0.1628	767.4		0.1658	930.7
Griglia spaziatrice			0.0631		0.1630	13.7		0.1658	5.5
Griglia superiore			4.4		0.1628	640.5		0.1660	631.5
Riser senza iniettore Ar	0.5322	0.1230			0.1516	60.6		0.1541	105.9
Riduzione area dovuta all'iniettore di Ar			0.0374	\frown	0.1639	2.7	\frown	0.1541	4.2
Riser con iniettore Ar	2.6715	0.6017		$\langle \rangle$	0.1639	347.5	$\langle \rangle$	0.1541	369.3
Riser -> Vaso espansione			0.8906	4 81	0.1639		4 91	0.1541	
Vaso espansione -> tubo orizzontale			0.4670	4.01	0.1516 191.2	4.91	0.1540	286.8	
Tubo orizzontale sup.	0.3274	0.0757		\rightarrow	0.1516	42.4		0.1540	35.2
Curva 90° sup.			0.3134		0.1516	43.0		0.1540	39.6
Downcomer	2.6609	0.6150			0.1516	305.8		0.1535	535.4
Curva 90° inf.			0.3134		0.1511	43.6		0.1535	39.5
Tubo orizzontale inf.	0.3548	0.0820			0.1511	37.9		0.1535	38.6
Tee ingresso alla sez. scaldante			2.0400		0.1511	307.0		0.1535	193.4

• MF: C2 + 2% vs R5

PER LE NUOVE TECNOLOG

 f*L/D: C2 ≈ 25% R5 (Darcy vs Fanning?)

- Pdc:
 - Distrib.: C2 > R5
 - Conc.: C2 ≈ R5
- Pdc Totali:
 - R5: 2.15 kPa
 - C2: 2.57 kPa (+20%)

<u>Tutti i codici del benchmark</u> <u>sovrastimano la portata</u>
Confronto Perdite di Carico CATHAREvsRELAP5

- La discrepanza rilevata sulle perdite di carico totali può essere riconducibile alle proprietà termodinamiche implementate nei due codici:
 - maggiore densità dell'LBE nel range di temperatura del test
 - maggiore inclinazione della curva di densità => maggiore driving force a parità di temperature

Confronto tra le curve di densità implementate in RELAP5 e CATHARE (Handbook)

WORKSHOP LFR-GEN IV (PAR2013-LP2) – Bologna – 16 Gennaio 2015

PER LE NUOVE TECNOLOGIE, L'EI E LO SVILUPPO ECONOMICO SOSTE

Confronto Perdite di Carico CATHAREvsRELAP5

Test 206: Sistema isotermo, circolazione forzata (GEC) con iniezione di Argon 10 NI/min, portata imposta nel modello CATHARE 13.11 kg/s. Portata misurata da MP101 13.1 kg/s (media su 1h).

	Test206 (Circolazione Forzata)									
NACIE		Coeff. DP)		RELAP5			CATHARE		
Componente	f*(L/D) RELAP5	f*(L/D) CATHAR E	К	Portata LBE (kg/s)	Velocità (m/s)	Perdita di carico (Pa)	Portata LBE (kg/s)	Velocità (m/s)	Perdita di carico (Pa)	
Sezione scaldante	0.5503	0.4389			0.4510	5351.0		0.4411	5967.5	
Griglia spaziatrice			0.0631		0.4497	95.1		0.4411	30.3	
Griglia superiore			4.4		0.4495	4472.3		0.4411	4469.0	
Riser senza iniettore Ar	0.4699	0.4075			0.4187	414.5		0.4093	375.6	
Riduzione area dovuta all'iniettore di Ar			0.0374		0.4187	997.6		0.4093	-13960.5	
Riser con iniettore Ar	2.3935	1.9963			0.4704	-13451.7		0.4093	1363.5	
Riser -> Vaso espansione			0.8906	13 11	0.4704		13.11	0.4093		
Vaso espansione -> tubo orizzontale			0.4670	13.11	0.4187	1317.2	(imposto)	0.4094	2064.8	
Tubo orizzontale sup.	0.2891	0.2507			0.4187	290.0		0.4094	200.6	
Curva 90° sup.			0.3134		0.4187	299.5		0.4094	283.6	
Downcomer	2.3497	2.0375			0.4187	2119.9		0.4094	1947.1	
Curva 90° inf.			0.3134		0.4187	304.2		0.4093	283.5	
Tubo orizzontale inf.	0.3133	0.2717			0.4187	257.2		0.4093	217.4	
Tee ingresso alla sez. scaldante			2.0400		0.4187	2156.1		0.4093	1724.2	

- f*L/D: C2 < R5 (Re_206 >> Re_301)
- Pdc nel riser non sono direttamente confrontabili:
 - R5: effettiva iniezione
 - C2: pompa e.m.
- Prevalenza:
 - R5: 13.45 kPa (netta sul riser)
 - C2: 13.96 kPa (p.e.m)

Simulazione Dinamica del Test 301

Test301 (circolazione naturale): Accensione del FPS a 21.5 kW seguito dallo spegnimento.

- Calibrazione iniziale per compensare le incertezze su misure e procedure:
- > potenza iniziale FPS 3.4kW (16%) in funzione di riscaldatore
- conducibilità powder 10.5% AISI304
- > perdite di calore

Il secondario è caricato con vapore a 1.5 bar, pressione costante durante il transitorio Si assume che all'accensione del FPS, i riscaldatori forniscono ancora una certa potenza (inerzia termica). Rampa di potenza da 16% al 116%.

Simulazione Dinamica del Test 301

Test301 (circolazione naturale): Accensione del FPS a 21.5 kW seguito dallo spegnimento.

Solo grazie all'assunzione fatta sulla potenza è possibile ricreare in modo soddisfacente l'andamento delle temperature attraverso il core e lo scambiatore.

La fase di spegnimento è fortemente affetta dalle incertezze sulle condizioni di scambio lato secondario.

Simulazione Dinamica del Test 301

Test301 (circolazione naturale): Accensione del FPS a 21.5 kW seguito dallo spegnimento.

- Difficoltà nel ricreare l'andamento delle temperature in uscita lato secondario.
- ✤ A inizio e fine transitorio, CATHARE si porta a temperatura di saturazione 118° C @ 1.5 bar.
- Il picco di temperatura in uscita suggerisce la presenza di un transitorio di pressione (Tsat 180° C @ 10 bar)

Conclusioni

- Il modello NACIE per il codice T/H CATHARE2 è stato adeguato e migliorato (geometria e pdc) per la simulazione della campagna di prova di un flowmeter a induzione, e testato sulla versione v2.5_3 mod 2.1.
- Le perdite di carico sono state valutate avvalendosi delle "best practice" acquisite nella Fase 1 del benchmark LACANES e con correlazioni in letteratura (Idelchik).
- La caratterizzazione delle pdc ottenuta con i Test 301 (N.C.) e 206 (G.E.C) ha dimostrato una generale sovrastima (fino a +20% sulle distribuite) da parte di CATHARE rispetto RELAP5, ciononostante la portata di NC valutata da CATHARE è superiore del 2% principalmente a causa delle differenti proprietà termodinamiche (densità) di LBE implementate -> maggiore driving-force.
- Nella simulazione dinamica del Test 301 (accensione/spegnimento FPS), CATHARE si è dimostrato capace di approssimare sia qualitativamente che quantitativamente gli andamenti delle principali grandezze fisiche del transitorio. Le discrepanze sono dovute a mancanza di informazioni sulle procedure di prova, specialmente sul lato secondario.

Accordo di Programma ENEA - MISE

LP2.A1: Progettazione di sistema

Analisi Economica del DEMO-LFR ALFRED

Marco Ciotti*, Jorge Manzano

*Membro del NEA Working Party on Nuclear Energy Economics (WPNE)

Sommario

sono riportati, descritti e discussi i risultati relativi ad una prima nuova valutazione dei costi per la costruzione del reattore dimostrativo ALFRED, sulla base di quelli forniti nel precedente studio condotto nell'ambito del progetto Leader.

Introduzione

In tutte le imprese industriali è fondamentale un'accurata analisi dei costi;

Per realizzazioni fortemente innovative date le incertezze legate ad una tecnologia ancora in sviluppo e la continua ottimizzazione del progetto si rende inoltre necessario aggiornare continuamente le stime iniziali.

Senza una accurata e CONVINCENTE analisi economica non è neanche possibile richiedere finanziamenti

Analisi costi reattori nucleari:LCOE

Inoltre, ALFRED, pur trattandosi di un dimostratore, e quindi di una macchina che necessariamente sarà sottoposta a modifiche, prove, ottimizzazioni e tutte le pratiche necessarie per spianare la strada verso la realizzazione di una filiera di reattori, rimane pur sempre un impianto in grado di produrre energia elettrica con un ritorno economico atteso non trascurabile. Questa caratteristica, che ne determina la possibilità di essere costruito mediante accesso ad un prestito erogato dalla Banca Europea degli Investimenti (BEI), ne rende indispensabile, oltre ad una attenta valutazione dei costi d i costruzione, la valutazione del LCOE (Levelised Cost Of Electricity) che deve soddisfare criteri di economicità che permettano di generare guadagni tali da far prevedere la possibilità di ripagare il finanziamento che potrebbe essere concesso.

Hungary levelised costs of electricity at 5 and 10% discount rate

Metodologie top-down e bottom-up

Un approccio **top-down** consiste nello scomporre un sistema partendo da una formulazione iniziale generale costituita da un insieme di sottosistemi.

Il punto di partenza è rappresentato dal sistema strutturato per la stima dei costi del modello G4Econs sviluppato dall' Economics Modeling Working Group of the Generation IV International Forum. Questo modello suddivide il "sistema" reattore in sottosistemi per ciascuno dei quali esegue una stima sulla base di dati similari aggiornati od adattati alla nuova tecnologia.

Sono stati valutati i fattori di scala fra i costi di un impianto tradizionale di III generazione ed un impianto innovativo di IV generazione

applicato per reattori al piombo

L'approccio di tipo **bottom-up** al contrario parte dal considerare gli elementi costituenti il reattore suddivisi con il massimo dettaglio possibile e attribuendo ad ognuno il costo presunto.

I costi di Alfred sono stati valutati utilizzando l'approccio bottom-up nell'ambito del progetto LEADER

F. Roelofs (NRG) e M. Vazquez (EA) (2013)

Risultati Leader

Components	ltem	Category / Class	Lenght	Wide	Height	Base Price	Co	ontingency	Uncertainty		High Price
			(m)	(m)	(m)	(MEu)	(%)	(MEu)	(%)	(MEu)	(MEu)
	Reactor Building	Class	65	65	37						
	Control Building, m3	Class	20	20	27						
	Fuel Building, m3	Class I	39	43	30						
	Radwaste Building, m3	Class	24	35	30						
	Service Building & Operation Support Centre, m3	Class	26	26	15						
	HVAC Stack	Class		Φ6	55						
	Fire Brigade	Class	30	20	10						
	Fire Water Tank	Class	0	Φ7	10						
	Emergency Diesel Generator bldg, m3	Class	15	5	10						
	Pump House m3	Class	20	20	15						
	Total building Class I	0.0001				315.3	40%	126.1	30%	94.6	536.0
	Auxiliary Boiler	Class IIA	20	15	10			1			
	Condensate Tank	Class IA		Φ7	4						
	Electric Building	Class IA	40	20	15						
	Transformers	Class IA	26	15	6						
	Fuel Oil Tank	Class IA		Φ10	5						
	Total buildings/areas Class II A					20.2	40%	8.1	30%	6.0	34.3
	SwitchYard	Class I	62	30							
	Warehouse	Class I	30	15	15						
Buildings & Civil	Cold Machine Shop, m2	Class	40	20	15						
structures	Lay Down Area,	Class II	108	55							
	Cooling Tower Auxiliary Building	Class I	20	20	15						
	Water Treatment Plant Building	Class II	30	20	10						
	Service Water Tank	Class I		Φ7	10						
	Administration Building	Class I	36	25	15						
	Internal Car Park	Class I	80	22							
	Grease & Gases Storage, m2	Class I	15	10	10						
	N. & Ar Warehouse, m2	Class	8	12	5						
	Laboratory, m2	Class I	20	25	8						
	Demineralised Water Tank	Class II		Φ7	10						
	Sewage Treatment Plant, m2	Class I	20	20	15						
	Effluent Collection Pond	Class II	20	15	5						
	External Car Park	Class I	18	15							
	Access Control Building	Class I	10	5	5						
	Roads	Class I	1964								
	Total buildings/areas Class II					31.3	40%	12.5	30%	9.4	53.2
	Forced Draught Cooling Towers		80	16	8	1.8	40%	0.7	30%	0.6	3.1
	Total Buildings & Civil Structures					368.6	40%	147.4	30%	110.6	626.6
Nuclear fuel	Fuel assembly (bundles) 1 Core (5,4 t Uranium + 1,9 t Plutonium)					61.0	40%	24.4	30%	18.3	103.6
Primary Coolant (Lead)	Coolant suply (standard lead) Purification system (included in auxiliary systems)					7.7	40%	3.1	30%	2.3	13.1
	Primary pumps (8)	Class I			i – – – – – – – – – – – – – – – – – – –	75.4	50%	37.7	40%	30.2	143.3
	Primary heat exchangers (8)	Class I				10.9	40%	4.3	20%	2.2	17.4
	Reactor inner vessels	Class				3.5	40%	14	20%	0.7	5.6
I Defense Offense V					-					-	

Modalità di valutazione

Si è ritenuto opportuno effettuare nuovamente alcune delle stime effettuate durante il progetto leader

(915-1580 M€) ed integrarle con stime effettuate da soggetti indipendenti .

Inoltre, in alcuni casi si è proceduto con nuove stime per verificare la coerenza con quelle esistenti.

In questa prima revisione sono stati presi specificatamente in considerazione i seguenti elementi:

- Pompe del circuito di raffreddamento primario;
- Componenti interni al vessel;
- Circuito di raffreddamento secondario;
- Costruzione degli edifici;

di seguito sono riportati e analizzati i nuovi risultati.

La valutazione del costo delle otto pompe previste all'interno del vessel di ALFRED era stato effettuata specificando esplicitamente tale voce. (attività di ricerca e sviluppo non incluse)

Da una prima valutazione basata sulla personale esperienza il costo indicato, fra 75.4 e 143,3 M€, appariva sovrastimato.

Si è pertanto cercata una ditta che avesse esperienza nel campo specifico delle applicazioni nucleari, in particolare per quanto riguarda le pompe, e un opportuno background di sviluppo di componenti innovativi, possibilmente localizzata in una nazione potenzialmente interessata al progetto ALFRED, per favorire così anche un futuro coinvolgimento di enti di ricerca con cultura nucleare per le attività di sviluppo e prova.

Offerta della ditta Sigma, con sede in prossimità di Praga (CZ), in collaborazione con Ing. Fosca Di Gabriele

Analisi costi reattori nucleari: pompe

Main circulation pumps for Alfred reactor

	thousands	[£]
	of CZK	[€]
1. Pump development	9.250	335.775
hydraulic design		
CFD flow analysis		
analysis of impeller forces		
strenght and dynamic alayses		
manufacturing of prototype		
hydraulic tests on water test stand		
test reports		
2. Manufacturing of 6pc. pump assemblies	29.200	1.059.960
fabrication of 6 pumps and documentation + 1 device for testin	g (seismic,	.)
purchase of 6 motors + 1 motor for testing (seismic,)		
quality assurance programme for pump assemblies		
qualification programme (vibration tests, radiation damadge,)	*	
3. Engineering support (4 year programme, 4-6 persons)	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation input documentation for construction	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation input documentation for construction documentation for Procurement department	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation input documentation for construction documentation for Procurement department construction, assembly and testing	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation input documentation for construction documentation for Procurement department construction, assembly and testing test operation	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation input documentation for construction documentation for Procurement department construction, assembly and testing test operation operation manual and maintenance documentation	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation input documentation for construction documentation for Procurement department construction, assembly and testing test operation operation manual and maintenance documentation	55.000	1.996.500
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation input documentation for construction documentation for Procurement department construction, assembly and testing test operation operation manual and maintenance documentation	93.450	3.392.235
3. Engineering support (4 year programme, 4-6 persons) project management and planning quality assurance and environment control analysis of input documentation, applicable european codes and standards, licencing and legislation for nuclear integrated safety plan machinery documentation input documentation for electrical design input documentation for measurement and regulation input documentation for construction documentation for Procurement department construction, assembly and testing test operation operation manual and maintenance documentation total price * excluded, will be negotiated separately	93.450	3.392.235

- Il costo della fabbricazione compresa la attività di sviluppo e test è quotato circa 4
 M€
- Nella stima effettuata nell'ambito di Leader il valore di questo componente oscillava fra l'8% ed il 10% dell'intero costo del reattore, esagerato rispetto ai dati storici anche considerando le incertezze.

Si è proceduto ad una valutazione del costo dei singoli componenti sulla base dei disegni con la ditta Mangiarotti (Westinghouse), Ing. E. Lumini, Ing. G. De Bernardis

	Leade	er	Mangiarotti				
<u>Sottoassieme</u>	Base cost	Max. cost	Peso	cost	cost		
	[M€]	[M€]	[Kg]	[M€]	[M€]		
Core Upper Grid			27.700	0,808			
Core Lower Grid			21.300	0,770			
Inner Vessel	3,5	5,6	162.000	6,895	8,473		
Vessel Support	9,3	14,9	271.000	1,562			
Reactor Cover			91.000	2,509			
Reactor Vessel	8,4	13,4	202.000	5,628	8,137		
Steam Generators	10,9	17,4	546.800	46,018			
Totale	32,1	51,3		64,190			

In leader si applicano gli stessi margini di incertezza sia a componenti ancora quasi ignoti sia alle costruzioni civili: 40% contingency + 30% uncertainty.

Non nota la decisione di realizzarla in Romania: riduzione di circa 50% rispetto ai valori medi di costruzione europei. Abbiamo applicato la riduzione alla sola mano d'opera stimandone la percentuale.

		LEADER				"effetto paese"			Ansaldo		
		Base	Massimo	Base			Base	Massimo	Base		
	[m3]	[M€]	[M€]	[€/m3]	perc. m.o.	rid. m.o.	[M€]	[M€]	[€/m3]	[€/m3]	[M€]
Total building Class I	267464	315,3	536	1179	0,4	0,5	252,2	302,7	943	2200	588,4
Total buildings/areas Class II A	17886,36	20,2	34,3	1129	0,4	0,5	16,2	19,4	903	1700	30,4
Total buildings/areas Class II	58749,3	31,3	53,2	533	0,6	0,5	21,9	26,3	373	300	17,6
Forced Draught Cooling Towers	10240	1,8	3,1	176	0,6	0,5	1,3	1,5	123	300	3,1
		368,6	626,6				291,57	349,9			639,5

Collaborazione con sede rumena di Ansaldo Nucleare (Villabruna)

Nel rapporto Leader sono genericamente riportati i costi relativi alle strutture a corollario del circuito di raffreddamento secondario definite come "Balance Of Plant", specificando esplicitamente il costo degli edifici di contenimento. Si presume che all'interno della generica voce BOP sia ricompreso anche il costo dei generatori di corrente.

Stima in collaborazione con Ansaldo Energia e Ing. L. Mansani

	Leader (high price)	Ansaldo
	[M€]	[M€]
Secondario		
Turbina + Alternatore		60
Condensatore		10
Torri di raffreddamento		2
Totale	167,4	72

I costi riportati nella colonna relativa al BOP in Leader comprendono anche i costi di edificazione degli edifici relativi al secondario oltre ai vari componenti di supporto (cavi, tubi, ecc). Da una stima di questi ulteriori costi se ne deduce, anche in accordo con i valori tipici dei costi del materiale di supporto riportate su altre fonti, che il valore maggiormente in accordo fra quelli riportati in Leader è quello relativo alla stima del costo massimo.

Conclusioni:

• La stima dei costi deve proseguire con l'evoluzione e l'incremento di dettaglio del progetto.

•Il livello di dettaglio da raggiungere deve essere tale da poter rispondere con solidi argomenti ad eventuali critiche

Ulteriori sviluppi

- •Valutazione del costo di licensing (Falcon?);
- •Valutazione dei costi propri del sito (Falcon?);
- •Lista dei sistemi da definire (DHR?, Purezza del piombo, sistema di trattamento

e purificazione, diagnostiche, ecc) <u>e relativa tempisticadi sviluppo.</u>

• ADPFISS- LP2 – 047. Progettazione di una facility in Pb per misure di trasporto neutronico nel reattore TAPIRO

N. Burgio, A. Santagata ENEA –UTFISST-REANUC M. Frullini CIRTEN- Università La Sapienza (Roma 1)

 ADPFISS – LP2 - 048. Valutazione della rappresentatività di esperienze di trasporto neutronico in piombo in una facility collocata nel vano colonna termica del reattore TAPIRO

N. Burgio, ENEA –UTFISST-REANUC

A. Gandini, L. Ricci CIRTEN- Università La Sapienza (Roma 1)

(presentato da M. Carta ENEA –UTFISST-REANUC)

- Il lavoro riassume le conclusioni tratte dalle attività di progettazione di facilities per misure di trasporto neutronico in piombo nel reattore TAPIRO in corrispondenza del Canale Radiale 1 (CR1) e del Vano Colonna Termica (VCT).
- Le facilities in oggetto permetterebbero, oltre ad esperienze di rappresentatività, di studiare e verificare i dati nucleari del piombo attraverso una serie di misure integrali.

LFR-Gen IV: Stato attuale della tecnologia e prospettive di sviluppo

Bologna 15-16 Gennaio 2015

Tabella 12 Confronto tra i ratei di fissione misurati e stimati da MCNPX nel VCT durante l'irraggiamento in Aria a 100 W.

Distanza		Misurato		Simulato			
dall'asse del	Rateo di	Deviazione	Rateo di	Rateo di	Deviazione	Rateo di	
nocciolo	fissione	Standard	fissione	fissione	Standard	fissione	
[cm]	[cps]	[cps]	Normalizzato	[fissioni/s]	[fissioni/s]	Normalizzato	
-48.7	516.64	0.05	1.	1.9287e+06	9.0841e+04	1.	
-52.2	454.83	0.06	0.88	1.6203e+06	9.4890e+04	0.84	

Tabella 16 Confronto tra le attività a saturazione specifica misurate e stimate lungo la traversa 2 cm sopra la mezzeria di nocciolo in colonna termica per la reazione 197 Au(n, γ)¹⁹⁸Au.

Distanza dall'asse del nocciolo	Attività Specifica a Sa	Attività Specifica a Saturazione Misurata		aturazione Simulata
[cm]	[Bq/g]	Errore%	[Bq/g]	Errore%
-43.7	6.24E+06	0.0064	3.45E+06	0.211
-44.3	6.35E+06	0.0062	5.28E+06	0.246
-48.7	6.31E+06	0.0064	7.50E+06	0.342
-52.2	6.14E+06	0.0056	4.99E+06	0.368

Tabella 17 Confronto delle attività specifiche misurate e stimate nel CR1 nel punto di minima distanza dal nocciolo.

Reazione	Attività a Satura	zione Misurata	Attività a Satura	zione Simulata
	[Bq]	Errore%	[Bq]	Errore%
¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	3.41e+07	0.014	4.16e+07	0.010
¹¹⁵ In(n,n') ^{115m} In	5.65E+06	0.100	1.92E+06	0.011
⁵⁸ Fe(n,α) ⁵⁴ Mn	6.56E+04	0.140	4.63E+04	0.020
²⁷ Al(n,α) ²⁴ Na	7.30E+04	0.036	9.58E+04	0.013

• Le previsioni del codice sono in discreto accordo con i dati sperimentali.

Tabella 6 Distribuzione energetica della fluenza normalizzata ai rispettivi totali nelle 4 zone spaziali selezionate nel VCT.

Punto	Distanza	Materiale	Gruppi energetici del flusso neutronico									
di	dal		Termi	со	EpiTern	nico	Velo	ce	Alta Ene	ergia	Tota	le
Misura	centro		Fluenza	[•] E%	Fluenza	⁻ Е%	Fluenza	[•] Е%	Fluenza	[•] E%	Fluenza	[•] E%
	del		Relativa		Relativa		Relativa		Relativa		Relativa	
	nocciolo											
50	-50.21	Aria	0.00%	1.00	7.49%	0.04	83.68%	0.02	8.82%	0.05	100%	0.02
		Piombo	0.01%	0.67	8.28%	0.03	86.45%	0.01	5.26%	0.04	100%	0.01
75	-75.06	Aria	0.03%	1.00	14.44%	0.06	76.20%	0.03	9.33%	0.08	100%	0.03
		Piombo	0.05%	0.65	23.88%	0.05	72.97%	0.04	3.10%	0.15	100%	0.03
100	-100.00	Aria	0.10%	0.71	20.31%	0.06	71.08%	0.04	8.51%	0.12	100%	0.04
		Piombo	0.23%	0.75	46.06%	0.08	52.59%	0.08	1.12%	0.42	100%	0.06
150	150.00	Aria	0.16%	1.00	27.02%	0.08	66.55%	0.06	6.27%	0.18	100%	0.06
		Piombo	0.00%	0.07	57.52%	0.11	42.45%	0.13	0.04%	0.75	100%	0.10

Gruppo *	Intervallo di energia	Denominazione
	[MeV]	
1	E _{gruppo} < 0.1 eV	Termico
2	$0.1 < E_{gruppo} < 5 \text{ keV}$	EpiTermico
3	5 keV < E _{gruppo} < 1 MeV	Veloce
4	$1 \text{ MeV} < E_{gruppo} < 10 \text{ MeV}$	Alta Energia 1
5	$10 \text{ MeV} < \text{E}_{\text{gruppo}} < 20 \text{MeV}$	Alta Energia 2
6	E _{gruppo} < 20 MeV	Totale

Figura 27 Rappresentazione schematica della facility di irraggiamento nel CR1

Figura 28 Rappresentazione schematica della facility di irraggiamento nel VCT

Bologna 15-16 Gennaio 2015

Conclusioni

- Il modello Monte Carlo fornisce un buon accordo con i dati sperimentali. Sarebbe auspicabile una campagna sperimentale, anche solo limitata al CR1, per confermare le stime emerse dalle simulazioni in piombo.
- Le perturbazioni di flusso e spettro neutronico indotte dalle variazioni di composizione isotopica e dalla densità del piombo divengono importanti (3%-15%) solo in alcuni casi per il VCT.
- Una analisi parametrica sulle dimensioni del blocco di piombo da introdurre nel VCT ha permesso di stabilire quale dovrebbe essere la quantità minima di materiale da impiegare per avere effetti sul trasporto neutronico simili a quelli che si avrebbero riempiendo il VCT completamente con piombo.
- Nel lavoro è stato proposto uno schema di progettazione concettuale per le facilities in CR1 e VCT, definendo i parametri di progettazione che, se confermati da esperienze preliminari, possono costituire la base per una futura progettazione dettagliata.

Valutazione della rappresentatività di esperienze di trasporto neutronico in piombo in una facility collocata nel vano colonna termica del reattore TAPIRO

- Il lavoro è sempre focalizzato sull'analisi preliminare di misure relative ad esperienze di propagazione neutronica in zone di piombo poste nella colonna termica del reattore TAPIRO.
- La metodologia GPT è stata applicata per studiare potenziali correlazioni fra particolari quantità integrali stimate nel caso TAPIRO ed analoghe quantità integrali stimate in un sistema di riferimento, rappresentato per questi studi dal reattore ELSY.
- Per le analisi sono stati utilizzati i codici MCNPX ed ERANOS.

ENE Valutazione della rappresentatività di esperienze di trasporto neutronico in piombo in una facility collocata nel vano colonna termica del reattore TAPIRO **ITALIAN NATIONAL** FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT RADIAL CHANNEL 1 RADIAL CHANNEL 2 RGE HORIZONTAL CHANNEL TANGENTIAL CHANNEL SOURCE CHANNEL DIAMETRAL CHANNEL SAFETY ROD HORIZONTAL CHANNELS SHIM ROD OF THERMAL COLUMN SHIM ROD THERMAL COLUMN REGULATING ROD CONTAINER THERMAL COLUMN SAFETY ROD PLUG THERMAL COLUMN ELSY (B) **TAPIRO (A)** $\mathbf{R}_{\mathrm{B}} = \frac{\langle \Sigma_{1} \phi \rangle_{\mathrm{B}}}{\langle \Sigma_{2} \phi \rangle_{\mathrm{R}}}$ $\mathbf{R}_{\mathbf{A}} = \frac{\langle \Sigma_1 \phi \rangle_{\mathbf{A}}}{\langle \Sigma_2 \phi \rangle_{\mathbf{A}}}$ $\frac{\Delta R_{B}}{R_{B}} \cong \langle S_{\alpha} \frac{\Delta \alpha}{\alpha} \rangle_{B}$ $\frac{\Delta R_{A}}{R_{A}} \cong \langle S_{\alpha} \frac{\Delta \alpha}{\alpha} \rangle_{A}$ Coefficienti sensitività

LFR-Gen IV: Stato attuale della tecnologia e prospettive di sviluppo

Bologna 15-16 Gennaio 2015

Valutazione della rappresentatività di esperienze di trasporto neutronico in piombo in una facility collocata nel vano colonna termica del reattore TAPIRO

$$\mathbf{R} = \frac{\langle \Sigma_{1} \phi \rangle}{\langle \Sigma_{2} \phi \rangle}$$

$$\longrightarrow \frac{\Delta \mathbf{R}}{\mathbf{R}} = \langle \left(\frac{\alpha}{\mathbf{R}} \frac{\Delta \mathbf{R}}{\Delta \alpha}\right) \frac{\Delta \alpha}{\alpha} \rangle \equiv \langle \mathbf{S}_{\alpha} \frac{\Delta \alpha}{\alpha} \rangle$$

$$\longrightarrow \mathbf{S}_{\alpha} \approx -\Gamma^{*} \left(\frac{\partial \mathbf{L}}{\partial \alpha} - \lambda \frac{\partial \mathbf{P}}{\partial \alpha}\right) \phi$$

$$\left(\mathbf{L}^{*} - \lambda \mathbf{P}^{*}\right) \Gamma^{*} = \frac{1}{\mathbf{R}} \frac{\partial \mathbf{R}}{\partial \phi} = \frac{\Sigma_{1}}{\langle \Sigma_{1} \phi \rangle} - \frac{\Sigma_{2}}{\langle \Sigma_{2} \phi \rangle}$$

Bologna 15-16 Gennaio 2015

Matrice dispersione dati nucleari (US BOLNA at 15 gruppi energia)

Bologna 15-16 Gennaio 2015

Valutazione della rappresentatività di esperienze di trasporto neutronico in piombo in una facility collocata nel vano colonna termica del reattore TAPIRO

Tassi di reazione in TAPIRO da correlare con l'effetto di vuoto del 10% in ELSY	Matrice di dispersione BOLNA	Matrice di dispersione unitaria		
fiss_U238 / fiss_U235	0.775	0.623		
fiss_Np237 / fiss_U235	0.509	0.564		

Questi primi risultati dello studio sembrano confermare il ruolo importante che una facility sperimentale realizzata sul TAPIRO può rivestire come strumento utile per la progettazione della prossima generazione di LFR.

Valutazione della rappresentatività di esperienze di trasporto neutronico in piombo in una facility collocata nel vano colonna termica del reattore TAPIRO

Conclusioni

- Il lavoro è stata incentrato sull'analisi di sensitività e correlazione effettuata secondo le procedure di calcolo ERANOS GPT in relazione al reattore di riferimento LFR ELSY ed all'impianto sperimentale (colonna di piombo) del TAPIRO (TLF).
- I risultati ottenuti in questo studio preliminare sono incoraggianti poiché indicano un significativo grado di correlazione tra le quantità integrali considerate in questi due sistemi.
- I coefficienti di correlazione delle grandezze integrali (rapporti di tassi di fissione) pertinenti alla struttura TLF rispetto all'effetto di vuoto del piombo in ELSY risultano maggiori del valore della correlazione risultante in uno studio simile di confronto tra il reattore GUINEVERE e ELSY.

Attività di Sviluppo del Codice ERANOS nel campo Non-Lineare Neutroni/Nuclidi

Metodologia GPT-BU

La metodologia per il calcolo perturbativo di funzionali della densità neutronica e di quella dei nuclidi che evolvono durante l'evoluzione (burn-up) del nocciolo è stata sviluppata secondo la teoria delle perturbazioni generalizzate su base euristica (HGPT). Essa viene quindi definita HGPT-BU e può essere applicata a studi relativi all'evoluzione temporale del campo nonlineare neutroni/nuclidi in sistemi critici, o sottocritici. I funzionali di interesse possono riguardare, in particolare:

• Gli isotopi del combustibile a fine ciclo. In questo caso il metodo potrebbe essere utilizzato per l'analisi della vita del nocciolo durante il burn-up ed essere quindi ricercati valori ottimali di parametri di progetto oppure strategie ottimali di caricamento del combustibile.

• La fluenza ad un tempo e punto stabiliti. In questo caso il metodo potrebbe essere usato per analizzare il danneggiamento sui materiali con la vita del reattore.

• La radiotossicità delle scorie a lungo termine.

• Il controllo residuale (riserva di reattività) a fine ciclo. L'analisi di questa quantità può essere di particolare interesse in studi volti ad estendere il ciclo di vita del reattore.

Attività di Sviluppo del Codice ERANOS nel campo Non-Lineare Neutroni/Nuclidi

La metodologia HGPT per l'analisi dell'evoluzione dei nuclidi

Equazioni non-lineari governanti la densità neutronica **n**, la densità dei nuclidi **c** e la funzione di controllo $\rho(t)$ durante l'evoluzione (burn-up) del nocciolo:

 $\begin{cases} \mathbf{m}_{(n)}(\mathbf{n},\mathbf{c},\rho|,\mathbf{p}) = -\frac{\partial \mathbf{n}}{\partial t} + B(\mathbf{c},\rho|\mathbf{p})\mathbf{n} = \mathbf{0} & \text{(reattore critico)} \\ \mathbf{m}_{(n)}(\mathbf{n},\mathbf{c},\rho|,\mathbf{p}) = -\frac{\partial \mathbf{n}}{\partial t} + B(\mathbf{c},|\mathbf{p})\mathbf{n} + \rho\mathbf{s}_{n}(\mathbf{p}) = \mathbf{0} & \text{(reattore sottocr.)} & \partial\mathbf{n}/\partial t \approx 0 \\ \mathbf{m}_{(c)}(\mathbf{n},\mathbf{c}|\mathbf{p}) = -\frac{\partial \mathbf{c}}{\partial t} + E(\mathbf{n}|\mathbf{p})\mathbf{c} = 0 & \text{(2) - Equazione di evoluzione dei nuclidi} \\ \mathbf{m}_{(\rho)}(\mathbf{n},\mathbf{c}|\mathbf{p}) = <\mathbf{c},\mathbf{S}\mathbf{n} > -\mathbf{W} = 0 & \text{(3) - Condizione di conservazione} \\ \text{della potenza (W)} \end{cases}$

Il vettore **p** rappresenta un set di parametri indipendenti p_j (j=1,2,...,J) che definiscono completamente il sistema. Essi rappresentano costanti fisiche, condizioni iniziali, termini di sorgente, ecc.

L'operatore *B* dipende dalla densità del combustibile (vettore **c**) e dalla funzione di controllo (ρ), mentre la matrice *E* dipende dalla densità dei neutroni (vettore **n**).

La funzione ρ è una variabile di controllo intensiva, dipendente solo dal tempo. Essa, ad esempio, può agire, come coefficiente, sulla concentrazione di boro solubile in un reattore PWR o sulla sorgente esterna in un reattore sottocritico.

Attività di Sviluppo del Codice ERANOS nel campo Non-Lineare Neutroni/Nuclidi

Le equazioni su indicate possono essere rappresentate sinteticamente con l'equazione

$$\mathbf{m}(\mathbf{f} \mid \mathbf{p}) = 0 \tag{4}$$
che governa la funzione (vettore)
$$\mathbf{f} = \begin{vmatrix} \mathbf{n} \\ \mathbf{c} \\ \rho \end{vmatrix}$$

L'espressione del tutto generale di una risposta Q (lineare, o linearizzata) può essere scritta nella forma sintetica

$$Q = \int_{0}^{t_{\rm F}} dt \langle \mathbf{s}^{+}, \mathbf{f} \rangle_{\rm syst} \equiv \langle \langle \mathbf{s}^{+}, \mathbf{f} \rangle \rangle$$
(5)

 $con s^+$ un vettore assegnato.

Attraverso un procedimento di tipo euristico la metodologia HGPT consente di determinare in un campo lineare, o linearizzato, la variazione δQ a seguito della perturbazione δp_j di un parametro p_j , o il coefficiente di sensitività ad essa collegata. Questa metodologia è basata essenzialmente sul *'principio di conservazione dell'importanza'*, che si può esprimere nel seguente modo:

"Il contributo ad una determinata risposta (misura) fissata nel tempo e nello spazio da parte di una particella (un neutrone, un nuclide, un fonone, od altro) posta ad un certo tempo in un certo punto dello spazio delle fasi del sistema, si conserva, direttamente o attraverso la progenie cui essa può dar luogo, fino al momento della misura stessa."

Tale contributo viene per l'appunto definito come *'importanza'* associata alla particella ed alle coordinate che ne definiscono posizione e il tempo.

Attività di Sviluppo del Codice ERANOS nel campo Non-Lineare Neutroni/Nuclidi

Per come è stata definito, il principio di conservazione dell'importanza, e le formulazioni perturbative che da esso traggono origine, sono applicabili a campi lineari, o linearizzati, di densità di particelle.

In una formulazione più generale esso è stato generalizzato a ogni altro campo di funzioni lineari, purchè aventi caratteristiche di derivabilità sufficienti. In altre parole, per questi campi si è stabilito un principio, che chiamiamo di 'rappresentazione euristica', per cui essi possono essere trattati come campi di densità.

Il suddetto principio di conservazione dà inoltre luogo al seguente corollario:

"Le sorgenti di particelle che determinano un campo lineare di densità, pesate con la loro importanza e integrate su tutto lo spazio delle fasi lungo un intervallo di tempo prefissato, danno come risultato la risposta stessa definita nel medesimo spazio ed intervallo di tempo."
Il codice ERANOS nella sua forma corrente, consente l'utilizzo della metodologia GPT per il calcolo perturbativo di funzionali del flusso e del flusso aggiunto, quali i rapporti di tassi di reazione e i coefficienti di reattività.

Nel codice ERANOS esiste anche una procedura, denominata Meccyco, per calcoli perturbativi relativi al campo dei nuclidi. Tale procedura appare incompleta in quanto, oltre a non consentire di poter tenere conto dell'accoppiamento con la densità neutronica, prevede calcoli perturbativi limitati a singoli step temporali.

L'implementazione della metodologia HGPT-BU nel codice ERANOS implica, oltre all'utilizzo della procedura già esistente per il calcolo della funzione importanza (ψ^*) associata alla densità neutronica (**n**), lo sviluppo di una nuova procedura per consentire calcoli multistep delle funzioni importanza \mathbf{c}^* e ρ^* associate, rispettivamente, al campo dei nuclidi (**c**) ed alla variabile di controllo (ρ).

Espressione perturbativa discretizzata per step temporali (Δ_i) assegnati e macrozone (z) in cui vengono utilizzati i valori ad inizio step delle densit \Diamond dei neutroni (n_i) e dei nuclidi (c_i):

$$\delta Q = \sum_{i=1}^{I} \sum_{j=1}^{J} \delta p_{j} \left(\sum_{z=1}^{Z} \langle \boldsymbol{\psi}_{i}^{*T} \frac{\partial \boldsymbol{m}_{n}(\boldsymbol{t}_{i-1})}{\partial \boldsymbol{p}_{j}} \rangle_{z} + \sum_{z=1}^{Z} V_{z} \int_{\Delta_{i}} \boldsymbol{c}_{z}^{*T} \frac{\partial \boldsymbol{m}_{c,z}}{\partial \boldsymbol{p}_{j}} d\boldsymbol{t} + \rho_{i}^{*} \frac{\partial \boldsymbol{m}_{\rho}(\boldsymbol{t}_{i-1})}{\partial \boldsymbol{p}_{j}} \Delta_{i} \right)$$
(6)

(p_j = parametri di sistema)

Le equazioni reggenti le funzioni importanza $\psi_i^*, c_z^* e \rho_i^*$:risultano:

$$B_{i}^{*}\boldsymbol{\psi}_{i}^{*} + \Omega_{c,i}^{*}\int_{t_{i-1}}^{t_{i}} \boldsymbol{c}_{z}^{*}dt + S_{i}^{T}\boldsymbol{c}_{i}\rho_{i}^{*}\Delta_{i} + \boldsymbol{h}_{n,i}^{+} = 0$$

$$(7)$$

$$-\frac{\partial \mathbf{c}_{z}}{\partial t} = E_{i}^{\mathrm{T}} \mathbf{c}_{z}^{*} + \delta(t - t_{i}) \left(\Omega_{n,i}^{*} \boldsymbol{\psi}_{z,i}^{*} + S_{i} \mathbf{n}_{z,i} \rho_{i}^{*} \Delta_{i} + \mathbf{h}_{c,z,i}^{+} \right)$$
(8)

$$< \mathbf{\psi}_{i}^{*T} \left[\kappa \left(\frac{\partial B(\rho)}{\partial \rho} \right)_{i} \mathbf{n}_{i} + (1 - \kappa) \mathbf{s}_{n,i} \right] >_{\text{syst}} + \mathbf{h}_{\rho,i}^{+} = 0 \qquad \kappa = \begin{cases} 1 \text{ per sistemi critici} \\ 0 \text{ per sistemi sottocritici} \end{cases}$$
(9)

dove $\ensuremath{\mathcal{Q}}_n^* \, e \, \ensuremath{\mathcal{Q}}_c^*$ sono gli aggiunti degli operatori di accoppiamento

$$\Omega_{\rm n} = \frac{\overline{\partial}(B\mathbf{n})}{\partial \mathbf{c}} \quad {\rm e} \quad \Omega_{\rm c} = \frac{\overline{\partial}(E\mathbf{c})}{\partial \mathbf{n}}$$

*

Nel caso in cui sia $h_{\rho,i}^+ = 0$ l'equazione (9) per sistemi critici rappresenta una condizione di ortogonalità per la funzione ψ_i^* rispetto al modo fondamentale \mathbf{n}_i mentre per sistemi sottocritici essa risulta ortogonale alla sorgente $\mathbf{s}_{n,i}$.

Per specifici casi di interesse si devono individuare le condizioni 'finali' che sono specifiche per ogni singolo problema. Ad esempio:

- Risposta della sorgente aggiunta del tipo $\delta(t-t_F) \begin{vmatrix} \mathbf{h}_c^+ \\ \mathbf{h}_c \end{vmatrix}$

dove \mathbf{h}_{c}^{+} è una data funzione delle coordinate spaziali, tutti gli altri termini sorgente essendo uguali a zero. Una risposta di questo tipo corrisponde, per esempio, all'accumulo di uno o più materiali al tempo t_F.

- Risposta della sorgente aggiunta del tipo: $\delta(t-t_I) \begin{vmatrix} \mathbf{h}_n^+ \\ \mathbf{0} \\ \mathbf{0} \end{vmatrix}$

dove $\mathbf{h}_{n,i}^+$ è una data funzione delle coordinate spaziali, tutti gli altri termini sorgente uguali a zero. Una risposta di questo tipo corrisponde, per esempio, ad un tasso di reazione al tempo t_F

- Risposta della sorgente aggiunta del tipo: $\delta(t-t_I) \begin{vmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{vmatrix}$

Una risposta di questo tipo corrisponde al controllo residuo al tempo finale t

Il modulo Meccyco e la procedura GMeccyco

Il modulo Meccyco risolve il calcolo lineare dell'importanza associata alla densità dei nuclidi durante uno step di burn-up. Non è prevista una sua modalità di utilizzo in caso di calcoli multistep. Attraverso una opportuna procedura in LU (user's language) risulta comunque possibile, come si vedrà nel seguito, adattare questo modulo anche per calcoli multistep, in particolare, per quei casi in cui si debba tener conto dell'accoppiamento tra la densità dei nuclidi e quella neutronica.

Meccyco consente di calcolare, all'interno di un determinato step temporale, le funzioni importanza associate ad una sorgente unitaria relativa a ciascuno degli M nuclidi soggetti all'evoluzione. In altre parole, alla fine di un run di Meccyco nello step i-esimo si ottengono generalmente a t_{i-1} M funzioni importanza rappresentate, in forma vettoriale, dall'espressione

(11)

$$\mathbf{c}^{\text{si}^{*}}(\mathbf{t}_{i-1}) = \begin{vmatrix} \mathbf{c}_{1}^{\text{si}^{*}}(\mathbf{t}_{i-1}) \\ \mathbf{c}_{2}^{\text{si}^{*}}(\mathbf{t}_{i-1}) \\ \vdots \\ \mathbf{c}_{M}^{\text{si}^{*}}(\mathbf{t}_{i-1}) \end{vmatrix}$$
(10)

ciascuna associata alla sorgente aggiunta, posta a t_i,

$$\mathbf{u}^{s} = \begin{vmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{vmatrix}$$
 (valore unitario nella posizione s)

(12)

Assumiamo che nello step i-esimo si debba calcolare la funzione importanza $\mathbf{c}^{*}(t_{i-1})$ partendo da condizioni 'iniziali', a t_{i} , indicate genericamente con il vettore

$$\boldsymbol{\alpha}^{i} = \begin{vmatrix} \alpha_{1}^{i} \\ \vdots \\ \alpha_{s}^{i} \\ \vdots \\ \alpha_{M}^{i} \end{vmatrix} \quad (\text{posizione s})$$

assegnato nel limite superiore t_i . Essendo il calcolo entro l'intervallo i-esimo lineare, la funzione cercata a t_{i-1} sarà data dalla somma

$$\mathbf{c}^{*}(\mathbf{t}_{i-1}) = \sum_{s=1}^{M} \alpha_{s}^{i} \mathbf{c}^{si*}(\mathbf{t}_{i-1})$$
(13)

Nel caso di un calcolo lineare, in cui si deve calcolare la funzione importanza dei soli nuclidi, e non c'è accoppiamento con il campo neutronico, i valori così ottenuti nel punto t_{i-1} serviranno a definire le condizioni 'iniziali' per il calcolo successivo nello step (i-1), seguendo la stessa procedura. E così via, ricorrentemente, fino al primo step.

Nel calcolo nonlineare, in cui cioè vi sia accoppiamento tra il campo dei nuclidi con quello neutronico, per le condizioni 'iniziali' nello step (i-1) occorrerà invece aggiungere gli eventuali altri termini di tipo delta ($\gamma \sigma_{f} n_{i} \rho_{i}^{*} \Delta t_{i}$) che compaiono nell'equazione che regge la funzione **c**^{*} per ottenere le nuove condizioni 'iniziali' a t_{i-1}.

Indicheremo questo nuova procedura di utilizzo di Meccyco, per ogni singolo step del calcolo, come GMeccyco (Generalized Meccyco)

Risultati dei calcoli relativi al 1° test di prova con la procedura GMeccyco

Sistema veloce refrigerato a piombo. Geometria zero-dimensionale. Neutroni monoenergetici. Combustibile formato da 2 nuclidi: Pu239 (c_1) e Pu240 (c_2).

Funzionale in esame: c₂ al tempo finale t_F. Perturbazione: +10% condizione iniziale di c₁

 $\delta c_2(t_F) = c_1^*(t_0) \ \delta c_1(t_0) \qquad \text{con } c_1^*(t_0) = dc_2(t_F) \ / \ dc_1(t_0)$

	3 step (3x60 gg)	
Funzione importanza a t_o	A - Campi neutroni/nuclidi NON Accoppiati	B - Campi neutroni/nuclidi Accoppiati
$c_1^*(t_0)$	3.2471E-03	4.1783E-02
$c_2^*(t_o)$	9.8242E-01	9.9733E-01
Perturbazione δc ₂ (t _F)	2.0522E-07	2.6407E-06
Diff. tra calcolo HGTP e calcolo diretto.	- 92.1%	1.4%

Risultati dei calcoli relativi al 2° test di prova con la procedura GMeccyco

Sistema veloce refrigerato a piombo. Geometria zero-dimensionale. Neutroni monoenergetici. Combustibile formato da 3 nuclidi: U238 (c_1), Pu239 (c_2) e Pu240 (c_3). Funzionale in esame: c_3 al tempo finale t_F . Perturbazione: +10% condizione iniziale di c_1

 $\delta c_3(t_F) = c_1^*(t_0) \, \delta c_1(t_0) \qquad \text{con } c_1^*(t_0) = dc_3(t_F) \, / \, dc_1(t_0)$

	3 step (3x60 gg)		
Funzione importanza a t_o	A - Campi neutroni/nuclidi NON Accoppiati	B - Campi neutroni/nuclidi Accoppiati	
$c_1^*(t_0)$	3.10359E-04	3.55666E-04	
$c_2^*(t_o)$	2.60038E-02	2.72159E-02	
$c_3^*(t_o)$	9.18536E-01	9.18833E-01	
Perturbazione $\delta c_3(t_F)$	3.10359E-04	3.55666E-04	
Diff. tra calcolo HGTP e calcolo diretto.	- 6.7%	6.9%	

Risultati dei calcoli relativi al 3° test di prova con la procedura GM
eccyco

Sistema veloce tipo ELSY refrigerato a piombo. Geometria zero-dimensionale. Neutroni monoenergetici. Combustibile formato da 5 nuclidi: U238 (c₁), Pu239 (c₂), Pu240 (c₃), Pu241 (c₄) e Pu242 (c₅). Funzionale in esame: c₄ al tempo finale t_F. Perturbazione: +10% condizione iniziale di c₁

 $\delta c_4(t_F) = c_1^*(t_0) \ \delta c_1(t_0) \qquad \text{con } c_1^*(t_0) = dc_4(t_F) \ / \ dc_1(t_0)$

	3 step (3x60 gg)		
Funzione importanza a t _o = coefficiente di sensitività dc ₄ (t _F)/dc _i (t _o)	A - Campi neutroni/nuclidi NON Accoppiati	B - Campi neutroni/nuclidi Accoppiati	
$c_1^*(t_o)$	6.08614E-08	3.93870E-05	
$c_2^*(t_o)$	3.56105E-05	1.17957E-03	
$c_{3}^{*}(t_{0})$	8.43315E-03	8.71638E-03	
$c_4^*(t_o)$	9.41955E-01	9.43509E-01	
$c_5^*(t_o)$	0	1.98686E-04	
Perturbazione δc ₄ (t _F)	≈ 0	7.7867E-08	
Diff. tra calcolo HGTP e calcolo diretto.		4.8%	

Da notare come la funzioni importanza $c_5^*(t_o)$ associata al nuclide c_5 a t_o risulti eguale a zero nel caso in cui i campi neutroni/nuclidi risultino non accoppiati. Ciò è dovuto al fatto che in questo caso non viene tenuto in conto l'unico effetto sul funzionale considerato provocato da una perturbazione del valore iniziale di tale nuclide: la variazione del flusso associata al reset della potenza.

Risultati raggiunti:

• Implementazione in ERANOS di una procedura per il calcolo perturbativo nel campo lineare dei nuclidi che risultava incompleta (relativa al modulo Meccyco). Tale procedura, necessaria per l'implementazione del metodo perturbativo nel campo non-lineare neutroni/nuclidi, viene denominata Gmeccyco (Generalized Meccyco).

• Dimostrazione della validità della metodologia HGPT-BU attraverso vari test su casi semplici di evoluzione, rappresentativi di reattori veloci refrigerati a piombo. La precisione dei calcoli eseguiti, al primo ordine, secondo la procedura GMeccyco risulta compresa tra il 2 e il 7%.

Sviluppi futuri:

 Nel lavoro finora svolto si è assunto per il flusso neutronico un'approssimazione monoenergetica. Se da un lato con ciò viene comunque assicurato il rispetto del vincolo sulla potenza nelle espressioni perturbative, dall'altro lato non vengono tenuti in conto possibili effetti dovuti a distorsioni dello spettro energetico del flusso stesso (indipendenti dal suo livello).

• Un'altra limitazione riguarda l'essersi limitati a considerare sistemi zero-dimensionali, anche se ciò ha comunque un ambito d'interesse importante in studi parametrici di evoluzione del combustibile all'interno della singola cella.

• Nelle prossime fasi di lavoro verranno affrontate queste tematiche, collegando intimamente le procedure relative alla metodologia HGPT con la procedura GMeccyco ora implementata in ERANOS. Verranno anche considerati altri funzionali d'interesse quali la fluenza, il controllo residuo a fine vita, ecc.

Ottimizzazione del progetto di nocciolo del reattore ALFRED

G. Grasso¹, F. Lodi², C. Petrovich¹, D. Mattioli¹, M. Sumini² ¹ ENEA UTFISSM-PRONOC ² UniBO

Workshop finale PAR2013 Aula Magna ENEA, Bologna, 15-16 Gennaio 2015

Scopo del lavoro è stata l'individuazione e l'analisi di possibili soluzioni alle criticità dell'attuale progetto di nocciolo di ALFRED, così come evidenziate da una preliminare revisione critica del progetto stesso, per compilare una lista di opzioni e raccomandazioni che servano all'impostazione di una nuova fase di progettazione del nocciolo di tale reattore.

Revisione dell'attuale progetto di nocciolo di ALFRED ed individuazione delle principali criticità.

Riferimento:

G. Grasso *et al*. «The core design of ALFRED, a demonstrator for the European lead-cooled reactors». *Nucl. Eng. Des.* **278** (2014) 287-301.

http://dx.doi.org/10.1016/j.nucengdes.2014.07.032

Una premessa generale...

Per il progetto del nocciolo di ALFRED, sono stati presi in considerazione, sin dal principio, tutti i principali obiettivi (includendo in questi anche la sicurezza) ed i limiti tecnologici.

Una premessa generale...

Tutti questi elementi sono quindi stati elaborati per mezzo di una metodologia di progettazione comprensiva («P&P», ©Carlo Artioli) che ha consentito di giungere ad una configurazione di nocciolo che li rispettasse e soddisfacesse tutti.

Il nocciolo di ALFRED

- Elementi esagonali chiusi
- 297 posizioni nell'Inner Vessel
- ≈ 165 cm raggio dell'Inner Vessel

Parametro	valore	Unità
Potenza termica	300	MW
FAs	171	
	57	
Control Rods	12	
Safety Rods	4	
Dummies	110	
Ricariche	5	
Lunghezza ciclo	365	EFPD
BU Picco/Medio	103/73.3	MWd/kg

L'elemento di combustibile

- Reticolo esagonale con passo *p* = 13.86 mm
- 6 corone per 127 barrette
- Spaziamento delle barrette tramite grigliette a (simil) cella d'ape

La barretta di combustibile

- Disegno tipico di una barretta (plenum, isolanti, combustibile, molla)
- Pastiglie forate per limitare la temperatura massima di combustibile
- Intercapedine combustibile-guaina dimensionata per accomodare il rigonfiamento del combustibile al massimo BU
- Spessore della guaina dimensionato per resistere alla pressione dei gas di fissione nella barretta più sollecitata

Composizione del combustibile

Arricchimenti [at.%] **Vettore Pu** frazione [at.%] **OUTER** CORE Pu-238 2.317 Pu-239 56.275 27,8% 21,7% **INNER** PuO1.97* CORE U01.97 78,3% 72,2% *Include Am-241

	wt.%	vol.%
INN	21.816	21.106
OUT	27.937	27.096

Pu-240	26.601
Pu-241	5.990
Pu-242	7.517
Am-241	1.300
Vettore U	frazione [at.%]
Vettore U U-234	frazione [at.%] 0.003
Vettore U U-234 U-235	frazione [at.%] 0.003 0.409
Vettore U U-234 U-235 U-236	frazione [at.%] 0.003 0.409 0.010

1. sottoraffreddamento dei sottocanali angolari dell'elemento di combustibile, che può portare la guaina delle barrette affacciate a tali sottocanali a macchie calde che superino la temperatura limite di 550 °C;

°C

Elemento centrale $T_{guaina} = 527^{\circ}$ C

	Parametro	Valore nominale [°C]	Fattore di macchia calda	Valore atteso [°C]
°C	Temperatura d'ingresso	400		400
512.71 508.49 504.27 500.05	Salto termico nel sottocanale	113	1,203	136
495.84 491.62 487.40 483.18 478.96	Temperatura di bulk	513		536
470.50	Salto termico alla parete	14	1,382	19
	Temperatura di parete	527		555

 superamento del limite di 2 DpA nelle sezioni dell'Inner Vessel più vicine alla regione attiva;

 mancanza di margini di correzione dei possibili errori di valutazione della massa critica dovuti alla propagazione delle inevitabili incertezze sui dati nucleari;

Se per le ricariche successive è pensabile richiedere un combustibile con un valore di arricchimento opportunamente adeguato all'esperienza per correggere il problema, per la prima carica l'unica possibilità praticabile è modificare il numero di elementi di combustibile caricati nel nocciolo.

Qualora però la stima sia stata effettuata per eccesso – dunque se la reattività effettiva del sistema è minore di quella attesa, e si renda pertanto necessario aumentare la massa moltiplicante – sarebbe necessario aumentare il numero di elementi di combustibile, nell'unico modo attualmente possibile di andare ad occupare ulteriori posizioni nella regione originariamente preposta ad ospitare elementi schermanti. Il che, riducendo ulteriormente la già insufficiente protezione dell'Inner Vessel, si rivela una scelta non praticabile.

4. mancata stima dell'impatto, sulla criticità del sistema, delle impurità presenti nel refrigerante;

Nonostante sia stata stimata la produzione di polonio in funzione della quantità di bismuto presente come impurità, prendendo a riferimento due lotti di piombo commerciale a diverso grado di purezza (standard russi *COO* e *C1*), nel calcolo di criticità è stato sempre assunto piombo chimicamente puro, trascurando dunque il potenziale impatto delle sue inevitabili impurità sulla criticità stessa.

 assunzione di un materiale – successivamente rivelatosi inadatto – per la realizzazione della scatola esagonale degli elementi.

Results by PSI for T91 based on total elongation

Results by PROMETEY Inst. for 10Ch9NSMFB based on % necking to rupture

Individuazione di possibili soluzioni alle criticità riscontrate ed analisi preliminare della loro efficacia ed impatto sul progetto generale.

- 3 possibili soluzioni:
 - rimozione delle barrette angolari;

Trivial: se il problema si riscontra nelle barrette angolari, rimuovere le barrette angolari.

Concettualmente fattibile, ma:

- senza alcun accorgimento, tali posizioni diventano larghi canali, che comporterebbero un notevole by-pass di piombo freddo, compromettendo la termoidraulica dell'elemento e del nocciolo tutto;
- per ovviare al possibile by-pass, occorrerebbe sostituire tali barrette o con finte barrette (parziale soluzione), o con travi a sezione opportunamente lavorata per occupare l'intera cella nella posizione angolare. Il che, però, oltre che una (modesta?) complicazione manifatturiera, aggiungerebbe un problema sull'assemblaggio delle griglie, e del fascio nell'elemento.

- 3 possibili soluzioni:
- X rimozione delle barrette angolari;
 - traslazione centripeta delle barrette angolari;

Uovo di Colombo (?): spostare le sole barrette angolari verso il centro, così da allargare i sottocanali in angolo.

Qualche ostacolo in più:

- il fatto che, in tal modo, gli adiacenti sottocanali interni verrebbero strizzati, riduce sensibilmente il margine di manovra al più ad una equalizzazione dei salti entalpici nei due tipi di sottocanale (in realtà, ancora meno, visto che il limitante è la temperatura di parete, ed il salto termico in un sottocanale centrale è maggiore di quello in un sottocanale angolare);
- l'attuale sistema di ancoraggio delle barrette al piede, per mezzo di binari, risulterebbe compromesso per la deformazione che si renderebbe necessaria ai due binari più esterni al fascio, imponendo una onerosa rivisitazione generale dell'intero concetto meccanico dell'elemento.

- 3 possibili soluzioni:
- X rimozione delle barrette angolari;
- X traslazione centripeta delle barrette angolari;
 - allargamento della scatola esagonale.

Analisi della risposta termoidraulica all'allargamento della scatola

- 3 possibili soluzioni:
- X rimozione delle barrette angolari;
- X traslazione centripeta delle barrette angolari;
- v allargamento della scatola esagonale.

°C

Elemento centrale

 $T_{guaina} = 522^{\circ} C$

Valore Fattore di Valore **Parametro** nominale [°C] macchia calda atteso [°C] **Temperatura** 400 400 d'ingresso 498.02 Salto termico 494.45 98 1,203 117 490.89 nel sottocanale 487.32 483.76 480.19 Temperatura di 476.63 498 517 473.06 bulk 469.50 Salto termico 24 33 1,382 alla parete Temperatura di 550 522 parete

Sovra-danneggiamento dell'Inner Vessel e mancanza di margini di aggiustamento della massa critica:

- 1. individuazione di un compromesso fra
 - l'incremento dello schermaggio, per accomodare un numero maggiore di corone di elementi "dummy" (anche in vista di un loro possibile rimpiazzo con elementi di combustibile per aggiustare la massa critica, senza compromettere la protezione dell'Inner Vessel), ed
 - il contenimento del diametro dell'Inner Vessel (ovvero, dell'intero sistema);
- > Introduzione di un ulteriore anello di possibili posizioni sulla griglia del nocciolo ($R_{IV} \approx +20$ cm).

Sovra-danneggiamento dell'Inner Vessel e mancanza di margini di aggiustamento della massa critica:

- individuazione di posizioni nell'anello più esterno in cui sia possibile sostituire gli elementi riflettenti standard con elementi assorbenti, così da
 - incrementare ulteriormente la protezione all'Inner Vessel (specie qualora le posizioni più interne dello schermo siano rimpiazzate da elementi di combustibile per aggiustare la massa critica), e
 - minimizzare l'impatto di questi assorbitori sulla criticità del nocciolo.
- Selezione, in periferia, di un numero minimo di posizioni a formare un anello continuo.

(≈ -200 pcm)

Sovra-danneggiamento dell'Inner Vessel e mancanza di margini di aggiustamento della massa critica:

- stensione della vita dell'Inner Vessel a
 - 45 (schermo semplicemente modificato) o
 - 500 (schermo polifunzionale) anni.

Valutazione dell'impatto sulla criticità di: 1. impurità nel piombo

	Pb puro	С00	СО	C1
Grado purezza	100%	99,9985%	99,992%	99,985%
Concentrazione Bi	0%	0,0005%	0,004%	0,006%
$\Delta k_{ m eff}$		-60 pcm	-420 pcm	-850 pcm

Valutazione dell'impatto sulla criticità di:

2. materiale della scatola

	Materiale	Spessore	$\Delta k_{ m eff}$
Riferimento	T91	4,0 mm	
Rimpiazzo	15-15Ti	4,0 mm	≈ -390 pcm
Candidato	15-15Ti	3 <i>,</i> 5 mm	≈ +190 pcm

Conclusioni (non potevano mancare...)

- ! Tutte le criticità evidenziate nella presente configurazione di riferimento del nocciolo di ALFRED sono state studiate, e per ciascuna individuate alcune possibili soluzioni.
- Le soluzioni individuate sono quindi state analizzate e saggiate, stimandone l'impatto sul parametro di progetto preposte a correggere.
- Tutte sembrano in questa fase ben soddisfare i requisiti inizialmente posti, e presentando implicazioni tutte apparentemente ovviabili, dunque senza che alcun punto critico emerga dal presente studio.

Conclusioni (non potevano mancare...)

Per quanto concerne lo studio della criticità del nocciolo, alcuni impatti risultano più marcati di altri (in particolare l'effetto delle impurità del refrigerante). Il prosieguo degli studi rivelerà se è possibile compensarli, senza violare il limite sul contenuto massimo di Plutonio.

Cas	so - soluzione	Δk _{eff} [pcm]	
1	Allargamento scatola	-305	
2	Allargamento schermo Allargamento schermo e uso assorbitori	-36 -215	
4	Sostituzione piombo	-850	
5	Sostituzione materiale scatola Sostituzione materiale e assottigliamento scatola	-390 +195	

Studi per l'implementazione di tecniche di monitoraggio del nocciolo di ALFRED

Giacomo Grasso¹, Francesco Lodi², Carlo Petrovich¹, Antonio Guglielmelli³, Cinzia Artioli³, Davide Mattioli¹, Rosa Lo Frano³, Marco Sumini²

- ¹ ENEA UTFISSM-PRONOC
- ² UniBO
- ³ UniPI

Workshop finale PAR2013 Aula Magna ENEA, Bologna, 15-16 Gennaio 2015

Sommario

- Introduzione
- Attività #1: rivelazione neutronica
 - indagine sulla strumentazione commerciale disponibile
 - definizione dei criteri guida per il sistema di monitoraggio
 - simulazione della capacità di risposta del sistema di rivelatori in-vessel
- Attività #2: rivelazione fallimento guaine
 - Motivazioni ed idee generali del metodo
 - Punti salienti della metodologia
 - Applicazione ad ALFRED

Le attività svolte nel presente obiettivo della Task «Progettazione di nocciolo» del PAR2013 hanno avuto una duplice finalità:

- valutare la possibilità di inserire rivelatori neutronici all'interno del vessel di ALFRED per monitorare il livello del flusso in power-range e mapparne la distribuzione spaziale;
- 2. adattare ed applicare ad ALFRED una tecnica di individuazione dell'elemento cui appartiene una barretta su cui si sia verificata una rottura della guaina, con conseguente rilascio nel circuito primario del suo inventario di radioattività.

Valutazione della possibilità di inserire rivelatori neutronici all'interno del vessel di ALFRED per monitorare il livello del flusso in power-range e mapparne la distribuzione spaziale.

Linee guida

Un sistema di rivelatori neutronici è necessario per fornire informazioni sul sistema sia in condizioni normali, sia per proteggere lo stesso a fronte di possibili eventi iniziatori.

- Per il <u>controllo del reattore</u>, è necessario monitorare attentamente tanto il livello integrale del flusso neutornico (in particolare durante le fasi di avviamento), quanto la sua distribuzione spaziale (con particolare attenzione agli stati prossimi alla piena potenza).
- Per la <u>protezione del sistema</u>, rivelatori differenziali a risposta veloce devono essere impiegati per monitorare variazioni di criticità, così da poter comandare l'intervento tempestivo del Reactor Protection System (RPS) prima che siano raggiunte condizioni che possa determinarsi l'incontrollabilità dell'impianto.

Considerazioni generali

- Un primo mezzo per il monitoraggio del flusso neutronico tanto lento quanto veloce (leggasi: reattività) – è rappresentato dall'uso di detectors posizionati lontano dal nocciolo (es.: ex-vessel), soluzione tipica dei reattori veloci.
- Un secondo sistema, <u>ridondante</u>, di monitoraggio del flusso è comunque necessario, in particolare stante la natura di dimostratore di ALFRED.
- 3. Il monitoraggio della distribuzione spaziale del flusso neutronico richiede l'impiego di rivelatori posizionati quanto più vicino al nocciolo sia praticabile: per non perdere l'informazione sulla forma del flusso, infatti, è necessario che tale distanza sia fissata al minor numero plausibile di liberi cammini medi, compatibilmente con il design dell'elemento di combustibile.

Definizione della strategia

Combinando tutte le necessità sopra esposte, si può derivare la seguente strategia:

- Full-Range Flux Detection (FRFD) system, costituito dal set di detector ex-vessel, operanti dall'avvio a piena potenza per la misura del livello integrale del flusso neutronico;
- Operation Monitoring and Protection Detection (OMPD) system, costituito dal set di rivelatori in-vessel—ex-core, dedicati alla misurazione ridondante del livello integrale del flusso (solo a piena potenza) e della mappatura spaziale della sua distribuzione.

In questa fase, continuare a fare analisi senza tener conto delle reali disponibilità non ha senso.

→ indagine sulla strumentazione disponibile in commercio, per identificare un set verosimile di caratteristiche per i detector che si intende utilizzare in-vessel.

N-detectors sono comunemente usati in flusso veloce, ma in sistemi a sodio...

- → necessario proteggere le sonde dall'ambiente aggressivo degli HLM
 - è sufficiente racchiudere la sonda in una custodia protettiva
- → necessario verificare che le funzioni di risposta siano adeguate al diverso spettro neutronico per dare un segnale significativo
- non necessario curarsi del danneggiamento γ delle sonde, grazie al potere schermante del piombo, che consente una lunga vita ai detector (limiti tipici sono 10⁴ Gy/h per camere a fissione e 10 Gy/h per contatori a boro)

ERES ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

FRFD system:

- contatori a boro nel regime a bassa potenza (inclusi start up e controllo in fase di ricarica);
- camere a fissione nel regime a media potenza;
- camere di ionizzazione compensate nel regime a piena potenza.

Potrebbe essere necessario uno schermaggio delle sonde a mezzo di materiali moderatori e/o assorbitori, per ridurre il possibile rumore proveniente da sorgenti diverse dal nocciolo.

Sicuramente non è necessario uno schermaggio γ (di norma fatto proprio con blocchi di piombo: quello che abbiamo basta e avanza!).

ENER ITALIAN NATIONAL AGENC FOR NEW TECHNOLOGIES, ENERGY ANI SUSTAINABLE ECONOMIC DEVELOPMEN

OMPD system:

• ...???

Spulciando allora qua e là tra cataloghi, e parlando coi fornitori...

		unit	CFUC 06	CFUE 32
Neutron sensitivity	Current mode	A/n cm ⁻² s ⁻¹	2·10 ⁻¹³	10 ⁻¹⁶
	Fluctuation mode	A ² Hz ⁻¹ /n cm ⁻² s ⁻¹	4·10 ⁻²⁶	4·10 ⁻²⁹
	Pulse mode	c s ⁻¹ /n cm ⁻² s ⁻¹	1	10-3
Pulse operating range		n cm ⁻² s ⁻¹	$1 \div 10^{5}$	$10^3 \div 10^8$
Max operating T		°C	600	600
Nominal diameter		mm	48	7
Nominal detector length		mm	412	150
Nominal sensible length		mm	230	56

ERES. ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

Solo che...

- entrambi sono progettati per rivelare neutroni termici, per cui la camera di ionizzazione è rivestita di uno strato (0.06 ÷ 2 mg/cm²) di HEU, per sfruttarne la sezione d'urto visto che sono normalmente impiegati ex-vessel di LWRs;
- nel nostro caso, i rivelatori (in-vessel) saranno soggetti ad un flusso molto maggiore, rischiando di finire fuori range.

Fortunatamente, lavorando a spettro veloce, le sezioni d'urto dell'U235 calano – auspicabilmente abbastanza da rientrare in range.

Se così non fosse, si potrebbe pensare di impiegare U238.

- i detector devono essere il più possibile vicini alla zona moltiplicante
- si vuole evitare di occupare posizioni all'interno del fascio di barrette

- i detector devono essere il più possibile vicini alla zona moltiplicante
- si vuole evitare di occupare posizioni all'interno del fascio di barrette

- i detector devono essere il più possibile vicini alla zona moltiplicante
- si vuole evitare di occupare posizioni all'interno del fascio di barrette

- si vogliono monitorare tutti gli elementi
- occorre particolare cura per la detezione in prossimità di una barra di controllo

- \supset Fuel Assembly
- 🛞 Control Rod
- 🚱 Safety Rod
- 💮 Shield

- si vogliono monitorare tutti gli elementi
- occorre particolare cura per la detezione in prossimità di una barra di controllo

- > Fuel Assembly
- Instrumented Fuel Assembly
- Control Rod
- 🔕 Safety Rod
- 🕑 Shield

Posizionamento proposto

- Fuel Assembly
 Instrumented Fuel Assembly
 Control Rod
- Safety Rod
- 💮 Shield

ENE

Preparazione del modello

Riscrittura dell'input MCNP per modellare:

- il naso in cui sono posizionati i detector;
- gli elementi con e senza detector.

Preparazione del modello

Riscrittura dell'input MCNP per modellare:

• il naso in cui sono posizionati i detector;

Detection

volume

• gli elementi con e senza detector.

Preparazione del modello

Riscrittura dell'input MCNP per modellare:

- il naso in cui sono posizionati i detector;
- gli elementi con e senza detector.

Detection

Risultati 1: condizioni nominali

Accordo qualitativo

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

±5%

Risultati 2: estrazione CR

Per i 3 detector adiacenti alla CR estratta, si osserva non solo l'aumento del segnale (sx), ma anche il mantenimento della proporzionalità (dx).

Adattamento ed applicazione ad ALFRED di una tecnica di individuazione dell'elemento cui appartiene una barretta su cui si sia verificata una rottura della guaina, con conseguente rilascio nel circuito primario del suo inventario di radioattività.

Passo 1: Tagging dei FA

Perché è importante individuare il FA guasto?

- Sicurezza
- Economicità

Perché è importante individuare il FA guasto?

- Sicurezza
- Economicità

Desiderata del sistema di monitoraggio guaina:

- Semplice
- Affidabile
- Non deve interferire con le normali operazioni del reattore

Perché è importante individuare il FA guasto?

- Sicurezza
- Economicità

Desiderata del sistema di monitoraggio guaina:

- Semplice
- Affidabile
- Non deve interferire con le normali operazioni del reattore

Metodologia sviluppata da Carlo Artioli per il reattore PRISM, qui riadattata al nocciolo di ALFRED.

Passo 1: Tagging dei FA

L'idea è marcare ogni FA con un cocktail di gas inserito in ogni barretta e rilevare la loro fuoriuscita attraverso l'attività dei figli.

I cocktail sono <u>diversi per composizione o</u> <u>abbondanza</u> in ogni FA in modo che l'analisi spettrometrica dei gamma emessi identifichi senza ambiguità il FA guasto.

Passo 1: Tagging dei FA

L'idea è marcare ogni FA con un cocktail di gas inserito in ogni barretta e rilevare la loro fuoriuscita attraverso l'attività dei figli.

I cocktail sono <u>diversi per composizione o</u> <u>abbondanza</u> in ogni FA in modo che l'analisi spettrometrica dei gamma emessi identifichi senza ambiguità il FA guasto.

A 3 domande si deve rispondere:

- 1. Quali gas selezionare?
- 2. Quanto gas mettere?
- 3. Quando 2 tags sono così diverse da essere distinguibili?

Passo 2: Quali gas?

Requisiti dei gas tag:

- Padri e figli diversi da ogni FP o cover gas
- Non reattivi chimicamente (i.e. gas nobili)
- $\sigma_{c,padre} \rightarrow$ bassa da poter considerare isotopo stabile durante la vita del FA
- $\sigma_{c,padre} \rightarrow$ alta da produrre una sufficiente quantità di figli
- $\lambda_{\text{figlio}} \rightarrow$ bassa per avere significative concentrazioni all'equilibrio
- $\lambda_{\text{figlio}} \rightarrow$ alta da produrre una attività rilevabile

	PADRI		FIGLI		
Isotopo	Fast σ [b]	Fast irradiation half-life (Φ = 10 ¹⁵ n/cm ² s) [y]	Isotopo	Emivita	Numero di γ
Kr78	0,007	3100	Kr79	1,455 d	3
Xe124	4,0	5,5	Xe125	17 h	2
Xe126	0,05	440	Xe127	36,41 d	2
Xe128	0,01	2200	Xe129m	8,89 d	1

Passo 3: Quanto gas?

Abbastanza da avere un'attività rilevabile in certe situazioni limite in modo da garantire in ogni scenario credibile che il guasto venga individuato \rightarrow *quanta*

Passo 3: Quanto gas?

Abbastanza da avere un'attività rilevabile in certe situazioni limite in modo da garantire in ogni scenario credibile che il guasto venga individuato $\rightarrow quanta$

Scenari limite:

- End of Life (EoL) → ho la minima quantità di padri
- Ultimo Restart prima di EoL (EoBO) → il buildup dei figli è al minimo

Passo 4: Quanto diversi?

In modo da **accomodare tutte le incertezze** nella regressione tra attività dei figli e concentrazione iniziale dei padri

- flussi
- sezioni d'urto
- tempistiche

Passo 4: Quanto diversi?

In modo da accomodare tutte le incertezze nella regressione tra attività dei figli e concentrazione iniziale dei padri

- flussi
- sezioni d'urto
- tempistiche

Se nell'incertezza sul flusso considero anche la sua <u>variazione spaziale</u>, *d* aumenta troppo rendendo il metodo infattibile

Se nell'incertezza sul flusso considero anche la sua <u>variazione spaziale</u>, *d* aumenta troppo rendendo il metodo infattibile

SOLUZIONE: dividere il nocciolo in <u>zone di flusso</u> in modo da ridurre la sua variazione, <u>associando</u> ad ogni zona delle <u>famiglie di cocktail</u>

Se nell'incertezza sul flusso considero anche la sua <u>variazione spaziale</u>, *d* aumenta troppo rendendo il metodo infattibile

SOLUZIONE: dividere il nocciolo in <u>zone di flusso</u> in modo da ridurre la sua variazione, <u>associando</u> ad ogni zona delle <u>famiglie di cocktail</u>

4 gas \rightarrow 11 famiglie (6 coppie, 4 triplette e 1 quartetto) ognuna con sue caratteristiche \rightarrow sfruttare nell'accoppiamento zone flusso - famiglie

Obiettivi:

- 1) Minimizzare il volume caricato nella pin
- 2) Massimizzare il potere risolvente

Vincoli:

- a) Volume disponibile in una pin: 600 Ncm³ \rightarrow per ridurre stress su guaina limitarsi a V_{max} <u>15 Ncm³</u>
- b) <u>Xe129m</u> ha un alta attività di fondo come FP
 → <u>evitare</u> il suo utilizzo per semplificare regressione
- c) <u>sensibilità</u> del detector: <u>10 Bq</u>

Passo 6: Caso ALFRED

	Quanta [Nom ³]				
lsotopo	EoL	EoBO			
Kr78	5,88·10 ⁻³	0,155			
Xe124	2,0·10 ⁻⁵	3,0·10 ⁻⁴			
Xe126	7,5·10 ⁻⁴	0,4			

ENE

FOR NEW TECHNOLOGIES.

Conclusioni

Le indagini preliminari qui condotte sembrano confermare la possibilità di impiegare un set di detector in-vessel—ex-core per

- fornire ridondanza alla misura continua del livello integrale di flusso neutronico
- fornire una visura della distribuzione spaziale del flusso, mappandone eventuali distorsioni.

Il sistema investigato – basato su detector commercialmente disponibili – è capace di dare una risposta significativa nel range operativo dello strumento.

I detector posizionati nelle adiacenze di barre di controllo osservano eventuali estrazioni spurie di tali elementi mantenendo una risposta lineare potenza/segnale.

La metodologia delineata applicata al caso ALFRED soddisfa pienamente la disponibilità di cocktail <u>senza</u> <u>immobilizzare volumi significativi</u> nel plenum delle barrette.

<u>L'utilizzo dell'isotopo Xe128 e del suo figlio Xe129m</u>, che sono presenti in quantità rilevanti come prodotti di fissione, è stato <u>evitato</u> semplificando l'analisi spettrometrica e la successiva regressione.

La metodologia si mostra promettente e prona ad ulteriori sviluppi anche oltre la fase concettuale.

Piattaforma di Simulazione Ingegneristica (PSI)

Risultati PAR2013 (rif. LP2 Deliv. 53)

E. Negrenti [UTFISST-SIMING]

ENEA BOL - 15 Gen 2015

Target : Simulazione Ingegneristica

- Sviluppo del progetto con focus su integrazione, aspetti di sistema, relazioni tra componenti
- Verifiche di sicurezza, in particolare dove è rilevante il comportamento di impianto
- Verifica e validazione delle procedure operative in condizioni normali ed incidentali
- verifiche di progetto (nella fase di 'dettaglio')
- verifica del sistema di protezione e controllo
- Test piani sicurezza per ambiente e popolazione
- Dimostrativi per il pubblico e gruppi di interesse

Key strategic objectives

- a) To take into account Fukushima lessons
- b) To realize a platform where we can use faster or more complex sw tools depending on the type of application (e.g. overall system analysis vs design calculations for specific components or sections)
- c) To develop the modelling of the interaction between the NPP and the environment (one of the consequences of objective a)

Risultati PAR 2013 (LP2 – del 53)

Selezione mirata delle informazioni impiantistiche sul reattore ALFRED ed in particolare sui sistemi e sotto-sistemi che non erano stati trattati con dettaglio nel PAR 2012

- Aumento considerevole delle informazioni sui codici utilizzabili per la realizzazione della piattaforma, andando a cercare i modelli più adatti sia entro ENEA che in campo nazionale ed internazionale
- Armonizzazione delle informazioni sui singoli codici : questo è stato ottenuto primariamente con la creazione di un 'template' comune a tutti i codici di calcolo considerati che dunque rappresenta ora il 'minimo comune multiplo' informativo su detti strumenti. Tale informazioni saranno la base per la realizzazione di un diagramma di flusso dei 'meta-dati' della piattaforma di simulazione (pianificato per PAR2014)
- Ulteriore sviluppo della architettura possibile per integrare in modo razionale ed efficace i software prescelti in una unica 'piattaforma', iniziando anche a discutere le diverse problematiche di integrazione.

Il Possibile look della Piattaforma

Deliv 53 statistics

- Il report (realizzato con contributi dai 9 membri del lab SIMING e vari input esterni) contiene:
- a) 34 pag. di informazione impiantistica che integra quella raccolta nel PAR 2012
- b) 98 pag. di informazione codicistica, con focalizzazione sulle aree tipicamente 'post-Fukushima' (sw di dispersione effluenti in aria e sw per simulazione eventi naturali estremi)
- c) 19 pag. di contenuti vari

Le scelte codicistiche consolidate

a) T/H : RELAP5/TRACE for system analysis and faster calculations in general, and one CFD sw (e.g. OPENFOAM) for more advanced/time consuming/detailed/design oriented calculations

LE NUOVE TECNOLO

- b) Neutronica : ERANOS (design mode), RELAP5 (system analysis), PHISICS (both design and analysis modes ? – but still to be validated)
- c) Pollutants Dispersion : microSWIFT, SWIFT, MINNI

and modelling areas under study

- d1: Tsunami sw : GEOWAVE(USA), TUNAMI(J), MAKAI VOYAGER(USA), TAMS (JRC)
- d2: Floodings sw : ISIS (UK) , SMS-WMS (USA) WAM(USA) and MIT(USA)
- d3: Cyclones (Hurricanes, Tropical Storms, Typhoons....) sw : FLUENT, HAZUS, HUR LOS, MAKAI VOYAGER (all from USA)

Nota sull'integrazione dei sw

- Non è possibile progettare in dettaglio la integrazione dei sw finchè non è conclusa la selezione dei medesimi e si hanno le necessarie informazioni di dettaglio (o meglio ancora il sw su un PC...)
- Pertanto nell'annata PAR 2013 ci si è fermati per necessità alla individuazione di aspetti di integrazione da risolvere nel futuro prossimo....
- E' prevedibile che gli approfondimenti sulla integrabilità dei singoli sw evidenzieranno qualche altro aspetto cui trovare soluzione
- In ogni caso la prima bozza dei 20 sw templates in appendice al report è di per se uno step iniziale fondamentale del lavoro di integrazione

Architettura PSI (sett. 2014)

Architettura sezione Eventi Esterni

Contenuti sw della sezione EXTEVE-SIM

Problemi inattesi....

Sono pervenute in UTFISST da rappresentanti di due UT 'emiliane' critiche ed illazioni sorprendenti su:

- a) Una presunta lentezza nel procedere delle attività sulla PSI (un anno fa ci si accusava di precorrere i tempi e di proporre uno strumento 'prematuro' per lo sviluppo di ALFRED.....!)
- b) Una sostanziale carenza di competenze a dispetto dei CV del Responsabile del lab SIMING e dei suoi 8 collaboratori (cercare su web e DB ENEA per verifica)

Contemporaneamente

c) la proposta SIMING di attività per il PAR2014 (completamento della selezione dei codici e sviluppo della definizione della loro integrazione) non è stata inserita nella Bozza per il MiSE....

Q1: Esiste dunque in ENEA un Partito Anti Simulatore ?... Q2 : Chi teme la realizzazione (congiunta) della PSI ?

In ogni caso.... UTFISST proseguirà la progettazione della PSI, con le UT disponibili (in CAS e in BOL), in un contesto impiantistico allargato, cercando finanziamenti in campo nazionale ed internazionale.

Inoltre : Sarebbe utile una ridefinizione dell'assetto organizzativo e dei contenuti per le attività nucleari nell'AdP che eviti dannose tensioni.

Memo

EU Safety Directive del 2009 amended lo scorso luglio 2014

La nuova consolidated SD tiene conto delle Lessons Learned di Fukushima (ENSREG, WENRA, IAEA....)

Member states hanno 3 anni per tradurre in leggi

- Previsti maggiori obblighi per garantire la sicurezza delle installazioni nucleari
- Prevedibile un ruolo accresciuto dei sistemi di simulazione integrata.

Workshop Finale PAR2013 Presentazione attività LP2.A.3_A Bologna, 15-16 Gen 2015

Modellazione e analisi del comportamento integrale di barretta di combustibile per il progetto di reattori a piombo innovativi

Responsabile PoliMi Responsabile ENEA Collaboratori

Lelio Luzzi Alessandro Del Nevo Stefano Lorenzi (PoliMi) <u>Davide Pizzocri</u> (PoliMi) Davide Rozzia (ENEA)

NUCLEAR REACTORS GROUP

Modellazione e analisi del comportamento integrale di barretta di combustibile per il progetto di reattori a piombo innovativi

Supporto alla progettazione della barretta di combustibile per reattori veloci

Attività POLIMI + ENEA: estensione, sviluppo e validazione del codice di **fuel pin** performance TRANSURANUS (TU) per l'analisi dei reattori veloci a piombo

Focus annualità: revisione critica dei principali modelli fenomenologici + estensione codice TRANSURANUS

POLITECNICO DI MILANO

Codice per l'analisi del comportamento integrale di barretta di combustibile sviluppato al JRC-ITU

Ampiamente validato per LWRs

Discretizzazione assiale e radiale della barretta di combustibile

Soluzione 1½-D delle equazioni della termo-meccanica

Estendibile ad altre tipologie di reattori (Na, Pb, LBE)

Revisione critica delle correlazioni attualmente implementate nel codice

Termovettore Piombo

densità, scambio termico, calore specifico, conducibilità termica, viscosità

Materiale di guaina Acciaio austenitico AIM1 della classe Ti-15-15

densità, calore specifico, conducibilità termica, dilatazione termica, modulo di Young, coefficiente di Poisson, deformazione e sforzo a rottura, ...

Confronto con dati e/o correlazioni disponibili in letteratura

Sviluppo ed implementazione di correlazioni *ad hoc* per alcune proprietà fondamentali degli acciai Ti-15-15

Estensione di Transuranus versione LFR oriented

Risultati ottenuti POLIMI

Piombo

. Coefficiente di scambio termico convettivo . Densità . Calore specifico . Conducibilità termica . Viscosità Ti-15-15 . Espansione termica . Densità . Calore specifica . Conducibilità termica . Modulo di Young . Sforzo di snervamento . Coefficiente di Poisson . Sforzo di rottura . Deformazione a

POLITECNICO DI MILANO

NUCLEAR REACTORS GROUP

Acciai austenitici stabilizzati

Ti-15-15 sviluppati e licenziati per Phénix e Superphénix
L'AIM1 è la lega più avanzata della famiglia (candidata per gli LFRs)
Corrosione? Necessario un coating

Fenomeni principali

. **Resistenza al creep** . **Resistenza allo swelling** (sia come tempo di incubazione, sia come tasso di deformazione) . Forte dipendenza dal tenore di specifici elementi di lega

Comportamento microscopico

Precipitati TiC agiscono da pozzi per le vacanze, contrastando lo swelling
TiC e B ancorano i bordi dei grani, constrastando il creep

(wt. %)	AIM1	1.4970m
Cr	15	15
Ni	15	15
Mo	1.2	1.2
Mn	1.5	1.5
Si	0.6	0.4
Ti	0.4	0.5
С	0.1	0.1
В	0.0060	0.0045

POLITECNICO DI MILANO

Risultati ottenuti Ti-15-15 void swelling

Grande dispersione nei dati

. Alcune informazioni non sono specificate . Forte influenza degli elementi di lega

Implementazione di **due correlazioni**

"Specific AIM1" (blu) "Generalized Ti-15-15" (rosso)

L'AIM1 presenta sia un tempo di incupazione maggiore che una minor dipendenza dalla temperatura

Risultati ottenuti Ti-15-15 thermal creep

Meccanismo di creep

Gli acciai della famglia Ti-15-15 presentano un comportamento di creep alla Nabarro-Herring

Derivazione e definizione di una Cumulative Damage Function (CDF)

. Simile al LMP, ma partendo da una diversa equazione . Valida per sforzi inferiori a 500 MPa

. CDF è un parametro di cedimento della guaina . Non sono considerati FAE (Fuel Adjacency Effect)

Correlazioni per il tasso di deformanzione disponibili in letteratura (Nabarro-Herring) (Többe, 1975)

CDF basata su P (LMP non appare in grado di seguire il trend): $P = T [20 + Log (t_R T^{-1})]$

POLITECNICO DI MILANO

Piccole modifiche a correlazioni esistenti per rappresentare i dati disponibili

CDF basata su LMP $LMP = T (17.125 + Log t_R)$

Filacchioni et al., 1990. Proc. Int. Conf. on Fast Reactor Core and Fuel Structural Behaviour, Inverness, London, UK, June 4-6, pp. 255-261.

Revisione critica di molte correlazioni fondamentali per l'analisi di performance del combustibile di reattori a piombo

Sviluppo ed implementazione di **nuove modellazioni critiche swelling** dell'acciao di guaina **thermal creep** dell'acciao di guaina **CDF** per il cedimento della guaina (particolarmente utile in alcune situazioni incidentali, es. ULOF)

POLITECNICO DI MILANO

Nuova *versione LFR oriented* di Transuranus pronta per l'utilizzo → ALFRED

Attenta **valutazione**, nelle condizioni di **normale funzionamento**, dell'evoluzione **del comportamento in reattore del sistema «guaina-combustibile»**, anche in condizioni di *pellet cladding mechanical interaction* (PCMI)

Miglioramento del design di barretta e della sua performance

Individuazione di soluzioni costruttive finalizzate al conseguimento di **margini di sicurezza più ampi**

Aggiornamento della versione *LFR oriented* coerentemente con la versione 2014 del codice Transuranus

WORKSHOP ADP ENEA-MSE

Bologna, 15th–16th January 2015

PAR – LP2 – 2013 LFR-Gen IV: Stato attuale della tecnologia e prospettive di sviluppo

UNIVERSITY OF PISA DIPARTIMENTO DI INGEGNERIA MECCANICA, NUCLEARE E DELLA PRODUZIONE Largo Lucio Lazzarino, 1 – 56126 - Pisa Italy

Aly Ahmed Rozzia Davide (UNIPI-ENEA) Del Nevo Alessandro (ENEA)

Among the parameters governing the myriad of processes that occur during irradiation of fuels rods, the fuel temperature is by far the most important. The correct prediction of the fuel temperature profile is therefore the basis for the simulation of the integral fuel rod behaviour by means of fuel performance codes.

The present activity was aimed at

Identifying and assessing models available from open literature to predict fuel <u>conductivity</u> <u>of MOX</u> comparing them with the TRANSURANUS models.

Providing a comparison among TRANSURANUS correlations, available models and experimental results released in the framework of PELGRIMM EC-funded Project and from open literature.

Providing a complete analysis of 4 experimental MOX-fueled LWR and FBR fuel rods, <u>focusing on fuel temperature and conductivity</u> by means of TRANSURANUS code

The databases adopted are (MODELING AND ANALYSIS ON GOING FOR NEXT YEAR)

IFA-597 (LWR MOX, 2 rods)

HEDL P-19 (FBR MOX, 2 rods)

PAR – LP2 – 2013 LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO, Bologne OLITECNICO DI MILANO

The table includes the effects taken into account

	Name of the correlation	Temperature	Deviation from stoichiometry	Burn- up	Plutonium content	Porosity	Source
1	Van Uffelen and Schubert	×		×		×	TU standard
2	Carbajo	×	×	×		×	TU
3	Lanning and Beyer	×	×	×		×	TU
4	Wiesenack	×		×		×	TU
5	Martin	×	×		×	×	literature
6	Matpro	×	×		×	×	literature
7	COMETHE	×	×		×	×	literature
8	Baron Hervè	×	×		×	×	literature

PAR – LP2 – 2013 LFR-GEN IV STATO ATTUALE DELLA TECNOLOGIA E PROSPETTIVE DI SVILUPPO, Bologne OLITECNICO DI MILANO

	Section	Data source	Year	Temperature range	Number of points	Levels of parameters
1	5.1	Van Crynest	1968	813-2188	22	100% TD, O/M=2, Pu= 20 wt.%
2	5.1	Fokoshima	1983	826-1817	29	
3	5.1	Hetzler	1987	1066-2143	20	
4	5.2	Van crynest & Weilbacher	N/A	813-2175	26	95%TD, O/M=2, Pu= 20 Wt.%
5	5.2	Gibby	1969	825-1882	46	
6	5.2	Schemidt		900-16445	9	
7	5.3	Gibby	1969	917-2244	13	95%TD, O/M=1.98, Pu= 20 Wt.%
8	5.3	Weilbacher	1972	893-2685	9	
9	5.3	Bonnoret	1988	1163-2291	20	
10	5.4	Gibby	1969	770-1423	13	95%TD, O/M=1.93, Pu= 20 Wt.%
11	5.4	Schemidt	N/A	1110-2054	9	
12	5.4	Van crynest & Weilbacher	N/A	785-2026	6	
13	5.4	Weibacher	1972	778-2370	8	
14	5.5	Duriez	2005	817-2089	32	96%TD, O/M=2, Pu= 6 Wt.%
15	5.5	Industrial MIMAS Sample	N/A	812-2083	43	

Example of Comparison

Experimental data for un-irradiated 95%TD, O/M=1.98, PU=20 Wt.%

Models have been fitted to experimental design

IT WAS CONCLUDED THAT O/M < 2 COULD AFFECT FUEL CONDUCTIVITY AND IT IS COMMONLY ADOPTED IN FR FUEL,THEREFORE IT SHOULD BE INTRODUCED INTO THE STANDARD MODEL (THAT CONSIDERS O/M= 2)

Example of Comparison

Development and validation of an approach and numerical models for safety analysis of FBR

A. Del Nevo, I. Di Piazza, C. Parisi, P. Console Camprini (ENEA) E. Martelli, P. Balestra, F. Giannetti, A. Naviglio (CIRTEN-UNIROMA1)

Workshop tematico

LFR-Gen. IV: Stato attuale della tecnologia e prospettive di sviluppo

January 15 – 16, 2015

IAEA CRP BENCHMARK ON EBR-II

- Stefano Monti, IAEA
- ANL, US providing data and technical coordination
- □ EBR-II SHRT-17 and SHRT-45R provided by ANL
 - Protected and Unprotected Loss of Flow
 - Multi-physics activity based on experimental data
 - 3rd CRP TM meeting will be hosted by ENEA,

23-27 March 2015

PER LE NUOVE TECNOLOGIE, L'ENERGI/

CATRIFICAL PAP	DE: SHRT-17.30. sasdata Cycle: 0 Time:0 Parapeologic Parapeologic - 660.0			
		Participants		
		China	France	
HIGH REESING SOCIAL		Germany	Italy	
		India	Japan	
PLONETES		Korea, republic of	Netherlands	
DESERVE (MLET VIOLA PLESANE ASSAULT)		Russian Federation	Sweden	
LOW PRESSURE IN, ET. LOW PRESSURE PLEYSM	Sand Street	Switzerland	USA	

January 15 – 16, 2015

HEAT EXCHAN

LIST OF CONTENTS

- **OBJECTIVES OF THE ACTIVITY**
- □ INTRODUCTORY REMARKS
- □ NODALIZATION DESCRIPTION AND ASSUMPTIONS
- □ VERIFICATIONS FOR BLIND CALCULATIONS
- □ SHRT-17 TEST: PROTECTED LOSS OF FLOW
- **BLIND AND OPEN CALCULATION RESULTS AND ANALISYS**
- **SUMMARY**

The planned **objectives** are :

- 1. to compare best-estimate TH-SYS code calculations to experimental data, thus to validate RELAP5-3D© system code in simulating sodium fast reactor designs
- 2. to identify and, as far as possible, to **quantify the code limitations and the source of uncertainties** in simulating postulated accidents occurring in liquid metal FR designs
- 3. to improve the understanding of the TH processes and phenomena observed in EBR-II test
- 4. to improve the understanding of FR neutronics, TH and SYS analysis
- 5. to compare the performances of TH system codes in the domain of interest
- 6. to develop reliable approaches for the application of TH-SYS codes in safety analysis of new generation FR systems (i.e. LFR), including the coupling with CFD *and NK*

INTRODUCTORY REMARKS: WORK PLAN

Work plan:

- **Year 1**: Preparation of input deck. Steady state calculation. 1st RCM meeting
- Year 2: Blind test simulation analysis. Preliminary assessment of the results (experimental vs. blind simulations and among simulations). 2nd RCM meeting
- >Year 3: Post test analysis and sensitivity. Code assessment: uncertainties analyses, identifications of model/code/data weakness, R&D needs, etc. 3rd RCM meeting
- Year 4/5: Assessment of code capabilities, reporting, writing paper(s), and contributing to the IAEA technical publications. 4th RCM meeting

Current status:

- * TH nodalization of EBR-II (conf calculation of SHRT-17 test carri compeleted.
- * CFX models of XX09 fuel assem
- * Neutronics activities in progress

January 15 – 16, 2015

EBR-II OVERVIEW

EBR-II OVERVIEW

NODALIZATION DESCRIPTION AND ASSUMPTIONS

January 15 – 16, 2015

NODALIZATION DESCRIPTION AND ASSUMPTIONS

3D modelling of primary tank

- □ Pool region \rightarrow 3D component
- □ Reactor region \rightarrow 3D component
 - Core bypass modeled with MULTID component of reactor region
- Connection with MCP, IHX modeled according with the real 3D configuration
- Axial meshes of pool region have vertical lengths equal or multiple with respect to reactor region, pipes and IHX
- Careful model of heat structures where possible:
 - Rough estimation of metal in 1) dead zone, 2) IHX internal passive structures, 3) MCP internal passive structures

NODALIZATION DESCRIPTION AND ASSUMPTIONS

3D modelling of the Reactor Vessel

January 15 – 16, 2015

Centro Ricerche ENEA "Ezio Clementel", Bologna, Italia

10/25

TESTING FA PERFORMANCES: PRESSURE DROPS

MARK II-AI dynamic pressure drop in wire wrapped fuel bundle

- "100% Mflow" in Figure corresponds with minimum nominal mass flow rate \rightarrow Driver Mark II–AI [6,C1]
- Evaluation of the effect of surface roughness accounted in the turbulent friction factor correlation @ nominal steady state conditions
- Quantification of pressure drop in the wire wrapped zone in the range of mass flow of interest @ nominal steady state conditions
- **Open calculations**: Cheng & Todreas formulations
- CFD calculations may support the evaluation of DP in FA

TESTING FA PERFORMANCES: HEAT EXCHANGE

- Evaluation of heat transfer in MARK-II AI FA considering the parameters of benchmark specifications (i.e. coolant, cladding, and fuel centerline Ts)
 - Nominal parameters refer to assembly with MAX power Driver MARK II-AI [2,A1]
 - Fuel centerline temperature cannot be evaluated w/o considering modifications in hot conditions and occurring during irradiation

 \rightarrow "Arbitrary" gap size was set to 0 to avoid fuel centerline temperature exceeding too much from melting T

January 15 – 16, 2015

Centro Ricerche ENEA "Ezio Clementel", Bologna, Italia

LE NUOVE TECNOLOG

SHRT-17 TEST BLIND CALCULATION:

STEADY STATE RESULTS

DP distributions in overall system and MCP				ТҮРЕ	# FA	MASS FLOW	R5-3D	ERR	
			-	Reflector	12	1.95	1.95	0.00	
	Power and mass flow distribution according		Blanket		12	3.58	3.56	-0.02	
#	Parameter	Unit		Exn		Blind	Open		
	I di dificici			Слр		Calc	Ca	alc	
1	Core Driver thermal power	MWth		52.28		52.28	52.28		
2	Core Blanket thermal power	MWth		5.02		5.02	5.02		
3	Core inlet temperature	K		624.15		625.6	625.9		
4	Core outlet temperature	K				730.3	720.9		
5	IHX SS inlet coolant temperature	K		574.2		574.2	574.2		
6	MCP1 mass flow rate	kg/s		233.5		231.2	233.8		
7	MCP2 mass flow rate	kg/s		233.2		230.9	233.8		
8	Core Driver mass flow rate	kg/s		387.0		384.6	389.9		
9	Core Blanket mass flow rate	kg/s		65.2		66.0	65.9		
10	IHX SS mass flow rate	kg/s		311.4		311.4	311.4		
11	Primary pressure @ MCP out	kPa		441.2		452.5	473.0		
12	Primary pressure @ Upper Plenum	kPa		213.9		217.1	21	210.6	

Steady-state results

January 15 – 16, 2015

EBR-II SHRT-17 TEST

SHRT-17 TEST

- Sequence of events as in SBO
- > loss of IHX flow rate \rightarrow t=0
- > MCP trip and coastdown \rightarrow t=0
- ≻SCRAM → t=0
- Auxiliary electromagnetic pump intervention is disregarded
- > End of the transient \rightarrow t=900s

- □ Phase $1 effective \ core \ cooling \ by MCP \ caostdown \ (0 10s).$
- □ Phase 2 primary system energy increases and temperatures rise (10 100s)
- Phase 3 buoyancy forces effective in removing energy from the core, long term cooling in natural circulation (100 900s)

- □ Correct prediction phase 1 is connected
 - energy distribution in the core structures
 - thermal inertia and
 - evaluation of the **DP in the system** and
 - pump coastdown

Friction losses in fuel bundle

- ❑ Main parameters trends of blind and open simulations → satisfactory during phase 1
 - convective heat transfer correctly calculated
 - flow distribution in core SA is still proportional to initial distribution
 - conduction in fluid is still negligible

January 15 – 16, 2015

January 15 – 16, 2015

Centro Ricerche ENEA "Ezio Clementel", Bologna, Italia

16/25

ENE

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Quantitative differences observed because

- <u>Thermal conductivity</u> in the core thermal structures and in the fluid becomes relevant
- <u>Axial thermal conduction neglected (model available in heat structure but not in fluid)</u>

 $\rightarrow \rightarrow \rightarrow$ This would result in a conservative prediction of the code simulations with respect to temperatures of heat <u>structure</u>

January 15 – 16, 2015

Centro Ricerche ENEA "Ezio Clementel", Bologna, Italia

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Quantitative differences observed because (*cont'ed*)

- Conduction in the coolant and bypass modelling affect the temperature distribution of the core bypass region
- This explain why
 - 1. XX09 cladding and coolant T are accurate in the active zones and less accurate downstream
 - 2. T at XX10 mid core is overestimated and excellent prediction of the experimental temperatures otherwise
 - 3. The thimble coolant T at top of SA are overestimated in both XX09 and XX10

XX09 coolant T at thimble outlet

XX10 coolant T at thimble outlet

January 15 – 16, 2015

❑ Measured temperature trends are connected with the mixing, induced by forced circulation during phase 1, the onset of thermal stratification in phase 2, which, then, becomes the prevailing process after 100 seconds from the starting of transient (phase 3)

Sensitivity analyses on nodalization

January 15 – 16, 2015

□ Phase 3 – buoyancy forces effective in removing energy from the core, long term cooling in natural circulation (100 – 900s)

□ Coolant T at core outlet and thermal structures in core zone are cooled down.

□ The results of the blind and open simulations predict correctly these trends. Improved quantitative accuracy is observed in open calculation, thanks to a better simulation of the natural circulation flow.

- EBR-II nodalization qualification:
- ☐ "*qualification*" of the code performance in steady state
- assessment of the code performance on transient, focused on the analysis of phenomena and processes and based on a qualitative accuracy evaluation of results
- The analysis of results demonstrates that **RELAP5-3D**© **code has the capability to predict the main phenomena and processes relevant to safety of test SHRT-17**. In particular:
- Trends of mass flow rate, of coolant and cladding temperatures in the core are well predicted (open calculation)
- Improvements might be possible if the knowledge of EBR-II features/characteristics is improved too (e.g. inlet sub-assemblies geometry details and characterization, better understanding and quantification of the cooling induced by the IHX structures close to the Z-pipe inlet, etc...)
- □ The axial conduction in the structure is challenging for the code, and the application of the code option demonstrates the need to improve the model
- Mixing and thermal stratification, notwithstanding simulated, are beyond RELAP5-3D capabilities and only bounding analyses are possible

CFD ACTIVITY: XX09 FA MODEL

- □ Main <u>focus</u> on *detailed temperature distribution* in the generic FA
- **Reference geometries: XX09-XX10** FA.
- The model includes all the wire-wrapped region and all the subchannels in the FA without any symmetry plane, the convection in the fluid, the conduction in the internal and external wrap, the thimble region and the bypass.
- Input: mass flow rates (RELAP5), inlet temperatures (RELAP5), gamma deposition (minor), flux distribution (minor)
- <u>Output</u>: detailed temperature distribution in the fluid and in the thimble region
- The model is in principle time-dependent.
- \Box The reference number of nodes is $33 \cdot 10^6$

First test case (XX09) stationary: $m_{FA}=2.37$ kg/s, $m_{THIMBLE}=0.25$ kg/s, $W_{tot}=464.7$ \longrightarrow $q''\approx1.87$ MW/m² kW

January 15 – 16, 2015

CFD ACTIVITY: XX09 FA TEMPERATURES IN STEADY STATE CONDITIONS

January 15 – 16, 2015

Centro Ricerche ENEA "Ezio Clementel", Bologna, Italia

24/25

SUMMARY

- AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE
- ❑ Nodalization of EBR-II by RELAP5-3D[©] is available and demonstrate satisfactory behavior in transient: configuration *SHRT-17*
- SHRT-17 blind simulation completed and results have been submitted for the participation in the IAEA CRP on EBR-II
- Comparison with experimental data and analysis of blind simulations carried out
- □ Post test analysis of SHRT-17 completed
- Some CDF and neutronic activities are in progress
- Implementation of SHRT-45 core and system configuration, to achieve steady state conditions and to simulate the transient (unprotected loss of flow) → un-availability of EM component shall be addressed → cooperation with ENEA Casaccia
- Activity presented at IRUG-2014. Paper submitted to Nuclear Technology SI by INL, currently under review
- **□** 3rd CRP TM meeting will be hosted by ENEA, 23-27 March 2014

WORKSHOP

"LFR - GEN IV Stato Attuale della Tecnologia e Prospettive di Sviluppo"

Fenomeno della Core Compaction

R. Lo Frano

Centro Ricerche ENEA, Brasimone, 15-16 Gennaio, 2015

- 1. La priorità nell'esercizio degli impianti nucleari è la sicurezza, aspetto intrinsecamente connesso con la reattività (stato critico e sotto controllo).
- 2. Il fenomeno della "core compaction" è cruciale per la progettazione del reattore a causa delle sue conseguenze (es. perdita di refrigerazione) ed effetti sulla reattività, soprattutto nel caso di condizioni transitorie causate da sollecitazioni sismiche, impulsive, fluido-dinamiche, ecc.
- 3. La regione del core deve essere ben progettata in modo da evitare variazioni/deformazioni della sua geometria.
- 4. Il fenomeno è considerato un incidente severo di riferimento per i LMR a causa della grande quantità di metallo liquido presente nel vessel e delle forze d'inerzia che potrebbero ingenerarsi in condizioni dinamiche.
- 5. Gli aspetti critici emersi dai pochi studi disponibili ad oggi (e solo per reattori a sodio) sono connessi a: rappresentazione monodimensionale del core e sub-assembly, mancata rappresentazione del comportamento del refrigerante e delle problematiche dinamico-strutturali, ecc.

Le funzioni fondamentali di sicurezza nella progettazione del core:

- 1. Controllo della reattività:
- 2. Rimozione del calore di decadimento;
- 3. Capacità di contenimento: principalmente in condizioni sismiche deve essere dimostrato che il combustibile non subisca danneggiamenti che comportino rilasci di materiale radioattivo al refrigerante primario.

Poiché non è possibile escludere la compattazione nucleo sin da progetto (DBA), indipendentemente dal numero e/o "robustezza" delle (contro)misure adottate, diventa di fondamentale importanza l'analisi del fenomeno e l'individuazione dei potenziali effetti causabili, ossia una grande o piccola compattazione (con conseguente flow blockage), deformazione radiale della core region verso l'interno.

Aspetti da considerare nella messa a punto di una metodologia:

- Geometria del reattore;
- Deformazione e allineamento assembly;
- Ancoraggio/vincoli del core e componenti;
- Trasmissione dei carichi (influenza degli isolatori).

Modellazione della core compaction

Spostamenti e tensioni nell'inner vessel a t = 4 s

Metodologia applicata PAR 2011-12

- 1. Definizione PGA vs. suolo;
- 2. Caratterizzazione degli isolatori;
- 3. A. dinamica dell'ed. reattore isolato;
- 4. A. dinamica del vessel e principali SSCs.

Le distribuzioni di tensione e spostamenti <u>preliminari</u> indicano una deformazione locale dell'inner vessel. Sviluppi futuri permetteranno di analizzare i sub-assembly e gli effetti indotti dall'interazione fluido-struttura.

Modellazione della core compaction

Lo scopo dell'attività è stato <u>analizzare in dettaglio il reattore e le componenti</u> più importanti della regione del core.

A causa dell'elevato onere computazionale legato al dettaglio dei modelli FEM dell'inner vessel, diagrid e della lower e upper plate per poter eseguire le analisi di steady state e di transitorio dinamico si è reso necessario l'uso dell'approccio delle sottostrutture.

La messa a punto della modellistica si basa sui risultati delle a. sensibilità PAR 2012.

L'input sismico usato è coerente con quello del PAR2012.

I modelli FEM sono stati realizzati mediante l'utilizzo del codice MSC®Marc: tali modelli sono rappresentativi del reattore, dell'inner vessel, delle piastre e griglie inferiori e superiori, e della gonna di appoggio o diagrid.

Determinazione delle condizioni al contorno, condizioni iniziali e tipologia di interconnessione delle varie strutture, quali ad es. i vincoli di contatto (influenzano la propagazione delle sollecitazioni dinamiche e la deformazione dei componenti).
L'analisi dinamico-strutturali di modelli geometricamente complessi ha previsto l'esecuzione di analisi non lineari di transitorio dinamico del sistema vessel e in particolare l'analisi modale, l'analisi di steady state e di transitorio dinamico dell'inner vessel e della core region.

Aspetti che influenzano il fenomeno:

- 1. Geometria del reattore;
- 2. Deformazione e allineamento assembly;
- 3. Cond. contorno ed iniziali (es. forze di contatto);

Sono stati presi in considerazione anche le condizioni di contatto che si ritengono possano influenzare il comportamento dinamico mediante fenomeni di vibrazione e fenomeni hertziani.

Dettaglio inner vessel con lower late e diagrid.

La Piastra inferiore (piastre e spacer grid) ha diametro esterno circa 3 m e spessore di 100 mm, di acciaio inossidabile austenitico AISI 304

La griglia superiore è simile a quella inferiore, chiusa alle estremità da due piastre cilindriche perforate. Il diametro dei fori nella piastra sup. è 20 mm, nella piastra inferiore di 90 mm. Una griglia interna separa le due piastre.

L'inner vessel ha diametro variabile lungo l'altezza (diametro e spessore sono rispettivamente circa 3m e 50 mm, l'altezza 9 mm circa).

La parte inferiore a diametro leggermente superiore permette l'inserimento della griglia inferiore: il collegamento avviene con spine inserite in fori concentrici ottenuti sulla loro superficie laterale. La parte centrale presente otto collettori di uscita cui si innestano le tubazioni del primario.

Per studiare gli effetti del nucleo analisi fenomeno compattazione modale, analisi dello stato stazionario e l'analisi dinamica transitoria sono state effettuate.

Inoltre l'influenza di contatto è considerato poiché (componenti interazioni) possono influenzare fenomeni vibratori e Hertz.

I modelli sono stati realizzati con elementi appropriati, ad es. 3-D solid e/o thick shell, disponibili nel codice agli elementi finiti utilizzato MSC.MARC ©. Il numero di elemento è circa 70.000 per il solo modello recipiente interno.

- L'input sismico utilizzato nelle condizioni al contorno è la sollecitazione dinamica calcolata agli ancoraggi del RV, risultato ottenuto nel PAR 2012:
- 1. smorzamento di circa il 30% componente accelerazione orizzontale;
- 2. amplificazione della componente verticale di accelerazione del sisma.

I risultati, in termini di spostamenti, hanno evidenziato una deformazione localizzata nell'inner vessel e in corrispondenza delle lower and upper plate.

Undeforrmed deformed shape shape 6.327e-001 4.365e-00 5.694e-001 3.928e-001 5.061e-001 3.492e-001 4.429e-001 3.055e-001 3.796e-001 2.619e-001 3.163e-001 2.182e-001 2.531e-001 1.746e-001 1.898e-001 1.309e-001 1.265e-001 8.730e-002 6.327e-002 4.365e-002 0.000e+000 0.000e+000 Displacement a) b)

Spostamento lungo l'inner vessel a 4 s e 5.5 s.

Displacement (x.001)

spostamento vicino la griglia superiore (verde) e inferiore (rossa).

Lo spostamento è variabile lungo le strutture; raggiunge circa 6 cm nella parte alta della piastra superiore e 2 mm nella piastra inferiore.

CONTRACTOR OF THE CONTRACTOR

1.II valore della tensione supera in alcune parti quello ammissibile;2.emergono criticità nel design dell'inner vessel in particolare in corrispondenza delle aperture per le tubazioni primarie.

Conclusioni

- I risultati, hanno evidenziato deformazioni localizzate nell'inner vessel e in corrispondenza delle lower and upper plate (estesa plasticizzazione).
 L'entità dello spostamento totale è risultato dell'ordine di qualche centimetro.
- 2. La distribuzione delle tensioni ha messo in luce criticità nel design dell'inner vessel, in particolar modo in corrispondenza delle tubazioni primarie le quali inevitabilmente influenzano anche la deformazione della core region. Sia la piastra inferiore e superiore non hanno subito ampia plasticizzazione, come indicato dal valore medio delle tensioni Von Mises.
- 3. E' emerso che le forze di contatto (con sviluppo di contatto adattativo, interferenza o frizione) possono influenzare notevolmente il comportamento della struttura e l'evoluzione dello scenario compattazione in accordo con quanto riscontrato in letteratura.
- 4. Problematiche aperte: interazione fluido struttura; analisi dei subassembly; influenza delle forze e delle tipologie di contatto, influenza delle vibrazioni, etc.

Fenomeno Core Compaction: nuovi sviluppi

