

RICERCA DI SISTEMA ELETTRICO

Studio e analisi di sistemi di controllo implementabili con logiche
programmabili per il miglioramento delle prestazioni e della

sicurezza di impianti nucleari di nuova concezione

S. Di Gennaro, B.Castillo–Toledo, F. Memmi

RdS/2012/160

Agenzia nazionale per le nuove tecnologie, l’energia
e lo sviluppo economico sostenibile

STUDIO E ANALISI DI SISTEMI DI CONTROLLO IMPLEMENTABILI CON LOGICHE PROGRAMMABILI PER IL

MIGLIORAMENTO DELLE PRESTAZIONI E DELLA SICUREZZA DI IMPIANTI NUCLEARI DI NUOVA CONCEZIONE

Stefano Di Gennaro, Bernardino,Castillo–Toledo, Fabrizio Memmi Università dell’Aquila

Settembre 2012

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA

Area: Governo, Gestione e Sviluppo, del Sistema Elettrico Nazionale

Progetto: Nuovo Nucleare da Fissione: Collaborazioni Internazionali e sviluppo Competenze in Materia

Nucleare

Responsabile del Progetto: Massimo Sepielli,ENEA

Center of Excellence DEWS

Department of Electrical and Information Engineering

University of L’Aquila, V. G. Gronchi 18, 67100, L’Aquila, Italy

Deliverable 1

Study and analysis of control systems implementable by programmable
logic for performance and safety improvements of novel nuclear plants

Studio ed analisi di sistemi di controllo implementabili con logiche programmabili per il

miglioramento della prestazioni e della sicurezza di impianti nucleari di nuova concezione

Authors:
Stefano Di Gennaro, Bernardino
Castillo–Toledo, Fabrizio Memmi

Principal Investigator:
Prof. Stefano Di Gennaro

Project PAR 2011

June 30, 2012

Abstract
In this deliverable, the aspects concerning the digital implementation of a control
law on a physical device are analyzed, from the viewpoint of the study, design
and realization of supervisory, control and protection systems for improving the
performance and safety of novel nuclear plants. In fact, it is well known that
the implementation of control laws with zero order holders, commonly used,
introduce a delay and hence could bring to unstable behaviors. A technique
called self–triggered control allows determining the sampling times necessary
to implement the controller, preserving the desired performance. In the digital
logic system scenario, there are many architectures suitable for realizing different
kinds of control algorithms, considering performances in terms of timing, power
consumption and resources availability. Different implementation solutions are
hence studied, from microprocessors to custom devices for digital processing, in
order to obtain an evaluation about benefits and drawbacks. In particular, FPGA
technology will be studied in detail, explaining how designers can exploit their
potentialities in applications of parallel computation, control and digital signal
processing.

Riassunto
In questo documento vengono analizzati gli aspetti relativi all’implementazione
digitale di una legge di controllo su un dispositivo fisico, dal punto di vista dello
studio, progetto e realizzazione di sistemi di supervisione, controllo e protezione
per aumentare la prestazione e sicurezza di impianti nucleari di nuova concezione.
Infatti è ben noto che l’implementazione di leggi di controllo mediante organi di
tenuta di ordine zero, comunemente utilizzati, introducono un ritardo e quindi
possono portare a comportamenti instabili. Una tecnica chiamata controllo
auto–innescante permette di determinare i tempi di campionamento successivi
per implementare il controllore, preservando le prestazioni desiderate. Nello
scenario dei sistemi a logica digitale, vi sono molte architetture adatte a realizzare
diversi tipi di algoritmi di controllo, considerando prestazioni in termini di tempi,
consumo di potenza e disponibilità di risorse. Varie soluzioni implementative sono
quindi studiate, dai microprocessori a dispositivi personalizzabili, per ottenere una
valutazione dei benefici e dei svantaggi. In particolare la tecnologia FPGA sarà
studiata in dettaglio, spiegando come i progettisti possono sfruttare i loro potenziali
in applicazioni di calcolo parallelo, controllo e processamento del segnale digitale.

1 The Nonlinear Continuous Time Controllers
Implemented by Digital Devices

In [1], [2], the supervision, control and protection systems for nuclear reactors of new generation has been

analyzed. Using a mathematical model of the primary circuit, simple enough for the control purposes but

accurate enough to capture the nonlinear, time–varying, switching nature of the plant, a dynamic level

controller is determined for the pressurizer water level. Moreover, two dynamics controllers have been

designed for the pressurizer pressure. These controllers may not use measurements of the pressurizer

pressure, relying only on the pressurizer wall temperature measurements.

The aforementioned controllers are continuous time, namely the assume that the state variables, nec-

essary to implement the feedback, are continuously measured, while the control is computed at each

time instant and applied to the controlled system. In reality, such controllers are implemented by digital

devices, much more flexible than analog devices. Other notable characteristics are the multitasking capa-

bility of the digital controllers, and the possibility of parallel data acquisition and computation. This last

property allows faster computation times, so approaching the performance of the digitally implemented

controller to that obtainable with an analogically implemented controller.

1.1 Digital Implementation of Control Strategies: Some Important
Issues to Take into Account

A very popular way of determining and implementing a controller on a digital device is to design the

controller assuming the continuous time behavior of the system, and then implement the continuous

controller by means of zero order holders, commonly used for digital implementations. Such controller

are usually named “emulated” controllers. It easy to understand that this design technique could bring to

unsatisfactory behaviors of the controlled system if the sampling time is high. In fact, it is well known

that the effect of the presence of zero order holders is equivalent to a delay of approximatively the half

of the sampling time. As well known also in the case of linear systems, a delay could bring to unstable

behaviors.

The effects of the sampling and zero order holders can be seen also in a alternative way. Let us

I.3

suppose that the controller is determined considering the continuous time dynamics

ẋ = f (x, u)

where x ∈ Dx represent the vector of the state variables, u ∈ Du is the vector of the input variables,

∈ Dx ⊂ R
n, ∈ Du ⊂ R

p are the domains where x, u take values, and f : Dx × Du → R
n is the

function describing the system dynamics. Usually, this function is requested to fulfill suitable conditions

to ensure existence and unicity of the solution for each initial state x(0) = x0, such as the (local) Lipschitz

condition, namely

‖ f (x1, u) − f (x2, u)‖ ≤ L‖x1 − x2‖

with x1, x2 ∈ Dx two generic state values, and L a constant (in the local version of this property, L

depends on the region Ω considered) called Lipschitz constant. The value of L measures how much f

varies when x2 differs from x1, and is a measure of the “nonlinearity” of f . Considering that L can be

determined considering the maximum value the jacobian norm ‖∂ f /∂x‖ takes on the region Ω that is

taken into account, it is clear that L measures the “derivative” of f .

Let us assume that a controller u = α(x) has been determined somehow. This is a continuous time

control, and should be better denoted as ut = α(xt), where t is the continuous time. For the sake of

simplicity, the dependence on t is usually dropped. This controller is normally implemented considering

the sampled state value xk at time t = kδ, and the (constant) numerical value uk = α(xk) is applied to the

system by means of zero holder devices, that hold the value uk over the time interval [kδ, (k + 1)δ), where

δ is the sampling time and k ∈ Z is an integer.

It is therefore clear that eventually the dynamics of the controlled system is given by

ẋ = f (x, α(xk))

which apparently differ from the ones

ẋ = f (x, α(x))

obtained when the continuous time controller is applied. It is clear that the effect of the sampling is

equivalent to a disturbance d acting on the system, since

ẋ = f (x, α(xk)) = f (x, α(x)) + d

where

d = f (x, α(xk)) − f (x, α(x)).

This disturbance is periodically zero at the sampling time t = kδ, while grows when t > kδ. The growth

of this disturbance depends on the “nonlinearity” of f and, obviously, on the value of δ. In particular,

I.4

when δ is small the disturbance remains small enough to affect greatly the performance of the controller.

But in the case in which δ could take (relatively) big values, d can take bigger values. The measure of

how big this disturbance value can be is given, again, by the Lipschitz constant L, since

‖d‖ = ‖ f (x, α(xk)) − f (x, α(x))‖ ≤ L‖x − xk‖ ≤ L max
x∈Ω
‖x − xk‖ = dmax.

The effect of this disturbance on the closed loop behavior is to take away x from the desired value.

Let x us assume1 that one desires that x goes asymptotically to x = 0, by means of the control u = α(x).

This control can be designed2 making use of a (positive definite) Lyapunov function V such that, when

d = 0

V̇ =
∂V
∂x

f (x, α(x))

is definite negative. If α3(‖x‖) is a K function3 this can be expressed saying that

V̇ =
∂V
∂x

f (x, α(x)) ≤ −α3(‖x‖).

This means that V , which can take the meaning of a (generalized) energy function, is decreasing as time

passes. Therefore, asymptotically x tends to the origin. When d is nonzero, namely when the emulated

controller is used, what can be ensured4 is that V̇ is negative definite outside a region

V̇ =
∂V
∂x

f (x, α(xk)) =
∂V
∂x

[
f (x, α(x)) + d

]
≤ −α3(‖x‖) + α4(‖x‖)dmax

where ∥∥∥∥∥∂V
∂x

∥∥∥∥∥ ≤ α4(‖x‖)

and α4(‖x‖) is an appropriate K function5. To determine such a region, a ball of the origin of radius µ,

one has to “spend” a part of the term −α3(‖x‖) (ensuring the asymptotic convergence of x to the origin)

to “counteract” the positive term α4(‖x‖)dmax

V̇ ≤ −(1 − ϑ)α3(‖x‖) + α4(‖x‖)dmax − ϑα3(‖x‖) ≤ −(1 − ϑ)α3(‖x‖)

for

‖x‖ ≥ µ := α−1
3

(1
ϑ

max
x∈Ω

α4(‖x‖)dmax

)
where ϑ ∈ (0, 1). As a result of the fact that V̇ is negative definite outside the ball of radius µ, the

trajectories of the controlled system tend asymptotically to the ball of radius µ and remains in there. This

1It is possible to show that the origin can be considered as equilibrium point, after an appropriate change of coordinate.
2The controllers designed in [1] have been obtained precisely with a Lyapunov–based technique.
3A K function α3(r) is a continuous function such that α3(0) = 0, and is strictly increasing, see [8].
4A “worst–case scenario is here considered.
5It is possible to show that such a function α4(‖x‖) does exists.

I.5

property is usually called “practical stability” of the origin, since generalizes the property of asymptotic

stability to the origin. It is also called “ultimate boundedness” of the trajectories, since the solution xt

of the differential equation will enter, at a certain time instant, the ball of radius µ and will remain in it.

The choice of ϑ determines a trade–off between of the dimension of the region about the origin and the

convergence velocity of the state trajectories to this ball.

Other aspects can be also be addressed6. Notably, the fact that the sampling of the state variables

necessary to the control implies that the control law is applied with a time delay δ, so that the system

dynamics are more precisely given by

ẋ = f (x, uk−1).

The resolution of this problem, that can be addressed by means of predictors of the form

ξ̇ = f (ξ, α(ξk))

uk = α(ξk)

goes far beyond the scope of the deliverable. In any case, also this effect can be seen as a disturbance

acting on the system, since the system dynamics can be written as

ẋ = f (x, α(xk−1)) = f (x, α(x)) + d̄

with

d̄ = d + f (x, α(xk−1)) − f (x, α(xk))

and treated in a similar way.

From the previous discussion, it is clear that the effect due to the sampling can be seen as due,

mainly, to a persistent perturbation acting on the system. It is also clear that the effect of this disturbance

is smaller if smaller is the amplitude of the disturbance which, in turn, diminishes as the sampling time

δ is smaller. The aim of the present deliverable is to study criteria ensuring better implementations of

control laws and logics on digital programmable devices, with the goal of improving the performance

and safety in nuclear plants of novel conception. In particular, more effective digital platform will be

studied, which render the implementation of control law more flexible and effective.

1.2 A Mathematical Model of the Primary Circuit of a PWR

In [1] a mathematical model of the primary circuit of a PWR has been considered. The reader can find

in [1] the details of this model, given by7

6Further effects, such as quantizations effects, are not considered here, since considered negligible.
7The subindices “r”, “pc”, “sg”, “pr” refer to the reactor, primary circuit, steam generator, and pressurizer, respectively.

I.6

Ṅ = −
p0 + p1v + p2v2

Λ
N + S

Ṁpc = min − mout

Ṫpc =
1

cp,pcMpc

[
cp,pcmin(Tpc,i − Tpc) + cp,pcmout∆ + cψN − nsgkt,sg(Tpc − Tsg) −Wloss,pc

]
Ṫsg =

1
cl

p,sgMsg

[
cl

p,sgmsgTsg,sw − cv
p,sgmsgTsg − msgEevap,sg + kt,sg(Tpc − Tsg) −Wloss,sg

]
Ṫpr =

1
cp,pr Mpr

[
− kwall(Tpr − Tpr,wall) + Wheat,pr + δpr

(
cp,pcmpr(Tpc + ∆) − cp,prmprTpr

)]
Ṫpr,wall =

1
cp,wall

[
kwall(Tpr − Tpr,wall) −Wloss,pr

]

(1)

where the state variables are the neutron flux N (in %), the overall mass in the primary circuit Mpc (in

kg), the average temperature of the water in the primary circuit Tpc (in ◦C), the average secondary circuit

liquid temperature Tsg (in ◦C), the pressurizer water/wall temperature Tpr, Tpr,wall (in ◦C), and where

Mpr = Mpc − ϕ(Tpc)Vpc,0, ϕ(Tpc) = cϕ,0 + cϕ,1Tpc − cϕ,2T 2
pc

mpr = min − mout −
1

cp,pcMpc

∂ϕ(Tpc)
∂Tpc

Vpc,0
[
cp,pcmin(Tpc,i − Tpc) + cp,pcmout∆

+ cψN − nsgkt,sg(Tpc − Tsg) −Wloss,pc
]
.

In (1) v, min, Wheat,pr are the input variables, while Tpc,i, mout, msg, Msg, Tsg,sw can be considered as

disturbances. The model (1) is hybrid and nonlinear, since the equation of Tpr contains the switching

term δpr, which is 1 if mpr > 0 and 0 if mpr ≤ 0. Moreover, it is simple enough for the control purposes

but accurate enough to capture the nonlinear, time–varying, switching nature of the plant.

The (measurable) outputs of the systems are the reactor power Wr(N), the steam generator pressure

psg (in kPa), the pressurizer pressure ppr (in kPa), the pressurizer water level lpr (in m)

Wr(N) = cψN

psg = p∗,T (Tsg) = c0 − c1Tsg + c2T 2
sg

ppr = p∗,T (Tpr) = c0 − c1Tpr + c2T 2
pr

lpr(Mpc,Tpc) =
1

Apr

(
Mpc

ϕ(Tpc)
− Vpc,0

)
.

(2)

The model parameters are reported in Table 1.

1.3 The Pressurizer Inventory and Pressure Controllers

The controller for pressurizer water level and pressure determined in [1] are dynamic controller relying

only on the pressurizer wall temperature measurements. Considering a reference level lpr,ref , usually

I.7

Reactor
Neutron flux (state variable) N 99.3 %
Control rod position (input) v 0 cm
Reactor power (output) Wr 13.654×108 W
Constant in the reactor power equation cψ 13.75×106 W/%
Generation time Λ 10−5 s
Rod reactivity coefficients p0 2.85 × 10−4 m

p1 6.08 × 10−5 m−1

p2 1.322 × 10−4 m−2

Flux of the constant neutron source S 2830.5 %/s
Total fraction of delayed neutrons β 0.0064
Average half–life λ 0.1 s−1

Primary circuit
Overall mass in the primary circuit (state) Mpc 2 × 105 kg
Water average temperature (state) Tpc 281.13 ◦C
Inlet mass flow rate (input) min 1.4222 kg/s
Outlet mass flow rate (disturbance) mout 2.11 kg/s
Hot leg water temperature Tpc,hl 296.13 ◦C
Cold leg water temperature Tpc,cl 266.13 ◦C
Inlet temperature (disturbance) Tpc,i 258.85 ◦C
Specific heat at 282◦C cp,pc 5355 J/kg/K
Heat transfer coefficient kt,sg 9.5296 × 106 W/K
Heat loss Wloss,pc 2.996 × 107 W
Water nominal volume Vpc,0 242 m3

Water nominal mass Mpc,0 2 × 105 kg
Differences Tpc,hl − Tpc = Tpc − Tpc,cl ∆ 15 ◦C
Pressurizer
Water temperature (state) Tpr 326.57 ◦C
Heating power (input) Wheat,pr 168 kW
Water level (output) lpr 4.8 m
Pressure (output) ppr 123 × 102 kPa
Water specific heat at 325◦ cp,pr 6873.1 J/kg/K
Heat capacity of the wall cp,wall 6.4516 × 107 J/◦C
Wall heat transfer coefficient kwall 1.9267 × 108 W/◦C
Heat loss Wloss,pr 1.6823×105 W
Water mass Mpr 19400 kg
Vessel cross section Apr 4.52 m2

Vessel volume Vpr,vessel 44 m3

Steam generator
Average secondary circuit liquid temperature (state) Tsg 257.78 ◦C
Secondary circ. water specific heat at 260◦ cl

p,sg 3809.9 J/kg/K
Secondary circ. vapor specific heat at 260◦ cv

p,sg 3635.6 J/kg/K
Heat loss Wloss,sg 1.8932×107 W
Evaporation energy at 260◦ Eevap,sg 1.658×106 J/kg
Water mass Msg 34920 kg
Water level lsg 1.850 m
Steam pressure (output) psg 45.3 × 102 kPa
Secondary water mass flow rate (disturbance) msg 119.31 kg/s
Secondary circ. steam mass flow rate msg,ss 119.31 kg/s
Secondary circ. water mass flow rate msg,sw 119.31 kg/s
Secondary circ. inlet temperature (disturbance) Tsg,sw 220.85 ◦C
Number of steam generators nsg 6
Power transferred to the steam generators nsgWsg 13.351 × 108 W
Functions
Saturated vapor pressure p∗,T (T) kPa
Coefficients for quadratic approximation c0 28884.78 kPa

c1 258.01 kPa/◦C
c2 0.63455 kPa/◦C2

Water density ϕ(T) kg/m3

Coefficients for quadratic approximation cϕ,0 581.2 kg/m3

cϕ,1 2.98 kg/m3/◦C
cϕ,2 0.00848 kg/m3/◦C2

Table 1: Model parameters

I.8

proportional to a mean value between the cold and the hot leg temperatures, with a drift to give a proper

value [16]

lpr,ref = cr,1(Tpc,cl + Tpc,hl) − cr,2 = 2cr,1Tpc − cr,2

the inventory control for the pressurizer water level lpr is given by

İelpr
= lpr − lpr,ref

min =
Apr

ψ(Mpc,Tpc)

[
−

(
kp(lpr − lpr,ref) + kiIelpr

)
ϕ2(Tpc) + m◦outϕ(Tpc)

+
1

cp,pc

(2cr,1

Mpc
ϕ2(Tpc) +

∂ϕ(Tpc)
∂Tpc

)(
cp,pcm◦out∆

◦ + cψN − nsgkt,sg(Tpc − Tsg) −W◦loss,pc

)] (3)

with kp, ki > 0,

ψ(Mpc,Tpc) = ϕ(Tpc) − (T ◦pc,i − Tpc)
∂ϕ(Tpc)
∂Tpc

−
2cr,1Apr

Mpc
(T ◦pc,i − Tpc)ϕ2(Tpc)

ϕ(Tpc) = cϕ,0 + cϕ,1Tpc − cϕ,2T 2
pc

∂ϕ(Tpc)
∂Tpc

= cϕ,1 − 2cϕ,2Tpc.

Due to the the nominal disturbance values ∆◦, T ◦pc,i, m◦out, W◦loss,pc, and to their variations δ∆ = ∆ − ∆◦,

δTpc,i = Tpc,i − T ◦pc,i, δmout = mout − m◦out, δWloss,pc = Wloss,pc − W◦loss,pc, this controller ensures practical

exponential stability of the error level, i.e. elpr , ėlpr tend to a neighborhood of the origin of radius

µ =
κ

ϑλQ
min

‖P‖δmax

where κ = maxt ‖Ψ‖,

Ψ =
1

ϕ2(Tpc)
1

Apr

(0 0 0 0 0

−
∂ϕ(Tpc)
∂Tpc

min −ϕ(Tpc) − ∂ϕ(Tpc)
∂Tpc

∆◦ −
∂ϕ(Tpc)
∂Tpc

m◦out
1

cp,pc

∂ϕ(Tpc)
∂Tpc

−
∂ϕ(Tpc)
∂Tpc

)
.

and ϑ ∈ (0, 1), P is solution of PA+AT P = −2Q for a fixed Q = QT > 0, λQ
min is the minimum eigenvalue

of Q,

A =

(0 1

−ki −kp

)
and δmax is the maximum variation with respect to the nominal disturbance values.

As far as the pressurizer pressure controller is concerned, a first nonlinear dynamic controller can

be designed transforming the pressurizer pressure reference ppr,ref into a pressurizer water reference

temperature Tpr,ref , inverting the relation obtained from (2)

ppr,ref = c0 − c1Tpr,ref + c2T 2
pr,ref

I.9

that can be uniquely inverted about the operating point of pressurizer temperature

Tpr,ref =
c1 +

√
c2

1 − 4c2(c0 − ppr,ref)

2c2

Ṫpr,ref =
2 ṗpr,ref√

c2
1 − 4c2(c0 − ppr,ref)

.

The dynamic controller, which depends on the (measured) temperature Tpr,wall, but not on the (unmea-

sured) temperature Tpr

Wheat,pr,ref = cp,pr Mpr

[
Ṫpr,ref +

kwall

cp,pr Mpr
(Tpr,ref − Tpr,wall,ref)

− δpr

(cp,pcm◦pr

cp,pr Mpr
(Tpc + ∆◦) −

m◦pr

Mpr
Tpr,ref

)] (4)

Wheat,pr = ue,W + Wheat,pr,ref

˙̂T pr = −

(m◦pr

Mpr
+

kwall

cp,pr Mpr

)
T̂pr +

kwall

cp,pr Mpr
Tpr,wall +

1
cp,pr Mpr

Wheat,pr +
cp,pcm◦pr

cp,pr Mpr
(Tpc + ∆◦)

Ṫpr,wall,ref =
kwall

cp,wall
Tpr,ref −

kwall

cp,wall
Tpr,wall,ref + kiIeTpr,wall

−
1

cp,wall
W◦loss,pr

İeTpr,wall
= Tpr,wall − Tpr,wall,ref

Wheat,pr = −kwall(Tpr,wall − Tpr,wall,ref) −
cp,pr

cp,wall
kwallMprBT P

(IeTpr,wall

Tpr,wall − Tpr,wall,ref

)

cp,pr Mpr

[
Ṫpr,ref +

kwall

cp,pr Mpr
(Tpr,ref − Tpr,wall,ref) − δpr

(cp,pcm◦pr

cp,pr Mpr
(Tpc + ∆◦) −

m◦pr

Mpr
Tpr,ref

)]

(5)

ensures the practical exponential stability of the error temperatures, with ki > 0, kp =
kwall

cp,wall
> 0,

Tpr,wall,ref(0) = Tpr,ref(0) −W◦loss,pr/kwall, Mpr = Mpc − ϕ(Tpc)Vpc,0,

m◦pr = min − m◦out −
1

cp,pcMpc

∂ϕ(Tpc)
∂Tpc

Vpc,0
[
cp,pcmin(T ◦pc,i − Tpc) + cp,pcm◦out∆

◦

+ cψN − nsgkt,sg(Tpc − Tsg) −W◦loss,pc

]
and P = PT > 0 solution of the Lyapunov equation

PA + AT P = −2Q, A =

(0 1

−ki −
kwall

cp,wall

)
for a fixed Q = QT > 0, and B =

(
0 1

)T .

I.10

An alternative (dynamic switching nonlinear) controller for the pressurizer pressure is given by

İeppr
= c0 − c1T̂pr + c2T̂ 2

pr − ppr,ref

ξ̇ = T̂pr − Tpr,wall −
1

kwall
W◦loss,pr −

1
k

1
cp,pr Mpr

Cpr

T̂pr = κ
(cp,wall

kwall
Tpr,wall − ξ

)
Cpr =

cp,pr Mpr

−c1 + 2c2T̂pr

(
ṗpr,ref − Kp

(
c0 − c1T̂pr + c2T̂ 2

pr − ppr,ref
)
− KiIeppr

)
Wheat,pr = kwall(T̂pr − Tpr,wall) + Cpr + δpr

(
cp,prm◦prT̂pr − cp,pcm◦pr(Tpc + ∆◦)

)

(6)

where κ,Kp,Ki > 0, Ieppr
(0) = 0, ξ(0) = −T̂pr(0)/k + cp,wallTpr,wall(0)/kwall and, as already defined, δpr

is 1 if mpr > 0 and 0 otherwise.

1.4 Digital Implementation of the Control Laws

We have already noted that the implementation of control laws by means of digital devices determines

a disturbances acting on the feedback system. In this section we consider a further aspect, the digital

implementation of derivatives. In fact, in (3), (5), (6) the derivative İelpr
, ˙̂T pr, Ṫpr,wall,ref , İeTpr,wall

, İeppr
, ξ̇

have to be implemented numerically. Let us consider a feedback system with u = α(x) a certain control

law applied to control the system ẋ = f̄ (x, u). The closed–loop dynamics is hence

ẋ = f̄ (x, α(x)) := f (x)

A simple method to approximate by a digital computer the real time solution of this differential equation

is to consider the Euler’s rule, relying on the definition of derivative

ẋ = lim
∆t→0

∆x
∆t
.

Here ∆x is the change in x over the time interval ∆t. Even if ∆t does not tends to zero, the previous

relation is approximately true

ẋ|tk '
xk+1 − xk

δ

where ẋ|tk is the derivative of x(t) calculated at time tk = kδ, δ = tk+1 − tk is the sampling interval, k ∈ Z,

and xk = x(kδ), xk+1 = x((k + 1)δ) are the value of x(t) at tk = kδ, tk+1 = (k + 1)δ. This is the so called

forward rectangular rule, and leads to the following expression

xk+1 = xk + δ f (xk).

There exists also a backward rectangular rule

ẋ(k) '
xk − xk−1

δ

I.11

leading to

xk+1 = xk + δ f (xk+1).

Another method is the trapezoidal rule, where eventually one gets

xk+1 = xk +
δ

2

(
f (xk) + f (xk+1)

)
.

These approximations can be used in place of the derivatives that appear in the controller differential

equations, to obtain difference equations repetitively solved with time steps of length δ. In the following

we will consider the Euler’s rule, for the sake of clarity, but the same arguments can be used with the

other integration methods.

When dealing with the classical proportional, integral, and derivative control actions

up(t) = kpe(t), ui(t) =
kp

Ti

∫ t

0
e(τ) dτ, ud(t) = kpTdė(t)

with kp the proportional gain, Ti the integral time, Td the derivative time, they can be approximated with

the following algebraic relations, which can be implementable with digital computers

up,k = kpek, ui,k = ui,k−1 +
kp

Ti
δek, ud,k = kpTd

ek − ek−1

δ

where ui,k, ud,k are the results of the forward rule of the Euler approximation. Usually, these control

actions are used together and their combination need to be done carefully. Hence, considering the Laplace

transform for a classical (linear) PID controller

G(s) =
u(s)
e(s)

= kp

(
1 +

1
Tis

+ Td s
)

e(s)

so that

su(s) = kp

(
s +

1
Ti

+ Td s2
)

e(s)

and

u̇ = kp

(
ė +

1
Ti

e + Tdë
)

the Euler’s method, applied twice for ë, gives

uk = uk−1 + kp

[(
1 +

δ

Ti
+

Td

δ

)
ek −

(
1 − 2

Td

δ

)
ek−1 +

Td

δ
ek−2

]
.

For linear systems (and controllers) with bandwidths of a few Hz, sample rates are often on the order

of 100 Hz, so that δ is on the order of 10−2 s, and errors from the approximation is quite small. An

empirical rule is that the sample rate should be faster that 30 times the bandwidth in order to assure that

the digital controller can be made to closely match the performance of the continuous controller. Except

I.12

Shannon rule, regarding the aliasing problem, there is not a theoretic rule to fix δ in order to ensure this

close match.

The absence of a systematic rule to choose the sampling period δ is even more problematic for

nonlinear systems. In fact, it is well–known that nonlinear systems can experience a finite escape times,

which roughly means that the state can go to infinity in finite time intervals [8]. This is a great difference

with linear systems, where the state can go to infinity asymptotically, namely when time goes to infinity.

As a result, from a conservative point of view, the controllers need to be implemented with the fastest

sampling time.

With this important observation in mind, the controllers (3), (5), (6), containing PI terms, can be

implemented as follows.

Digital implementation of the pressurizer water level controller (3)

Ielpr ,k+1 = Ielpr ,k + δ(lpr,k − lpr,ref,k)

min,k =
Apr

ψ(Mpc,k,Tpc,k)

[
−

(
kp(lpr,k − lpr,ref,k) + kiIelpr ,k

)
ϕ2(Tpc,k) + m◦outϕ(Tpc,k)

+
1

cp,pc

(2cr,1

Mpc,k
ϕ2(Tpc,k) +

∂ϕ(Tpc)
∂Tpc

∣∣∣∣∣
k

)(
cp,pcm◦out∆

◦ + cψNk − nsgkt,sg(Tpc,k − Tsg,k) −W◦loss,pc

)](7)

with kp, ki > 0,

ψ(Mpc,k,Tpc,k) = ϕ(Tpc,k) − (T ◦pc,i − Tpc,k)
∂ϕ(Tpc)
∂Tpc

∣∣∣∣∣
k
−

2cr,1Apr

Mpc,k
(T ◦pc,i − Tpc,k)ϕ2(Tpc,k)

ϕ(Tpc,k) = cϕ,0 + cϕ,1Tpc,k − cϕ,2T 2
pc,k

∂ϕ(Tpc)
∂Tpc

∣∣∣∣∣
k

= cϕ,1 − 2cϕ,2Tpc,k.

I.13

Digital implementation of the pressurizer pressure controller (5)

T̂pr,k+1 = T̂pr,k + δ

[
−

 m◦pr,k

Mpr,k
+

kwall

cp,pr Mpr,k

 T̂pr,k +
kwall

cp,pr Mpr,k
Tpr,wall,k

+
1

cp,pr Mpr,k
Wheat,pr,k +

cp,pcm◦pr,k

cp,pr Mpr,k
(Tpc,k + ∆◦)

]

Tpr,wall,ref,k+1 = Tpr,wall,ref,k + δ

(
kwall

cp,wall
Tpr,ref,k −

kwall

cp,wall
Tpr,wall,ref,k + kiIeTpr,wall ,k −

1
cp,wall

W◦loss,pr

)
IeTpr,wall ,k+1 = IeTpr,wall ,k + δ

(
Tpr,wall,k − Tpr,wall,ref,k

)
Wheat,pr,k = −kwall(Tpr,wall,k − Tpr,wall,ref,k) −

cp,pr

cp,wall
kwallMpr,kBT P

(IeTpr,wall ,k

Tpr,wall,k − Tpr,wall,ref,k

)

+ cp,pr Mpr,k

[
Ṫpr,ref

∣∣∣∣
k

+

 m◦pr,k

Mpr,k
+

kwall

cp,pr Mpr,k

 Tpr,ref,k −
kwall

cp,pr Mpr,k
Tpr,wall,ref,k

−
cp,pcm◦pr,k

cp,pr Mpr,k
(Tpc,k + ∆◦)

]

Tpr,ref,k =
c1 +

√
c2

1 − 4c2(c0 − ppr,ref,k)

2c2
, Ṫpr,ref

∣∣∣∣
k

=
2ṗpr,ref,k√

c2
1 − 4c2(c0 − ppr,ref,k)

(8)

with Tpr,wall,ref,0 = Tpr,ref,0 −W◦loss,pr/kwall, Mpr,k = Mpc,k − ϕ(Tpc,k)Vpc,0,

m◦pr,k = min,k − m◦out −
1

cp,pcMpc,k

∂ϕ(Tpc)
∂Tpc

∣∣∣∣∣
k
Vpc,0

[
cp,pcmin,k(T ◦pc,i − Tpc,k) + cp,pcm◦out∆

◦

+ cψNk − nsgkt,sg(Tpc,k − Tsg,k) −W◦loss,pc

]
.

Digital implementation of the pressurizer pressure controller (6)

Ieppr ,k+1 = Ieppr ,k + δ
(
c0 − c1T̂pr + c2T̂ 2

pr − ppr,ref
)

ξk+1 = ξk + δ

(
T̂pr − Tpr,wall −

1
kwall

W◦loss,pr −
1
k

1
cp,pr Mpr

Cpr

)
T̂pr,k = κ

(cp,wall

kwall
Tpr,wall,k − ξk

)
Cpr,k =

cp,pr Mpr,k

−c1 + 2c2T̂pr,k

(
ṗpr,ref,k − Kp

(
c0 − c1T̂pr,k + c2T̂ 2

pr,k − ppr,ref,k
)
− KiIeppr ,k

)
Wheat,pr,k = kwall(T̂pr,k − Tpr,wall,k) + Cpr,k + δpr

(
cp,prm◦pr,kT̂pr,k − cp,pcm◦pr,k(Tpc,k + ∆◦)

)

(9)

where Ieppr ,0 = 0, ξ0 = −T̂pr,0/κ + cp,wallTpr,wall,0/kwall.

I.14

2 Self Triggered Robust Strategies for Optimal
Implementations of Control Laws on Digital Devices

The implementation of controllers with digital devices presents many advantages, but at the same time

poses some issues. We have already mentioned about the fact that the implementation of control laws

with zero order holders, commonly used for the digital implementation of control laws, introduce a delay

and hence could bring to unstable behaviors. We have also mentioned the possibility of determining

a region of practical stability of the control system. In this section we want to be more specific and

consider a technique, called self triggered control, determining the sampling time so that the control

system performances are preserved. The obvious property to be preserved is the asymptotic stability,

which in turn means that the plant is operating safely.

One important aspect is the design of the digital controller so that the control system recovers, at

least in first approximation, the same behavior of a system controlled with a continuous time controller.

In fact, many authors propose nonlinear digital controllers reproducing the performances of a certain

continuous controller, viz emulating the behavior of the continuous controller [34] [29], [30]. This

a very popular technique relies on the simple consideration that when the (fixed) sampling period is

short enough, one regains the continuous behavior. Other authors aim at designing the digital controller

directly in the digital setting, imposing control performances on the digital model of the system, although

nonlinear systems cannot be discretized exactly in closed form, in general. In both cases, a relevant

problem arises: the determination of the sampling period. From a theoretical point of view, the sampling

period is usually considered constant, namely the new control value is computed periodically at each

sampling time. This helps, from a mathematical point of view, the analysis of the sampled nonlinear

system, and gives some mathematical tools to solve the design problem. However, it is clear that a better

solution should be that of calculating the controller only “when necessary”. This clearly complicates

the problem from an analytical point of view. But there are also practical aspects that push to deal

with variable sampling. A first aspect is that a constant sampling is quite inefficient (in terms of CPU

usage, communication bandwidth, energy, etc.), since it has to be considered the worst–case scenario. In

fact, since the system dynamics are nonlinear, one has to ensure good performance for all the operative

I.15

points. Incidentally, this reveals the need of criteria to fix the sampling time value, that otherwise has

to be fixed using (possibly extensive) simulations, or considering empirical rules (20 times the system

bandwidth [20]). A further aspect is that many digital controller perform various tasks at the same time.

This is quite typical, especially in the case of embedded systems. An example is the electronic central

unit in an automobile, which has to manage different tasks, with different priority. Their scheduling is

clearly of critical importance to prevent negative coupling effects of lower priority tasks when computing

high level tasks, such as attitude control laws. Another important example are the networked systems,

where not only the processor time is a resource to be optimized, but also the available communication

bandwidth is limited. In wireless sensor networks, furthermore, an important issue is the minimization

of the power consumption, in order to augment the life span of the network. In all these applications, the

energy consumption is related to the frequency of measurements and transmission over the network. It is

clear that in these cases measurement/computation/actuation data transmission should be minimized and

should occur only “when necessary”.

Among the various techniques proposed to face this problem, the event triggered technique seems

to be promising [21], [31], [14], [22]. This technique formalize the statement “when necessary”: the

measurement/computation/actuation data transmission event occurs when the state of the system assumes

certain values. Clearly, this technique requires the continuous measurement of the state. To circumvent

this drawback, self–triggered techniques have been proposed. In this case the controller determines its

next execution time, and does not require continuous measurements of the state. In particular, when the

stabilization of the system origin is considered, this event is triggered only when the asymptotic stability

property, as formalized by the Lyapunov approach, can be lost [14], [4], [13], [36], [37], [5], [18], [6].

This approach can be also generalized to a weaker property such as safety [6].

Self triggered control strategies have been introduced in [33], where a heuristic rule is provided to

self–trigger the next execution time of a control task on the basis of the last measurement of the state.

In [11], [12], a robust self triggered strategy is proposed, which guarantees that the L2 gain of a linear

time invariant system is kept under a given threshold. In [13] a self triggered strategy distributed over a

wireless sensor network is proposed for linear time invariant systems.

In [14] sufficient conditions for the existence of a stabilizing event–triggered control strategy are

given for nonlinear systems. In [5] the authors propose a self–triggered emulation of the event–triggered

control strategy proposed in [14]. In particular a methodology for the computation of the next execution

time as a function of the last sample is presented, under a homogeneity condition.

In this deliverable, a methodology for the computation of the next execution time is proposed, based

on polynomial approximations of Lyapunov functions, and relying on the assumption that the nonlinear

I.16

differential equations and the control law are C` functions, with ` sufficiently large. This assumption

is verified in the present case. The next sampling time is also computed in the presence of bounded

sensing/computation/actuation delays and of norm–bounded parameter uncertainties and disturbances.

Moreover, under weaker conditions than those used in [14], it is proved the existence of a self triggered

strategy keeping the state in a “safe set” arbitrarily close to the equilibrium point, and a methodology for

computing the next execution time is provided. Fixed a δ–ball of the equilibrium point and a disturbance

that is upper bounded in norm by a classK function ν(δ), a methodology is presented for the computation

of the next execution time that depends on the δ boundary defining the safe set.

2.1 Problem Formulation

Consider a generic nonlinear system

ẋ = f (x, u, µ, d) (10)

where x ∈ Dx ⊂ rn,Dx a domain containing the origin, u ∈ Du ⊂ rp, µ is a parameter uncertainty vector

varying in a compact setDµ ⊂ rr, with 0 ∈ Dµ, d is an external bounded disturbance vector taking values

in a compact set Dd ⊂ rs, with 0 ∈ Dd. In the following, we may refer to (10) as the perturbed system.

Furthermore, we define the nominal (or “unperturbed”) system associated to the “perturbed” system (10)

as

ẋ = f0(x, u) � f (x, u, 0, 0). (11)

Given a state feedback control law κ:Dx → Du, the closed loop perturbed system is

ẋ = f (x, κ(x), µ, d) (12)

and the closed loop nominal system is

ẋ = f0(x, κ(x)). (13)

We will denote by x(t), t ≥ t0, the solution of the closed loop system (12) (or (13), according to the

context), with initial condition x0 = x(t0). Given a state feedback control law κ it is well–known that, if

κ locally stabilizes the origin of system (13) and if f0(x, κ(x)) ∈ C`(Dx), ` > 1 integer, then there exists a

Lyapunov function V(x) of class C1(Dx) such that

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖)
∂V(x)
∂x

f0(x, κ(x)) ≤ −α3(‖x‖)∥∥∥∥∥∂V(x)
∂x

∥∥∥∥∥ ≤ α4(‖x‖)

(14)

with α1, α2, α3, α4 ∈ K [8], [10], [35].

I.17

Moreover, given a state feedback control law κ, we say that system (12) is safe with respect to the set

S ⊆ Dx for the time interval T ⊆ r+
0 , if x(t) ∈ S, ∀t ∈ T .

The feedback control signal u(t) = κ(x(t)) requires continuous measurements of the state of the

system. We assume that state measurements are available at sampling times tk, which define a sequence

I = {tk}k≥0, and that the applied control is

uI(t) =

 0 ∀t ∈ [t0, t0 + ∆0)

κ(xk) ∀t ∈ [tk + ∆k, tk+1 + ∆k+1), k ≥ 0
(15)

where {∆k}k≥0 is a sequence of delays, due to the transmission time from the sensor to the controller,

the computation time, and the transmission time from the controller to the actuator. On the basis of this

assumption, we address the following problems.

Problem 1 Given a system (11), and a state feedback control law κ such that the origin of (13) is

asymptotically stable with region of attraction Ω ⊂ Dx containing the origin, determine a function

τs : Dx → [τmin,∞), τmin > 0 and a maximum allowed delay ∆max ∈ [0, τmin] such that if the sequence

of sampling instants I is inductively defined by

tk+1 = tk + τs(xk) (16)

and if the delays are such that

∆k ∈ [0, ∆max), ∀ k ≥ 0, (17)

then the origin of the closed loop system (13) with control input signal uI(t) as in (15) is asymptotically

stable with region of attraction Ω. �

Problem 2 Given a system (10) (resp. (11)), and a state feedback control law κ such that the origin

of (12) (resp. (13)) is asymptotically stable with region of attraction Ω ⊂ Dx containing the origin, and

an arbitrary safe set Bδ = {x ∈ rn | ‖x‖ < δ} ⊂ Ω, δ > 0, determine τs and ∆max as defined in Problem 1

such that if I is inductively defined by (16) and if ∆k satisfies (17), then the closed loop system (12) with

control input signal uI(t) as in (15) is safe with respect to Bδ for the time interval [t0,∞). �

In Problems 1 and 2, the function τs is used to determine the next sampling instant as a function

of the current measurement of the system. The purpose is to obtain a self triggered control system that

is robust with respect to delays bounded by a design parameter ∆max. By choosing the next sampling

instant tk+1 as a function of the current measurement at time tk, we perform sampling only when needed

for guaranteeing asymptotic stability or safety. The aim is to determine a sampling instant sequence I

I.18

such that the intersampling time tk+1 − tk is as large as possible, in order to reduce transmission power of

the sensing and actuation data transmissions, and to reduce the CPU effort due to the computation of the

control.

As a comparison of the above definitions with the concepts of Maximally Allowable Transmission

Interval (MATI) and Maximally Allowable Delay (MAD) introduced in [7], we can interpret ∆max as the

(global) MAD, and tk+1 − tk = τs(xk) − tk as the (local) MATI of the system in the time interval [tk, tk+1]

on the basis of the measurement xk = x(tk) of the state x(t) at t = tk.

2.2 Self Triggered Stabilizing Control

The results developed in this section address Problem 1 for system (11), and are based on the following

assumptions, which are weaker than those required in [5] (viz., homogeneity of the closed loop dynamics)

to compute the next sampling time as a function τs of the current state of the system.

Assumption 1 Assume that

1. f0 ∈ C`(Dx ×Du), with ` a positive integer sufficiently large;

2. There exists a nonempty set U of state feedback laws κ:Dx → Du, such that κ ∈ C`(Dx) and

the origin of (13) is asymptotically stable, with region of attraction a certain compact Ω ⊂ Dx

containing the origin;

3. The functions α3, α4 ∈ K in (14) are such that α−1
3 , α4 are Lipschitz. �

The assumption of existence of a stabilizing control (i.e. non–emptiness of the setU) is not restric-

tive, since if the nominal system cannot be stabilized using continuous time measurement and actuation,

then it is clear that the nominal system cannot be stabilized using a digital control with zero–order hold-

ers. The main limitation of Assumption 1 is the Lipschitz condition on α−1
3 (·) and α4(·). We will show

how to weaken this assumption in Section 2.3, which will be devoted to safety control.

Theorem 1 Under Assumption 1, Problem 1 is solvable for system (11), and the function τs can be

iteratively computed as a function of the current state of the system and the maximum allowable delay

∆max. �

Proof: We first prove the result for ∆k = 0. Since U is not empty, by Assumption 1, we pick a state

feedback control law κ ∈ U. Since f0(x, κ(x)) ∈ C`(Dx) with ` > 1, there exists a Lyapunov candidate

I.19

V(x) that satisfies (14). Choose r > 0 such that the ball Br = {x ∈ Ω : ‖x‖ ≤ r} ⊂ Ω. For xk ∈ Br,

V̇ =
∂V
∂x

f0(x, κ(xk)) =
∂V
∂x

f0(x, κ(x)) +
∂V
∂x

(
f0(x, κ(xk)) − f0(x, κ(x))

)
≤ −α3(‖x‖) + α4(‖x‖)‖dh‖

(18)

where

dh = f0(x(t), κ(xk)) − f0(x(t), κ(x(t)))

can be considered as a perturbation due to the holding.

Under Assumption 1, there exists a δk > 0 such that ẋ = f (x, κ(xk)) has a unique solution over

[tk, tk +δk]. Hence, we can expand the components dh,i of dh in Taylor series. Consider the ith component

dh,i, i = 1, · · · , n, of the n–dimensional vector dh. One can expand each component in Taylor series with

respect to t ∈ [tk, tk + δk], on the right of tk, up to the 2nd term, with Lagrange remainder of the 3rd term

dh,i = ϕ1,i(xk)(t − tk) + ϕ2,i(x̄i, xk)(t − tk)2 (19)

where

ϕ1,i(xk) = dh,i
∣∣∣
x(t)=xk

, ϕ2,i(x̄i, xk) =
1
2

d2
+dh,i

dt2

∣∣∣∣∣∣
x(t)=x̄i

where dn
+(·)
dtn denotes the n–th right derivative. According to Taylor theorem with Lagrange remainder,

there exists t̄i ∈ [tk, t], with x̄i = x(t̄i), i = 1, · · · , n, such that the equality (19) holds. Hence,

‖dh‖ ≤ ‖ϕ1(xk)‖(t − tk) + ‖ϕ2(x̄, xk)‖(t − tk)2

where x̄ � (x̄1, · · · , x̄n) and

ϕ1(xk) �
(
ϕ1,1(xk), · · · , ϕ1,n(xk)

)T

ϕ2(x̄, xk) �
(
ϕ2,1(x̄1, xk), · · · , ϕ2,n(x̄n, xk)

)T
.

Consider the set ΩV(xk) � {x ∈ Ω : V(x) ≤ V(xk)}, and define

M1(xk) � ‖ϕ1(xk)‖, M2(xk) � max
x̄∈ΩV(xk)

‖ϕ2(x̄, xk)‖.

Since f , κ ∈ C` and ΩV(xk) is compact, then M1(xk) is finite for any xk ∈ ΩV(xk), and M2(xk) ∈ r+ exists

and is finite for any xk ∈ ΩV(xk).

Note that there exists a time interval [tk, tk+1 < tk + δk] such that

α4(‖x‖)‖dh‖ ≤ ϑα3(‖x‖) (20)

is satisfied for a fixed ϑ ∈ (0, 1). In fact, (20) is satisfied if

α−1
3

(
1
ϑ
α4(‖x‖)

(
M1(xk)(t − tk) + M2(xk)(t − tk)2

))
≤ ‖x‖.

I.20

Since α−1
3 and α4 are Lipschitz, then equation (20) is satisfied if

1
ϑ

Lα−1
3

Lα4‖x‖
(
M1(xk)(t − tk) + M2(xk)(t − tk)2

)
≤ ‖x‖

where Lα−1
3
, Lα4 > 0 are the Lipschitz constants of α−1

3 , α4, respectively. The above equation directly

implies that (20) is satisfied if

M1(xk)(t − tk) + M2(xk)(t − tk)2 ≤
ϑ

Lα−1
3

Lα4

. (21)

Hence, if we define

τs(xk) � max
{
t − tk : (21) is satisfied for each t − tk ∈ [0, τs(xk)]

}
τmin � min

xk∈ΩV(xk)
τs(xk)

and we choose tk+1 = tk + τs(xk), then V̇(t) ≤ −(1 − ϑ)α3(‖x‖) < 0 for all t ∈ [tk, tk+1] and for all k ≥ 0.

This implies that the origin is asymptotically stable. Equation (21) is a second degree inequality in the

form ay2 + by ≤ c, where a, b are non–negative and upper bounded for each xk ∈ Dx, and c is strictly

positive and upper bounded. This trivially implies that τs(xk) is strictly positive for each xk ∈ ΩV(xk), and

thus τmin is strictly positive as well. In this way, τs(·) remains defined iteratively for each k ≥ 0. This

completes the proof for ∆k = 0.

For the case of ∆k > 0, following the same reasoning

V̇(t) =
∂V
∂x

f0(x(t), κ(xk)) =
∂V
∂x

f0(x, κ(x)) +
∂V
∂x

(dh + d∆k)

≤ −α3(‖x‖) + α4(‖x‖)‖dh‖ + α4(‖x‖)‖d∆k‖

for t ≥ tk + ∆k where
dh = f0(x(t), κ(x(tk + ∆k))) − f0(x, κ(x))

d∆k = f0(x(t), κ(xk)) − f0(x(t), κ(x(tk + ∆k)))

can be considered as perturbations due to the holding and to the sensing/computation/actuation delay.

Since also the solution x(t) is Lipschitz, as well as f0 and κ, then

‖d∆k‖ ≤ M3∆k, M3 = L f0 LκLx

where L f0 , Lκ, Lx are the Lipschitz constants of f0, κ, x. Proceeding for dh as in the previous case, we

conclude that (20) is satisfied if

M1(xk)(t − tk) + M2(xk)(t − tk)2 + M3∆k ≤
ϑ

Lα−1
3

Lα4

. (22)

Setting ϑ = ϑ1 + ϑ2, with ϑ1, ϑ2 ∈ (0, 1), equation (22) implies that the stability condition (20) holds if

M1(xk)(t − tk) + M2(xk)(t − tk)2 ≤
ϑ1

Lα−1
3

Lα4

, (23)

I.21

and

∆k ≤ ∆max �
ϑ2

M3Lα−1
3

Lα4

. (24)

Defining
τs(xk) � max

{
t − tk : (23) is satisfied for each t − tk ∈ [0, τs(xk)]

}
− ∆max

τmin � min
xk∈ΩV(xk)

τs(xk)

and if we choose tk+1 = tk + τs(xk), then V̇(t) ≤ −(1 − ϑ)α3(‖x‖) < 0 for all t ∈ [tk + ∆k, tk+1 + ∆max]

and for all k > 0. This ensures the asymptotic stability of the origin. ∆max is non-negative, and for ϑ2

sufficiently small tk+1 − tk = τs(xk) > ∆max ≥ 0 for each xk ∈ ΩV(xk). Therefore, τmin is strictly positive

as well. This completes the proof. �

Remark 1 It is worth noting that τmin > 0, as shown in the proof, implies that the time interval between

two sampling instants is lower bounded by the minimum sampling time τmin > 0, so that undesired Zeno

behaviors are avoided. �

Remark 2 The choice of ϑ1 ∈ (0, 1) corresponds to a simple tradeoff between larger intersampling times

τs(xk) and robustness with respect to larger delays ∆max. As ϑ1 decreases, τs(xk) decreases and ∆max

increases. This implies that we improve robustness vs delays, paid by stronger sampling requirements. �

Remark 3 When applying the self triggered rule defined in the above theorem in a real scenario, it is

necessary to compute on–line the next sampling time for each time instant tk. This computation corre-

sponds to solving a second degree equality, which is reasonable in an embedded system. On the contrary,

the functions M1(·) and M2(·) can be determined off–line, and then (numerically) computed on–line in

xk. However, M2(·) might be still difficult to determined in closed form. In this case, one can define

M2 � max
x̄,xk∈Ω

‖ϕ2(x̄, xk)‖

and use it in equation (21) to compute the next sampling time. This new definition clearly implies shorter

sampling times. �

The above remarks also apply to Theorems 2 and 3 in the following Sections.

2.3 Self Triggered Safety Control

The main limitation of the results developed in Section 2.2 is the Lipschitz continuity assumption of

α−1
3 (·) and α4(·). The following example shows that even exponentially stabilizable systems do not

always satisfy this assumption.

I.22

Example 1 Consider the system ẋ = Ax + Bu + f (x, u) = f0(x, u) with

f0(x, u) =

(
−x1 + x2 + x2

1
(1 + x1)u

)
.

Let u = κ(x) = −x2 ∈ U. Consider the Lyapunov candidate V(x) = xT Px, with P solution of the

Lyapunov equation PAc + AT
c P = −Q, with Q = 2I, I the identity matrix, and Ac =

(
−1 1

0 −1

)
.

Since P =

(2 1
1 3

)
, then λP

min � 1.382 and λP
max � 3.618 denote respectively the minimum and the

maximum eigenvalue of P. For ‖x‖ ≤ 2/3, the time derivative of V satisfies

V̇ = −‖x‖2Q + 2|x1|
3 + 3|x1|x2

2 ≤ −2x2
1 − 2x2

2 + 2(2/3)x2
1 + 3(2/3)x2

2 ≤ −
1
2
‖x‖2

thus the origin is locally exponentially stable, with α1(‖x‖) = λP
min‖x‖

2, α2(‖x‖) = λP
max‖x‖

2, α3(‖x‖) =

‖x‖2/2, α4(‖x‖) = λP
max‖x‖.

It is clear that Assumption 1 is not satisfied, since α−1
3 (·) is not Lipschitz. For this reason, one the

basis of the previous results, one can not ensure the existence of a stabilizing self triggered strategy. �

The main technical problem is that, if α−1
3 (·) is not Lipschitz, the next sampling time τs(xk) goes to

zero as xk approaches the equilibrium point, and this might generate Zeno behaviors. The results devel-

oped in this section address Problem 2, both for the nominal system (11) and the generic system (10),

and are based on the following assumption, that does not require α−1
3 (·) to be Lipschitz.

Assumption 2 Assume that f0 ∈ C`(Dx × Du), with ` a positive integer sufficiently large. Assume that

there exists a nonempty setU of state feedback laws κ:Dx → Du, such that κ ∈ C`(Dx) and the origin of

the system (13) is asymptotically stable, with region of attraction a certain compact Ω ⊂ Dx containing

the origin. �

For system (11) (unperturbed case) we determine a function τs to compute the next sampling time as

a function of the current state of the system and the maximum allowable delay ∆max, such that the closed

loop system applying a self triggered strategy is safe. On the basis of Assumption 2, in Theorem 2 we

provide a different computation of τs providing less conservative (less frequent) sampling instants.

For system (10) (perturbed case), given a δ boundary of the equilibrium point and a disturbance that

is upper bounded in norm by a class K function ν(δ), we determine a function τs to compute the next

sampling time as a function of the current state of the system and the maximum allowable delay ∆max,

such that the closed loop system applying a self triggered strategy is safe with respect to δ. We remark

that, according to well known results in [8], a locally stable system subject to a bounded disturbance al-

ways satisfies a safety property with respect to δ sufficiently small. Nevertheless neither the computation

I.23

of the function τs nor the relation among the safe boundary δ and the disturbance upper bound ν(δ) are

straightforward from the results in [8].

2.4 Unperturbed Systems

The following theorem states that, if a system (11) is asymptotically stabilizable using a continuous time

state feedback control law, then it is always possible to keep the state arbitrarily close to the equilibrium

point by applying a digital self triggered strategy. Note that, in order to guarantee that the state is

arbitrarily close to the equilibrium point, we need the stabilizability assumption.

Theorem 2 Under Assumption 2, Problem 2 is solvable for system (11), and the function τs can be

iteratively computed as a function of the current state of the system and the maximum allowable delay

∆max. �

Proof: Using the same reasoning of Theorem 1 proof, and directly considering the case ∆k > 0, we

conclude that the following inequality

V̇ ≤ −(1 − ϑ)α3(‖x‖) + α4(‖x‖)(‖dh‖ + ‖d∆‖) − ϑα3(‖x‖) ≤ −(1 − ϑ)α3(‖x‖)

holds when

α4(‖x‖)
(
M1(xk)(t − tk) + M2(xk)(t − tk)2+M3∆k

)
≤ϑα3(‖x‖)

with ϑ ∈ (0, 1), and dh, d∆, M1(xk), M2(xk), M3 defined as in Theorem 1. The above inequality holds if

‖x‖ ≥ η � α−1
3

(
α4(δ)
ϑ

(
M1(xk)(t − tk) + M2(xk)(t − tk)2 + M3∆k

))
.

This implies, by [8], that there exists b := α−1
1 (α2(η)) > 0 such that ‖x(τ)‖ ≤ b, ∀τ ∈ [tk, t] if xk ∈ Bb and

if the following holds

α4(δ)
(
M1(xk)(t − tk) + M2(xk)(t − tk)2 + M3∆k

)
≤ ϑα3

(
α−1

2
(
α1(δ)

))
(25)

where we imposed the constraint b = δ. Equation (25) holds if the following inequalities hold

α4(δ)
(
M1(xk)(t − tk) + M2(xk)(t − tk)2

)
≤ ϑ1α3

(
α−1

2
(
α1(δ)

))
α4(δ)M3∆k ≤ ϑ2α3

(
α−1

2
(
α1(δ)

)) (26)

where we have set ϑ = ϑ1 + ϑ2, with ϑ1, ϑ2 ∈ (0, 1) and ϑ1 + ϑ2 < 1. Defining

∆max � ϑ2
α3

(
α−1

2
(
α1(δ)

))
α4(δ)M3

τs(xk) � max
{
t − tk : (26) is satisfied for each t − tk ∈ [0, τs(xk)]

}
− ∆max

τmin � min
xk∈Bδ

τs(xk)

I.24

and if we choose tk+1 = tk + τs(xk), then (26) holds for all t ∈ [tk + ∆k, tk+1 + ∆max] and for all k ≥ 0,

with ∆max non-negative. Since M1(xk), M2(xk) and M3 are non–negative and upper bounded for each

xk ∈ Bδ, and since α4, α3 ◦ α
−1
2 ◦ α1 ∈ K , then the first of (26) is a second degree inequality in the

form ay2 + by − c ≤ 0, where a, b are non–negative and bounded and c is strictly positive and bounded.

Therefore, for ϑ2 sufficiently small, tk+1 − tk = τs(xk) > ∆max ≥ 0 for each xk ∈ Bδ, and thus τmin is

strictly positive as well. This completes the proof. �

systems with a Lyapunov function fulfilling Assumption . Hence, condition (??) can be used to

determine a time instant t̄k > tk, while the application of Theorem 2 can be used to determine a value

δk. Hence, the next sampling time results to be t′k = t̄k + δk, which may be bigger those determined by

applying only Theorem 2.

2.5 Perturbed Systems

that there exists a nonempty set U of state feedback laws κ:Dx → Du, such that κ ∈ C`(Dx) and the

origin of the system (12) is asymptotically stable. �A generic system (10), subject to disturbances and

parameter variations, can be seen as the nominal system (11), perturbed by the term

dg � g(x, u, µ, d) = f (x, u, µ, d) − f0(x, u) � dg. (27)

Hence, (10) can be rewritten as follows

ẋ = f0(x, u) + g(x, u, µ, d). (28)

Definition 1 Under Assumption 2, and given the perturbed system (10) and a safe set Bδ, δ > 0, we

say that the perturbation (27) is δ–admissible if there exists a state feedback control law κ ∈ U and a

constant ϑg ∈ (0, 1) such that the function g(x, κ(x0), µ, d) satisfies

max
x,xk∈Bδ
d∈Dd
µ∈Dµ

‖g(x, κ(xk), µ, d)‖≤ν(δ)�ϑg
α3

(
α−1

2
(
α1(δ)

))
α4(δ)

(29)

with α1, α2, α3, α4 as in (14). �

The δ–admissible perturbations are those for which the safety problem with respect to a ball Bδ can be

solved using continuous time measurement and actuation, namely it is a necessary condition to achieve

safety with respect to Bδ using sampled measurements and actuations. Note that in condition (1) the

expression of ν(δ) can be explicitly computed.

I.25

The following theorem states that, if a system is asymptotically stabilizable using a continuous time

state feedback control law and the perturbation is δ–admissible, then it is possible to keep the state in a

boundary Bδ of the equilibrium point by applying a digital self triggered strategy.

Theorem 3 Under Assumption 2, Problem 2 is solvable for system (10) for any δ–admissible perturba-

tion (27), and the function τs can be iteratively computed as a function of the current state of the system

and the maximum allowable delay ∆max. �

Proof: Using the same reasoning as in the proof of Theorem 2, and since the perturbation is assumed

δ–admissible, we conclude that the following inequality

V̇ ≤ −(1 − ϑ)α3(‖x‖) − ϑα3(‖x‖) + α4(‖x‖)(‖dh‖ + ‖d∆‖ + ‖dg‖)

≤ −(1 − ϑ)α3(‖x‖)

with dg defined in (27), and dh, d∆ defined as in Theorem 1, holds when

α4(δ)
(
M1(xk)(t − tk) + M2(xk)(t − tk)2

)
≤ ϑ1α3

(
α−1

2
(
α1(δ)

))
α4(δ)M3∆k ≤ ϑ2α3

(
α−1

2
(
α1(δ)

)) (30)

where ϑ = ϑ1 + ϑ2 + ϑg, with ϑ1, ϑ2, ϑg ∈ (0, 1), and ϑ1 + ϑ2 < 1− ϑg, and M1(xk), M2(xk), M3 are as in

Theorem 1. Defining

∆max � ϑ2
α3

(
α−1

2
(
α1(δ)

))
α4(δ)M3

τs(xk) � max
{
t − tk : (30) is satisfied for each t − tk ∈ [0, τs(xk)]

}
− ∆max

τmin � min
xk∈Bδ

τs(xk)

and if we choose tk+1 = tk + τs(xk), then (30) holds for all t ∈ [tk + ∆k, tk+1 + ∆max] and for all k ≥ 0, with

∆max non-negative. Arguing as in the proof of Theorem 2, for ϑ2 sufficiently small, tk+1 − tk = τs(xk) >

∆max ≥ 0 for each xk ∈ Bδ, and thus τmin is strictly positive as well. This completes the proof. �

As discussed in Section 2.2, the choice of ϑ1, ϑ2 and ϑg corresponds to a simple tradeoff between

larger intersampling times (ϑ1), and robustness with respect to larger delays (ϑ2) and perturbations (ϑg).

Remark 4 Theorems 2 and 3 prove the existence of a self triggered strategy characterized by the time

sequence I = {tk}k≥0, with tk ≥ τmin > 0 for each k ≥ 0, such that the closed loop system satisfies a given

safety specification. Moreover, they provide a formula to explicitly compute the next sampling time tk+1

as a function of the state xk at time tk.

I.26

Although the simulation results, illustrated in Section 2.6, show strong benefits of the proposed self

triggered strategy with respect to controllers based on constant sampling, the sequence I might be con-

servative, in the sense that longer sampling times might be determined, because of the approximations

used in the proof. A trivial way to obtain a less conservative sequence I without introducing more

restricting assumptions is the use of Taylor expansions of order higher than 2.

2.6 An Example of Application of the Digital Self Triggered Robust Control

Consider the system defined in Example 1. As already shown, we can not imply the existence of a

stabilizing self triggered strategy. However, since Assumption 2 holds, Theorem 2 implies the existence

of a self triggered strategy that guarantees safety for an arbitrary small neighborhood of the equilibrium

point. In particular, since the origin of the system is locally exponentially stabilizable for ‖x‖ ≤ 2/3,

we define the safe set Bδ with δ = 10−4 < 2/3. We performed simulations using Matlab, with initial

condition x0 = (10−5, 10−5)T ∈ Bδ.

When a discrete time control law with constant sampling time greater than 2.1 s is used, the closed

loop system is unstable.

0 20 40 60 80 100
−1

−0.5

0

0.5

1
x 10

−5 (a)

0 20 40 60 80 100
−1

−0.5

0

0.5

1
x 10

−5 (b)

Figure 1: Self triggered control with ϑ1 = 0.99 and ϑ2 = 0.009: (a) x1; (b) x2 vs time

In Figure 1, the closed loop behavior is illustrated when the proposed self triggered control algorithm

is used, with ϑ1 = 0.99 and ϑ2 = 0.009. The closed loop system is not asymptotically stable, but is safe

with respect toBδ for the time interval [t0,∞). It is interesting to remark that the average sampling time is

I.27

6.2 s, i.e. more than 295% longer than the constant sampling time of 2.1 s that yields an unstable control

loop. Thus, using the proposed self triggered control algorithm, we achieve safety reducing of more

than 295% the battery energy consumption, with respect to an unstable control strategy with constant

sampling. However, since we have chosen ϑ2 = 0.009, we can only guarantee robustness with respect to

delays bounded by ∆max = 0.17 ms.

0 20 40 60 80 100
−1

−0.5

0

0.5

1
x 10

−5 (a)

0 20 40 60 80 100
−1

−0.5

0

0.5

1
x 10

−5 (b)

Figure 2: Self triggered control with ϑ1 = 0.5 and ϑ2 = 0.499: (a) x1; (b) x2 vs time

In Figure 2, the closed loop behavior is illustrated when the proposed self triggered control algorithm

law is used, with ϑ1 = 0.5 and ϑ2 = 0.499. The closed loop system is not asymptotically stable, but is

still safe with respect to Bδ for the time interval [t0,∞). However, since we have chosen ϑ1 = 0.5 in

order to be robust with respect to delays, the average sampling time 3 s is more conservative with respect

to the case ϑ1 = 0.99. Nevertheless, the average sampling time is almost 50% longer than the constant

sampling time of 2.1 s, that yields an unstable control loop. Since we have chosen ϑ2 = 0.009, we can

guarantee robustness with respect to delays bounded by ∆max = 9 ms. Thus, using the proposed self

triggered control algorithm, we achieve safety reducing of almost 50% the battery energy consumption,

with respect to an unstable control strategy with constant sampling, while guaranteeing robustness with

respect to delays bounded by ∆max = 9 ms.

I.28

3 Self Triggered Robust Control of Nonlinear Stochastic
Systems

In this section we consider the self–triggered stabilization problem for the class of stochastic systems,

where the input generically enters both in the deterministic dynamics and in those affected by noise. This

class of system is of particular interest since in practice various disturbances, not measurable, may affect

the dynamics. We assume that the state equations are described by an Itô differential equation driven by

a Wiener noise [24], [27], [28].

3.1 Problem Formulation

We consider nonlinear stochastic systems of the form

dx(t) = f0(x, u)dt +

m∑
j=1

g0 j(x, u)dξ j(t) (31)

where x ∈ Dx ⊂ rn, Dx is a domain containing the origin, u ∈ Du ⊂ rp, f0, g0 j : Dx × Du → rn,

j = 1, · · · ,m are sufficiently smooth vector fields, such that f0(0, 0) = 0, g0 j(0, 0) = 0, j = 1, · · · ,m.

Moreover, {ξ(t) = (ξ1(t), · · · , ξm(t))T , t ≥ 0} is a standard Rm–valued Wiener process, defined on the

usual complete probability space (Ω,F , (Ft)t≥0, P), with (Ft)t≥0 the complete right–continuous filtration

generated by ξ and F0 contains all P–null sets. It is worth stressing that in (31) the control appears either

in the deterministic or in the stochastic terms [16], [17].

Given a continuous state feedback control law κ:Dx → Du, the closed loop system is

dx(t) = f0(x, κ(x)) dt +

m∑
j=1

g0 j(x, κ(x)) dξ j(t) (32)

and we will denote by x(t), t ≥ t0, the solution of the closed loop system (32), with initial condition

x0 = x(t0). It is well–known that if the origin of system (32) is locally asymptotical stable in probability

for a certain feedback κ, and if f0(x, κ(x)) ∈ C`(Dx), ` > 1 integer, then there exists a Lyapunov function

I.29

V(x) of class C2(Dx) such that [25], [26]

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖)

LV(x) ≤ −α3(‖x‖)∥∥∥∥∥∂V(x)
∂x

∥∥∥∥∥ ≤ α4(‖x‖)∥∥∥∥∥∂2V(x)
∂x2

∥∥∥∥∥ ≤ α5(‖x‖)

(33)

with αi ∈ K , i = 1, · · · , 5. The infinitesimal generator associated to (32), obtain by differentiating V in

the sense of Itô, is given by

LV(x) =
∂V(x)
∂x

f0(x, κ(x)) +
1
2

m∑
j=1

Tr
(
gT

0 j(x, κ(x))
∂2V
∂x2 g0 j(x, κ(x))

)
. (34)

Here, the matrix ∂2V(t, x)/∂x2 is the Hessian matrix of the second order partial derivatives, and Tr(·)

denotes the trace of a matrix.

Clearly, the feedback control signal u(t) = κ(x(t)) requires continuous measurements of the state of

the system. In view of an implementation of κ(x(t)) by means of digital devices, with variable sampling

intervals δk, in the following we consider its digital version

u(t) = κ(xk), ∀t ∈ [tk, tk+1 = tk + δk), k ≥ 0 (35)

one needs to determine these sampling instants tk so that the stability property of the origin is preserved

in probability. Following the approach developed in [14], [11], [4], [13], [5], [6], the aim is hence to

determine on–line a sequence of strictly positive sampling intervals δk > 0, i.e. a sequence {tk}k≥0 of

sampling times, such that the origin of

dx(t) = f0(x, κ(xk))dt +

m∑
j=1

g0 j(x, κ(xk))dξ j(t) (36)

is asymptotically stable in probability.

It is worth noting that to require δk > 0 means that there exists a minimum sampling time 0 < δk ≤

τmin, ∀ k ≥ 0, which in turns will ensure that no Zeno behavior can occur. Hence, the time interval

between two sampling instants is lower bounded by τmin > 0.

The philosophy behind the self–triggered control is obvious: the control is performed only when

necessary for guaranteeing the control objectives. This clearly reduces the transmission power of the

sensing and actuation data transmissions, as well as the control effort of the digital device computing the

control.

I.30

3.2 Self Triggered Stabilizing Control

The result developed in this section is based on the following assumption, analogous to the assumptions

used in [14], [6] in the case of a deterministic systems.

Assumption 3 Assume that

1. f0, g0 ∈ C`(Dx ×Du), with ` a positive integer sufficiently large;

2. There exists a nonempty set U of state feedback laws κ:Dx → Du, such that κ ∈ C`(Dx) and the

origin of (32) is asymptotically stable in probability, with region of attraction a certain compact

Ω ⊂ Dx;

3. The functions α3, α4, α5 ∈ K in (33) are such that α−1
3 , α4, α5 are Lipschitz. �

The assumption of sufficient regularity of the functions f0, g0 is required in order to ensure the de-

termination of the next sampling time, making use of a Taylor expansion, analogous to that used in [6].

The assumption of existence of a stabilizing control is not restrictive, since if the nominal system cannot

be stabilized in probability using continuous time measurements and actuations, then it is clear that the

nominal system cannot be stabilized using a digital control with zero–order holders. Finally, the Lip-

schitz assumption on α−1
3 , α4, α5 is required to write a simple stability condition, as used in [14], and

represents the main limitation of this approach.

Using Assumption 3, one can state the following result.

Theorem 4 Let us consider the nonlinear stochastic system (31). Under Assumption 3, there exist a

piece–wise constant state feedback control law (35), and a sequence of strictly positive sampling inter-

vals δk > 0, such that the origin of the closed loop system (36) is asymptotically stable in probability. �

Proof: Since U is not empty, by Assumption 3, we pick a state feedback control law κ ∈ U. Since

f0(x, κ(x)) ∈ C`(Dx) with ` > 1, there exists a Lyapunov candidate (33). Let us choose r > 0 such that

the ball Br = {x ∈ Ω | ‖x‖ ≤ r} ⊂ Ω.

For xk ∈ Br, the infinitesimal generator associated to (36) is given by

LV(xk) =
∂V
∂x

f0(x, κ(xk)) +
1
2

m∑
j=1

Tr
(
gT

0 j(x, κ(xk))
∂2V
∂x2 g0 j(x, κ(xk))

)

I.31

which can be rewritten as

LV(xk) =
∂V
∂x

f0(x, κ(x)) +
∂V
∂x

(
f0(x, κ(xk)) − f0(x, κ(x))

)
+

1
2

m∑
j=1

Tr
(
gT

0 j(x, κ(x))
∂2V
∂x2 g0 j(x, κ(x))

)

+
1
2

m∑
j=1

Tr
([

g0 j(x, κ(xk)) − g0 j(x, κ(x))
]T
×
∂2V
∂x2

[
g0 j(x, κ(xk)) − g0 j(x, κ(x))

])

+

m∑
j=1

Tr
(
gT

0 j(x, κ(xk))
∂2V
∂x2 g0 j(x, κ(x))

)
−

m∑
j=1

Tr
(
gT

0 j(x, κ(x))
∂2V
∂x2 g0 j(x, κ(x))

)
.

(37)

Note that

1
2

Tr
([

g0 j(x, κ(xk)) − g0 j(x, κ(x))
]T
×
∂2V
∂x2

[
g0 j(x, κ(xk)) − g0 j(x, κ(x))

])
≤

n
2

∥∥∥∥[g0 j(x, κ(xk)) − g0 j(x, κ(x))
]T
×
∂2V
∂x2

[
g0 j(x, κ(xk)) − g0 j(x, κ(x))

]∥∥∥∥
∞

≤
n
√

n
2

∥∥∥∥[g0 j(x, κ(xk)) − g0 j(x, κ(x))
]T
×
∂2V
∂x2

[
g0 j(x, κ(xk)) − g0 j(x, κ(x))

]∥∥∥∥
≤

n
√

n
2

∥∥∥∥g0 j(x, κ(xk)) − g0 j(x, κ(x))
∥∥∥∥2

∥∥∥∥∥∂2V
∂x2

∥∥∥∥∥
for all j = 1, · · · ,m. Similarly, the sum of the two last terms of (37) are such that

Tr
([

g0 j(x, κ(xk)) − g0 j(x, κ(x))
]T ∂2V
∂x2 g0 j(x, κ(x))

])
≤ n

∥∥∥∥[g0 j(x, κ(xk)) − g0 j(x, κ(x))
]T ∂2V
∂x2 g0 j(x, κ(x))

∥∥∥∥
∞

≤ n
√

n
∥∥∥∥[g0 j(x, κ(xk)) − g0 j(x, κ(x))

]T
×
∂2V
∂x2 g0 j(x, κ(x))

∥∥∥∥
≤ n
√

n
∥∥∥g0 j(x, κ(xk)) − g0 j(x, κ(x))

∥∥∥ × ∥∥∥g0 j(x, κ(x))
∥∥∥ ∥∥∥∥∥∂2V

∂x2

∥∥∥∥∥.
Using these bounds, one obtains

LV(xk) ≤ −α3(‖x‖) + α4(‖x‖)‖dh, f ‖ +
n
√

n
2

α5(‖x‖)
m∑

j=1

‖dh,g j‖
2

+ n
√

nα5(‖x‖)
m∑

j=1

‖dh,g j‖‖g0 j(x, κ(x))‖
(38)

where
dh, f = f0(x(t), κ(x(tk))) − f0(x(t), κ(x(t)))

dh,g j = g0 j(x(t), κ(x(tk))) − g0 j(x(t), κ(x(t)))

j = 1, · · · ,m, are terms that can be regarded as perturbations, due to the holding, and acting on the control

system (32).

I.32

Under Assumption 3, there exists a time interval [tk, tk + εk] such that (36) has a unique solution x(t).

Hence, it is possible to expand in Taylor series the ith components dh, f ,i, dh,g j,i of dh, f , dh,g j , j = 1, · · · ,m,

with respect to t ∈ [tk, tk + εk], on the right of tk, with the Lagrange remainder. Denoting by dn
+(·)/dtn the

n–th right derivative, and proceeding as in [6], one works out

dh, f ,i = ϕ1,i(xk)(t − tk) + ϕ2,i(x̄i, xk)(t − tk)2

dh,g j,i = ϕ3 j,i(xk)(t − tk) + ϕ4 j,i(x̄i, xk)(t − tk)2
(39)

for j = 1, · · · ,m, where we have defined

ϕ1,i(xk) = dh, f ,i
∣∣∣
x(t)=xk

ϕ2,i(x̄i, xk) =
1
2

d2
+dh, f ,i

dt2

∣∣∣∣∣∣
x(t)=x̄i

ϕ3 j,i(xk) = dh,g j,i
∣∣∣
x(t)=xk

ϕ4 j,i(x̄i, xk) =
1
2

d2
+dh,g j,i

dt2

∣∣∣∣∣∣∣
x(t)=x̄i

.

The Taylor theorem with the Lagrange remainder ensures the existence of time instants t̄i ∈ [tk, t], with

x̄i = x(t̄i), i = 1, · · · , n, such that the equalities (39) hold. Denoting by x̄ = (x̄1, · · · , x̄n) the corresponding

point, one obtains
‖dh, f ‖ ≤ ‖ϕ1(xk)‖(t − tk) + ‖ϕ2(x̄, xk)‖(t − tk)2

‖dh,g j‖ ≤ ‖ϕ3 j(xk)‖(t − tk) + ‖ϕ4 j(x̄, xk)‖(t − tk)2
(40)

where
ϕp(xk) =

(
ϕp,1(xk), · · · , ϕp,n(xk)

)T

ϕq(x̄, xk) =
(
ϕq,1(x̄1, xk), · · · , ϕq,n(x̄n, xk)

)T

for p = 1, 3 j and q = 2, 4 j, j = 1, · · · ,m. Moreover, let us consider the level set ΩV(xk), and define

Mp(xk)= ‖ϕp(xk)‖, p = 1, 3 j

Mq(xk)= max
x̄∈ΩV(xk)

‖ϕq(x̄, xk)‖, q = 2, 4 j.

Since f0, g0 j, κ ∈ C` and ΩV(xk) is compact, then Mp(xk) is finite for any xk ∈ ΩV(xk), and Mq(xk) ∈ r+

exists and is finite for any xk ∈ ΩV(xk).

Finally, one can introduce the terms

Cg0 j = max
x∈ΩV(xk)

∥∥∥g0 j(x, κ(x))
∥∥∥, j = 1, · · · ,m

I.33

which exist and are finite on the compact set ΩV(xk), so that the infinitesimal generator (38) associated

to (36) can be written as follows

LV(xk) ≤ −α3(‖x‖) + α4(‖x‖)‖dh, f ‖ +
n
√

n
2

α5(‖x‖)
m∑

j=1

(
‖dh,g j‖ + 2Cg0 j‖dh,g j‖

)
= −α3(‖x‖) + α4(‖x‖)‖dh, f ‖ +

n
√

n
2

α5(‖x‖)
m∑

j=1

((
‖dh,g j‖ + Cg0 j

)2
−C2

g0 j

)
.

(41)

In what follows we will show that, for each term in (41) which is not negative definite, one can consider

a negative definite term that ensures the negativity of the whole LV , at least for small (but nonzero) time

intervals. For, let us consider ϑ =
∑m

j=0 ϑ j < 1, with ϑ j ∈ (0, 1), j = 0, · · · ,m, and let us require that

α4(‖x‖)‖dh, f ‖ ≤ ϑ0α3(‖x‖)

n
√

n
2

α5(‖x‖)
((
‖dh,g j‖ + Cg0 j

)2
−C2

g0 j

)
≤ ϑ jα3(‖x‖)

j = 1, · · · ,m

(42)

are satisfied. Conditions (42) will determine a time instant tk+1 = tk + δk < tk + εk, and hence a positive

time interval δk in which the infinitesimal generator is negative definite. In fact, using (40), equations (42)

are satisfied if

α−1
3

(1
ϑ0
α4(‖x‖)

(
M1(xk)(t − tk) + M2(xk)(t − tk)2

))
≤ ‖x‖

α−1
3

(n
√

n
2ϑ j

α5(‖x‖)
[(

M3 j(xk)(t − tk) + M4 j(xk)(t − tk)2 + Cg0 j

)2
−C2

g0 j

])
≤ ‖x‖

for j = 1, · · · ,m. Since α−1
3 , α4 and α5 are Lipschitz, then equations (42) are satisfied if

1
ϑ0

Lα−1
3

Lα4‖x‖
(
M1(xk)(t − tk) + M2(xk)(t − tk)2

)
≤ ‖x‖

n
√

n
2ϑ j

Lα−1
3

Lα5‖x‖
[(

M3 j(xk)(t − tk) + M4 j(xk)(t − tk)2 + Cg0 j

)2
−C2

g0 j

]
≤ ‖x‖

for all j = 1, · · · ,m, where Lα−1
3
, Lα4 , Lα5 > 0 are the Lipschitz constants of α−1

3 , α4, α5, respectively.

These equations imply that (42) are satisfied under the sufficient conditions

M1(xk)(t − tk) + M2(xk)(t − tk)2 ≤
ϑ0

Lα−1
3

Lα4

M3 j(xk)(t − tk) + M4 j(xk)(t − tk)2 ≤


√

1 +
2ϑ j

n
√

n
1

C2
g0 j Lα−1

3
Lα5

− 1

Cg0 j

(43)

for j = 1, · · · ,m. Defining

δk = min max
{
t − tk | (43) are satisfied, j = 1, · · · ,m

}
I.34

and choosing tk+1 = tk + δk, then

LV(x) ≤ −(1 − ϑ)α3(‖x‖)

for all t ∈ [tk, tk+1] and for all k ≥ 0. This implies that the origin is asymptotically stable in probability.

Equations (43) are second degree inequalities in the form a(xk)y2 + b(xk)y ≤ c, where a(xk), b(xk) are

non-negative and upper bounded for each xk ∈ Dx, and c is strictly positive and upper bounded. This

trivially implies that δk, ∀ k ≥ 0, are strictly positive for each xk ∈ ΩV(xk), and thus a minimum dwell

time does exists, so ensuring that δk does not go to zero as k → ∞. �

Remark 5 From the proof of the previous result, it is clear that the main difference between the deter-

ministic and the stochastic case consists of the fact that the sampling period has to satisfy extra condi-

tions [6]. In fact, while in the deterministic case one can determine a sampling sequence {δk} solving

only the first of conditions (43), in the stochastic case one needs to satisfy m additional conditions given

by the second of (43). Therefore, in the stochastic case the self–triggered control strategy will determine,

in general, more restrictive (shorter) sampling times. �

3.3 Self Triggered Safety Control

The main limitation of the results developed in Section 3.2 is the Lipschitz continuity assumption of

α−1
3 (·). In fact, if α−1

3 (·) is not Lipschitz, the next sampling time tk + δk goes to zero as xk approaches

the equilibrium point, and this might generate Zeno behaviors. Hence, in the spirit of the self triggered

safety control addressed in [6], in this section we will show that it is possible to keep the state arbitrarily

close to the equilibrium point by applying a self triggering strategy. The solution of this problem will not

require the Lipschitz assumption on α−1
3 .

In the following definition, an invariant property is used to define that a system is almost surely (a.s.)

safe with respect to a given subset of the state space.

Definition 2 Given a state feedback control law κ, system (32) is a.s. safe with respect to the set S ⊆ Dx

for the time interval T ⊆ r+, if x(t) ∈ S, ∀t ∈ T a.s. �

Given the system (31), a stabilizing state feedback control law κ, and an arbitrary safe set Bδ = {x ∈

rn | ‖x‖ < δ} ⊂ Dx, the objective is to determine a sequence of strictly positive sampling intervals δk > 0

and a piece–wise constant state feedback control law, as in the previous section, such that the closed loop

system (32) is a. s. safe with respect to Bδ, for the time interval [t0,∞). �

The results developed in this section are based on the following.

I.35

Assumption 4 Assume that f0, g0 j ∈ C`(Dx × Du), j = 1, · · · ,m, with ` a positive integer sufficiently

large. Assume that there exists a nonempty set U of state feedback laws κ:Dx → Du, such that κ ∈

C`(Dx) and the origin of the system (32) is asymptotically stable in probability. �

The following theorem states that if a system is almost surely asymptotically stabilizable, using a

continuous time state feedback control law, then it is always possible to keep the state arbitrarily close to

the equilibrium point by applying a digital self triggering strategy. Note that, in order to guarantee that

the state is arbitrarily close to the equilibrium point, we still need the stabilizability assumption.

Theorem 5 Given the system (31) and a safe set Bδ, δ > 0, under Assumption 4 there exist piece–wise

constant state feedback control law (35) and a sequence of strictly positive sampling intervals δk > 0

such that the closed loop system (32), (35) is almost surely safe with respect to Bδ, for the time interval

[t0,∞). �

Proof: The proof of Theorem (5) follows the same arguments of Theorem (4).

3.4 A Simple Illustrative Example

In order to illustrate the propose approach, let us consider the following system

dx =
(
Ax + Bu + f (x, u)

)
dt + Cxdw

= f0(x, u)dt + g0(x, u)dw

with

f0(x, u) =

(
−x1 + x2 + x2

1
(1 + x1)u

)
, C =

(0 −1
−1 0

)
.

Let us consider the continuous control u = κ(x) = −x2 ∈ U, and the Lyapunov candidate V(x) = xT Px,

with P solution of the Lyapunov equation

PAc + AT
c P + CT PC = −R

with R a symmetric positive definite matrix, and

Ac =

(
−1 1
0 −1

)
.

If

R =

(
−2 0
0 −3

)

I.36

the matrix

P =

(3 1
1 4

)
is a solution of the Lyapunov equation, with λP

min � 2.382, λP
max � 4.618 the minimum and the maximum

eigenvalue of P, respectively.

The infinitesimal generator associated to the previous system, for ‖x‖ ≤ 1/3 satisfies

LV ≤ −2x2
1 − 3x2

2 + 6|x1|
3 + 8|x1|x2

2

≤ −2x2
1 − 3x2

2 + 6(1/3)x2
1 + 8(1/3)x2

2 ≤ −
1
3
‖x‖2.

Thus, the origin of the system is almost surely exponentially stable in probability, with

α1= λP
min‖x‖

2, α2 = λP
max‖x‖

2, α3 = ‖x‖2/3

α4= λP
max‖x‖, α5 = ‖2P‖.

It is clear that Assumption 3 is not satisfied, since α−1
3 is not Lipschitz. For this reason, we can not

imply the existence of a stabilizing self triggered strategy. However, Theorem 5 implies the existence of

a self triggered strategy that guarantees almost surely safety for an arbitrary small neighborhood of the

equilibrium point. Since the origin is locally stabilizable in probability for ‖x‖ ≤ 1/3, we can define the

safe set as the ball Bδ with δ = 10−4 < 1/3.

I.37

4 Implementation Features about Control Algorithms in
Digital Logic Devices

In the digital logic system scenario, there are many architectures suitable for realizing different kinds

of control algorithms considering performances in terms of timing, power consumption and resources

availability.

In this section a brief introduction about microprocessors and custom devices for digital processing is

presented, in order to obtain an evaluation about benefits and drawbacks. DSP processors are described

in their features and logic functioning, focusing on how they tend to be integrated in wider systems

including FPGAs, memories, peripherals, etc. Moreover, FPGA technology is depicted in the control

environment explaining how designers are trying to exploit their potentialities in applications of parallel

computation, control and digital signal processing.

4.1 General Description of DSP Systems

The informal definition of digital signal processing is the application of mathematical operations to

digitally represent and elaborate signals. Often, samples are obtained from physical signals (for example,

audio signals) through the use of transducers (such as microphones) and analog-to-digital converters.

After mathematical processing, digital signals may be converted back to physical signals via digital-

to-analog converters. In some systems, the use of DSP is crucial for the operation of the system. For

example, modems and digital cellular telephones rely very heavily on DSP technology. In other products,

the use of DSP is less central, but often offers important competitive advantages in terms of features,

performance, and costs. For example, manufacturers of primarily analog consumer electronics devices

like audio amplifiers are beginning to employ DSP technology to provide new features.

4.1.1 DSP Advantages

Digital signal processing enjoys several advantages over analog signal processing. The most significant

of these is that DSP systems are able to accomplish tasks inexpensively that would be difficult or even

impossible using analog electronics. Examples of such applications include speech synthesis, speech

recognition, and high-speed control techniques. DSP systems also enjoy two additional advantages over

I.38

analog systems:

1. Low sensitivity to the environment. Digital systems, by their nature, are considerably less sensitive

to environmental conditions than analog systems. For example, an analog circuit’s behavior de-

pends strictly on its temperature. In contrast, barring catastrophic failures, a DSP system’s delivers

the same response for little temperature changes.

2. Insensitivity to component tolerances. Analog components are manufactured to particular tolerances-

a resistor, i.e., might be guaranteed to have a resistance within 1 percent of its nominal value. The

overall response of an analog system depends on the actual values of all of the analog compo-

nents used. As a result, two analog systems of exactly the same design will have slightly different

responses due to slight variations in their components. In contrast, correctly functioning digital

components always produce the same outputs given the same inputs.

These two advantages combine synergistically to give DSP systems an additional benefit over analog

systems:

3. Predictable, repeatable behavior. Because a DSP system’s output does not vary due to environmen-

tal factors or component variations, it is possible to design systems having exact, known responses.

Finally, some DSP systems may also have two other advantages over analog systems:

4. Reprogrammability. If a DSP system is based on programmable processors or programmable

logic devices (PLD) in general, it can be reprogrammed, even in the field, to perform other tasks.

In contrast, analog systems require physically different components to perform different tasks.

5. Size. The size of analog components varies related to their values.

These advantages, coupled with the fact that DSP can take advantage of the rapidly increasing density

of digital integrated circuit manufacturing processes, increasingly make DSP the solution of choice for

signal processing.

4.1.2 DSP Systems Features

In this section a number of characteristics common to all DSP systems are described, such as algorithms,

sample rate, clock rate, and arithmetic types.

I.39

1. Algorithms

DSP systems are often characterized by algorithms. The algorithm specifies the arithmetic oper-

ations to be performed but does not specify how that arithmetic is to be implemented. It might

be implemented in software on an ordinary microprocessor or in a programmable signal proces-

sor, or it might be implemented in custom integrated circuits. The selection of an implementation

technology is determined in part by the required speed and arithmetic precision.

2. Sample Rates

A key characteristic of a DSP system is its sample rate: the rate at which samples are consumed,

processed, or produced. Combined with the complexity of the algorithms, the sample rate de-

termines the required speed of the implementation technology. A familiar example is the digital

audio compact disc (CD) player, which produces samples at a rate of 44.1 kHz on two channels.

Of course, a DSP system may use more than one sample rate; such systems are said to be multi-

rate DSP systems. An example is a converter from the CD sample rate of 44.1 kHz to the digital

audio tape (DAT) rate of 48 kHz. Because of the awkward ratio between these sample rates, the

conversion is usually done in stages, typically with at least two intermediate sample rates. An-

other example of a multirate algorithm is a filter bank, used in applications such as speech, audio,

and video encoding and some signal analysis algorithms. Filter banks typically consist of stages

that divide the signal into high and low frequency portions. These new signals are then down-

sampled (i.e., their sample rate is lowered by periodically discarding samples) and divided again.

In multirate applications, the ratio between the highest and the lowest sample rates in the system

can become quite large, sometimes exceeding 100,000. The range of sample rates encountered in

signal processing systems is huge. Sample rates for applications range over 12 orders of magni-

tude. Only at the very top of that range is digital implementation rare. This is because the cost

and difficulty of implementing a given algorithm digitally increases with the sample rate. DSP

algorithms used at higher sample rates tend obviously to be simpler than those used at lower sam-

ple rates. Many DSP systems must meet extremely rigorous speed goals, since they operate on

lengthy segments of real world signals in real–time. Where other kinds of systems (like databases)

may be required to meet performance goals on average, real–time DSP systems often must meet

such goals in every instance. In such systems, failure to maintain the necessary processing rates

is considered a serious malfunction. Such systems are often said to be subject to hard realtime

constraints.

I.40

3. Clock Rates

Digital electronic systems are often characterized by their clock rates. The clock rate usually

refers to the rate at which the system performs its most basic unit of work. In mass-produced,

commercial products, clock rates of up to 100 MHz are common, with faster rates found in some

high–performance products. For DSP systems, the ratio of system clock rate to sample rate is

one of the most important characteristics used to determine how the system will be implemented.

The relationship between the clock rate and the sample rate partially determines the amount of

hardware needed to implement an algorithm with a given complexity in real–time. As the ratio of

sample rate to clock rate increases, so does the amount and complexity of hardware required to

implement the algorithm.

4. Numeric Representations

Figure 3: Numerical representation in DSP processors

Arithmetic operations such as addition and multiplication are at the heart of DSP algorithms and

systems [39]. As a result, the numeric representations and type of arithmetic used can have a profound

influence on the behavior and performance of a DSP system. The most important choice for the designer

is between fixed–point and floating–point arithmetic. Fixed-point arithmetic represents numbers in a

fixed range (e.g., −1.0 to +1.0) with a finite number of bits of precision (called the word width). For

example, an eight-bit fixed–point number provides a resolution of 1/256 of the range over which the

I.41

number is allowed to vary. Numbers outside of the specified range cannot be represented; arithmetic

operations that would result in a number outside this range either saturate (that is, are limited to the

largest positive or negative representable value) or wrap around (that is, the extra bits resulting from the

arithmetic operation are discarded).

Figure 4: Simple binary integer representation

Floating–point arithmetic greatly expands the representable range of values. Floating–point arith-

metic represents every number in two parts: a mantissa and an exponent. The mantissa is, in effect,

forced to lie between −1.0 and +1.0, while the exponent keeps track of the amount by which the man-

tissa must be scaled (in terms of powers of two) in order to create the actual value represented.

That is: value = mantissa × baseexponent. Floating–point arithmetic provides much greater dynamic

range (that is, the ratio between the largest and smallest value that can be represented) than fixed–point

arithmetic. Because it reduces the probability of overflow and the necessity of scaling, it can considerably

simplify algorithm and software design. Unfortunately, floating–point arithmetic is generally slower and

more expensive than fixed–point arithmetic, and is more complicated to implement in hardware than

I.42

Figure 5: Simple binary fractional representation

fixed point arithmetic.

4.1.2.1 Fixed–Point Versus Floating–Point

The earliest DSP processors used fixed–point arithmetic, and in fact fixed–point DSPs still dominate

today. The algorithms and hardware used to implement fractional arithmetic are virtually identical to

those used for integer arithmetic. The main difference between integer and fractional arithmetic has to

do with how the results of multiplication operations are handled. In practice, most fixed–point DSP

processors support fractional arithmetic and integer arithmetic. The former is most useful for signal

processing algorithms, while the latter is useful for control operations, address calculations, and other

I.43

Figure 6: Simplified binary floating–point representation, comprised of a mantissa (fraction part) and an
exponent

operations that do not involve signals. With the floating–point representation instead, system designers

have access to wider dynamic range (the ratio between the largest and smallest numbers that can be

represented) and in many cases better precision.

Our definition of precision is based on the idea of the quantization error. This is the numerical

error introduced when a longer numeric format is converted to a shorter one. The greater the possible

quantization error relative to the size of the value represented, the less precision is available. For a fixed–

point format, we define the maximum available precision to be equal to the number of bits in the format.

For example, a 16–bit fractional format provides a maximum 16 bits of precision. This definition is based

on computing the ratio of the size of the value represented to the size of the maximum quantization error

I.44

that could be suffered when converting from a more precise representation via rounding. Formally stated

maximum precision (in bits) = log2 (maximum value /maximum quantization error).

For a 16–bit fractional representation, the largest-magnitude value that can be represented is -1.0. When

converting to a 16–bit fractional format from a more precise format via rounding, the maximum quanti-

zation error is 2−16. Using the relation above, we can compute that this format has a maximum precision

of log2(1/216), or 16 bits, the same as the format’s overall width.

Note that if the value being represented has a smaller magnitude than the maximum, the precision

obtained is less than the maximum available precision. This underscores the importance of careful signal

scaling when using fixed–point arithmetic. Scaling is used to maintain precision by modifying the range

of signal values to be near the maximum range of the numeric representation used.

Using this same definition for a floating–point format, the maximum available precision is the number

of bits in the mantissa, including the implied integer bit. Because floating–point processors automatically

scale all values so that the implied integer bit is equal to 1, the magnitude of the mantissa is restricted

to be at least 1.0. This guarantees that the precision of any floating–point value is no less than half of

the maximum available precision. Thus, floating–point processors maintain very good precision with no

extra effort on the part of the programmer.

In practice, floating–point DSPs generally use a 32–bit format with a 24–bit mantissa and one im-

plied integer bit, providing 25 bits of precision. Most fixed–point DSPs use a 16–bit format, providing

16 bits of precision. So, while in theory the choice between fixed and floating–point arithmetic could

be independent of the choice of precision, in practice floating–point processors usually provide higher

precision.

As mentioned above, dynamic range is defined as the ratio between the largest and smallest number

representable in a given data format. It is in this regard that floating–point formats provide their key

advantage. So, while using the same number of bits as the fixed–point format, the floating–point format

provides dramatically higher dynamic range. In applications, dynamic range translates into a range of

signal magnitudes that can be processed while maintaining sufficient fidelity. Different applications have

different dynamic range needs. For telecommunications applications, dynamic range in the neighbor-

hood of 50 dB is usually sufficient. For high-fidelity audio applications, 90 dB is a common benchmark.

It’s often helpful, though, if the processor’s numeric representation and arithmetic hardware have some-

what more dynamic range than the application demands, as this frees the programmer from some of the

painstaking scaling that may otherwise be needed to preserve adequate dynamic range.

I.45

Floating–point DSP processors are generally costlier than their fixed–point cousins, but easier to

program. The increased cost results from the more complex circuitry required within the floating–point

processor, which implies a larger chip. In addition, the larger word sizes of floating–point processors

often means that off-chip buses and memories are wider, raising overall system costs.

The ease–of–use advantage of floating–point processors is due to the fact that in many cases the

programmer does not have to be concerned about dynamic range and precision. On a fixed–point pro-

cessor, in contrast, programmers often must carefully scale signals at various stages of their programs to

ensure adequate numeric performance with the limited dynamic range and precision of the fixed–point

processor.

Most high–volume, embedded applications use fixed–point processors because the priority is low

cost. Programmers and algorithm designers determine the dynamic range and precision needs of their

application, either analytically or through simulation, and then add scaling operations into the code if

necessary. For applications that are less cost–sensitive, or that have extremely demanding dynamic range

and precision requirements, or where ease of programming is paramount, floating–point processors have

the advantage.

4.1.2.2 Native Data Word Width

The native data word width of a processor is the width of data that the processor’s buses and data path

can manipulate in a single instruction cycle. The size of the data word has a major impact on processor

cost because it strongly influences the size of the chip and the number of package pins required as well

as the size and number of external memory devices connected to the DSP. Therefore, designers try to use

the chip with the smallest word size that their application can tolerate.

As with the choice between fixed–point and floating–point chips, there is often a trade-off between

word size and development complexity. An application that appears to require 24–bit data for adequate

performance can sometimes be coaxed into a 16–bit processor at the cost of more complex algorithms

and/or programming.

4.1.2.3 Extended Precision

Extended precision means the use of data representations that provide higher precision than that of a

processor’s native data format. Extended precision can be obtained in two ways. First, many fixed and

floating–point processors provide built-in support for an extended precision format for operations taking

place exclusively within the data path of the processor. This means that as long as a series of arithmetic

operations is carried out exclusively within the processor’s data path and does not involve transferring

I.46

intermediate results to and from memory, a data word width larger than the native data word width is

available.

This allows a series of arithmetic operations to be performed using extra precision and/or dynamic

range, with a final rounding operation performed when the result is stored to memory. Second, it’s gen-

erally possible, though often painful, to perform multiprecision arithmetic by constructing larger data

words out of sequences of native-width data words. For example, with a 16–bit fixed–point processor,

a programmer can form 32–bit data words by stringing together pairs of 16–bit words. The program-

mer can implement multiprecision arithmetic operations by using the appropriate sequences of single-

precision instructions. Of course, because each multiprecision arithmetic operation requires a sequence

of single–precision instructions, multiprecision arithmetic is much slower than single-precision.

However, some processors provide features that ease multiprecision arithmetic. These include the

ability to preserve the carry bit resulting from a single-precision addition operation for use as an input

into a subsequent addition, and the ability to treat multiplication operands as signed or unsigned under

program control. If the bulk of an application can be handled with single-precision arithmetic, but higher

precision is needed for a small section of the code, then the selective use of multiprecision arithmetic

may make sense. If most of the application requires higher precision, then a processor with a larger

native data word size may be a better choice, if one is available.

4.1.2.4 Floating–Point Emulation and Block Floating–Point

Even when using a fixed–point processor, it is possible to obtain the precision and dynamic range

of general-purpose floating–point arithmetic by using software routines that emulate the behavior of a

floating–point processor. Some processor manufacturers provide a library of floating–point emulation

routines for their fixed–point processors. If a library is not available, then the emulation routines must be

written by the user. Floating–point routines are usually very expensive to execute in terms of processor

cycles. This implies that floating–point emulation may be appropriate if only a very small part of the

arithmetic computations in a given application require floating–point. If a significant amount of floating–

point arithmetic is needed, then a floating–point processor is usually the appropriate choice. Another

approach to obtaining increased precision and dynamic range for selected data in a fixed–point processor

implementation is a block floating–point representation. With block floating–point, a group of numbers

with different mantissas but a single, common exponent is treated as a block of data. Rather than store

the exponent within part of each data word as is done with general purpose floating–point, the shared

exponent is stored in its own separate data word. For example, a block of eight data values might

share a common exponent, which would be stored in a separate data word. In this case, storage of an

I.47

entire block of eight data values would require nine memory locations (eight for the mantissas and one

for the exponent). Block floating–point is used to maintain greater dynamic range and precision than

can be achieved with the processor’s native fixed–point arithmetic formats. The conversion between

the processor’s native fixed–point format and block floating–point format is performed explicitly by the

programmer through software. Some processors have hardware features to assist in the use of block

floating–point formats. The most common of these is an “exponent detect” instruction. This instruction

computes the shift needed to convert a high-precision intermediate result (for example, a value in an

accumulator) to block floating–point format.

4.1.2.5 IEEE–754 Floating–Point

In 1985, the Institute of Electrical and Electronics Engineers released IEEE Standard 754 [IEE85],

which defines standard formats for floating–point data representations and a set of standard rules for

floating–point arithmetic. The rules specify, for example, the rounding algorithms that should be pro-

vided in a floating–point processor and how the processor should handle arithmetic exception conditions,

such as divide by zero or overflow. A few commercial DSP processors provide partial hardware support

for IEEE–754 floating–point formats and arithmetic. The Motorola DSP96002 features hardware support

for single precision floating–point arithmetic as specified in IEEE–754. The Analog Devices ADSP–

210xx family processors provide nearly complete hardware support for single-precision floating–point

arithmetic as specified in the standard. Some other floating–point processors, such as the ATT DSP32xx,

do not internally conform to IEEE–754, but do provide special hardware for fast conversion of numbers

between the processor’s internal floating–point representation and IEEE–754 representation. Hardware

support for format conversion can be important in applications that require a non-IEEE–754-compliant

DSP to interface with other processors that use the IEEE–754 representation. Without hardware conver-

sion support, the noncompliant floating–point DSP must use software routines to convert between the

different floating–point formats, and this software conversion can be quite time consuming. Therefore,

developers of applications that require a DSP to interface with other processors that use the IEEE–754

representation should evaluate the practicality of software conversion carefully, or choose a processor

with hardware conversion capabilities (or one that uses IEEE floating–point formats internally).

4.2 Custom Hardware

There are two important reasons why custom-developed hardware is sometimes a better choice than a

DSP processor-based implementation [38]: performance and production costs. Just as DSP processors

are more cost-effective for DSP applications than general-purpose processors because of their specializa-

I.48

tion, custom hardware has the potential to be even more cost-effective due to its more specialized nature.

In applications with high sampling rates (for example, higher than 1/100th of the system clock rate),

custom hardware may be the only reasonable approach.

For high volume products, custom hardware may also be less expensive than a DSP processor. This

is because a custom implementation places in hardware only those functions needed by the application,

whereas a DSP processor requires every application to pay for the full functionality of the processor,

even if it uses only a small subset of its capabilities. Of course, developing custom hardware has some

serious drawbacks in addition to these advantages. Most notable among these drawbacks are the effort

and expense associated with custom hardware development, especially for custom chip design.

Custom hardware can take many forms. It can be a simple, small printed circuit board using off-the-

shelf components, or it can be a complex, multiboard system, incorporating custom integrated circuits.

One of the most common approaches for custom hardware for DSP applications is to design custom

printed circuit boards that incorporate a variety of off-the-shelf components. These components may

include standard logic devices, fixed-function or configurable arithmetic units, field-programmable gate

arrays (FPGAs), and function or application-specific integrated circuits (FASICs). As their name implies,

FASICs are chips that are designed to perform a specific function, perhaps for a single application.

Examples of FASICs include configurable digital filter chips, which can be configured to work in a

range of applications, and facsimile modem chips, which are designed specifically to provide the signal

processing functions for a fax modem and aren’t useful for anything else.

As tools for creating custom chips improve and more engineers become familiar with chip design

techniques, more companies are developing custom chips for their applications. Designing a custom

chip provides the ultimate flexibility, since the chip can be tailored to the needs of the application, down

to the level of a single logic gate. Of course, the benefits of custom chips and other hardware-based

implementation approaches come with important trade-offs. Perhaps most importantly, the complexity

and cost of developing custom hardware can be high, and the time required can be long. In addition, if the

hardware includes a custom programmable processor, new software development tools will be required.

It is important to point out that the implementation options discussed here are not mutually exclusive.

In fact, it is quite common to combine many of these design approaches in a single system, choosing

different techniques for different parts of the system. One such hybrid approach, DSP core-based ASICs,

was mentioned above. Others, such as the combination of an off-the-shelf DSP processor with custom

ICs, FPGAs, and a general-purpose processor, are very common.

I.49

4.2.1 FPGA Architecture and Technology

FPGAs are a group of digital and user–programmable blocks (Gate Array), which are programmable in

their functionalities and routing. As the acronym suggests, FPGAs grow out from gate arrays: which

represent a particular digital technology that allows designers to realize tailored circuits on the basis of

their needs, beginning from a standard architecture. This kind of technology called semi-custom differs

from the full-custom one (like ASICs) where every single element is user-defined. Gate arrays are com-

posed by a uniform logic gate matrix. Designers act on the final circuit, realized on the gate array, editing

the last metal levels that link the defined logic gates. An FPGA device maintains some of the gate array

features but its programming technique is totally different, indeed they are in-system programmable by

users, directly on their workbench. High performances, low costs and a limited development time have

decreed FPGA success in many applications. Most of FPGA applications reside in military projects,

image processing, high–performance Digital Signal Processing (DSP) and other vector or matrix pro-

cessing. The final result is a circuit suitable for designer necessities whose performances are very close

to an ASIC development.

Figure 7: Example of an FPGA–based application

A first classification of FPGAs is done on the specific distribution of programmable elements and

on the routing resources and logic: symmetrical FPGAs have the logic block distributed in a matrix and

the routing logic passes horizontally and vertically between the programmable blocks. Otherwise row-

based FPGAs are organized in parallel rows, with the logic gates along them, and the routing logic that

I.50

horizontally crosses programmable block rows. Lastly, another group called ’hierarchical’ is organized

connecting wide programmable blocks through routing resources.

Blocks and connections are carried out using advanced VLSI technologies, so that reliability issues

are pre-emptively solved. The lapse of time needed to implement a first prototype is very short, because

it requires only a software programming. The FPGA design flow is not trivial and it is very similar to

design flows for VLSI technology, but with the benefit of being short and stable. One of the fundamental

advantages is the possibility of modifying design errors in a little while because of the different test sim-

ulations for every design layer thus resulting in a simplification in designers’ work to verify immediately

the efficiency of a particular solution. Digital circuits production, implemented through programmable

devices, exhibits an economic benefit: in fact when an application has been validated and released on

the market, every FPGA realization cost is constant for the producer, only the software development

environment expense is amortized. FPGA and PLD design is very profitable in every kind of project that

foresees few units production. On the other hand, the expense for an ASIC device is amortized when

many units are implemented, because photolithographic masks are produced only once. For these rea-

sons, the industry of prototypes is the main beneficiary of the FPGA’ economic benefits: it is worthwhile

to realize a first prototype using an FPGA and moving towards the production through an ASIC device.

4.2.2 Advantages of FPGAs

In recent years a particular improvement in FPGA size and performance has been noted thanks to a num-

ber of factors, including technological advancement of finer chip geometries, higher level of integration,

the use of faster serial and communication links, specialized cores, enhanced logic and innovative design.

Meanwhile, the overall performance growth curve of traditional microprocessors has flattened because

of power density hurdles. At the same time, the number of processor cores has increased bringing the

new issue of coping with optimal use of parallelism between processes while operating systems and

automatic parallelization tools lag far behind. FPGAs’ first benefit derives from their ability to handle

massively parallel processing. FPGAs are able to operate at a modest clock rate as hundreds of mega-

hertz, but they can realize tens of thousands of computations per clock cycle while operating in tens of

watts range of power. A similar microprocessor may run at 1-2 GHz, but it would be very limited in the

number of clock-cycle operations, typically four or eight operations per cycle. This means that an FPGA

can provide a 50 to 100 times the performance per watt of power consumed by a microprocessor. Nev-

ertheless FPGA computational strength, there are three key factors that determine the utility of FPGAs

for a specific application. These factors are algorithm suitability, floating point vs. fixed point number

representation and general FPGA software difficulty.

I.51

The first mention to raise is for which kind of algorithms FPGAs are best suited. FPGAs are thought

to be used in problems that can be easily and efficiently divided into many parallel, often repetitive,

computational tasks. On the other hand, there are some specific cases where FPGAs are not well ex-

ploited, such as target classification and moving target indication problems. Indeed repetitive operations

are FPGAs strong points and generally they are used in predictable and static problems.

A second issue is the fact that FPGAs are not suited to floating point calculations, which micropro-

cessors on the contrary address with well developed vector math engines. FPGAs are able to cope with

this kind of calculation, but they require an undue amount of logic to implement: this causes a limit in

calculation density of the FPGA and decrease its main computational benefits.

The last key factor is the degree of technical capabilities involved in software development and the

talent and resources available for the work. On one hand the challenges of designing with traditional

microprocessors are well established and familiar. On the other hand even if FPGA development tools

have improved significantly over the last few years, it always takes a skilled user to develop code for an

FPGA. This aspect is on the overtaking: in fact more and more often a lot of development environments

provide a simple way of FPGA programming. This is the case of LabVIEW programming language that

does not require a hardware description language (HDL) to develop FPGA set-up.

In addition to these three main arguments, other considerations can be taken into account for ex-

ample which sensor interfaces are required by an application, that can be directed towards FPGAs or

microprocessors. Often FPGAs cover all the different kind of communication standards, not thinkable

for microprocessor limitations.

4.2.2.1 A Forward–Looking Architecture

In the past, systems tended to be homogeneous that is composed of one type of processing element.

Today, designers have a wide range of products to choose from and can often mix–and–match computing

components to get just the right mix of computing and I/O to meet their application specs. Using a hybrid

FPGA-microprocessor architecture, it is possible to customize a system, providing FPGA components

where they are useful with more DSPs or general-purpose microprocessors for the portions of application

for which they are more suitable.

As FPGAs have grown larger and faster over the last decade, they have assumed a more central role

in embedded processing applications. System–On–Chip is becoming a complete novel discipline able

to let designers create new system solutions using the state of the art about what markets propose. An

embedded system has some designed tasks well–known during its development, these will be executed

through a hardware and software combination studied for that specific application. This is an important

I.52

Figure 8: Base structure of a System–On–Chip architecture

benefit because the hardware resources can be heavily reduced to optimize the circuit occupation, con-

sumption and costs. Furthermore the software counterpart execution is often real–time to allow users to

reach a deterministic control of the system evolution.

A SoC implementation in FPGA technology permit to include the processors and a DSP cores in-

side the FPGA architecture, in order to manage a complete integrated instrument able to satisfy every

requirement in several applications. The most important vendors of FPGA provide hard-core and soft-

core devices easy to be introduced in the FPGA programming citeart:Minev-2007. The former are real

physical areas where a microprocessor or a DSP core resides that are realized as a layout level, and it de-

pends on the FPGA technology; the latter are a general hardware decription totally indipendent from the

adopted technology, that are recognized by the FPGA programmer tool and automatically synthesized

and inserted during the place and route phase.

Designers customize these soft cores and the surrounding logic to the task at hand. Recently, FPGA

I.53

Figure 9: Plethora of components in a typical industrial PCB

Figure 10: Novel FGPAs including DSP and CPU cores

vendors have taken this idea a step further, developing ICs that now include full ARM processing sub-

systems along with hardened peripherals, memory controllers, etc. all tightly integrated with the FPGA

fabric. This marriage of hardened processor cores within the fabric gives designers the ease of program-

ming with a familiar real time operating system (RTOS), yet has opened up new doors for customization

of the overall processing system, with much tighter linkage between data and controlling processing.

I.54

4.3 FPGA in Control Schemes

Embedded control systems are found in a wide range of applications such as consumer electronics,

medical equipment, robotics, automotive products, and industrial processes. For such systems, control

algorithms are implemented as software programs that execute on a fixed architecture hardware proces-

sor.

The question that we must answer before we proceed is, with a plethora of embedded devices avail-

able for digital control: ‘Why must one go in for embedded control using FPGA’? This can be answered

by looking at the following advantages that FPGA possess. Most of computations in control involves

the use of 2 operations. The first one being the Multiply operation and the second one being the accu-

mulate operation. Together these operations are called Multiply ACcumulate (MAC) operations. The

computational overhead is the maximum when any kind of digital controller is performing these opera-

tions. Hence the sampling rate and hence speed is limited by the rate at which the device performs these

computations. In a general purpose microprocessor the processors resources are held up while it is busy

performing these MAC operations and the speed or the sampling rate is decided by the latency of these

instructions. In addition to this important feature, FPGAs can exploit other benefits in order to offer

excellent parallelism, reconfigurable configuration and rapid prototyping. FPGAs are also fundamentals

to implement PWM generators whose signals of high frequencies and precise duty–cycle resolution.

4.4 FPGA Versus DSP Processor Developing Control Loops

In order to ensure fair and square comparison between FPGA and general purpose processors, let us

examine the operation of implementing a digital filter. It is a well known fact that many of the controllers

that are designed are ultimately implemented as digital filters. Hence in order to illustrate the power of

the FPGA, let us look at the specific implementation of a 256 tap filter on a typical DSP processor and

an FPGA. The conventional DSP processor is a general purpose programming device that typically has

1–4 MAC units along with barrel shifters and other circuits optimized for efficient computations.

The conventional DSP is a serial device. Let us assume that it has got a single MAC unit. A 256 tap

filter involves 256 MAC operations per sample. Hence with a single MAC unit, it takes 256 clock cycles

for the output to be computed in a typical DSP processor. In order to improve the system throughput,

we have to look at other options like using a high frequency clock generator. This increases the system

complexity and the cost. Moreover the chances for clock skew occurring with high frequency clocks is

also high. On the other hand, let us look at the same filter implemented on a typical FPGA.

Let us consider the most important feature of a FPGA–parallelism. The FPGA contains a large

number of gates and millions of transistors. Hence we can implement the filter in a parallel manner.

I.55

The implementation consists of 256 registers and 256 multiplier units along with the addition of the final

partial product. Hence what took 256 clock cycles in a DSP can be completed in a single clock cycle in

an FPGA. This results in a tremendous improvement in the latency of each instruction.

Now let us look at some of the other features that FPGA based embedded control offers to us. The

speed of a control system impacts its performance, stability, robustness and disturbance rejection charac-

teristics. Faster control systems are typically more stable, easier to tune, and less susceptible to changing

conditions and disturbances. To provide stable and robust management, a control system must be able

to measure the process variable and set an actuator output command within a fixed period of time. The

computational performance of the FPGA is so fast that the control loop rate is limited only by the sensors,

actuators, and I/O modules. This is a stark contrast to traditional control systems, where the processing

performance was typically the limiting factor. One of the most important parameters that is involved in

performance measurement of digital control systems is loop cycle time. Loop cycle time is the time taken

to execute one cycle of the control loop. It is the time that elapses between sampling the output, comput-

ing the controller output according to the control algorithm and sending the control signal to the actuator.

Because of the inherent parallelism present in the FPGA, very low loop cycle times are possible.

Another common measure of control system performance and robustness is jitter, which is a measure

of the variation of the actual loop cycle time from the desired loop cycle time. In general purpose

operating systems such as Windows, the jitter is unbounded so closed loop control system stability cannot

be guaranteed. Processor-based control systems with real–time operating systems are commonly able to

guarantee control loop jitter of less than 100 microseconds. In FPGA based systems the control loop

does not need to share hardware resources with other tasks and control loops can be precisely timed

using the FPGA clock. The jitter for FPGA–based control loops depends on the accuracy of the FPGA

clock source. It typically ranges in the order of picoseconds. The FPGA can effectively be used as a

prototyping device in order to get the control algorithms fine tuned and running correctly. The wide of

design tools available for FPGA’s make it very easy in order to build a prototype of the control algorithm

that we wish to implement and understand and refine the various issues like timing and signal integrity.

One can even design the controller in a control systems design package like MATLAB or LabVIEW

environment and use the VHDL or Verilog descriptions of the controller thus generated to fuse it on to

the FPGA prototyping board. The FPGA thus plays a very important role in prototyping the controller

even if the ultimate goal is the creation of an Application Specific Integrated Circuit (ASIC) controller

for the application at hand. FPGA has another advantage in the fact that the design cycle time for the

controller is less in an FPGA rather than an ASIC. In some cases it may be economical for the controller

to be implemented in a FPGA rather than an ASIC. The FPGA also consumes lesser power than the

I.56

microprocessor based or ASIC based controllers. The FPGA design now consists of the steps of creation,

simulation, verification, synthesis, placement and routing of the design. A lot of computer based tools

are available for this purpose, which is yet another argument in FPGA’s favor. Hence we can safely arrive

at a justification for the use of FPGA in control applications.

4.4.1 FPGA–Based PID Controller

In this section we give an example of how a controller can be implemented using FPGAs. The PID

controller is the most used algorithm in industry. Also the controllers (8), (9) have PI terms. In a

continuous domain the output is computed as follows

u(t) = kp

[
e (t) +

1
Ti

∫ t

0
e (t) dt + Td

de (t)
dt

]
where kp is the proportional gain, Ti is the reset time and Td is the derivative time. In the FPGA technol-

ogy, it is possible to realize two different typologies of PID controller, a serial design or a parallel one.

In this paragraph a first comparison between parallel and serial structure has been done considering the

resource utilization, speed and power consumption. The former equation is discretized, obtaining

uk = kpek + ki

k−1∑
j=0

e j + kd(ek − ek−1) (44)

where κi = κpT/Ti is the integral coefficient and κd = κpTd/T is the derivative coefficient. This form

is known as the position form of the PID algorithm. An alternative would be to compute uk based on

past output uk−1 and correction term ∆uk. This approach is often called as the velocity form of the PID

algorithm. The first step in this regard would be to calculate uk−1 based on equation (44)

uk−1 = kpek−1 + ki

k−1∑
j=0

e j + kd(ek−1 − ek−2).

Then, one calculates the correction term as

∆uk = uk − uk−1 = k0ek−1 + k1ek−2 + k2ek−3

where

k0 = ki + kp + kd, k1 = −kp − 2kd, k2 = kd.

Hence, the current control output is calculated as

uk = uk−1 + ∆uk = uk−1 + k0ek + k1ek−1 + k2ek−2.

I.57

The above equation is decomposed into its basic operations. Here p and pd refers to the controlled

variable and its desired value (set point) respectively. Moreover, p0, p1, p2, s1, s2 are temporary variables.

ek = p + (−pd)

p0 = k0ek

p1 = k1ek−1

p2 = k2ek−2

s1 = p0 + p1

s2 = p2 + uk−1

uk = s1 + s2.

For parallel design, each basic operation has got its own arithmetic unit either an adder or a multiplier.

In serial design, which is mainly composed of sequential logic. All operations share only one adder and

one multiplier.

4.4.2 Parallel Design

The parallel implementation uses 4 adders and 3 multipliers corresponding to the basic operations. The

architecture diagram is shown in the following figure. The other circuitry includes registers for latching

initial and intermediate values of error and output signals. The implementation also includes value

limitation logic that keeps the signals generated by the control logic within limits that the physical device

can bear.

4.4.3 Serial Design

In order to minimize the area and the resources consumed for the design, the serial design consists of

only one adder and one multiplier. The other parts in the implementation include registers, multiplexers

and circuits for arithmetic operations. They are commonly refereed to as the data–path circuits. Registers

are used to store intermediate results. Because of the fact that the single adder multiplier unit is used in

a time shared manner, there is the necessity of a control unit which is a finite state machine that sets the

select lines of the multiplexers; thereby changing the input to the circuits. The results of those tests that

have relevance to the problem are presented.

1. Resource Utilization: it was found that the serial implementation consumed far less resources on

the FPGA than the parallel implementation. Even though the serial implementation includes a

I.58

Figure 11: Serial Implementation of PID in FPGA

Figure 12: Parallel Implementation of PID in FPGA

control unit, it was found to consume far lesser number of CLBs to implement.

2. Speed: Test have been led with the Xilinx timing analyzer and it was found that in each design

there were two timing concerns. The first one was the control clock frequency. This controlled the

timing cycles of the PID algorithm. The next is the sampling frequency. This corresponds to the

rate at which the control algorithm generates control signals; this is dependent on whether the im-

plementation is a serial one or a parallel one. For the parallel implementation which is essentially

I.59

a combinational logic implementation, the sampling frequency and the control clock frequency

are the same. This is a result of the inherently parallel nature of such an implementation. On the

other hand, the serial algorithm requires four clock cycles to compute all the four basic operations

specified in equations (3.9) – (3.14). Hence the sampling frequency for the serial implementation

would be 1/4 of the control clock frequency.

3. Power Dissipation: The power dissipation increased as the sampling frequency was increased. At

reasonable sampling frequencies, there wa no difference between the parallel and serial designs,

even though the parallel design was expected to be more power efficient because of much lower

sampling frequency.

4.4.4 A More Efficient PID

In the previous section we had looked at an implementation of a PID controller based on multipliers and

adders. But when we are implementing PID controllers in LUT rich FPGA’s, any design that does not

make use of the memory rich characteristics of the FPGA is not an optimal implementation. It should

however, be mentioned that this type of PID implementation is more efficient only in those kinds of

FPGA that are rich in LUT’s. An improved implementation of a PID Controller is based on Distributed

Arithmetic (DA) concepts. The continuous PID equation (3.1) is modified as follows in order to avoid

problems of spikes in the output because of the derivative term. These spikes occur when the user tries

to change the set point abruptly. If the derivative term acts on the set point, then a sudden change in the

set point would result in spikes in the output.

U(s) = K

bUc(s) − Y(s) +
1

sTi
(Uc(s) − Y(s)) −

sTd

1 +
sTd
N

Y(s)

 . (45)

In (45), it is advantageous to allow only a fraction of the command signal act on the proportional part.

Here ki is the integral gain, kd is the derivative gain, K is the proportional gain, Uc is the set point and Y is

the process value. U is the controller output. Discretizing equation (45) by using the forward differences

for the derivative term and backward differences for the integral term one has

u(kT) = P(kT) + I(kT) + D(kT)

where k denotes k–th sampling instant and

P(kT) = K(bu(kT) − y(kT))

I(kT) = I((k − 1)T) +
kT
Ti

u((k − 1)T) − y((k − 1)T)

D(kT) =
Td

Td + NT
(D(k − 1)T) −

KTdN
Td + NT

(y(kT) − y((k − 1)T))

I.60

where yk = y(kT) is the output at the current instant, yk−1 = y((k − 1)T) is the output at the previous

instant, uc is the desired output of the system, I((k − 1)T is the value of the integral term at the previous

instant, D((k − 1)T) is the value of the derivative at the previous instant, K, b,Ti,Td,N are controller pa-

rameters, T is the sampling time. The direct implementation of the above equation requires 5 multipliers,

5 adder subtractors and 4 delay elements. The multiplier based design is not efficient for FPGA imple-

mentation because of the fact that the FPGA has got limited number of CLB’s for implementing the above

logic circuits. A better implementation would be the DA Based implementation. Assuming that u(kT),

u((k − 1)T), y(kT), y((k − 1)T) are m bit numbers and [j] represents the jth bit of these numbers, we

obtain the following equations

P(kT) =

m−1∑
j=0

(kb ∗ u(kT)[j] − k ∗ y(kT)[j]) ∗ 2 j

I(kT) =

m−1∑
j=0

(I((k − 1)T)[j] +
kT
Ti

(u((k − 1)T)[j] − y(((k − 1)T)[j]) ∗ 2 j

D(kT) =

m−1∑
j=0

(
Td

Td + NT
D((k − 1)T)[j] −

kTdN
Td + NT

((y(kT)[j] − y((k − 1)T)[j])) ∗ 2 j.

The results of

(kb ∗ u(kT)[j] − k ∗ y(kT)[j])

(I((k − 1)T)[j] + kT/Ti(u((k − 1)T)[j] − y(((k − 1)T)[j])

(Td/Td + NT D((k − 1)T)[j] − kTdN/Td + NT ((y(kT)[j] − y((k − 1)T)[j]

are precomputed and stored in various look up tables. Using the three LUT’s and corresponding shift add

accumulators. The P(kT), D(kT), I(kT) terms can be computed in m clock cycles. The main advantage

of this method is the fact that it utilizes the LUT rich feature of the FPGA for computing the control

effort.

The DA implementation for this particular implementation will consists of four delay blocks, 3

LUT’s, 3 accumulators, 2 adders. Delay blocks are used to obtain U((k−1)T) and y(k−1)T respectively,

whereas delay blocks are used to compute D(k − 1)T and I(k − 1)T . Three LUT’s and ACC’s are used to

provide the terms P(kT), I(kT), D(kT) respectively. The ACC consists of an accumulator and an adder

subtractor pair. Finally two adders produce the sum of P(kT), I(kT), D(kT). The throughput of this

implementation is m + 1 clock cycles, i.e. m clock cycles to compute U and one more clock cycle to

update I((k − 1)T) and D((k − 1)T). Thus we find that the DA based implementation consumes far less

number of logic resources than the parallel multiplier based design. Hence the design using DA would

require 14 clock cycles to implement in comparison to the design based on multipliers that would take

I.61

just a single clock cycle. Since power saving is dependent upon the clock frequency, the reduction in

power consumption and the reduction in clock frequency would be advantageous in those applications

which can tolerate the increased loop cycle time, resulting form the predominantly serial implementation

of the DA based controller.

I.62

Conclusions

In this deliverable some aspects of the digital implementation of a control law on a physical device

have been studied in order to reduce the deterioration of the control performances once implemented

on a digital device, possibly bringing to unstable behaviors. Two aspects have been studied. The first

deals with a self–triggered implementation, determining the sampling times necessary to implement the

controller preserving the desired performance. The second deals with the physical device on which the

control is implemented. Among the various possible solutions, we concentrated on the FPGA technology,

which shows to be particularly interesting, especially in terms of parallel computation, control and digital

signal processing.

I.63

References

[1] S. Di Gennaro and B. Castillo–Toledo, Comparative Study of Controllers for the Supervision, Con-

trol and Protection Systems in Pressurized Water Reactors of Evolutive Generation, Deliverable 2,

PAR2010 Project, 2011.

[2] S. Di Gennaro and B. Castillo–Toledo, Performance Study of the Control Systems in the pres-

ence of Faults and/or Reference Accidents in Pressurized Water Reactors of Evolutive Generation,

Deliverable 2, PAR2010 Project, 2011.

[3] I. F. Akyildiz, and I. H. Kasimoglu, WirelessHART: Wireless sensor and actor networks: research

challenges, Ad Hoc Networks, Vol. 2, No. 4, pp. 351–367, 2004.

[4] A. Anta, and P. Tabuada, Self–Triggered Stabilization of Homogeneous Control Systems, Proceed-

ings of the 2008 American Control Conference – ACC 2008, pp. 4129–4134, 2008.

[5] A. Anta, and P. Tabuada, To Sample or not to Sample: Self–Triggered Control for Nonlinear Sys-

tems, IEEE Transactions on Automatic Control, Vol. 55, No. 9, 2010.

[6] M. D. Di Benedetto, S. Di Gennaro, and A. D’Innocenzo, Digital Self Triggered Robust Control

of Nonlinear Systems, Proceeding of the 50th Conference on Decision and Control and European

Control Conference, Orlando, FL, USA, pp. 1674–1679, 2011.

[7] W.P.M.H. Heemels, A.R. Teel, N. van de Wouw and D. Neöic. Networked Control Systems with

Communication Constraints: Tradeoffs between Transmission Intervals, Delays and Performance.

IEEE Transactions on Automatic Control, Vol. 55, No. 8, pp. 1781-1796, 2010.

[8] H. K. Khalil, Nonlinear Systems, Third Edition, Prentice Hall, Upper Saddle River, New Jersey,

U.S.A., 2002.

[9] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley, 2005.

[10] J. Kurzweil, On the Inversion of Liapunov’s Second Theorem on Stability of Motion, Translation of

American Mathematical Society, Vol. 24, pp. 19–77, 1963. Originally appeared on Czechoslovak

Mathematica Journal, Vol. 81, pp. 217–259, 1956.

[11] M. Lemmon, T. Chantem, X. Hu, and M. Zyskowski, On Self–Triggered Full Information H–

infinity Controllers, in Hybrid Hybrid Systems: Computation and Control, 2007.

I.64

[12] X. Wang, and M. Lemmon, Self–Triggered Feedback Control Systems With Finite–Gain L2 Sta-

bility, IEEE Transactions on Automatic Control, No. 3, Vol. 54, pp. 452-467, 2009.

[13] M. Mazo, and P. Tabuada, On Event–Triggered and Self–Triggered Control over Sensor/Actuator

Networks, Proceedings of the 47th Conference on Decision and Control, Cancun, Mexico, pp. 435–

440, 2008.

[14] P. Tabuada, Event–Triggered Real–Time Scheduling of Stabilizing Control Tasks, IEEE Transac-

tions on Automatic Control, Vol. 52, No. 9, pp. 1680–1685, 2007.

[15] M. Velasco, P. Marti, and J. Fuertes, The Self Triggered Task Model for Real–Time Control Sys-

tems, Work–in–Progress Session of the 24th IEEE Real–Time Systems Symposium – RTSS03,

pp. –, 2003.

[16] W. Aggoune, Contribution to the Stabilization of Stochastic Nonlinear Systems with Time Delays,

Proceedings of the 18th IFAC World Congress Milano, Italy, August 28–September 2, pp. 3885–

3890, 2011

[17] W. Aggoune, On Feedback Stabilization of Stochastic Nonlinear Systems with Discrete and Dis-

tributed Delays, Proceedings of the 50th IEEE Conference on Decision and Control, and European

Control Conference (CDC–ECC), Orlando, FL, USA, December 12–15, pp. 6296–6301, 2011.

[18] A. Anta and P. Tabuada, Exploiting Isochrony in Self–Triggered Control, Submitted for publication,

Preprint available on arXiv:1009.5208, September 2010.

[19] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, 1972.

[20] K. J. Åström and B. Wittenmark, Computer Controlled Systems, Prentice Hall, Englewood Cliffs,

NJ, USA, 1990.

[21] K. E. Årzén, A Simple Event Based PID Controller, Proceedings of the 14th IFAC World Congress,

Vol. 18, pp. 423–428, 1999.

[22] W. P. Heemels, J. H. Sandee, and P. P. Bosch, Analysis of Event–Driven Controllers for Linear

Systems, International Journal of Control, Vol. 81, No. 4, pp. 571–590, 2008.

[23] R. Z. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen

aan den Rijn, 1980.

I.65

[24] V.B. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Mathe-

matics and Its Application, Kluwer Academic Publishers, Dordrecht, 1992.

[25] H. J. Kushner, Stochastic Stability and Control, Academic Press, 1967.

[26] H. J. Kushner, Converse Theorem for stochastic Lyapunov functions, SIAM Journal of Control and

Optimization, Vol. 5, pp. 228–233, 1967.

[27] X. Mao, Stochastic Differential Equations and Applications, Horwood, 1997.

[28] S.–E.A. Mohammed, Stochastic Functional Differential Equations, Longman, 1986.

[29] D. Nesic and L. Gruene, Lyapunov Based Continuous–Time Controller Redesign for Sampled–Data

Implementation, Automatica, Vol. 41, No. 7, pp. 1143Ð1156, 2005.

[30] D. Nesic and A. R. Teel, Stabilization of Sampled–Data Nonlinear Systems via Backstepping on

their Euler Approximate Model, Automatica, Vol. 42, No. 10, pp. 1801Ð1808, 2006.

[31] P. G. Otanez, J. R. Moyne, and D. M. Tilbury, Using Deadbands to Reduce Communication in Net-

worked Control Systems, Proceedings of the American Control Conference 2002, Vol. 4, pp. 3015–

3020, 2002.

[32] P.E. Protter, Stochastic Integration and Differential Equations, 2nd Ed., Springer, 2003.

[33] M. Velasco, J. Fuertes, and P. Marti, The Self Triggered Task Model for Real–Time Control Sys-

tems, Proceedings of the Real–Time Systems Symposyum – RTSS03, Work Progress Track, pp. 67–

70, 2003.

[34] Y. Yamamoto, B. D. O. Anderson, and M. Nagahara, Approximating Sampled–Data Systems with

Applications to Digital Redesign, Proceedings of the IEEE Conference on Decision and Control,

Las Vegas, NV, 2002, Vol. 4, pp. 3724Ð3729, 2002.

[35] T. Yoshizawa, On the Stability of Solutions of a System of Differential Equations, Memoirs of the

College of Sciences, University of Kyoto, Ser. A, Vol. 29, pp. 27–33, 1955.

[36] X. Wang, and M. Lemmon, State Based Self–triggered Feedback Control Systems with L2 Stability,

Proceedings of the 17th IFAC World Congress, pp. 15238–15243, 2008.

[37] X. Wang, and M. Lemmon, Self–triggered Feedback Control Systems with Finite–Gain L2 Stability,

IEEE Transactions on Automatic Control, Vol. 45, No. 3, pp. 452-467, March 2009.

I.66

[38] S. Edwards, Microprocessor or FPGAs? Making the Right Choice, RTC Magazine, 2011.

[39] D. Strenski, P. Sundararajan, and Ralph Wittig, The Expanding Floating–Point Performance Gap

Between FPGAs and Microprocessors, HPC Wire, 2010.

[40] P. B. Minev, and V. Stoianova Kukenska Implementation of Soft–Core Processors in FPGAs,

UNITECH’07, 2007.

I.67

