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Abstract
In this deliverable, the digital controllers designed in [3] have been tested in the
Simulink c© simulation environment, to check their performance, and to verify if the
behavior of the controlled system is correct and satisfies the control specifications,
for various values of the sampling time. To better check the real behavior of the
closed loop system, the controllers designed and tested on the basis of such a
simulation environment need to be further checked inserting some hardware in the
loop. In particular, it has been considered the implementation of the control law
from real process measurements. It has been analyzed an appropriate real–time
environment where is possible to acquire and store data, compute the control
algorithm, and apply the control action to actuators. Even though not certified for
nuclear applications, it has been analyzed the popular LabVIEW c© as a potential
solution to interface Simulink with real–time environments. This solution allows
checking the methodological steps for the real–time prototyping of the controllers,
and can be used for future non–nuclear industrial applications, while for nuclear
applications more costly nuclear–certified softwares, ensuring the same real–time
performances of LabVIEW, have to be considered. Finally, it will be presented an
experimental set–up used to show the benefit of the FPGA features and that has
to be integrated with the Simulink/LabVIEW simulation environment, in order to
better validate the designed control laws.

Riassunto
In questo documento sono stati testati i controllori digitali progettati in [3]
nell’ambiente di simulazione Simulink c©, per controllare la loro prestazione e
verificare se il comportamento del sistema controllato è corretto e soddisfa le
specifiche di controllo, per vari valori del tempo di campionamento. Per meglio
controllare il reale comportamento del sistema a ciclo chiuso, i controllori progettati
e testati sulla base di tale ambiente di simulazione devono essere ulteriormente
testati inserendo nell’anello dei dispositivi fisici. In particolare è stata considerata
l’implementazione della legge di controllo a partire da misure di un processo reale.
È stato analizzato un ambiente a tempo reale appropriato ove è possibile acquisire
e immgazzinate dati, calcolare l’algoritmo di controllo, e applicare l’azione di
controllo agli attuatori. Sebbene non certificato per applicazioni nucleari, è stato
analizzato il popolare LabVIEW c© come potenziale soluzione per interfacciare
Simulink con ambienti a tempo–reale. Questa soluzione permette di controllare i
passi metodologici per una prototipizzazione a tempo–reale dei controllori, e può
essere usata per future applicazioni industriali non nucleari, mentre per applicazioni
nucleari devono essere considerati più costosi programmi certificati in campo
nucleare, che assicurino le stesse prestazioni in tempo reale di LabVIEW. Infine
sarà presentato uno schema sperimentale, usato per mostrare i vantaggi delle carat-
teristiche degli FPGA e che deve essere integrato con l’ambiente di simulazione in
Simulink/LabVIEW, per meglio validare le leggi di controllo progettate.



1 A Simulation Environment for Performance Evaluation
of Digital Controllers

The digital controllers designed in [3] need to be tested in simulation environment to check their perfor-

mance, to verify if the behavior of the controlled system is correct and if it satisfies the control specifi-

cations. This environment is Matlab c© (Matrix Laboratory), also used in [1] to test the continuous time

controllers. More specifically, the toolbox Simulink c© has been used, which has the advantage of an easy

graphical visualization.

1.1 Some Recalls on The Simulink Environment

There exists a variety of softwares able to simulate dynamical systems, both commercial and non com-

mercial. One of the most popular choice for simulating control systems, also in the industrial context, is

Matlab c© (Matrix Laboratory) of Mathworks, and its toolbox Simulink c©.

Simulink is an environment for multi–domain simulation and Model–Based Design for dynamic and

embedded systems. Simulink provides an interactive graphical environment and a customizable set of

block libraries that allow the design, simulation, implementation and test of a large number of systems

arising in communication, control, signal, video and image processing, just to mention a few fields.

Simulink provides an extensive and expandable library of predefined blocks and a graphical editor

for arranging these intuitive blocks into block diagrams. The user composes the block diagram of the

system to be simulated by means of the interconnections among the elementary blocks, and Simulink

automatically generates the implementation code.

Simulink is capable of interacting with Matlab, enabling full access to Matlab workspace for analyz-

ing and visualizing results, customizing the modeling environment, as well as defining signal, parameter,

and test data. Moreover, Matlab Function blocks fully exploit the powerful Matlab algorithms. These

characteristics allow describing the behavior of complex dynamics thanks to control statements, cycles

and other facilities, thus making the model design easier.

Additional key features are:

1. Model Explorer to navigate, create, configure, and search all signals,parameters, properties, and
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generated code associated with the model;

2. Application Programming Interfaces (APIs) that allow the connection with other simulation pro-

grams and incorporate hand–written codes;

3. Simulation modes (Normal, Accelerator, and Rapid Accelerator) for running simulations interpre-

tively or at compiled C–code speeds using fixed– or variable–step solvers;

4. Graphical debugger and profiler to examine simulation results and then diagnose performance and

unexpected behavior in the model;

5. Model analysis and diagnostics tools to ensure model consistency and identify modeling errors.

Simulink provides a graphical user interface (GUI) for building models as block diagrams. The

interactive graphical environment simplifies the modeling process, making the formulation of differential

and difference equations dispensable.

In developing complex dynamical systems is often convenient, if not necessary, to split models into

hierarchies of designed components, and make them communicate through input and output. Simulink

models are hierarchical, thus being perfectly suited to such an approach. In this way, the models may be

analyzed at different levels and according to their structural organization.

1.2 Implementation in Simulink of the Digital Controllers

A mathematical model of the primary circuit of a PWR has been implemented in Simulink in [1], where

the reader can find the details of this implementation. In this section, the implementation of the digital

controllers developed in [3] is described. As already discussed in [3], most of the modern controllers are

realized by microprocessor–based digital circuits, or process–control computers. These devices can be

characterized by discrete operations, where the control algorithms are implemented on a digital device.

The values of the sampled variables of the model have been used to implement the digital controllers

for the pressurizer level and pressure. Figure 1 shows the Simulink diagram block representing the digital

control system.

We first introduce and briefly describe the Simulink blocks used to build the control simulation

system. Then, the single blocks composing the control system are analyzed and commented.

The library blocks used in the system are

1. Embedded Matlab Function: is the main library used in the model, it allows you to implement a

MATLAB function (with input and output) in the Simulink environment.
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2. Integrator: foundation library for the simulation of dynamic models. Returns the integral of the

output signal which receives in input, at the time instant current. One can use variety of methods

of numericalintegration for the calculation of the output.

3. Unit Delay: it delays its input by the specified sample period. This block is equivalent to the z-1

discrete-time operator. The block accepts one input and generates one output, which can be either

both scalar or both vector. If the input is a vector, all elements of the vector are delayed by the

same sample period.

4. Subsystem block: represents a subsystem of the system that contains it. The Subsystem block can

represent a virtual subsystem or a nonvirtual subsystem.

5. Zero–order hold: this block samples and holds the input for the sample period you specify. The

block accepts one input and generates one output. Each signal can be scalar or vector. If the input

is a vector, the block holds all elements of the vector for the same sample period.

6. From: this block picks up the signal from the relative block ?Goto? and passes it on in output.

Allows the passage of signals between blocks without connecting them.

7. Goto: transfers the input signal to the corresponding block From.

8. Input port: creates a port for subsystem or external inputs. It represents a link inside and outside

of the system.

9. Output port: creates an output port for subsystem or external output. It represents a link between

inside and outside the system.

10. Switch: this block performs a switching of out between the first and the third signal input places,

via the directives of the control signal (2nd signal).

11. Signal to Workspace: writes the data obtained from simulations, within a structure in the main

MATLAB workspace.

12. Scope: graphics the variable value at the time of simulation. Allows viewing multi-axis with

respect to the same time range.

With respect to the simulation environment considered in [1], the scheme of figure 1 presents the

following differences

• A digital inventory mass controller;

II.5



1.
 C

on
tin

uo
us

 le
ve

l c
on

tro
l

2.
 S

am
pl

ed
 le

ve
l c

on
tro

l

3.
 D

ig
ita

l l
ev

el
 c

on
tro

l

1.
 C

on
tin

uo
us

 p
re

ss
ur

e 
co

nt
ro

l 1

3.
 S

am
pl

ed
 p

re
ss

ur
e 

co
nt

ro
l 1

5.
 D

ig
ita

l p
re

ss
ur

e 
co

nt
ro

l 1

2.
 C

on
tin

uo
us

 p
re

ss
ur

e 
co

nt
ro

l 2

4.
 S

am
pl

ed
 p

re
ss

ur
e 

co
nt

ro
l 2

6.
 D

ig
ita

l p
re

ss
ur

e 
co

nt
ro

l 2

1.
 N

or
m

al
 o

pe
ra

tio
n

2.
 T

ur
bi

ne
 T

rip
 T

ra
ns

ie
nt

Tu
rb

in
 T

rip
 T

ra
ns

ie
nt

ca
se

TT
T

St
or

e 
va

ria
bl

es
 in

 W
or

ks
pa

ce

Pr
es

su
riz

er
 w

at
er

 le
ve

l (
m

)

Pr
es

su
riz

er
 p

re
ss

ur
e 

(M
Pa

)

Pr
es

su
riz

er
 T

em
pe

ra
tu

re
 E

st
im

at
or

 S
w

itc
h

1 2 3 4 5 6

Pr
es

su
riz

er
 R

ef
er

en
ce

 L
ev

el
 S

w
itc

h

1 2 3

PW
R

 re
ac

to
r

v m
_i

n

W
_h

ea
tp

r

N

W
_r

M
_p

c

T_
pc

T_
sg

p_
sg

T_
pr

T_
pr

w
al

l

l_
pr

p_
pr

PR
Z 

pr
es

su
re

 re
fe

re
nc

e 
de

riv
at

iv
e

C

PR
Z 

pr
es

su
re

 re
fe

re
nc

e
C

PR
Z 

Pr
es

su
re

 C
on

tro
lle

r S
el

ec
to

r

5

PR
Z 

Le
ve

l C
on

tro
lle

r S
el

ec
to

r

3

1 s

1 s1 s

dp
_p

rre
f

p_
pr

re
f

Th
_p

r1

C
TR

LP

T_
pr

w
al

lre
f

I_
eT

pr
w

al
lk

W
_h

ea
tp

r1

Th
_p

r1
k

C
TR

LL

l_
pr

_

T_
pr

w
al

lre
fk

m
_i

n

I_
eT

pr
w

al
l

I_
el

pr

W
_h

ea
tp

r1
k

Th
_p

r2
k

I_
ep

pr
k

xi
k

W
_h

ea
tp

r2
k

I_
el

pr
k

m
_i

n1
k

l_
pr

re
fk

Th
_p

m
_i

n1

TT
T

ca
se

t

v

Th
_p

r2

I_
ep

prxi

W
_h

ea
tp

r

W
_h

ea
tp

r2

l_
pr

re
f

Th
_p

r2

W
_h

ea
tp

r2

W
_h

ea
tp

r1
m

_i
n1

Th
_p

r1

C
TR

LL

C
TR

LL

l_
pr

re
f

l_
pr

re
fk

l_
pr

re
f

W
_h

ea
tp

r

I_
eT

pr
w

al
l

Th
_p

r1
k

Th
_p

r2
k

m
_i

n1
k

m
_i

n1
Th

_p
r1

W
_h

ea
tp

r2
k

W
_h

ea
tp

r1
k

m
_i

n

m
_i

n1
k

I_
ep

pr
k

xi
k

M
_p

c

dp
_p

rre
f

p_
pr

re
f

T_
sg

M
_p

c
N

T_
pc

T_
pr

w
al

l

T_
sg

l_
pr

re
f

M
_p

c

N

I_
el

pr
k

T_
pc

[l_
pr

k]

ca
se

C
TR

LP

T_
pr

N

Th
_p

r2

p_
pr

re
f

p_
pr

W
_h

ea
tp

r

p_
pr

re
f

p_
pr

W
_h

ea
tp

r2

W
_h

ea
tp

r1

T_
sg

dp
_p

rre
f

l_
pr

_r
ef

p_
pr

re
f

m
_i

n1

M
_p

c
N

T_
pc

I_
ep

pr

T_
pr

w
al

l

xi
Th

_p
r

T_
sg

l_
pr

t

ca
se

dp
_p

rre
f

p_
pr

re
f

Fr
om

25
p_

pr

C
TR

LP
Th

_p
r1

m
_i

n1

M
_p

c
N

l_
pr

T_
pc

T_
pr

w
al

lre
f

T_
pc

T_
pr

w
al

l

v

Th
_p

r1

I_
el

pr

T_
sg

l_
pr

I_
eT

pr
w

al
l

T_
sg

dp
_p

rre
f

p_
pr

re
f

m
_i

n1

M
_p

c
N

T_
pc

T_
pr

w
al

lre
f

T_
pr

w
al

l

l_
pr

m
_i

n

N
k

M
_p

ck
T_

pc
k

T_
sg

k
T_

pr
w

al
lk

m
_i

nk
Th

_p
rk

T_
pr

w
al

lre
fk

I_
eT

pr
w

al
lk

p_
pr

re
fk

dp
_p

rre
fk

Th
_p

rp

T_
pr

w
al

lre
fp

I_
eT

pr
w

al
lp

W
_h

ea
tp

rk

Pr
es

su
riz

er
_p

re
ss

ur
e_

co
nt

ro
l_

1k

N
k

M
_p

ck
T_

pc
k

T_
sg

k
T_

pr
w

al
lk

m
_i

nk
xi

k
I_

ep
pr

k
p_

pr
re

fk
dp

_p
rre

fk

x i
p

I_
ep

pr
p

W
_h

ea
tp

rk

Th
_p

rk

Pr
es

su
riz

er
_p

re
ss

ur
e_

co
nt

ro
l_

2k

N
k

M
_p

ck

T_
pc

k

T_
sg

k

l_
pr

k

I_
el

pr
k

I_
el

pr
p

m
_i

nk

l_
pr

re
fk

Pr
es

su
riz

er
_i

nv
en

to
ry

_c
on

tro
l_

k

N M
_p

c
T_

pc
T_

sg
T_

pr
w

al
l

m
_i

n
xi I_

ep
pr

p_
pr

re
f

dp
_p

rre
f

dx
i

dI
_e

pp
r

W
_h

ea
tp

r

Th
_p

r

Pr
es

su
riz

er
_p

re
ss

ur
e_

co
nt

ro
l_

2

N M
_p

c
T_

pc
T_

sg
T_

pr
w

al
l

m
_i

n
Th

_p
r

T_
pr

w
al

lre
f

I_
eT

pr
w

al
l

p_
pr

re
f

dp
_p

rre
f

dT
h_

pr

dT
_p

rw
al

lre
f

dI
_e

Tp
rw

al
l

W
_h

ea
tp

r

Pr
es

su
riz

er
_p

re
ss

ur
e_

co
nt

ro
l_

1

N M
_p

c

T_
pc

T_
sg

l_
pr

I_
el

pr

dI
_e

lp
r

m
_i

n

l_
pr

re
f

Pr
es

su
riz

er
_i

nv
en

to
ry

_c
on

tro
l

K 
Ts z
1

K 
Ts z
1

K 
Ts z
1

C
as

e 
se

le
ct

or

2

t
v

TT
T

 S
w

itc
h 

fo
r r

od
 p

os
iti

on
 v

 

1 2

 S
w

itc
h 

fo
r p

re
ss

ur
e 

co
nt

ro
lle

r

1 2 3 4 5 6
 S

w
itc

h 
fo

r l
ev

el
 c

on
tro

lle
r

1 2 3

Figure 1: Digital control scheme for the primary circuit of a NPP
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• Two digital pressurizer pressure controllers;

• Switches and displays.

An exhaustive description of the previous simulation environment is given in [1], which analyzes in detail

the blocks corresponding to the PWR reactor dynamics, the continuous–time pressurizer water level

control, the continuous–time pressurizer pressure controllers, the rod position control, and the various

function performed by switches and displays visible in the scheme. Here we will describe the new

blocks added to implement the digital controllers. Figure 5 shows the block Pressurizer_inventory

_control_k, which represents the implementation of the digital inventory mass controller

Ielpr ,k+1 = Ielpr ,k + δ(lpr,k − lpr,ref,k)

min,k =
Apr

ψ(Mpc,k,Tpc,k)

[
−

(
kp(lpr,k − lpr,ref,k) + kiIelpr ,k

)
ϕ2(Tpc,k) + m◦outϕ(Tpc,k)

+
1

cp,pc

( 2cr,1

Mpc,k
ϕ2(Tpc,k) +

∂ϕ(Tpc)
∂Tpc

∣∣∣∣∣
k

)(
cp,pcm◦out∆

◦ + cψNk − nsgkt,sg(Tpc,k − Tsg,k) −W◦loss,pc

)](1)

with kp, ki > 0,

ψ(Mpc,k,Tpc,k) = ϕ(Tpc,k) − (T ◦pc,i − Tpc,k)
∂ϕ(Tpc)
∂Tpc

∣∣∣∣∣
k
−

2cr,1Apr

Mpc,k
(T ◦pc,i − Tpc,k)ϕ2(Tpc,k)

ϕ(Tpc,k) = cϕ,0 + cϕ,1Tpc,k − cϕ,2T 2
pc,k

∂ϕ(Tpc)
∂Tpc

∣∣∣∣∣
k

= cϕ,1 − 2cϕ,2Tpc,k.

I_elprk

m_in1k

l_prrefk

T_sg

M_pc

N

I_elprk

T_pc

[l_prk]

Nk

M_pck

T_pck

T_sgk

l_prk

I_elprk

I_elprp

m_ink

l_prrefk

Pressurizer_inventory_control_k

K Ts
z 1

Figure 2: Pressurizer Discrete Inventory Mass Control

The corresponding EMF code is given in Table 1.
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Table 1 – Digital Inventory Control (EMF code)

function [I_elprp,m_ink,l_prrefk]=Pressurizer_inventory_control_k(Nk,M_pck,

T_pck,T_sgk,l_prk,I_elprk)

%#eml

%-------------------------------------------------------------------

% Initialization of the variables

% System parameters

Delta=0;

A_pr=0;

c_ppc=0;

c_psi=0;

c_phi0=0;

c_phi1=0;

c_phi2=0;

n_sg=0;

k_tsg=0;

% Reference parameters

c_r1=0;

c_r2=0;

% Perturbation parameters

m_out0=0;

T_pci0=0;

Delta0=0;

W_losspc0=0;

% Controller parameters

k_p=0;

k_i=0;
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% Actuator parameter

minmax=0;

% Sampling period

delta=0;

%-------------------------------------------------------------------

% Loading current parameters from workspace

eml.extrinsic(’evalin’);

%eml.extrinsic(’assignin’);

% Load parameters from workspace

% System parameters

Delta=evalin(’base’,’Delta’);

A_pr=evalin(’base’,’A_pr’);

c_ppc=evalin(’base’,’c_ppc’);

c_psi=evalin(’base’,’c_psi’);

c_phi0=evalin(’base’,’c_phi0’);

c_phi1=evalin(’base’,’c_phi1’);

c_phi2=evalin(’base’,’c_phi2’);

n_sg=evalin(’base’,’n_sg’);

k_tsg=evalin(’base’,’k_tsg’);

% Reference parameters

c_r1=evalin(’base’,’c_r1’);

c_r2=evalin(’base’,’c_r2’);

% Perturbation parameters

m_out0=evalin(’base’,’m_out0’);

T_pci0=evalin(’base’,’T_pci0’);

Delta0=evalin(’base’,’Delta0’);

W_losspc0=evalin(’base’,’W_losspc0’);
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% Controller parameters

k_p=evalin(’base’,’k_p’);

k_i=evalin(’base’,’k_i’);

% Actuator parameter

minmax=evalin(’base’,’minmax’);

% Sampling period

delta=evalin(’base’,’delta’);

%-------------------------------------------------------------------

% Digital Pressurizer Level Control

% Cold and hot leg temperatures

T_pcclk=T_pck-Delta;

T_pchlk=T_pck+Delta;

% Level reference (see Pisa’s report)

lprrefk=c_r1*(T_pcclk+T_pchlk)-c_r2;

if lprrefk<0

l_prrefk=0;

else

l_prrefk=lprrefk;

end

% Function \phi and its derivative

phik=c_phi0+c_phi1*T_pck-c_phi2*T_pck^2;

dphik=c_phi1-2*c_phi2*T_pck;

% \psi function

psik=phik-(T_pci0-T_pck)*dphik-2*c_r1*A_pr*(T_pci0-T_pck)*phik^2/M_pck;

% Integral term

I_elprp=l_prk-l_prrefk;
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% Input m_{in}

mink=A_pr*((2*c_r1*phik^2/M_pck+dphik)*(c_ppc*m_out0*Delta0+c_psi*Nk

-n_sg*k_tsg*(T_pck-T_sgk)-W_losspc0)/c_ppc-(k_p*(l_prk-l_prrefk)

+k_i*I_elprk)*phik^2+m_out0*phik)/psik;

if mink<=0,

m_ink=0;

elseif mink>=minmax;

m_ink=minmax;

else

m_ink=mink;

end

Table 1 – Digital Inventory Control (EMF code)
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Figure 3: Digital pressurizer pressure controllers

In Figure 3 the Pressurizer_pressure_controller_1k and the Pressurizer_pressure
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_controller_2k blocks are shown. These blocks simulate the implementation of the digital controllers

T̂pr,k+1 = T̂pr,k + δ

[
−

 m◦pr,k

Mpr,k
+

kwall

cp,pr Mpr,k

 T̂pr,k +
kwall

cp,pr Mpr,k
Tpr,wall,k

+
1

cp,pr Mpr,k
Wheat,pr,k +

cp,pcm◦pr,k

cp,pr Mpr,k
(Tpc,k + ∆◦)

]

Tpr,wall,ref,k+1 = Tpr,wall,ref,k + δ

(
kwall

cp,wall
Tpr,ref,k −

kwall

cp,wall
Tpr,wall,ref,k + kiIeTpr,wall ,k −

1
cp,wall

W◦loss,pr

)
IeTpr,wall ,k+1 = IeTpr,wall ,k + δ

(
Tpr,wall,k − Tpr,wall,ref,k

)
Wheat,pr,k = −kwall(Tpr,wall,k − Tpr,wall,ref,k) −

cp,pr

cp,wall
kwallMpr,kBT P

( IeTpr,wall ,k

Tpr,wall,k − Tpr,wall,ref,k

)

+ cp,pr Mpr,k

[
Ṫpr,ref

∣∣∣∣
k

+

 m◦pr,k

Mpr,k
+

kwall

cp,pr Mpr,k

 Tpr,ref,k −
kwall

cp,pr Mpr,k
Tpr,wall,ref,k

−
cp,pcm◦pr,k

cp,pr Mpr,k
(Tpc,k + ∆◦)

]

Tpr,ref,k =
c1 +

√
c2

1 − 4c2(c0 − ppr,ref,k)

2c2
, Ṫpr,ref

∣∣∣∣
k

=
2 ṗpr,ref,k√

c2
1 − 4c2(c0 − ppr,ref,k)

and

Ieppr ,k+1 = Ieppr ,k + δ
(
c0 − c1T̂pr + c2T̂ 2

pr − ppr,ref
)

ξk+1 = ξk + δ

(
T̂pr − Tpr,wall −

1
kwall

W◦loss,pr −
1
k

1
cp,pr Mpr

Cpr

)
T̂pr,k = κ

(cp,wall

kwall
Tpr,wall,k − ξk

)
Cpr,k =

cp,pr Mpr,k

−c1 + 2c2T̂pr,k

(
ṗpr,ref,k − Kp

(
c0 − c1T̂pr,k + c2T̂ 2

pr,k − ppr,ref,k
)
− KiIeppr ,k

)
Wheat,pr,k = kwall(T̂pr,k − Tpr,wall,k) + Cpr,k + δpr

(
cp,prm◦pr,kT̂pr,k − cp,pcm◦pr,k(Tpc,k + ∆◦)

)
respectively. Their EMF codes are reported in Tables 2 and 3.

Table 2 – Digital pressurizer pressure control 1k (EMF code)

function [Th_prp,T_prwallrefp,I_eTprwallp,W_heatprk]

=Pressurizer_pressure_control_1k(Nk,M_pck,T_pck,T_sgk,T_prwallk,m_ink,Th_prk,

T_prwallrefk,I_eTprwallk,p_prrefk,dp_prrefk)

%#eml
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%-------------------------------------------------------------------------

%Inizialization of variables

% System parameters

c_ppr=0;

c_ppc=0;

c_psi=0;

c_phi0=0;

c_phi1=0;

c_phi2=0;

c0=0;

c1=0;

c2=0;

n_sg=0;

k_tsg=0;

c_pwall=0;

k_wall=0;

V_pc0=0;

% Perturbation parameters

W_losspr0=0;

W_losspc0=0;

m_out0=0;

T_pci0=0;

Delta0=0;

% Actuator parameter

Wheatmax=0;

% Controller parameter

k_di1=0;

Pd=zeros(2,2);
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% Sampling period

delta=0;

%-------------------------------------------------------------------------

% Loading current parameters from workspace

eml.extrinsic(’evalin’);

%eml.extrinsic(’assignin’);

% Load parameters from workspace

% System parameters

c_ppr=evalin(’base’,’c_ppr’);

c_ppc=evalin(’base’,’c_ppc’);

c_psi=evalin(’base’,’c_psi’);

c_phi0=evalin(’base’,’c_phi0’);

c_phi1=evalin(’base’,’c_phi1’);

c_phi2=evalin(’base’,’c_phi2’);

c0=evalin(’base’,’c0’);

c1=evalin(’base’,’c1’);

c2=evalin(’base’,’c2’);

n_sg=evalin(’base’,’n_sg’);

k_tsg=evalin(’base’,’k_tsg’);

c_pwall=evalin(’base’,’c_pwall’);

k_wall=evalin(’base’,’k_wall’);

V_pc0=evalin(’base’,’V_pc0’);

% Perturbation parameters

W_losspr0=evalin(’base’,’W_losspr0’);

W_losspc0=evalin(’base’,’W_losspc0’);

m_out0=evalin(’base’,’m_out0’);

T_pci0=evalin(’base’,’T_pci0’);

Delta0=evalin(’base’,’Delta0’);

% Actuator parameter
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Wheatmax=evalin(’base’,’Wheatmax’);

% Controller parameter

k_di1=evalin(’base’,’k_di1’);

Pd=evalin(’base’,’Pd’);

% Sampling period

delta=evalin(’base’,’delta’);

%--------------------------------------------------------------------------

% Digital Pressurizer Pressure Controller 1

T_prrefk=(c1+sqrt(c1^2-4*c2*(c0-p_prrefk)))/(2*c2);

dT_prrefk=2*dp_prrefk/(sqrt(c1^2-4*c2*(c0-p_prrefk)));

density_pck=c_phi0+c_phi1*T_pck-c_phi2*T_pck^2;

derdensity_pck=c_phi1-2*c_phi2*T_pck;

M_prk=M_pck-density_pck*V_pc0;

m_pr0k=m_ink-m_out0-derdensity_pck*V_pc0*(c_ppc*m_ink*(T_pci0-T_pck)

+c_ppc*m_out0*Delta0+c_psi*Nk-n_sg*k_tsg*(T_pck-T_sgk)

-W_losspc0)/(c_ppc*M_pck);

if m_pr0k>0,

dprk=1;

else

dprk=0;

end

W_heatprrefk=c_ppr*M_prk*dT_prrefk+k_wall*(T_prrefk-T_prwallrefk)

-dprk*(c_ppc*m_pr0k*(T_pck+Delta0)-c_ppr*m_pr0k*T_prrefk);

BPdxk=[0 1]*Pd*[I_eTprwallk;T_prwallk-T_prwallrefk];

W_hk=-k_wall*(T_prwallk-T_prwallrefk)-c_ppr*k_wall*M_prk*BPdxk+W_heatprrefk;

if W_hk<0

W_heatprk=0;

elseif W_hk>Wheatmax,

W_heatprk=Wheatmax;

else
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W_heatprk=W_hk;

end

Th_prp=(-k_wall*(Th_prk-T_prwallk)+W_heatprk+dprk*(c_ppc*m_pr0k*(T_pck+Delta0)

-c_ppr*m_pr0k*Th_prk))/(c_ppr*M_prk);

T_prwallrefp=k_wall*(T_prrefk-T_prwallrefk)/c_pwall+k_di1*I_eTprwallk

-W_losspr0/c_pwall;

I_eTprwallp=T_prwallk-T_prwallrefk;

Table 2 – Digital pressurizer pressure control 1k (EMF code)

Table 3 – Digital pressurizer pressure control 2k (EMF code)

function [xip,I_epprp,W_heatprk,Th_prk]=Pressurizer_pressure_control_2k(Nk,

M_pck,T_pck,T_sgk,T_prwallk,m_ink,xik,I_epprk,p_prrefk,dp_prrefk)

%#eml

%-------------------------------------------------------------------------

%Inizialization of variables

% System parameters

c_ppr=0;

c_ppc=0;

c_psi=0;

c_phi0=0;

c_phi1=0;

c_phi2=0;

c0=0;

c1=0;

c2=0;

n_sg=0;

k_tsg=0;

c_pwall=0;

k_wall=0;
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V_pc0=0;

% Perturbation parameters

W_losspr0=0;

W_losspc0=0;

m_out0=0;

T_pci0=0;

Delta0=0;

% Controller parameters

Kdp=0;

Kdi=0;

kd=0;

% Actuator parameter

Wheatmax=0;

% Sampling period

delta=0;

%-------------------------------------------------------------------------

% Loading current parameters from workspace

eml.extrinsic(’evalin’);

%eml.extrinsic(’assignin’);

% Load parameters from workspace

% System parameters

c_ppr=evalin(’base’,’c_ppr’);

c_ppc=evalin(’base’,’c_ppc’);

c_psi=evalin(’base’,’c_psi’);

c_phi0=evalin(’base’,’c_phi0’);

c_phi1=evalin(’base’,’c_phi1’);

c_phi2=evalin(’base’,’c_phi2’);
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c0=evalin(’base’,’c0’);

c1=evalin(’base’,’c1’);

c2=evalin(’base’,’c2’);

n_sg=evalin(’base’,’n_sg’);

k_tsg=evalin(’base’,’k_tsg’);

c_pwall=evalin(’base’,’c_pwall’);

k_wall=evalin(’base’,’k_wall’);

V_pc0=evalin(’base’,’V_pc0’);

% Perturbation parameters

W_losspr0=evalin(’base’,’W_losspr0’);

W_losspc0=evalin(’base’,’W_losspc0’);

m_out0=evalin(’base’,’m_out0’);

T_pci0=evalin(’base’,’T_pci0’);

Delta0=evalin(’base’,’Delta0’);

% Controller parameters

Kdp=evalin(’base’,’Kdp’);

Kdi=evalin(’base’,’Kdi’);

kd=evalin(’base’,’kd’);

% Actuator parameter

Wheatmax=evalin(’base’,’Wheatmax’);

% Sampling period

delta=evalin(’base’,’delta’);

%--------------------------------------------------------------------------

% Digital Pressurizer Pressure Controller 2

density_pck=c_phi0+c_phi1*T_pck-c_phi2*T_pck^2;

derdensity_pck=c_phi1-2*c_phi2*T_pck;

M_prk=M_pck-density_pck*V_pc0;

m_pr0k=m_ink-m_out0-derdensity_pck*V_pc0*(c_ppc*m_ink*(T_pci0-T_pck)
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+c_ppc*m_out0*Delta0+c_psi*Nk-n_sg*k_tsg*(T_pck-T_sgk)

-W_losspc0)/(c_ppc*M_pck);

if m_pr0k>0,

dprk=1;

else

dprk=0;

end

Th_prk=kd*(c_pwall*T_prwallk/k_wall-xik);

ph_prk=c0-c1*Th_prk+c2*Th_prk^2;

Dhk=-c1+2*c2*Th_prk;

Cprk=c_ppr*M_prk*(dp_prrefk-Kdp*(ph_prk-p_prrefk)-Kdi*I_epprk)/Dhk;

xip=Th_prk-T_prwallk-W_losspr0/k_wall-Cprk/(kd*c_ppr*M_prk);

I_epprp=ph_prk-p_prrefk;

W_hk=k_wall*(Th_prk-T_prwallk)+Cprk+dprk*(c_ppr*m_pr0k*Th_prk

-c_ppc*m_pr0k*(T_pck+Delta0));

if W_hk<0

W_heatprk=0;

elseif W_hk>Wheatmax,

W_heatprk=Wheatmax;

else

W_heatprk=W_hk;

end

Table 3 – Digital pressurizer pressure control 2k (EMF code)

Numerical and analogical displays show the behavior of the controlled variables, make possible their

check during the simulation, as long as further variables of interest, such as the tracking errors.

Switches allow the selection of the desired control law. They have various possible choices, for the

various possible control laws (continuous–time, sampled, digital).

1.3 Simulations Results

In this section, the results obtained in the simulations of the model will be presented and discussed.

The Simulink scheme, in Figure 1, allows varying several simulation conditions, such as the operation
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Figure 4: Displays for level and pressure in the pressurizer
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Figure 5: Switches for control selection

condition of the plant (normal conditions, turbine trip transient), the pressurizer inventory and pressure

controllers.

The parameters influencing the controller’s performance, such as the sampling time for the sampled

and the digital controllers, or those describing the turbine trip transient, can be changed modifying the

values in the initialization data file (see Table 4).

For the sake of conciseness, we report here the most interesting case, namely that corresponding to

the digital inventory control Pressurizer_inventory_control_k and the first digital pressure con-

troller Pressurizer_pressure_controller_1k during a stop valve fault, and the consequent turbine

trip transient. In fact, this event allows checking whether the digital control laws are robust with respect
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to faults. The simulation study have been conducted considering growing sampling times, as further test

of robustness of the control laws with respect to delays. Indeed, the sampling time is one of the most

important factor when dealing with implementations on digital electronics devices. The performance of

these devices are growing quickly, but are still limited in speed. Finally, in the simulations parameter

perturbations have been considered in order to achieve more realistic conditions.

We consider a turbine trip due to faulty closure of the turbine stop valve. During normal operation,

the main steam flows from the steam generators through parallel pipes to a header, from where the steam

is led to main steam stop and control valves by individual pipes of the high pressure turbine. Branch

lines provide the possibility to bypass the turbine during transient operations. In normal conditions, the

bypass station remains closed and the steam passes through the main stop and control valves and expands

in the high pressure turbine.

The main steam stop valves have dual function. They isolate the turbine from the main steam line or

from the steam generator. They rapidly interrupt the supply of steam to the turbine after being triggered

by monitors if a dangerous condition arises. Therefore they have been designed for quick closing and

maximum reliability. The control valves, on the other hand, regulate the flow of steam to the turbine

according to the prevailing and provide a second means of isolation for the turbine in case of emergency.

The control valve is operated by the piston of the servo–motor which is subjected to the spring force in

the closing direction and the pressure of the control fluid in the opening direction. The position of the

valve is determined by the secondary fluid pressure which is controlled by the governor.

In case of undue operating conditions within the turbine–generator plant the turbine trip system is

released by means of protective devices for turbine and generator (turbine protection system). Hereby the

main steam stop and control valves are closed. The steam produced in the steam generators is bypassed

via bypass stop and control valves and dumped into the condenser. When turbine trip is initiated, the

pressure drop in the trip oil circuit also causes the secondary fluid pressure to collapse because it is fed

from it. The result is that both stop valve and the control valve close rapidly. The time for closing the stop

valve is about 150 ms and for the control valve about 200 ms. In events like excessive load reductions,

load rejection or turbine trip, the main steam maximum pressure limitation opens valves in the main

steam bypass station and the main steam is passed into the condenser. The main steam pressure in the

header is used as actual value for the control. The set–point is a few bars above the main steam operating

pressure. Main steam relief station may also be used for controlling the main steam pressure.

Besides manual trip or spurious actuation, turbine trip initiation may be caused by steam turbine pro-

tection system components, like overspeed protection, overspeed trip selection, high condenser pressure

protection, thrust bearing trip, low lube oil pressure trip, fire protection, main steam minimum pressure
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signalin, electrical or mechanical generator protection.

After the turbine stop valves have closed, main steam pressure increases challenging the steam gener-

ator secondary side heat removal capability. Coolant temperature and pressure will increase and, unless

adequate countermeasures are timely provided, heat removal from the core may be challenged too.

On turbine trip, after the turbine stop valves have closed, secondary side heat removal is abruptly

interrupted leading to a sudden increase in the main steam pressure. However, the pressure excursion is

rather limited by the prompt response of the turbine bypass station. The main steam bypass valves open

immediately because the MS pressure goes above the maximum pressure set–point, which is reduced

on turbine trip and then raised to a maximum at which it is held. In the first 10 s after the turbine

trip, degraded heat removal conditions in the secondary side of the steam generators cause an increase

in the coolant average temperature and a consequent expansion of coolant volume. Because of the

high reactor minimum load, the overall temperature changes in coolant and moderator are rather small.

Consequently, the volumetric changes are also limited, as can be seen in the behavior of the pressurizer

water level. Closed–loop control and limitation systems are called upon to deal with the effects of power

mismatch between reactor and the electric generator, keeping process variables within acceptable limits.

Partial rod dropping is initiated by comparing reactor and generator power and, after 1.1 s delay time,

the reactor is run back to a minimum load of approximately 80%, as a consequence of rod movement. A

minor transient is observed in the coolant pressure which demands the intervention of pressurizer heating

power. With the available main steam bypass system, the secondary relief station stays closed. Due to

the main steam pressure rise, the steam generator water level initially slightly decreases and it is brought

back to normal by the main feed–water control. Due to the effective response of control and limitation

systems, promptly reducing the reactor power and early opening of the main steam bypass station, the

process variables differ only insignificantly from their set–points, keeping reasonable margins to the

limits of the reactor protection system, which are not reached.

Figures 6–36 show the dynamics associated to the principal variables describing the primary circuit

dynamics, the reference values of the controlled variables and output, as well as the controlled input.

As already commented, the simulations have been carried out for different values of the sampling time:

δ = 0.0001 s, δ = 0.001 s, δ = 0.01 s, δ = 0.1 s, and δ = 1 s. The simulation results that follow will show

the satisfactory behavior, although for δ = 1 the control input starts to be too active.

Table 4 – Initialization data file

clear all, clc

disp(’Loading simulation data ...’)
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disp(’(see help for details)’)

disp(’ ’)

%=========================================================================

% Reactor parameters

%-------------------------------------------------------------------------

Lambda=1e-5; % generation time; s

S=2830.05; % flux of the constant neutron source; %/s

p0=2.85e-4; % rod reactivity coefficients; m

p1=6.08e-5; % m^(-1)

p2=1.322e-4; % m^(-2)

%-------------------------------------------------------------------------

% Primary Ciruit parameters

%---------------------------

c_ppc=5355; % specific heat at 280 C; J/(kg*K)

c_psi=13.75e6; % power reactor constant; W/%

n_sg=6; % number of steam generatots in Paks Nuclear Power Plant

% Perturbations

m_out0=2.11; % nominal outlet mass flow rate; kg/s

m_out=2.0678; % real outlet mass flow rate: -2% of m_out0; kg/s

T_pci0=258.85; % nominal inlet temperature; C

T_pci=256.2615; % real inlet temperature: -1% of T_pci0; C

W_losspc0=2.996e7; % nominal heat loss; J/s

W_losspc=3.07976e7; % real heat loss: +3% of W_losspc0; J/s

Delta0=15; % nominal difference between T_pc and T_pc,cl; C

Delta=15.6; % real difference between T_pc and T_pc,cl: +4% of Delta0; C

%-------------------------------------------------------------------------

% Steam Generator parameters

%---------------------------

m_sg=119.31; % inlet secondary water mass flow rate = outlet secondary
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steam mass flow rate; kg

c_psgl=3809.9; % second. circuit liquid water specific heat at 260 C;

J/(kg K)

c_psgv=3635.6; % second. circuit steam water specific heat at 260 C;

J/(kg K)

T_sgsw= 220.85; % second. circuit inlet temperature; C

E_evapsg=1.658e6; % evaporation energy at 260 C; J/kg

k_tsg=9.5296e6; % steam generator heat transfer coefficient; J/(K s)

M_sg=34920; % water mass; kg

% Perturbations

W_losssg0=1.8932e7; % nominal heat loss; J/s

W_losssg=1.9689e7; % real heat loss: +4% of W_losssg0; J/s

%-------------------------------------------------------------------------

% Pressurizer parameters

%---------------------------

c_ppr=6873.1; % specific heat of the water; J/(kg*K)

V_pc0=242; % water nominal volume; m^3

c_phi0=581.2; % coefficients of the density quadratic function; []

c_phi1=2.98;

c_phi2=0.00848;

c0=28884.78; % coefficients of the saturated vapor; kPa

c1=258.01; % kPa/C

c2=0.63455; % kPa/C^2

A_pr=4.52; % vessel cross section; m^2

k_wall=1.9267e8; % wall heat transfer coefficient; W/C

c_pwall=6.4516e7; % wall heat capacity; J/C

% Perturbations

W_losspr0=1.6823e5; % nominal heat loss; J/s

W_losspr=1.7159e5; % real heat loss: +2% of W_losspr; J/s
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%-------------------------------------------------------------------------

% Nominal inputs

%---------------------------

v0=0; % input: nominal rod position; cm

m_in0=2.11; % input: nominal inlet mass flow rate; kg/s

W_heatpr0=168000; % input: nominal heating power; W

%-------------------------------------------------------------------------

% Steady state conditions

%---------------------------

% Reactor initial Condition

N0=Lambda*S/p0; % =99.3 The neutron flux N is measured in percent

% Primary Ciruit initial conditions

M_pc0=2e5; % water mass in the primary circuit; kg

% Primary circuit and Steam generator initial conditions

A=[c_ppc*m_in0+n_sg*k_tsg -n_sg*k_tsg;

-k_tsg m_sg*c_psgv+k_tsg];

B=[c_ppc*m_in0*T_pci+c_ppc*m_out*Delta+c_psi*N0-W_losspc;

m_sg*(c_psgl*T_sgsw-E_evapsg)-W_losssg];

C=inv(A)*B;

T_pc0=C(1,1);

T_sg0=C(2,1);

clear A B C

% Pressurizer initial conditions

T_pr0=326.51; % C

T_prwall0=T_pr0-W_losspr/k_wall;

%-------------------------------------------------------------------------

% Pressurizer water level reference parameters

%---------------------------
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% pressurizer water level at nominal conditions

l_pr0=(M_pc0/(c_phi0+c_phi1*T_pc0-c_phi2*T_pc0^2)-V_pc0)/A_pr;

c_r1=0.093; % m/C

c_r2=2*c_r1*T_pc0-l_pr0; % m

%-------------------------------------------------------------------------

% Turbine trip transient (TTT)

%---------------------------

tTTT=2; % instant of occurrence of the turbine trip transient; s

DeltaTTTN=1.1; % delay for reducing reactor power; s

a=p2; % determination of rod position correspondig to

b=p1; % N= 80% of N0

c=p0-Lambda*S/(N0*0.80);

vTTT=(-b+sqrt(b^2-4*a*c))/(2*a);

clear a b c

%-------------------------------------------------------------------------

% Pressurizer water level controller parameters

%---------------------------

k_p=100;

k_i=50;

% Initial condition (integral action)

I_elpr0=0;

% Actuator parameter (saturation)

minmax=20; % kg/s

%-------------------------------------------------------------------------

% Pressurizer pressure controller

%---------------------------
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% Pressure reference and derivative

p_prref=12300; % kPa

dp_prref=0;

% Actuator parameter (saturation)

Wheatmax=3.6e6; % W

% Temperature observer initial conditions

Th_pr0=324; % C

%-------------------------------------------------------------------------

% Continuous controller 1

%---------------------------

% Initial conditions

T_prref0=326.51; % C

T_prwallref0=T_prref0-W_losspr0/k_wall; % C

I_eTprwall0=0; % C s (integral action)

% Controller parameter

k_i1=200; % Integral gain

% Lyapunov matrix equation

q1=1e-5;

q2=1e-10;

Q=[q1 0; 0 q2];

A=[0 1; -k_i1 -k_wall/c_pwall];

P=lyap(A’,Q); % P=lyap(A’,Q) solves the Lyapunov matrix equation: P*A + A’*P = -Q

clear A Q

%-------------------------------------------------------------------------

% Continuous controller 2

%---------------------------

% Parameters
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zeta=0.707; % damping

wn=3e3; % natural frequency

Kp=2*zeta*wn;

Ki=wn^2;

% Observer gain

k=20;

% Integrator initial conditions

xi0=-Th_pr0/k+c_pwall*T_prwall0/k_wall;

I_eppr0=0;

%-------------------------------------------------------------------------

% Digital Controllers

%---------------------------

% Sampling time

delta=.1; % s

%-------------------------------------------------------------------------

% Digital controller 1

%---------------------------

% Initial conditions as for the continuous controller

% Controller parameter

k_di1=k_i1; % Integral gain

% Lyapunov matrix equation for the digital case

qd1=q1;

qd2=q2;

Qd=[qd1 0; 0 qd2];

Ad=[0 1; -k_di1 -k_wall/c_pwall];

Pd=lyap(Ad’,Qd); % Pd=lyap(Ad’,Qd) solves the Lyapunov matrix equation:

Pd*Ad + Ad’*Pd = -Qd
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clear Ad Qd

%-------------------------------------------------------------------------

% Digital controller 2

%---------------------------

% Initial conditions as for the continuous controller

% Parameters

zetad=0.707; % damping

wnd=50; % natural frequency

Kdp=2*zetad*wnd;

Kdi=wnd^2;

% Observer gain

kd=20;

%=========================================================================

disp(’... data loaded!’)

disp(’Starting simulation.’)

Table 4 – Initialization data file
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1.3.1 Digital Inventory Pressurizer_inventory_controller_1k and Pressure Control
Pressurizer_pressure_controller_1k with Sampling Time δ = 10−3 s

The simulation results are summarized in Figures 6–12.
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Figure 6: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−3 s. (a) Pressurizer tempera-
ture [◦C]; (b) Pressurizer wall temperature [◦C]
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Figure 7: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−3 s. (a) Pressurizer pressure
[Pa]; (b) Pressurizer pressure reference [Pa]

II.31



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0

1

2

3

4

5

6

(a )

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
-6

-4

-2

0

2

4

6

(b )

Figure 8: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−3 s. (a) Pressurizer water level
[m]; (b) Pressurizer water level reference [m]
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Figure 9: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−3 s. (a) Inlet mass flow rate
[kg/s]; (b) Pressurizer heating power [W]

II.33



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
7 5

8 0

8 5

9 0

9 5

1 0 0

(a )

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 . 0 5

1 . 1

1 . 1 5

1 . 2

1 . 2 5

1 . 3

1 . 3 5

1 . 4
x  1 0

9

( b )

Figure 10: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−3 s. (a) Neutron flux [%]; (b)
Reactor power [W]
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Figure 11: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−3 s. (a) Primary circuit wa-
ter mass [kg]; (b) Primary circuit avarege temperature [◦C]
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Figure 12: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−3 s. (a) Estimated pressurizer
temperature [◦C]; (b) Pressurizer reference temperature [◦C]
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1.3.2 Digital Inventory Pressurizer_inventory_controller_1k and Pressure Control
Pressurizer_pressure_controller_1k with Sampling Time δ = 10−2 s

The simulation results are summarized in Figures 13–19.
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Figure 13: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−2 s. (a) Pressurizer tempera-
ture [◦C]; (b) Pressurizer wall temperature [◦C]
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Figure 14: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−2 s. (a) Pressurizer pressure
[Pa]; (b) Pressurizer pressure reference [Pa]
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Figure 15: Controllers (6)-(7), ∆t = 0.01. (a) Pressurizer water level [m]; (b) Pressurizer water level
reference [m]
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Figure 16: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−2 s. (a) Inlet mass flow rate
[kg/s]; (b) Pressurizer heating power [W]
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Figure 17: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−2 s. (a) Neutron flux [%]; (b)
Reactor power [W]
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Figure 18: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−2 s. (a) Primary circuit wa-
ter mass [kg]; (b) Primary circuit avarege temperature [◦C]
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Figure 19: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−2 s. (a) Estimated pressurizer
temperature [◦C]; (b) Pressurizer reference temperature [◦C]
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1.3.3 Digital Inventory Pressurizer_inventory_controller_1k and Pressure Control
Pressurizer_pressure_controller_1k with Sampling Time δ = 10−1 s

The simulation results are summarized in Figures 20–26.
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Figure 20: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−1 s. (a) Pressurizer tempera-
ture [◦C]; (b) Pressurizer wall temperature [◦C]
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Figure 21: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−1 s. (a) Pressurizer pressure
[Pa]; (b) Pressurizer pressure reference [Pa]
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Figure 22: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−1 s. (a) Pressurizer water level
[m]; (b) Pressurizer water level reference [m]
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Figure 23: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−1 s. (a) Inlet mass flow rate
[kg/s]; (b) Pressurizer heating power [W]
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Figure 24: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−1 s. (a) Neutron flux [%]; (b)
Reactor power [W]

II.48



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
2

2 . 0 0 5

2 . 0 1

2 . 0 1 5

2 . 0 2

2 . 0 2 5
x  1 0

5

(a )

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
2 1 0

2 2 0

2 3 0

2 4 0

2 5 0

2 6 0

2 7 0

2 8 0

(b )

Figure 25: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−1 s. (a) Primary circuit wa-
ter mass [kg]; (b) Primary circuit avarege temperature [◦C]
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Figure 26: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 10−1 s. (a) Estimated pressurizer
temperature [◦C]; (b) Pressurizer reference temperature [◦C]
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1.3.4 Digital Inventory Pressurizer_inventory_controller_1k and Pressure Control
Pressurizer_pressure_controller_1k with Sampling Time δ = 1 s

The simulation results are summarized in Figures 27–33.
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Figure 27: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 1 s. (a) Pressurizer temperature
[◦C]; (b) Pressurizer wall temperature [◦C]
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Figure 28: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 1 s. (a) Pressurizer pressure [Pa];
(b) Pressurizer pressure reference [Pa]
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Figure 29: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 1 s. (a) Pressurizer water level
[m]; (b) Pressurizer water level reference [m]

II.53



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0
0

5

1 0

1 5

2 0

2 5

(a
)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0

1 . 8

2

2 . 2

2 . 4

2 . 6

2 . 8

3

3 . 2

3 . 4

3 . 6

x  1 0
6

(b )

Figure 30: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 1 s. (a) Inlet mass flow rate [kg/s];
(b) Pressurizer heating power [W]
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Figure 31: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 1 s. (a) Neutron flux [%]; (b)
Reactor power [W]
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Figure 32: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 1 s. (a) Primary circuit water mass
[kg]; (b) Primary circuit avarege temperature [◦C]
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Figure 33: Digital inventory and pressure control Pressurizer_inventory_controller_1k,
Pressurizer_pressure_controller_1k with sampling time δ = 1 s. (a) Estimated pressurizer tem-
perature [◦C]; (b) Pressurizer reference temperature [◦C]
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2 National Instruments LabVIEW: Software and Hardware

The controllers designed and tested on the basis of the simulation environment have to be implemented

on a digital device. Before this final step, it is common to insert some hardware in the loop to better check

the real behavior of the closed loop system. In particular, it is possible to apply the controller to the real

process under study and to calculate the control law considering measurements from the real process.

For, it is necessary to use an appropriate real–time environment where is possible to acquire and store

data, compute the control algorithm, apply the control action to actuators. Therefore, once the controller

has been designed in Simulink, it is necessary to interface Simulink with this real–time environment for

further checks of the control algorithm.

One possible choice is LabVIEW c©, described in the following. Even though LabVIEW is not cer-

tified for nuclear applications, this choice is motivated by the fact that it is a very popular software for

real–time interfaces, simple enough for the purpose of the present project. LabVIEW, hence, allows

checking the methodological steps for the real–time prototyping of the controllers. For future industrial

applications this software can still be used, while in the case of applications in nuclear environment,

more costly nuclear–certified softwares, ensuring the same real–time performances of LabVIEW, can be

considered.

2.1 Programming Language: LabVIEW RT

LabVIEW is a graphic programming language that makes use of icon instead of code lines to create a

specific application. This is a software language based on data flow, that determines a program execu-

tion. In LabVIEW environment is possible to implement a user interface using objects and tools. This

mentioned interface is known as front panel. Code is added adopting a graphic representation of different

functions to manage front panel objects: the block diagram checks this elements. LabVIEW is totally

integrated to communicate through GPIB, VXI, PXI, RS–232, RS-485 interface and plug–in DAQ. This

National Instruments property language is useful to create test and measurement application, to acquire

data, instruments control, data storage and analysis.

LabVIEW programs are called Virtual Instruments and they contain three fundamental elements:
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Figure 34: LabView Programming Language Example of Back–End Layer and Applicative User Inter-
face

a front panel, a block diagram and one icon with the connector box. The front panel has indicators,

controls, buttons and other elements. Indicators are graphs, LED, etc. Controls simulate instrument

input and provide data to the block diagram. Indicators simulate device output and display data that the

block diagram generates and acquires. Primary potentiality of LabVIEW resides in its hierarchical nature

of programming: it is possible to create subroutines, that can be recalled and reused in other projects. In

addition to the LabVIEW real time module, an FPGA one is available to create a lower level application

to program the FPGA. This kind of module requests some important rules and tricks to optimize the

FPGA resources usage and exploit its potentials.

2.2 Introduction to the CompactRIO Architecture

The hardware architecture employed in this project includes a National Instruments product known as

CompactRIO, a reconfigurable, embedded system implementing data acquisition and manipulation [27].

This kind of architecture presents I/O modules, a FPGA chassis and an embedded controller, pro-
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grammable through LabVIEW programming language. The main reason leading to choose this system

typology is the ability to make advanced analysis, but its potentialities also cover elevated signals elabo-

ration, control algorithms from immediate PID systems to dynamic ones like model predictive controls

(MPCs). All of these features are well–defined to achieve an adequate level of determinism. Another

benefit is represented by the modularity and flexibility guaranteed by this platform: as a matter of fact a

large range of controller, reconfigurable chassis and I/O modules can be included to easily change over

from prototype to production.

The real–time controller is a microprocessor that executes LabVIEW real–time code in a reliable and

deterministic way offering control, datalogging and peripheral communication. Because each acquisition

module is connected directly to the FPGA rather than through a bus, there is almost no control latency

for system response compared to other controller architectures.

By default, this FPGA automatically communicates with I/O modules and provides deterministic

I/O to the real–time processor through a PCI bus communication. Out of the box, the FPGA enables

programs on the real–time controller to access I/O with less than 500 ns of jitter between loops. You

can also directly program this FPGA to further customize the system. Because of the FPGA speed, this

chassis is frequently used to create controller systems that incorporate high-speed buffered I/O, very fast

control loops, or custom signal filtering. For instance, using the FPGA, a single chassis can execute

more than 20 analog proportional integral derivative (PID) control loops simultaneously at a rate of 100

kHz. Additionally, because the FPGA runs all code in hardware, it provides the highest reliability and

determinism that is ideal for hardware-based interlocks, custom timing and triggering, or eliminating the

custom circuitry normally required with nonstandard sensors and buses.

Lastly I/O modules comprise isolation stages, conversion and signal conditioning for a direct connec-

tion to sensors and motor units. Modules easily available on the market includes several signal typologies

inputs and actuators: thermocouple inputs, current or voltage, strain gauges, or digital inputs/outputs.

Additionally, you can build your own modules or purchase modules from third-party vendors.

A similar platform has been chosen because with LabVIEW FPGA is possible to

1. Collect analog waveform at rates of hundreds of kilohertz;

2. Create custom digital pulse trains at up to 40 MHz;

3. Implement custom digital communication protocols;

4. Run control loops at rates in the hundreds of kilohertz;

5. Use modules not supported by the scan mode including CAN and PROFIBUS communication;
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Figure 35: Scheme of CompactRIO Embedded System, Exploiting Processor and FPGA Technologies

6. Implement custom timing, triggering, and filtering.

With the combination of a real–time processor and programmable FPGA on CompactRIO, we take

advantage of the strengths of each computing platform. The real–time processor excels at floating–point

math and analysis and peripheral communication such as network-published shared variables and Web

services. The FPGA excels at smaller tasks that require very high-speed logic and precise timing. A

scenario for which the FPGA is programmed directly can include

1. High–Speed Waveform Acquisition /Generation (greater than 1 kHz).

If an aquisition or generation at speeds higher than 1 kHz is needed to take full advantage of

these module features, LabVIEW FPGA can acquire at a user-defined rate tailored to a specific

application.

2. Custom Triggering/Timing/Synchronization.

With the reconfigurable FPGA, a programmer can create simple, advanced, or otherwise custom

implementations of triggers, timing schemes, and I/O or chassis synchronization. These can be as

elaborate as triggering a custom CAN message based on the rise of an analog acquisition exceeding

a threshold or as simple as acquiring input values on the rising edge of an external clock source.

3. Hardware–Based Analysis/Generation and Coprocessing.

Many sensors output more data than can be reasonably processed on the real–time processor alone.

The FPGA can be used as a valuable coprocessor to analyze or generate complex signals while

freeing the processor for other critical threads.
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This type of FPGA based coprocessing is commonly used in applications such as

Encoding/decoding sensors

(a) Tachometers

(b) Standard and/or custom digital protocols

Signal processing and analysis

(a) Spectral analysis (fast Fourier transforms and windowing)

(b) Filtering, averaging, and so on

(c) Data reduction

(d) Third-party IP integration

Sensor simulation

(a) Linear-voltage differential transformers (LVDTs)

(b) Cam and crank

Hardware-in-the-loop simulation.

4. Highest–Performance Control

Not only the FPGA can realize high-speed acquisition and generation, but also can implement

many control algorithms on the FPGA. You can use single–point I/O with multichannel, tunable

PID or other control algorithms to implement deterministic control with loop rates up to hundreds

of kilohertz.

5. Unsupported Modules

Several C Series modules do not feature scan mode support. For these modules, you need to use

LabVIEW FPGA to build an interface between the I/O and your real–time application. For a list of

modules that feature scan mode support, see C Series Modules Supported by CompactRIO Scan

Mode. Unsupported Targets CompactRIO targets with 1M gate FPGAs cannot fully support the

scan mode. You can implement some scan mode features on unsupported targets, but you must use

LabVIEW FPGA. The knowledge base article Using CompactRIO Scan Mode with Unsupported

Backplanesi describes how to use LabVIEW FPGA to build a custom scan mode interface for an

unsupported FPGA target.
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Because LabVIEW FPGA code runs directly on hardware, the main advantages of FPGA–based

design are:

1. High Reliability

LabVIEW FPGA code running on a FPGA is highly reliable because the logic is compiled into a

physical hardware design. Once the FPGA is programmed, it becomes a hardware chip with all of

the associated reliability.

2. High Determinism

Processor-based systems often involve several abstraction layers to help schedule tasks and share

resources among multiple processes. The driver layer controls hardware resources and the oper-

ating system manages memory and processor bandwidth. For any given processor core, only one

instruction can execute at a time. Real-time operating systems reduce jitter to a finite maximum

when programmed with good priority hierarchy. FPGAs do not use any operating systems. This

minimizes reliability concerns with true parallel execution and deterministic hardware dedicated

to every task. For NI FPGA–based hardware, you can achieve 25 ns timing accuracy of critical

components within your design.

3. True Parallelism

Multithreaded applications break down into multiple parallel sections of code which are executed

in a round-robin fashion, giving the appearance of parallel execution. Multicore processors expand

on that idea by allowing multithreaded applications to truly execute multiple parallel code at one

time. The number of parallel pieces of code executing concurrently is limited to the number of

cores available in the specific processor. Because an FPGA implements parallel code as parallel

circuits in hardware, you are not limited by processor cores; therefore, every piece of parallel code

in an entire FPGA application can execute concurrently. Even traditionally serial operations can

improve throughput on FPGAs by implementing pipelining.

4. Reconfigurability

Being reconfigurable, FPGA chips are able to keep up with any future modifications you might

need. As a product or system matures, functional enhancements are always feasable without

spending time redesigning hardware or modifying a board layout. This is especially applicable

to industrial communication protocols. As communication protocols evolve and improve over
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time, you can modify the implementation of that protocol within an FPGA to support the latest

technology features and changes.

5. Instant Boot Up

Because LabVIEW FPGA code runs directly on the FPGA without an overarching operating sys-

tem, the code downloaded to the FPGA flash memory begins running within milliseconds of pow-

ering on your CompactRIO chassis. This code can begin executing a control loop or setting startup

output values.

2.3 Mathworks–LabVIEW Interface

Designed to offer a desktop interface to mathematically manage a model, the languages known as .m

files simplify the process of development of intellectual algorithms and IP but they often complicate the

embedded hardware conversion. This kind of programs, used in software as MathWorks and Scilab,

manipulate data as a numerical matrix, in this way the concept of ”data type” is not realized and there

is a dynamic allocation of memory. This can be a strong limit in embedded architectures and OS cannot

operate in similar conditions, due to timing constraints and their deterministic nature. Another aspect to

focus that .m files are not compiled but interpreted: without a code compilation the fundamental benefit

of errors identification before the execution is lost. Furthermore, this language does not contain timing

and resources management causing the code to be written once again in a more suitable one (such as C) to

program the embedded system. Taking a script developed using Matlab and replicating it in a multicore

realtime hardware can request the depicted steps.

Figure 36: Main steps passing through Simulink environment to a real time one

With the matlab syntax, firstly it is necessary to test a script in the desktop development environment

using the Parallel Computing toolbox to prepare code for a dual-core environment. Then the Embedded

Matlab is adopted to generate C code and in the end the code has to be compiled and debugged in a seper-

ate embedded toolchain. This path can be very dangerous for timing and precision of the mathematical

implementations.
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In this scenario, NI provides a Mathscript module that provides a textual programming math-oriented

through a native compiler for .m files. In this way every .m file can be included in realtime hardware. The

following figure shows the Mathscript Node which permit to execute scripts .m from a LabVIEW VI.

Figure 37: Matlab rootines read in a Labview application

A first advantage of the LabVIEW compiler is the capacity to express parallelism: there is no need

for special markup or in the code to force a parallelism on the compiler, feature needed for a textual

programming language.

Another important feature about the Labview–Matworks linking is the possibility to reproduce Simu-

link projects in the LabVIEW development, just in a few steps. The NI LabVIEW Simulation Interface

Toolkit gives control system design and test engineers a link between the NI LabVIEW graphical de-

velopment environment and The MathWorks, Inc. Simulink software. With the LabVIEW Simulation

Interface Toolkit, it is easily possible to build custom LabVIEW user interfaces to view and control your

simulation model during run time. This toolkit also provides a plug–in for use with The MathWorks,

so designers are allowed to connect, using LabVIEW, a model developed in the Simulink environment,

to the real world through a variety of real–time I/O platforms. With these capabilities, you can easily

take your models from software verification to real–world prototyping and hardware–in–the–loop simu-

lation. This particular characteristic was exploited and described to implement the controller shown in

the previous sections.

II.65



3 The Use of FPGA in Industrial Applications

In this section we will present an experimental set–up that has been used to show the benefit of the

FPGA features, to be integrated with the simulation environment previously presented, in order to better

validate the control laws described in [3]. This set–up implements a fist prototype of a supervisory tool

for the TRIGA reactor RC–1 [26], in the Rome Casaccia Centre. In the first part, it will be shown how

Simulink and LabVIEW are used to obtain a tool capable of simulating mathematical model described

by differential equations, with the possibility of ‘downloading’ the resulting numerical model on a mixed

CPU–FPGA architecture. LabVIEW allows users to create an intuitive and user friendly panel, very

useful to have a real–time synoptic representing the model state. In the second part, we will focus on the

possibility to push control algorithms to very high performances, describing VHDL code generation and

digital circuits synthesis through FPGA family development tools.

3.1 A Digital Supervisory Tool using LabVIEW Development Environment

LabVIEW allows users to create an intuitive front panel easy to customize. An example of such front

panel is given in Figure 38. In this application the pressurizer model previously described has been repro-

duced with the three heaters at its bottom. A similar synoptic loads the Simulink model and parameters

and it visualize them in a more user–friendly way, thus resulting in a better perception of the process real

estate. Beside the pressurizer, some analog indicators have been implemented such as pressure, power

and temperature monitoring. During the simulation all the implemented elements are dynamically an-

imated, showing the same behavior recorded with simple graphs of the variables time evolution. Just

using the simulation interface toolkit simulations have become more realistic and in this direction an

hypothetical step to download a similar architecture on a realtime system would be immediate.

In the following section, the second test application will be presented to underline the advantages

from the use of CompactRIO. This test shows the importance of such a digital architecture in supervi-

sion and monitoring systems: in the so–called old generation nuclear plant a digitalization process will

be desirable in order to improve the HMI and to have a user–friendly visualization beside the always

indispensable analog instrumentation. In this sense some important variables have been acquired and
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Figure 38: Synoptical view of the LabVIEW application loading the Simulink model

presented to the plant operator in a intuitive way, also with the possibility to record data in a dedicated

memory and reproduce some particular plant conditions.

3.1.1 Test Bench: TRIGA RC–1 Reactor

TRIGA RC–1 is a pool thermal reactor having a core contained in an aluminum vessel and placed inside

a cylindrical graphite reflector, bounded with lead shielding. The biological shield is provided by con-

crete having mean thickness of 2.2 m. Demineralized water, filling the vessel, ensures the functions of

neutron moderator, cooling mean and first biological shield. Reactor control is ensured by four rods: two

shims, one safety fuel–follower rods and one regulation rod. Produced thermal power is removed by nat-

ural water circulation through a suitable thermo–hydraulic loop including heat exchangers and cooling

towers. Some irradiation facilities are listed below.

The core and the reflector assemblies are located at the bottom of an aluminum tank (190.5 cm di-

ameter). The overall height of the tank is about 7 m, therefore the core is shielded by about 6m of water.

The core, surrounded by the graphite reflector, consists of a lattice of fuel elements, graphite dummy

elements, control and regulation rods. There are 127 channels divided in seven concentric rings (from 1

to 36 channels per ring). The channels are loaded with fuel rods, graphite dummies and regulation and

control rods depending on the power level required. One channel houses the start–up Am–Be source,

while two fixed channels (the central one and a peripheral) are available for irradiation or experiments.

A pneumatic transfer system allows fast transfer from the peripheral irradiation channel and the radio-

chemistry end station. The diameter of the core is about 56.5 cm while the height is 72 cm. Neutron

reflection is provided by graphite contained in an aluminum container, surrounded by 5 cm of lead acting

as a thermal shield. The fuel elements consist of a stainless steel clad (AISI–304, 0.05 cm thick, 7.5
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g/cm3 density) characterized by an external diameter of 3.73 cm and a total height of 72 cm, end cap

included. The fuel is a cylinder (38.1 cm high, 3.63 cm in diameter, 5.8 g/cm3 of density) of a ternary

alloy uranium–zirconium–hydrogen (H–to–Zr atom ratio is 1.7 to 1; the uranium, enriched to 20% in
235U, makes up 8.5% of the mixture by weight: the total uranium content of a rod is 190.4 g, of which

37.7 g is fissile) with a metallic zirconium rod inside (38.1 cm high, 0.5 cm in diameter, 6.49 g/cm3 of

density). There are two graphite cylinders (8.7 cm high, 3.63 cm in diameter, 2.25 g/cm3 of density) at

the top and bottom of the fuel rod. Externally two end–fittings are present in order to allow the remote

movements and the correct locking to the grid. The regulation rod has the same morphological aspect as

the fuel rod: the only difference is that instead of the mixture of the ternary alloy Uranium–Zirconium–

Hydrogen there is the absorber (graphite with powdered boron carbide). The control and safety rods are

‘fuel followed’: the geometry is similar to that of the regulation rod but with fuel element at its bottom.

The graphite dummies are similar to a fuel element but the cladding is filled with graphite. Figure 39

shows an horizontal section.

Figure 39: Horizontal section of TRIGA RC–1 nuclear research reactor at ENEA–Casaccia research
Centre

The parameters used in order to perform the reactor monitoring can be classified into three large

groups: power monitoring, process monitoring and radiological monitoring. The reactor power is moni-

tored by means of one starting channel (0.0 to 1W), two wide range linear channels (0.5 -5.0o106 W) and

one safety channel (10 kW to 1.1 MW). The process monitoring includes 6 temperatures (fuel elements,
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primary and secondary loops, cooling towers), flow rates (primary and secondary loops, water cleaning

system, reactor hall air), levels (reactor pool, shielding tank), conductivities (primary loop, shielding

tank loop). The radiological control is carried out by monitoring water activity (primary and secondary

loops), air activity (reactor hall and experimental channels) and environmental radiation levels (reactor

hall, control room and experimental channels). Only main plant parameters are mentioned herein, but

a lot of secondary parameters can be easily monitored (such as control rods positions, switches status,

alarms and so on).

3.1.2 Analyzed Parameters

In this prototypical phase, in way of obtaining a complete knowledge about the plant and representing

the operation of power increase, three kind of signals have been isolated

1. Variables representing generated power by the nuclear reactor.

2. Temperatures concerned with positions in the core and in the linked thermo–hydraulic loops.

3. Signals referred to rods position.

A logarithmic amplifier provides power value from the shutdown to the full power status, this is pos-

sible because the amplifier is linked to a ionization chamber covering a current range from 100 pA to

100µA. Variables coming from thermocouples are stored for a temperature monitoring. Conditioning of

thermocouple signals is available for the input of our modules through transducers. The most important

temperatures collected are process temperatures (well surface, purificator, towers entrance, exchangers

entrance, etc.), and fuel temperatures recorded in two different positions of the core. An indication of

rod positions (two shim rods, safety and regulation rod) is obtained through potentiometer repeater. On

the front panel, numeric indicators presented on the control console are replicated, together with the

luminous indicators representing: rod at full lower stroke and full upper stroke; rod uncoupled from the

electromagnet. The system synoptic faithfully depicts a similar representation of the control panel on

the console. Extraction and insertion (fixed–speed) of a selected rod is determined raising or lowering a

lever, with a central equilibrium position. In the following picture the synoptic just described is shown.

At this stage, 45 different signals have been identified and sampled by the supervisory tool. The

number of channels and the frequency of acquisition would not justify the choice of using a FPGA

architecture: in fact, the real–time processor alone is presently able to guarantee a satisfactory result in

terms of syncronism and parallelism of different process, but it could become obsolete increasing the

number of signals and the rate of acquisition. In this sense, using an FPGA from scratch can satisfy
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Figure 40: A Software Synoptic of the Real TRIGA RC–1 Control Console

the requirements of real–time acquisition and effective independence between processes also with more

severe specs and facilitating a possible process of the system licensing.

3.1.3 Process on Investigation: Attainment of Maximum Power (1MW)

The plant process on investigation represents the transient state reaching the maximum power of op-

eration. 1 MW top power is achieved by plant operators respecting some operating rules. Our digital

system is able to monitor and save all of the user maneuvers, therefore in the following graphs main

parameters development is shown. This process took 30 minutes to run out and in this lapse of time the

prototype worked in parallel providing a user–friendly visualization, permitting to memorize in .txt files

and offering its front panel on web server through the dedicated LAN.

The Figure 41 depicts the control rods rise, during the phenomenon formerly described. It is possible

to recognized the correct sequence of rod rising as in a safe operating maneuver, in sequence: safety,

regulation, shim1 and shim2 rod.

The power transient is shown from start–up to 1 MW state during the process. Two fuel elements,

far–between in the core, recorded this kind of trend during this transient state, falling completely into

fuel range of granted temperatures.
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Figure 41: Transient State of Rod Position during Power Increase

Figure 42: Power Evolution Reaching 1 MW vs time [min] – Power Values are Expressed in W
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Figure 43: Fuel Temperature during Power Increase

A further useful tool, presented in the proposed supervisory system, is a dynamic visualization of

the reactor synoptic: indeed an operator is able to check real–time rod positions in a very intuitive way

compared to a digital indication of rod cycles. This user–friendly methods of displaying is conceived to

facilitate the analogue to digital changeover, as required for plant console modernizations.

Figure 44: Analog to Digital Changeover using LabVIEW Tools
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3.2 Generic Controller Implementation on FPGA–Based Platforms

In the previous sections we described how control algorithms can be simulated and then implemented

on CPUs systems or hybrid CPU–FPGA architectures, achieving good performances in terms of time,

programming complexity and graphical interface improvements. In this section we focus on the possi-

bility to push control algorithms to very high performances, describing two different approaches: VHDL

code generation and digital circuits synthesis through FPGA family development tools, as maintaining

the compactRIO architecture with a lower level approach making use of the FPGA module. As a test

application we defined a PID control loop algorithm in the different described design flows. It is good to

underline the fact that we focused on the “PID core” implementation, presuming that problems such as

signals conversion, conditioning and compatibility have already designed and solved.

3.2.1 Flow Design of Digital Architectures Using VHDL Code Generation

VHDL is a language for describing digital electronic systems. It arose out of the United States Govern-

ment’s Very High Speed Integrated Circuits (VHSIC) program, initiated in 1980. It became clear that

there was a need for a standard language for describing the structure and function of integrated circuits

(ICs). Hence the VHSIC Hardware Description Language (VHDL) was developed, and subsequently

adopted as a standard by the Institute of Electrical and Electronic Engineers (IEEE) in the US. VHDL is

designed to fill a number of needs in the design process. Firstly, it allows description of the structure of

a design, that is how it is decomposed into sub–designs, and how those sub–designs are interconnected.

Secondly, it allows the specification of the function of designs using familiar programming language

forms. Thirdly, as a result, it allows a design to be simulated before being manufactured, so that design-

ers can quickly compare alternatives and test for correctness without the delay and expense of hardware

prototyping.

1. Describing structure

A digital electronic system can be described as a module with inputs and/or outputs. The electrical

values on the outputs arefunction of the values on the inputs. Figure 45 shows an example of this

view of a digital system. The module F has two inputs, A and B, and an output Y. Using VHDL

terminology, we call the module F a design entity, and the inputs and outputs are called ports. One

way of describing the function of a module is to describe how it is composed of sub–modules.

Each of the sub–modules is an instance of some entity, and the ports of the instances are connected

using signals. Figure 45 also shows how the entity F might be composed of instances of entities

G, H and I. This kind of description is called a structural description. Note that each of the entities
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Figure 45: Example of a structural description

G, H and I might also have a structural description.

2. Describing Behaviour

In many cases, it is not appropriate to describe a module structurally. One such case is a module

which is at the bottom of the hierarchy of some other structural description. For example, if you

are designing a system using IC packages bought from an IC shop, you do not need to describe the

internal structure of an IC. In such cases, a description of the function performed by the module is

required, without reference to its actual internal structure. Such a description is called a functional

or behavioural description. To illustrate this, suppose that the function of the entity F in Figure 45

is the exclusive–or function. Then a behavioural description of F could be the Boolean function:

Y = A.B + A.B

More complex behaviours cannot be described purely as a function of inputs. In systems with feed-

back, the outputs are also a function of time. VHDL solves this problem by allowing description

of behaviour in the form of an executable program.

Once the structure and behavior of a module have been specified, it is possible to simulate the module

by executing its behavioral description. This is done by simulating the passage of time in discrete steps.

At some simulation time, a module input may be stimulated by changing the value on an input port. The

module reacts by running the code of its behavioral description and scheduling new values to be placed

on the signals connected to its output ports at some later simulated time. This is called scheduling a

transaction on that signal. If the new value is different from the previous value on the signal, an event

occurs, and other modules with input ports connected to the signal may be activated. The simulation

starts with an initialization phase, and then proceeds by repeating a two–stage simulation cycle. In

the initialization phase, all signals are given initial values, the simulation time is set to zero, and each
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module’s behavior program is executed. This usually results in transactions being scheduled on output

signals for some later time. In the first stage of a simulation cycle, the simulated time is advanced to

the earliest time at which a transaction has been scheduled. All transactions scheduled for that time are

executed, and this may cause events to occur on some signals.

In the second stage, all modules which react to events occurring in the first stage have their behavior

program executed. These programs will usually schedule further transactions on their output signals.

When all of the behavior programs have finished executing, the simulation cycle repeats. If there are

no more scheduled transactions, the whole simulation is completed. The purpose of the simulation

is to gather information about the changes in system state over time. This can be done by running

the simulation under the control of a simulation monitor. The monitor allows signals and other state

information to be viewed or stored in a trace file for later analysis. It may also allow interactive stepping

of the simulation process, much like an interactive program debugger.

3.2.2 Example of a PID Digital Implementation through VHDL Code

In this section the PID algorithm described in deliverable1 is reproposed to show how it is immediately

possible to create a digital core from a low level description as VHDL code. Firstly a new project in

VHDL has been created using the same nomenclature adopted in deliverable1. The code is reported

below:

library IEEE;

USE ieee.std_logic_arith.ALL;

USE ieee.std_logic_unsigned.ALL;

use IEEE.STD_LOGIC_1164.ALL;

entity PID_FSM is

Port ( ADC_DATA : in STD_LOGIC_VECTOR (15 downto 0); --16 bit unsigned PID input

DAC_DATA : out STD_LOGIC_VECTOR (15 downto 0); --16 bit unsigned PID output

mr,clk : std_logic);

end PID_FSM;

architecture Behavioral of PID_FSM is

type state_type is ( Start,

CalculateNewError,

CalculatePID,
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SOverload,

ConvDac

);

signal state : state_type := Start;

CONSTANT SetVal : integer := 33259;

CONSTANT Kp : integer := 10;

CONSTANT Ki : integer := 20;

CONSTANT Kd : integer := 1;

CONSTANT Kg : integer := 256;

begin

states: process

variable p,i,d : integer := 0;

variable Output_Old : integer := 0;

variable Error_Old : integer := 0;

variable err: integer := 1000;

variable out_value : integer := 1;

variable sAdc : integer := 0 ;

begin

if (mr=’0’) then

state <= Start;

end if;

wait until clk=’1’;

case state is

when Start =>

sAdc := conv_integer(ADC_DATA); --Get the input for PID

DAC_DATA<= conv_std_logic_vector(out_value ,16);

state <= CalculateNewError;

Error_Old := err; --Capture old error

Output_Old := Out_value; --Capture old PID output
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when CalculateNewError => --

state <= CalculatePID;

err := (SetVal-sAdc); --Calculate Error

when CalculatePID =>

state <= SOverload;

p := Kp*(err); --Calculate PID

i := Ki*(err+Error_Old);

d := Kd *(err-Error_Old);

out_value := output_Old+(p+i+d)/2048; --Calculate new output

when SOverload =>

state <=ConvDac;

if out_value > 65535 then

out_value := 65535 ;

end if;

if out_value < 1 then

out_value := 1;

end if;

when ConvDac => --Send the output to port

DAC_DATA<= conv_std_logic_vector(out_value ,16);

state <= Start;

when others =>

state <= Start;

end case;

END PROCESS states;

end Behavioral;

Once VHDL code is developed, the ALTERA tool “Quartus II” is used to synthesize the digital

circuit: like other kind of FPGA design tools expanding a new project consists of some fundamentals

phases. The first step is the “Analysis and Synthesis” step, where the VHDL code is check and compiled

(on the basis of the chosen device); if this step is completed without any error, it is possible to display

how the development environment has placed components to realize the circuit which is able to satisfy

the main requirements. Using different tools can lead to obtain not equals results, because of the use of
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different optimization algorithms. In this application the obtained circuit is depicted in the Figure 46, at

register (RTL) level.

Figure 46: Register Transfer Level of main PID digital core implementation in FPGA

Figure 47: FSM visualization of PID digital core implementation in FPGA

At this stage, a compilation report is also available to check the FPGA total logic port usage and the

maximum delay between input and output values in terms of clock edges. It is good rule to remember

that in this phase this delays are evaluated just on the basis of the PID entity behavior and in the last

phase the timing constraints of ports and real delays are considered.

3.2.3 Flow Design of Digital Architectures Using LabVIEW FPGA–Module

Alternatively to VHDL code description, a PID algorithm can be implemented maintaining the same Na-

tional Instruments architecture adopted LabVIEW descriprion language [30]. As previously mentioned,
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not only can you use compactRIO FPGA for high–speed acquisition and generation, but also to im-

plement several control algorithms on the FPGA. Single–point I/O with multichannel can be exploited,

tunable PID or other control approaches realize deterministic control with loop rates up to hundreds of

kilohertz.

DMA channels can be used to stream high–speed data between the FPGA and real–time hardware.

To create a DMA buffer for streaming data, just select on FPGA target a new FIFO. Giving the FIFO

structure a descriptive name and choosing target–to–host as the type, the real–time processor is able to

read from the FIFO those values stored by the FPGA. This means that data should flow through this

DMA FIFO from the FPGA target to the real–time host. Data type can also be set and FPGA FIFO

depths.

Figure 48: Simple MA transfer on One channel

It is fairly simple to put a DMA FIFO on a diagram. However, complexities arise when the default

settings on the DMA transfer are not sufficient. If missing data points create a bug in your system, you

must monitor the full flag on the FPGA and latch it when a fault occurs. Simply sampling this register

from the host is not sufficient to catch quick transitions on that variable. Figure 49 shows various latching

techniques on the timeout (full flag).

If you are receiving full flags, you need to either increase buffer size on the host, read larger chunks

on the host, or read faster on the host. Keep in mind that many control and monitoring applications need

only the most up–to–date data. Therefore losing data may not be an issue for a system as long as it

returns the most recent data when called.

Another consideration for DMA transfer is using one DMA FIFO for multiple channels. Hybrid

mode CompactRIO systems only have one DMA channel available. To pack multiple channels into one

DMA FIFO, use an interleaving technique, and unpack using decimation on the host.

To read DMA channels from a realtime program, a reference to the FPGA VI or bitfile and FPGA

target is needed to be specify. Then the modality to read a value from or write a value to a control or

indicator in the FPGA VI on the FPGA target is set. This can be a trigger condition, sampling rate, or
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Figure 49: Example of No Latch, Simple Latch, and Latch with Reset

Figure 50: interleaved multichannel data stream

any other data or parameter set by a control or indicator in the FPGA VI. Invoking an FPGA interface

method or action from a host VI on an FPGA VI is essential to implement the following operations:

download, abort, reset, and run the FPGA VI on the FPGA target; wait for and acknowledge FPGA VI

interrupts; read DMA FIFOs; and write to DMA FIFOs. The methods a user can choose from depend

on the target hardware and the FPGA VI. It is necessary to wire the FPGA VI Reference input to view

the available methods in the shortcut menu. On the realtime applicative we have to open a reference to

the FPGA VI, set parameters, use the Invoke Node in a task loop to read waveform data, and close the

FPGA reference to implement the simplest DMA read. However, as previously discussed, complexities

can arise from buffer sizes, timeouts, and synchronization. Below is a simple real–time application that

reads a waveform from the FPGA, performs an average calculation on the waveform and passes the data

to a separate control loop that is running a PID loop to control a PWM output based on the waveform
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average. This type of application might be used to control a signal generator or laser that is tuned using

a PWM input signal.

Figure 51: Simple DMA Read Using the FPGA Interface on the Real–Time Host
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4 Conclusions

In this deliverable, a Simulink simulation environment has been used to check the performance of the

designed digital controllers, for various values of the sampling time. Moreover, LabVIEW has been an-

alyzed as potential solution to interface Simulink with real–time environments. This allows testing the

controllers with some hardware devices, such as sensors and actuator, in the control loop. Although not

certified for nuclear applications, this allows checking the methodological steps for the real–time proto-

typing of the controllers for non–nuclear industrial applications. For nuclear applications, more costly

nuclear–certified softwares have to be considered. Such Simulink/LabVIEW simulation environment can

be integrated in the next future with an experimental set–up, here proposed to show the benefit of the

FPGA features.
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