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Note sulla Relazione Finale

La presente relazione riguarda le attività svolte presso il Dipartimento DiSVA dell’Università
Politecnica delle Marche nell’ambito del contratto indicato (scadenza naturale, 30 settembre
2012).

La relazione e’ divisa in due parti. Nella prima, viene presentato il lavoro svolto per la
la messa a punto di codici di calcolo necessari ad una affidabile interpretazione delle misure
SANS condotte su materiali nucleari. I codici sono stati implementati in Fortran in alcune
subroutines originali (che sono allegate alla relazione, Appendice A) che sono state inserite
nel programma di analisi di dati SAS genfit. La solidità e affidabilità del codice sviluppato
sono state verificate analizzando spettri SANS di campioni di acciaio prima e dopo irraggia-
mento, ottenuti sia mediante simulazioni che sperimentalmente, valutando sistematicamente
i parametri più significativi e assumendo come unica ipotesi l’esistenza nei materiali di una
polidispersione diluita di difetti microstrutturali a fattore di forma sferico. Sia nel caso delle
2 curve simulate che in quello delle 2 curve sperimentali considerate (campioni di Eurofer 97
misurati ad ILL, Grenoble), i risultati ottenuti (in termini di polidispersione e frazione volu-
mica delle diverse famiglie di difetti) sono stati comparati con quelli ottenuti per trasformata
indiretta dell’intensità SANS:

dΣ

dΩ
(q) = (∆ρ)2

∫
dRN(R) [V (R)]2 |F (q, R)|2 (1)

dove q è il modulo del momento trasferito, N(R) il numero per unità di volume di centri di
dimensioni comprese tra R e R + dR, V (R) il loro volume, |F (q, R)|2 il loro fattore di forma
(in questo caso assunto sferico) e (∆ρ)2 il contrasto, ovvero il quadrato della differenza tra la
densità di lunghezza di scattering delle inomogeneità e la matrice metallica, calcolata utilizzando
il metodo riportato in referenza (1) e più recentemente discusso da Coppola e altri (2–4).

La seconda parte della relazione riguarda l’analisi attraverso il programma fullprof di
alcune misure di diffrazione neutronica su materiale nucleari di interesse tecnologico. Lo scopo
è quello di caratterizzare le fasi cristallografiche presenti nel campione e di quantificarne il
contenuto. I risultati ottenuti con fullprof hanno permesso di individuare la presenza di
nanocristalli di Y2O3 (nella forma cubica a corpo centrato, Ia-3) nella matrice di acciaio marten-
sitico Eurofer-97 e di osservare che il loro contributo all’intensità integrata totale del segnale
di diffrazione è pienamente compatibile con la composizione nominale del materiale stesso.
I dettagli dei risultati discussi e mostrati nella relazione sono contenuti integralmente nella
appendice che viene allegata alla presente relazione (Appendice B).

Si precisa infine quanto segue: le considerazioni sul codice mps si riferiscono all’utilizzo
che ne hanno fatto gli autori relativamente agli spettri SANS considerati. Le conclusioni
sull’eventuale presenza della fase Y2O3 andranno verificate con una accurata analisi del ru-
more di fondo.
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SANS investigations of metallic alloys with different types

of inhomogeneities

Introduction

Small-angle neutron scattering (SANS) is a versatile technique for studying structure and size
distribution of inhomogeneities of metallic alloys in a wide range of dimensions, from nanometers
to micrometers. With respect to X-rays and the corresponding twinned technique (small-
angle X-ray scattering, SAXS), the advantage of SANS is the capability of neutrons to deeply
penetrate into metallic materials, allowing to get information on their bulk properties. Indeed,
neutrons interact with the nucleus of all atoms and the isotropic neutron scattering signal is
a complex combination of all the spherical neutron waves originating from any nucleus of the
system. However, since SANS is not a local technique but a tool that collects the information of
all the components of the system, the structural complexity of metal alloys cannot be completely
revealed. From a physical point of view, what can make visible to neutrons the presence of a
structural inhomogeneity (e.g. precipitates or voids) is the difference between the scattering
length density of the j-inhomogeneity, ρj, and the one of the bulk materials, ρ0. This difference
is commonly referred to as “the contrast” and written as ∆ρj. The simplest cases that can be
successfully investigated by means of SANS are systems with a low content of inhomogeneities,
namely where their volume fraction, φ, is in the order of some percent. In such cases, the
contribution due to the interference between neutron waves scattered from distinct particles
can be considered negligible and the SANS patterns bring information only on sizes and shapes
of the inhomogeneities. Metallic alloys are a typical example of a polydispersed system, where
the sizes of the possible inhomogeneities are usually distributed in a wide range of dimensions. In
particular, when the morphology of the inhomogeneities is not known or when is not ascertained
if the growth of the inhomogeneities follows a specified directionality, the analysis of SANS data
cannot be able to get the shape (at low-resolution) of the particles. As a consequence, in terms
of geometrical shapes, in studying widely polydispersed systems is not possible to distinguish,
for example, among cylinders, cubes, ellipsoids or other simple forms. These kind of systems
are generally analyzed in terms of polydispersed spheres and the structural information usually
obtained is the distribution function f(R) of the sphere radius R together with the whole volume
fraction of the spherical inhomogeneities. To date, the most general approach to describe
f(R) is in terms of linear combination of cubic B-splines, which are bell-shaped third degree
polynomials defined over a set of equispaced knots either in a linear or in a logarithmic space
between the minimum and the maximum values of the sphere radius.

So far, this method has been largely used in the analysis of SANS data, by using numerical
codes such as the one developed by Magnani, Puliti and Stefanon (mps) (1). By this code it is
possible to obtain the size distribution of polydispersed spheres in terms of linear combinations
of cubic B-spline functions, with the possibility to choose a certain number of input parameters
such as the number of splines, the direct-space (R) range, the nuclear contrast, the incoherent
background. Anyway this code is based on a “pure two-phase model”, that is a distribution
of just one type of polydispersed objects inside the matrix, not allowing to take into account
the eventual presence of more than one kind of inhomogeneities, with different nuclear contrast
with respect to the matrix.

In the present study we have extended the cubic B-splines approach to the investigation of
metal alloys which contain up to a maximum of two different kind of inhomogeneities, namely
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precipitates and voids, each one characterized by a specific scattering length density. A test
case is performed by analyzing the SANS signal of a sample of “Eurofer” alloy before and after
being subjected to irradiation in a nuclear reactor. Results are discussed in terms of i) the
number of cubic B-splines used and ii) the “regularization” constraint.

Method

The system under investigation is supposed to be composed by a number p of different kinds of
diluted and polydispersed inhomogeneities, all with a spherical shape. The nuclear component
of the macroscopic differential neutron scattering cross section (SCS) of such a system, provided
by a SANS experiment, is expressed by

dΣ

dΩ
(q) =

p∑
j=1

njPj(q) +B (2)

where q = 4π sin θ/λ is the modulus of the transferred momentum (2θ being the scattering
angle and λ the neutron wavelength), nj is the total number of j-kind particle per unit volume
and B is a flat background, due to all the inchoerent scattering processes. Pj(q) is the form
factor of the j-kind polydispersed spherical inhomogeneities,

Pj(q) = (∆ρj)
2
∫ Rj,max

Rj,mix

fj(R)
[
4

3
πR3Φ(qR)

]2

dR (3)

Φ(x) = 3
sinx− x cosx

x3
(4)

In the Eq. 3, fj(R) represents the distribution function of the radius of the j-spheres, with the

normalisation condition
∫ Rj,max

Rj,min
fj(R)dR = 1. In the case of spherical radii possibly distributed

over several decades of values (wide polydispersity), it is a common practice to write the function
fj(R) as a linear combination of N cubic B-splines defined in a logarithmic grid,

fj(R) =
N + 3

Rj,max −Rj,min

N∑
n=1

cj,nB3,n(logR) (5)

where B3,n(x) is the n-th of N bell-shaped functions defined in a grid of N + 3 knots equally
distributed in the range logRj,min÷ logRj,max (5) (Fig. 1) and cj,n ≥ 0 (with the normalisation
condition

∑N
n=1 cj,n = 1) is the corresponding expansion coefficient of the j-kind of spherical

inhomogeneity.
The definition of B3,n(x) ensures that outside the interval [Rj,min, Rj,max] the distribution

function fj(R) is always zero and that it continuously reaches the zero value at R = Rj,min and
R = Rj,max. Moreover, the flattest condition for the fj(R) is achieved when all the coefficients
cj,n have the same value. The volume fraction of the j-spheres is simply calculated by the
integral

φj =
4

3
πnj

∫ Rj,max

Rj,min

R3fj(R)dR. (6)

However, since volume fractions are obviously limited in the range [0, 1], in a fitting implemen-
tation of the method it is much more effective to consider φj as free parameters and to derive
nj from Eq. 6
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Figure 1: Example of N=8 cubic B-splines functions

In summary, in the case of SANS curves obtained in absolute units (usually cm−1) and
when the scattering length densities ρj of all the possible inhomogeneities as well as the one
of the underlying matrix, ρ0, are known, the adjustable parameters of the model are the flat
background B and, for each j-kind of inhomogeneity, the volume fraction φj, the radius limits
Rj,min and Rj,max, and the set of N coefficients {cj,n}. Optimum values of all these parameters
are the ones that minimise the standard reduced χ2

χ2 =
1

Nq − 1

Nq∑
k=1


dΣ
dΩ

(qk)− dΣ
dΩ exp

(qk)

σexp(qk)


2

(7)

where dΣ
dΩ exp

(qk) and σexp(qk) are the experimental curve and its standard deviation measured

for Nq values of the momentum q. As widely discussed by the literature in tackling similar
problems (6), there is not a unique solution that minimize χ2 and, most importantly, many
solutions are quite unstable and give rise to large and unphysical oscillations of the distributions
fj(R). One of the very commonly used method to avoid such oscillations is to exploit the so-
called “regularization” method (7) based on the calculation of a damping term

U =
1

2
K

p∑
j=1

N−1∑
n=1

(cj,n+1 − cj,n)2 (8)

which is added to the χ2 to define a global functional H to be minimised

H = χ2 + U (9)

The estimation of the parameter K, which regulates the relative weight of U with respect to χ2,
can be performed in different and sometimes tricky ways. Here we have chosen a very simple
cryterion: K is found in such a way that, for statistically acceptable values of χ2 ∼ 1, the value
of U is ∼ 0.05.

The present method is applied within the software genfit (8–11), which is a flexible tool
to analyse SAS data with different models or combinations of models. The minimization of H
is carried out in two different steps, the first by using Simulated Annealing method and the
second with the Simplex method. Details are given in Ref. (12, 13).
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Experimental

SANS experiments have been performed in ILL in Grenoble at the D22 instrument. Two differ-
ent sample-to-detector distances (2 and 12 m) have been used to cover an extended q-range from
4 10−3 to 2.4 10−1 Å−1 and data have been recored on a 2D 512x512 detector. Samples were
placed in a saturating horizontal magnetic field of 1 T (applied perpendicular to the incoming
neutron beam) in order to distinguish the nuclear and magnetic SANS cross-sections. Accord-
ing to the set-up, nuclear scattering occurs in the horizontal plane, while nuclear and magnetic
scattering occur in the vertical one (the purely magnetic scattering can be then obtained as the
difference between the vertical and horizontal SANS cross-sections). After correction for back-
ground noise, detector efficiency and attenuation factor, the value of the SANS cross-section in
absolute units was obtained by a calibration of the neutron flux, measuring water in a quartz
cell, and by means of the ILL standard programs (GRASP software). Two EUROFER 97 sam-
ples (a ferritic-martensitic steel, candidate as structural material for the DEMO thermonuclear
reactor) have been in particular considered: the first sample was irradiated at 250◦C and the
damage dose was 16 dpa (displacement-per-atom); the second one was a reference sample, only
subjected to thermal processing.

Result and Discussion

Test on simulated SANS data

The method described above has been at first applied to simulated SANS data of a metal alloy.
Indeed, two SANS curves have been simulated in a typical q-range detectable at the instrument
D22 of ILL (France) by using two configurations (e.g., sample-to-detector distances 2 and 12
m). The simulated curves are shown in Fig. 2 and all the used parameters are reported in
the caption: circles represent the SANS curve of an alloy with only one type of inhomogeneity
(psim = 1), which are thought to be carbide precipitates with volume fraction φ1 = 0.05;
triangles simulate a SANS curve of a similar alloy (with the same volume fraction of carbide
precipitates) subjected to radiation damage, whose effects are supposed to add voids defects
(psim = 2) with volume fraction φ2 = 0.01.

To check the capability of the genfit method to get the structural information from the
data, the two simulated curves have been analyzed by using diverse parameterization settings,
which have been organized in two groups. Within each group, the two SANS curves have been
analyzed with three different values of the number of B-splines (N = 4, 6 and 8) and two
values of the regularization parameters, K = 0 and 1. Each fitting is repeated 5 times starting
by new SANS curves obtained by a Gaussian sampling of the SCSs within their standard
deviations. This procedure allows a robust estimation of the standard deviation of any fitting
parameters (14).

Group I: fitting of the simulated SANS curves with the hypothesis of two families
of spherical inhomogeneities (p = 2, carbide precipitates and voids)

The first group of genfit analyses have been carried out by using the hypothesis that two
kinds of spherical inhomogeneities (p = 2, i.e. precipitates, j = 1, and voids, j = 2) exist in
the alloy. Corresponding scattering length densities ρj, together with the matrix one, ρ0, have
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Figure 2: Simulated SANS curves calculated with Eq. 2. Standard deviation are calculated by

the expression σexp(qk) = 0.03
[
dΣ
dΩ exp

(q1)
]0.2 [

dΣ
dΩ exp

(qk)
]0.8

and simulated values are randomly

moved through a Montecarlo Gaussian sampling. Circles: reference alloy, ρ1 = 5.30 · 10−6 Å−2,
ρ0 = 7.55 · 10−6 Å−2, φ1 = 0.05, B = 0.015 cm−1, R1,min = 10 Å, R1,max = 800 Å, N = 8,
c1,1 = 0.153, c1,2 = 0.136, c1,3 = 0.119, c1,4 = 0.102, c1,5 = 0.119, c1,6 = 0.136, c1,7 = 0.153,
c1,8 = 0.085. Triangles: irradiated alloy, ρ1 = 5.30 · 10−6 Å−2, ρ2 = 0, ρ0 = 7.55 · 10−6 Å−2,
φ1 = 0.05, φ2 = 0.01, B = 0.015 cm−1, R1,min = 10 Å, R1,max = 800 Å, R2,min = 5 Å,
R2,max = 40 Å, N = 8, c1,1 = 0.153, c1,2 = 0.136, c1,3 = 0.119, c1,4 = 0.102, c1,5 = 0.119,
c1,6 = 0.136, c1,7 = 0.153, c1,8 = 0.085, c2,1 = 0.189, c2,2 = 0.162, c2,3 = 0.135, c2,4 = 0.108,
c2,5 = 0.081, c2,6 = 0.081, c2,7 = 0.108, c2,8 = 0.135.
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a b c d e f
χ2 1.02 1.04 1.04 1.04 1.03 1.04
U 0 0.44 0 0.02 0 0.02
H 1.02 1.37 1.04 1.08 1.03 1.05
B 0.0141±0.0008 0.014±0.001 0.0141±0.0006 0.0141±0.0006 0.014±0.002 0.0141±0.0009
φ1 0.051±0.002 0.050±0.001 0.051±0.001 0.051±0.001 0.052±0.001 0.051±0.002
R1,mix (Å) 30±20 96±5 40±30 20±10 31±9 10±6
R1,max (Å) 820±60 760±80 800±100 810±30 880±60 800±80
c1,1 0.0±0.1 0.33±0.06 0.00±0.07 0.19±0.04 0.12±0.04 0.15±0.03
c1,2 0 0.31±0.06 0.19±0.08 0.20±0.04 0.16±0.03 0.16±0.03
c1,3 0.6±0.2 0.24±0.05 0.17±0.06 0.10±0.05 0.00±0.09 0.17±0.03
c1,4 0.4±0.2 0.12±0.03 0.28±0.08 0.12±0.04 0.11±0.05 0.11±0.03
c1,5 0 0 0.25±0.07 0.23±0.07 0.20±0.06 0.06±0.04
c1,6 0 0 0.09±0.03 0.16±0.05 0.22±0.07 0.10±0.05
c1,7 0 0 0 0 0.15±0.03 0.16±0.03
c1,8 0 0 0 0 0.03±0.03 0.09±0.03
φ2 (2±2) · 10−5 (19±7) · 10−6 (1±1) · 10−5 (2±6) · 10−6 (1±4) · 10−5 (0±3) · 10−5

R2,mix (Å) 10±1 8±2 10±3 10±1 2±3 7±3
R2,max (Å) 100±20 100±1 91±5 30±30 30±20 60±20
c2,1 0.4±0.1 0.33±0.08 0.18±0.06 0.25±0.03 0.15±0.06 0.15±0.02
c2,2 0.2±0.1 0.30±0.08 0.15±0.07 0.19±0.02 0.08±0.06 0.14±0.02
c2,3 0 0.23±0.07 0.15±0.04 0.19±0.03 0.15±0.04 0.11±0.02
c2,4 0.4±0.1 0.13±0.05 0.17±0.08 0.13±0.05 0.09±0.03 0.09±0.03
c2,5 0 0 0.13±0.06 0.12±0.03 0.16±0.04 0.12±0.02
c2,6 0 0 0.21±0.05 0.13±0.02 0.14±0.05 0.13±0.01
c2,7 0 0 0 0 0.10±0.04 0.13±0.01
c2,8 0 0 0 0 0.13±0.04 0.13±0.01

Table 1: Fitting parameters from the analysis with p = 2 of the simulated SANS curve for the
reference alloy (psim = 1), group I. a) N = 4, K = 0; b) N = 4, K = 1; c) N = 6, K = 0; d)
N = 6, K = 1; e) N = 8, K = 0; f) N = 8, K = 1.

been fixed to the values calculated for carbide precipitates, voids and metal alloy, as used in
simulations (see the caption of Fig. 2). All resulting parameters are reported in Tables 1-2.

Fitting curves and volume distributions functions are shown in Figs. 3-5 and in Figs. 4-6,
respectively.

All the six analyses (a-f) of the simulated curve with psim = 1 give very good results, as
revealed by the values of χ2 close to 1 (Tab. 1). Noticeable is the fact that the volume fractions
of the precipitates, φ1, are in all cases practically equal to the value used in the simulation,
0.05, with relative errors of ∼ 2%. Within the experimental errors, also the upper and lower
limits of the radius of precipitates R turn out to be close to the values used for the input, 10
and 800 Å, respectively. On the other hand, the volume fractions of the voids, φ2, which do not
exist in the simulated curve, are all in the order of 10−5 − 10−6, with very high relative errors,
clearly indicating that the fitting do not need the second form factor to reproduce the data.
This result can be also checked by looking to Fig. 4, where the volume distribution functions of
voids 4

3
πn2f2(R)R3 (red dotted lines) are almost 0 in all the range of the radius R. In the same

figure it can be appreciated the similarity between the simulated volume distribution functions
of precipitates 4

3
πn1f1(R)R3 (black curve) and the one given by the analysis (solid red curve).

In particular, also by using N = 4 B-splines (cases a and b) the result is good. The effect of
the regularization can be observed by comparing the case b with the case a (for N = 4) as well
as the case d with c (N = 6) and finally f with e (N = 8): in the presence of the regularization
constraint the uncertainties on the 4

3
πn1f1(R)R3 profile decreases.

The six analyses of this group have been then applied to the simulated curve for the irra-
diated alloy sample, e.g. in the presence of both precipitates and voids (psim = 2), shown in
Fig. 2 (triangles). Fitted curves (Fig. 5, cases a-f) are very good, as quantitatively confirmed
by the values of χ2 reported in Table 2. In all cases, the volume fractions φ1 and φ2 of pre-
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Figure 3: Fitting curves of the simulated SANS curve for the reference alloy (psim = 1) obtained
by using p = 2, group I. Curves are scaled by a factor 10 for clarity. See the caption of Table 1
for the meaning of cases a-f.

0

4

8

0

4

8

0

4

8

0

4

8

0

4

8

0

4

8

101 102 103

0

0.8

1.6

0

0.8

1.6

0

0.8

1.6

0

0.8

1.6

0

0.8

1.6

0

0.8

1.6

(4
/3

) 
π 

n 2
 f 2

(R
) 

R
3  (

10
−

4  Å
−

1 )

(4
/3

) 
π 

n 1
 f 1

(R
) 

R
3  (

10
−

4  Å
−

1 )

R (Å)

a

b

c

d

e

f

Figure 4: Volume distribution functions obtained by the analysis with p = 2 of the simulated
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a b c d e f
χ2 0.99 1.07 0.99 1.00 0.99 0.98
U 0 0.38 0 0.04 0 0.01
H 0.99 1.43 0.99 1.04 0.99 0.99
B 0.019±0.003 0.019±0.003 0.017±0.003 0.019±0.003 0.022±0.003 0.020±0.003
φ1 0.0493±0.0005 0.049±0.001 0.0488±0.0005 0.050±0.001 0.0496±0.0004 0.0490±0.0006
R1,mix (Å) 17±7 40±10 12±6 10±10 1±1 9±4
R1,max (Å) 810±20 780±30 780±30 820±60 830±20 780±30
c1,1 0.4±0.1 0.30±0.03 0.18±0.04 0.22±0.07 0.10±0.06 0.09±0.03
c1,2 0.07±0.09 0.28±0.03 0.11±0.06 0.19±0.08 0.14±0.07 0.15±0.03
c1,3 0.2±0.1 0.25±0.04 0.09±0.09 0.13±0.09 0.20±0.07 0.14±0.02
c1,4 0.3±0.1 0.17±0.04 0.21±0.04 0.1±0.1 0.21±0.07 0.12±0.03
c1,5 0 0 0.21±0.05 0.13±0.09 0.02±0.09 0.14±0.03
c1,6 0 0 0.19±0.04 0.21±0.09 0.04±0.06 0.10±0.03
c1,7 0 0 0 0 0.09±0.07 0.16±0.04
c1,8 0 0 0 0 0.21±0.05 0.09±0.03
φ2 0.0098±0.0003 0.0096±0.0001 0.0100±0.0003 0.0098±0.0003 0.0096±0.0007 0.0098±0.0003
R2,mix (Å) 6±1 10±2 5±3 9±2 8±2 8±2
R2,max (Å) 42±1 43±2 41±2 40±3 59±8 38.5±0.9
c2,1 0.29±0.08 0.29±0.07 0.25±0.06 0.18±0.04 0 0.13±0.03
c2,2 0.3±0.1 0.28±0.07 0.20±0.06 0.16±0.03 0 0.12±0.02
c2,3 0.0±0.2 0.25±0.07 0.23±0.08 0.16±0.03 0.2±0.1 0.07±0.03
c2,4 0.4±0.1 0.17±0.06 0.06±0.09 0.18±0.03 0.3±0.1 0.10±0.03
c2,5 0 0 0.0±0.1 0.18±0.03 0.3±0.1 0.13±0.02
c2,6 0 0 0.21±0.05 0.15±0.04 0.3±0.1 0.15±0.03
c2,7 0 0 0 0 0 0.16±0.02
c2,8 0 0 0 0 0 0.14±0.03

Table 2: Fitting parameters from the analysis with p = 2 of the simulated SANS curve for the
irradiated alloy (psim = 2), group I. See the caption of Table 1 for the meaning of cases a-f.

cipitates and voids have turned out to be very close to the values used in the simulation, 0.05
and 0.01, respectively, with relative errors always lower than 2%, indicating a good capability
of the fitting method to extract this kind of information out of the SANS curve. Moreover,
for all the six cases, lower and upper values of the inhomogeneities’ radius (Rj,min and Rj,max)
are found by genfit to be very close to the values used in the simulated curve (10 and 800 Å
for j = 1; 5 and 40 Å for j = 2). A more detailed analysis of the results can be performed
by looking to the trends of the volume distribution functions of the inhomogeneities, shown in
Fig. 6. Notice that, for a better visualization of the results, two different scales in the y-axis
have been selected: on the right the volume distribution functions of the precipitates are re-
ported (solid lines), whereas on the left the ones of the voids (dotted lines) are shown. The case
f, related to a number N = 8 of cubic B-splines with the regularization constraint (K = 1),
shows the best overlap between the black and the red functions, corresponding to simulated
and analyzed results. By switching off the regularization (case e) a slightly increase of the
uncertainty occurs. Cases c and d (N = 6, with and without regularization) make it even more
clear the improvement carried by the regularization algorithm. A similar effect can also be
appreciated with N = 4 (cases a and b). However, noticeable is the fact that by using only
N = 4, peak positions and overall shape of the volume distribution functions 4

3
πnjfj(R)R3 are

nicely assessed by genfit.

Group II: fitting of the simulated SANS curves with the hypothesis of one family
of spherical inhomogeneities (p = 1) of unknown origin

In the second group, the genfit fitting analysis of the two simulated SANS curves (shown in
Fig. 2) has been performed considering the presence of only one kind of inhomogeneity (p = 1),
with a unique effective scattering length density ρ1, which is considered to be between the two
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Figure 5: Fitting curves of the simulated SANS curve for the irradiated alloy (psim = 2) obtained
by using p = 2, group I. Curves are scaled by a factor 10 for clarity. See the caption of Table 1
for the meaning of cases a-f.
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Figure 6: Volume distribution functions obtained by the analysis with p = 2 of the simulated
SANS curve for the irradiated sample (psim = 2), group I. Black and red solid lines refer to the
simulated and analyzed distributions of precipitates (j = 1), respectively. Black and red dotted
lines refer to the simulated and analyzed distributions of voids (j = 2), respectively. See the
caption of Table 1 for the meaning of cases a-f.
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a b c d e f
χ2 1.03 1.04 1.03 1.03 1.03 1.04
U 0 0.02 0 0.01 0 0.02
H 1.03 1.06 1.03 1.04 1.03 1.05
B 0.0142±0.0007 0.0142±0.0005 0.014±0.001 0.0142±0.0008 0.0142±0.0003 0.0141±0.0005
ρ1 (10−6 Å−2) 5.0±0.2 4.9±0.7 2.7±0.7 5.3±0.6 4.9±0.3 5.2±0.4
φ1 0.041±0.007 0.04±0.01 0.011±0.005 0.05±0.01 0.039±0.006 0.05±0.01
R1,mix (Å) 30±30 98±4 80±30 100±4 100±30 30±30
R1,max (Å) 820±40 810±40 920±60 880±60 1000±80 980±90
c1,1 0.34±0.09 0.4±0.1 0 0.24±0.04 0.17±0.09 0.17±0.07
c1,2 0 0.3±0.1 0.3±0.2 0.25±0.05 0.18±0.08 0.14±0.05
c1,3 0.4±0.1 0.25±0.08 0.3±0.1 0.24±0.03 0.21±0.06 0.10±0.05
c1,4 0.3±0.1 0.08±0.03 0.3±0.1 0.18±0.05 0.20±0.08 0.08±0.06
c1,5 0 0 0.1±0.1 0.09±0.03 0.14±0.05 0.17±0.08
c1,6 0 0 0.02±0.08 0.014±0.006 0.08±0.06 0.20±0.07
c1,7 0 0 0 0 0.01±0.05 0.13±0.05
c1,8 0 0 0 0 0.003±0.008 0.013±0.007

Table 3: Fitting parameters from the analysis with p = 1 of the simulated SANS curve for the
reference alloy (psim = 1), group II. a) N = 4, K = 0; b) N = 4, K = 1; c) N = 6, K = 0; d)
N = 6, K = 1; e) N = 8, K = 0; f) N = 8, K = 1.

values which corresponds to carbide precipitates and voids (ρ1 = 5.30 · 10−6 Å−2 and ρ1 = 0,
respectively), and with ρ0 fixed to the value for the metal alloy (7.55 · 10−6 Å−2), as used in
the simulation.

Fitting parameters obtained by the six genfit analyses are reported in Tables 3-4. Fitting
curves and distributions functions are shown in Figs. 7-9 and in Figs. 8-10, respectively.

As expected, fitting curves of the SANS profile simulated for the reference sample, e.g. a
sample with only one kind of inhomogeneity (precipitates, psim = 1), for all the six kinds of
parameterization (a-f) are good and acceptables, as clearly shown in Fig. 7. Looking to the
fitting parameters (Table 3), it can be derived that only in the case d and f, both with the
regularization option and with N = 6 and N = 8, respectively, the value of φ1 obtained by
the genfit analysis has turned out to be close to the value 0.05 used in the simulation. In
such cases, also the scattering length densities, ρ1, extracted by the analysis is close to the
value used in the input SANS curve, (ρ1 = 5.30 · 10−6 Å−2, see the caption of Fig. 2). This
results is confirmed by looking to the agreement of simulated and analyzed volume distribution
functions, as reported in Fig. 8, cases d and f. A straightforward indication is that, in the
case of just one type of inhomogeneity and whether the value of its scattering length density
ρ1 is known or fixed, it is possible to derive reliable values of the volume fraction φ1 of such
inhomogeneity in the sample.

We turn now to discuss the result of the genfit analyses of the SANS curve for the irradiated
alloy sample, simulated by considering the presence of two kind of inhomogeneities, precipitates
and voids, each one with a proper scattering length density (see Fig. 2, triangles). The fitting
analysis is however based on the hypothesis that only one type of inhomogeneity exists in
the sample. At a first look, fitted curves, reported in Fig. 9, seem acceptable, however, by
carefully observing the results, it is evident that there are ranges of q where the fitting curves
are systematically under or over the simulated points. This behavior is much more evident by
looking to the residual plots, reported in Fig. 11, lower frame, compared with the residual plots
of the genfit analyses of group I (Fig. 11, upper frame). A further evidence of not completely
satisfactory results is the value of the χ2s (Table 4) in all cases greater than the value obtained
the analyses of group I (Table 2).

In Fig. 10 the unique volume distribution function (solid red curve) is compared with the
ones of used in the simulated SANS curve (solid black curve for precipitates and dotted black
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Figure 7: Fitting curves of the simulated SANS curve for the reference alloy (psim = 1) obtained
by using p = 1, group II. Curves are scaled by a factor 10 for clarity. See the caption of Table 3
for the meaning of cases a-f.
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Figure 8: Volume distribution functions obtained by the analysis with p = 1 of the simulated
SANS curve for the reference alloy (psim = 1), group II. Black and red solid lines refer to the
simulated and analyzed distributions of inhomogeneity, respectively.
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a b c d e f
χ2 2.05 2.30 1.45 1.51 1.53 1.36
U 0 0.50 0 0.10 0 0.06
H 2.05 2.80 1.45 1.61 1.53 1.46
B 0.010±0.003 0.100±0.005 0.015±0.003 0.012±0.006 0.0161±0.0009 0.015±0.002
ρ1 (10−6 Å−2) 1.8±0.2 5.27±0.09 5.0±0.3 4.2±0.1 3.5±0.7 2.4±0.5
φ1 0.024±0.001 0.17±0.01 0.12±0.02 0.072±0.005 0.047±0.009 0.030±0.009
R1,mix (Å) 1.26±0.02 1.06±0.09 1.77±0.05 1.8±0.3 1.9±0.2 1.9±0.3
R1,max (Å) 1000.00±0.03 999.95±0.02 862±8 860±40 770±40 800±20
c1,1 (999995±3) · 10−6 (99997±1) · 10−5 0.1±0.3 0.56±0.06 0.31±0.05 0.33±0.04
c1,2 0 0 0.9±0.3 0.44±0.06 0.21±0.07 0.26±0.06
c1,3 0 0 0 0 0.48±0.05 0.41±0.04
c1,4 0 0 0 0 0.002±0.001 0.00±0.01
c1,5 0 0 0 0 0 0
c1,6 0 0 0 0 0 0
c1,7 0 0 0 0 0 0
c1,8 0 0 0 0 0 0

Table 4: Fitting parameters from the analysis with p = 1 of the simulated SANS curve for the
irradiated alloy (psim = 2), group II. See the caption of Table 3 for the meaning of cases a-f.
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Figure 9: Fitting curves of the simulated SANS curve for the irradiated alloy (psim = 2) obtained
by using p = 1, group II. Curves are scaled by a factor 10 for clarity. See the caption of Table 3
for the meaning of cases a-f.
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Figure 10: Volume distribution functions obtained by the analysis with p = 1 of the simulated
SANS curve for the irradiated sample (psim = 2), group II. Black and red solid lines refer to the
simulated and analyzed distributions of inhomogeneities, respectively. Black dotted line refers
to the simulated distributions of voids (j = 2). See the caption of Table 3 for the meaning of
cases a-f.

curve for voids): it is evident that only peaks’ positions are, on average, recovered but not
their heights. In particular, the peak at the lowest values of R, corresponding to voids, is much
higher than the simulated peak. This fact can be easily explained: since, in the R range where
voids exist, the contrast used in the analysis is lower than the one used in the simulation, the
populations of the unique inhomogeneity is increased by genfit in order to obtain a good fit
to the SANS curve. For the same reason, the height of the red peak at the largest R decreases.
It is also clear that in such conditions, the volume fractions φ1 obtained by the analyses (see
Table 4) are not comparable with the one of precipitates and voids adopted in the simulation.

Results from the fitting test on the simulated SANS curves

The main result of the simulation tests is that by analyzing a SANS curve of a polydispersed
system with more than one type of inhomogeneity with the hypothesis that all the particles
can be described by only one average contrast, the information that is derived on particle size
distribution is only qualitative and the obtained volume fraction is widely underestimated or
overestimated.

Test on experimental SANS data

The same genfit analyses, based on cases a-f (see the caption of Table 1) and executed
over simulated SANS data for reference and irradiated alloys, have been applied over two
experimental SANS curves, corresponding to two EUROFER 97 samples (a ferritic-martensitic
steel, candidate as structural material for the DEMO thermonuclear reactor). The first curve
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has been obtained by a reference sample, only subjected to thermal processing at 250◦C, the
second curve corresponds to a EUROFER 97 sample subjected to the same thermal processing
but irradiated with a damage dose of 16 dpa (displacement-per-atom).

As a comparison, the two SANS curves have been also analyzed by us with the mps software,
by using N = 4, 6 and 8 cubic B-splines, defined in a logarhitmic scale between two fixed bounds
of the sphere radius, 1 and 2000 Å, respectively. In order to perform a proper comparison
between the volume distribution functions obtained with genfit and with mps, the contrast
(∆ρ)2, used in the mps software as input parameter, has been fixed to the average value found
by genfit. In particular, for the group I analyses of genfit, the average scattering length
density of precipitates and voids is [(ρ1φ1 + ρ2φ2)/(φ1 + φ2) − ρ0]2, where the values of ρj are
the ones adopted in the simulated curves (see the caption of Fig. 2) and φj are fitting results of
genfit. On the other hand, for the group II analyses, the constrast is simply (ρ1− ρ0)2, being
ρ1 the fitted value of the unique kind of inhomogeneity obtained by genfit. A systematic
comparison between the results of the two method has been performed, as described in the
following sections.

Group I: fitting of the experimental SANS curves with the hypothesis of two fam-
ilies of spherical inhomogeneities (p = 2, carbide precipitates and voids)

The first group of genfit analyses have been carried out by using the hypothesis that two
kinds of spherical inhomogeneities (i.e. precipitates, j = 1, and voids, j = 2) exist in the two
samples. Corresponding scattering length densities ρj, together with the matrix one, ρ0, have
been fixed to the nominal values for carbide precipitates, voids and metal alloy, as used in the
previous analysis (see the caption of Fig. 2).

All resulting parameters are reported in Tables 5-6. Fitting curves and volume distributions
functions are shown in Figs. 12-14 and in Figs. 13-15, respectively, and compared with the results
obtained by us with the mps software.

At first, we consider the results obtained by analyzing the reference sample. The genfit
fitted curves, reported as solid red curves in Fig. 12, are all quite good, as also shown by the
corresponding values of χ2 (see Table 5). The volume fraction φ1 of precipitates has been found
almost independent on the number of splines and on the regularization option, with an average
value of 0.0317 ± 0.0006. On the contrary, the volume fraction φ2 of the voids is almost zero
in all cases, as expected. thermal treatment only induces the presence of carbide precipitates.
Fitting results obtained by us with mps are the blue curves reported in Fig. 12: only with
N = 8 splines the agreement is acceptable (cases e and f).

We look now to to the volume distribution functions, reported in Fig. 13. First, it is very
clear that the dotted red lines, representing the voids, are close to zero for all cases. Second,
the solid red curves, referring to the precipitates, show a defined peak, whose position and
intensity do not change with N and that becomes less modulated and less uncertain in the case
of regularization. Third, for the cases e and f, the blu lines obtained with mps are very close to
the red ones, indicating that both methods not only are able to find out a good fit to the data
but give also similar distributions of the unique type of inhomogeneity present in the sample.
Interestingly, the volume fraction calculated by mps (see Table 5) for N = 8 is found to be
0.028 , very close to the one obtained by genfit (0.0317± 0.0006).

All the analyses performed by us with both genfit and mps on the not-irradiated, reference
sample have been then applied to the SANS curve for the irradiated sample. Fitting curves
obtained with genfit are reported as solid red lines in Fig. 14: in all cases the agreement with
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a b c d e f
χ2 1.20 1.14 1.16 1.11 1.13 1.18
U 0 0.36 0 0.06 0 0.02
H 1.20 1.48 1.16 1.16 1.13 1.21
B 0.0087±0.0009 0.0101±0.0003 0.0101±0.0003 0.0100±0.0002 0.0101±0.0005 0.0100±0.0005
φ1 0.032±0.001 0.0314±0.0008 0.032±0.002 0.0316±0.0008 0.031±0.001 0.032±0.001
R1,mix (Å) 20±10 100±30 10±20 60±20 100±20 20±10
R1,max (Å) 1330±60 1220±30 1330±70 1210±70 1420±80 2000±200
c1,1 0.0±0.3 0.33±0.05 0.3±0.1 0.04±0.05 0.20±0.06 0.24±0.05
c1,2 0 0.32±0.04 0.3±0.1 0.08±0.06 0.04±0.02 0.13±0.04
c1,3 0.5±0.2 0.24±0.03 0 0.24±0.08 0.2±0.1 0.08±0.07
c1,4 0.5±0.2 0.11±0.02 0 0.34±0.07 0.22±0.08 0.07±0.06
c1,5 0 0 0.30±0.08 0.19±0.05 0.18±0.04 0.20±0.06
c1,6 0 0 0.16±0.06 0.10±0.03 0.08±0.03 0.18±0.04
c1,7 0 0 0 0 0.05±0.01 0.09±0.02
c1,8 0 0 0 0 0 0
φ2 0.0001±0.0003 (0±3) · 10−6 (0±5) · 10−6 (4±2) · 10−6 (1±2) · 10−6 (0±1) · 10−5

R2,mix (Å) 1±2 10±3 9±4 1±4 3±4 2±4
R2,max (Å) 20±20 100±20 100±20 60±20 100±10 50±10
c2,1 0.2±0.1 0.34±0.04 0.15±0.05 0.19±0.02 0.20±0.08 0.12±0.03
c2,2 0.12±0.09 0.30±0.04 0.19±0.05 0.17±0.02 0.14±0.04 0.07±0.03
c2,3 0.29±0.07 0.23±0.03 0.15±0.06 0.19±0.03 0.10±0.07 0.12±0.01
c2,4 0.42±0.09 0.13±0.02 0.11±0.07 0.18±0.03 0.18±0.04 0.09±0.04
c2,5 0 0 0.20±0.07 0.19±0.03 0.13±0.06 0.11±0.03
c2,6 0 0 0.20±0.07 0.09±0.01 0.00±0.07 0.16±0.03
c2,7 0 0 0 0 0.11±0.05 0.17±0.03
c2,8 0 0 0 0 0.13±0.05 0.16±0.03
φmps 0.009 0.009 0.018 0.018 0.028 0.028

Table 5: Fitting parameters from the genfit analyses with p = 2 of the experimental SANS
curve for the not-irradiated, reference sample, group I. φmpss refer to the mps analyses. a)
N = 4, K = 0; b) N = 4, K = 1; c) N = 6, K = 0; d) N = 6, K = 1; e) N = 8, K = 0; f)
N = 8, K = 1.
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Figure 12: Fitting curves of the experimental SANS curve for the reference sample obtained
by using p = 2, group I. Curves are scaled by a factor 10 for clarity. See the caption of Table 5
for the meaning of cases a-f. Red and blue curves refer to the analysis with genfit and mps,
respectively. Blue curves have been obtained with the same number N of cubic B-splines and
the same average constrast used by genfit for cases a-f.
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Figure 13: Volume distribution functions obtained by the analysis with p = 2 of the experimen-
tal SANS curve for the reference sample, group I. See the caption of Table 5 for the meaning
of cases a-f. Red and blue curves refer to the analysis with genfit and mps, respectively. Red
solid and dotted lines, represented in the right and in the left y-axis, refer to the distributions
of precipitates (j = 1) and voids (j = 2) obtained with genfit, respectively. Blue curves,
obtained with the same number N of cubic B-splines and the same average contrast used by
genfit for cases a-f, are represented in the right and in the left y-axis for R > 102 Å and
R ≤ 102 Å, respectively.
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Figure 14: Fitting curves of the experimental SANS curve for the irradiated sample obtained
by using p = 2, group I. See the caption of Fig. 12 for details.
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a b c d e f
χ2 1.73 1.87 1.43 1.81 1.50 1.36
U 0 0.75 0 0.09 0 0.07
H 1.73 2.63 1.43 1.89 1.50 1.43
B 0.002±0.003 0.006±0.002 0.009±0.001 0.0079±0.0009 0.010±0.001 0.008±0.001
φ1 0.0272±0.0007 0.0271±0.0005 0.0273±0.0003 0.0277±0.0005 0.0273±0.0003 0.0270±0.0005
R1,mix (Å) 59±6 59±7 20±2 5±9 16±8 22±7
R1,max (Å) 840±30 840±10 860±20 910±40 850±20 820±10
c1,1 0.00±0.08 0.20±0.06 0.3±0.1 0.23±0.04 0.0±0.1 0.18±0.06
c1,2 0.4±0.1 0.22±0.04 0.2±0.1 0.19±0.04 0.18±0.09 0.12±0.06
c1,3 0.36±0.07 0.34±0.04 0 0.22±0.08 0.2±0.1 0
c1,4 0.28±0.07 0.24±0.04 0 0.16±0.08 0 0
c1,5 0 0 0.31±0.06 0 0.0±0.1 0
c1,6 0 0 0.20±0.05 0.21±0.05 0.2±0.1 0.27±0.09
c1,7 0 0 0 0 0.28±0.08 0.28±0.06
c1,8 0 0 0 0 0.13±0.05 0.15±0.05
φ2 0.0041±0.0003 0.0037±0.0002 0.0034±0.0001 (352±6) · 10−5 0.0033±0.0001 0.0035±0.0001
R2,mix (Å) 2±1 2.8±0.6 2±1 4±2 1.0±0.6 4±1
R2,max (Å) 59±7 59±6 35±2 33±2 34.8±0.8 39±4
c2,1 0.4±0.1 0.40±0.05 0.1±0.1 0.11±0.06 0.15±0.06 0.12±0.03
c2,2 0.32±0.08 0.37±0.05 0.3±0.1 0.13±0.04 0.09±0.04 0.14±0.03
c2,3 0.2±0.1 0.23±0.08 0.0±0.1 0.20±0.05 0.19±0.03 0.18±0.05
c2,4 0 0 0.0±0.2 0.20±0.05 0.07±0.05 0.12±0.03
c2,5 0 0 0.25±0.09 0.20±0.05 0.18±0.04 0.14±0.02
c2,6 0 0 0.3±0.1 0.16±0.03 0.16±0.06 0.16±0.03
c2,7 0 0 0 0 0.01±0.06 0.13±0.05
c2,8 0 0 0 0 0.14±0.03 0.01±0.01
φmps 0.028 0.030 0.032 0.032 0.044 0.043

Table 6: Fitting parameters from the genfit analyses with p = 2 of the experimental SANS
curve for the irradiated sample, group I. φmps values refer to the mps analyses. See the caption
of Table 5 for the meaning of cases a-f.

the experiment is very high, as confirmed by the values of χ2 close to 1 shown in Table 6. The
volume fraction of the precipitates, calculated as an average over the six cases a-f, turns out to
be 0.0273± 0.0002, slightly lower than the one of the not irradiated sample (0.0317± 0.0006).
The more interesting difference with respect to the previous curve is the presence of voids that
genfit always finds, independently on the number of splines and regularization: as shown in
Table 6, the value of φ2, although small, is found with low uncertainty and, calculated as an
average over the six cases a-f, corresponds to 0.0036± 0.0003.

The stability of these results can be clearly ascertained by looking to the volume distribution
functions, 4

3
πn1f1(R)R3 and 4

3
πn2f2(R)R3, reported as solid and dotted red lines in Fig. 15.

Notice that, in order to emphasize the difference of the two distributions, we have chosen two
different y-scales. There are not appreciable differences among the cases: the most stable and
less modulated result is obtained for the case b, with only N = 4 cubic B-splines and the
regularization.

Poor results, for this curve, have been obtained by us by using the mps software: all the
fitting curves, shown as solid blue lines in Fig. 14, are quite far from the experimental points,
also for the cases e and f (N = 8), which are, however, the best ones. Looking to the volume
distribution function in Fig. 15 for the cases e and f, we can see that only the positions of the
blue peaks are close to the ones of the red distributions, but not the height. As a consequence,
the volume fractions calculated via mps and reported in the bottom of Table 6 (0.044 and 0.043,
cases e and f) are rather different from the values of φ1 and φ2 found by genfit.
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Figure 15: Volume distribution functions obtained by the analysis with p = 2 of the experi-
mental SANS curve for the irradiated sample, group I. See the caption of Fig. 13 for details.

Group II: fitting of the experimental SANS curves with the hypothesis of one
family of spherical inhomogeneities (p = 1) of unknown origin

In the second group of analyses, the genfit method has been applied by using the assumption
that only one kind of inhomogeneity (p = 1) is present in the samples, with a unique effective
scattering length density ρ1, which is optimized between the two values which corresponds to
carbide precipitates and voids (ρ1 = 5.30 · 10−6 Å−2 and ρ = 0 , respectively), and by using
the value of ρ0 corresponding to the metal alloy, as before (7.55 · 10−6 Å−2). For this group,
the comparison with mps method is more straightforward, since it also assumes one kind for
inhomogeneity, with polydispersed spherical shape. All resulting parameters are reported in
Tables 7-8. Fitting curves and distributions functions are shown in Figs. 16-18 and in Figs. 17-
20, respectively.

Concerning the refrence, not-irradiated sample, the genfit fitting curves, reported as red
solid curves in Fig. 16, do not vary with respect to the ones obtained in the previous group of
analysis: the χ2s are all close to 1 (Table 7). In particular, the best analysis, both in terms of
χ2 and stability of the volume distribution function (see Fig. 17), is the one of case f (N = 8
and regularization). Notice that our mps analysis with 8 splines is the unique that reaches an
acceptable fit to the data (blue curves cases e and f in Fig. 16).

As a consequence, the inhomogeneity volume fractions obtained by genfit and mps are very
close only in this case (Table 7, case f) and correspond to 0.029± 0.001 and 0.026, respectively.
We also notice that the scattering length density ρ1 of the precipitates fitted by genfit (and
used as input parameter for mps) is (5.21±0.04)·10−6 Å−2, very close to the value 5.30·10−6 Å−2

used in both simulations (see the caption of Fig. 2) and analyses of the experimental curves,
group I.

The last fit concerns the analysis of the irradiated sample, which in the previous analysis
has been described as constituted by both precipitates (φ1 = 0.0273± 0.0002) and voids (φ2 =

20



a b c d e f
χ2 1.10 1.10 1.21 1.07 1.20 1.06
U 0 0.02 0 0.01 0 0.02
H 1.10 1.15 1.21 1.07 1.20 1.06
B 0.0101±0.0003 0.0101±0.0004 0.0101±0.0005 0.0101±0.0004 0.0101±0.0003 0.0101±0.0003
ρ1 (10−6 Å−2) 4.4±0.5 5.0±0.3 4±1 3.7±0.4 5.1±0.7 5.21±0.04
φ1 0.017±0.006 0.025±0.006 0.012±0.009 0.011±0.002 0.027±0.007 0.029±0.001
R1,mix (Å) 130±30 120±10 50±60 150±10 4±1 170±10
R1,max (Å) 1800±300 1900±300 1900±300 1100±200 1300±100 1090±90
c1,1 0.5±0.1 0.52±0.05 0.22±0.08 0.29±0.04 0.16±0.05 0.23±0.09
c1,2 0.3±0.1 0.32±0.05 0.14±0.08 0.24±0.04 0.16±0.06 0.19±0.09
c1,3 0.15±0.06 0.16±0.03 0.3±0.1 0.21±0.05 0.11±0.05 0.2±0.1
c1,4 0 0 0.25±0.08 0.14±0.03 0.15±0.06 0.16±0.07
c1,5 0 0 0.12±0.09 0.08±0.02 0.16±0.07 0.10±0.07
c1,6 0 0 0.00±0.07 0.04±0.02 0 0.08±0.06
c1,7 0 0 0 0 0.17±0.04 0.04±0.02
c1,8 0 0 0 0 0.10±0.04 0.03±0.03
φmps 0.005 0.007 0.007 0.006 0.024 0.026

Table 7: Fitting parameters from the genfit analyses with p = 1 of the experimental SANS
curve for the not-irradiated, reference sample, group II. φmpss refer to the mps analyses.
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Figure 16: Fitting curves of the experimental SANS curve for the reference, not-irradiated
sample obtained by using p = 1, group II. See the caption of Fig. 12 for details.
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Figure 17: Volume distribution functions obtained by the analysis with p = 1 of the experimen-
tal SANS curves for the not-irradiated, reference sample, group II. See the caption of Table 5
for the meaning of cases a-f. Red and blue curves refer to the analysis with genfit and mps,
respectively. Blue curves, obtained with the same number N of cubic B-splines and the same
average constrast used by genfit for cases a-f, are represented in the right and in the left
y-axis for R > 102 Å and R ≤ 102 Å, respectively.
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Figure 18: Fitting curves of the experimental SANS curve for the irradiated sample obtained
by using p = 1, group II. See the caption of Fig. 12 for details.

0.0036±0.0003). The genfit results based on the assumption of only one type of inhomogeneity
are quite poor, as well as the ones already obtained by us with mps for the same SANS curve
(see Fig. 18). However, the best solution if found for the case f, i.e. with the maximum number
of cubic B-splines (see Table 8). Although for this case the χ2 is quite good (1.88, see Table 8),
a deepest observation of the residual plots compared to the ones obtained of by the genfit
analyses of the same curve in the group I (see Fig. 19) clearly shows that the assumption of
only one kind of inhomogeneity is overall worse than the one with two inhomogeneities.

The comparison of the unique volume distribution function between genfit and mps meth-
ods is reported in Fig. 20 (red and blue curves, respectivley). The case f (N = 8 and regular-
ization) is the one with the better overlap as, on the other hand, confirmed by the similarity
between the volume fractions calculated with the two methods and shown in Table 8, which
read 0.028± 0.002 and 0.028, respectively.

Results from the fitting analysis of the experimental SANS curves

According to the simulation tests, it appears very clear that a good fit of SANS curves can
be obtained only under proper and appropriate hypotheses. Moreover, fitting results obtained
by us using the mps method appear to depend on the number of used B-splines even in the
reference sample, suggesting that fitting results should be carefully considered. On the other
side, the subroutine here derived, implemented inside the genfit software package, gives very
stable solutions, especially when “regularization” methods are applied. In particular, even when
the analysis is performed under the hypothesis that all the inhomogeneities in the matrix are
to be described by only one average contrast, a few structural information concerning at least
inhomogeneity size and size distribution can be derived. However, it should be clear that such a
result is only qualitative: for example, the obtained volume fractions are widely underestimated
or overestimated. Indeed, it is very easy to apply the genfit software package considering at
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a b c d e f
χ2 9.28 9.27 1.86 1.76 1.87 1.88
U 0 0.50 0 0.50 0 0.05
H 9.28 9.77 1.86 2.26 1.87 1.91
B 0.0144±0.0008 0.0146±0.0006 0.005±0.001 0.005±0.001 0.006±0.001 0.0043±0.0009
ρ1 (10−6 Å−2) 3.3±0.2 4.2±0.3 3.5±0.2 2.8±0.4 4.9±0.2 4.0±0.2
φ1 0.014±0.001 0.023±0.004 0.022±0.002 0.016±0.003 0.049±0.008 0.028±0.002
R1,mix (Å) 1.000±0.007 (1000000±2) · 10−6 3.1±0.1 3.11±0.07 1.00±0.01 1.00±0.01
R1,max (Å) 1080±10 1096±9 948±8 951±9 922±8 920±10
c1,1 (99999±2) · 10−5 (9999930±9) · 10−7 0.999±0.002 (100000±2) · 10−5 0.4±0.1 0.46±0.06
c1,2 0 0 0 0 0.27±0.07 0.34±0.06
c1,3 0 0 0 0 0.30±0.08 0.19±0.05
c1,4 0 0 0 0 0 0
c1,5 0 0 0 0 0 0
c1,6 0 0 0 0 0 0
c1,7 0 0 0 0 0 0
c1,8 0 0 0 0 0 0
φmps 0.014 0.022 0.016 0.012 0.050 0.028

Table 8: Fitting parameters from the genfit analyses with p = 1 of the experimental SANS
curve for the irradiated sample, group II. See the caption of Table 5 for the meaning of cases
a-f. φmpss refer to the mps analyses.
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Figure 19: Residual plots, [dΣ
dΩ

(q)− dΣ
dΩ exp

(q)]/dΣ
dΩ exp

(q), of the genfit analyes shown in Fig. 14

(upper frame) and in Fig. 18 (lower frame). Black curves, case a. Red curves, case b. Green
curves, case c. Blue curves, case d. Magenta curves, case e. Dark-green curves, case f.
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Figure 20: Volume distribution functions obtained by the analysis with p = 1 of the experi-
mental SANS curve for the irradiated sample, group II. See the caption of Fig. 17 for details.

least two particle families of different contrast, size and size distribution (this option is not
implemented in the mps program). In such a condition, the fitting curves reproduce with very
high accuracy the experimental data in all the measured q-range and the fitted parameters
appear robust and trustable.

Final comments

In the present study, we extended the use of the cubic B-spline approach for a quantitative anal-
ysis of SANS curves obtained from metal alloys containing up to a maximum of two different
kind of inhomogeneities (namely, precipitates and voids), each one characterized by a specific
scattering length density. After formalization of this new approach, and the implementation
of the method inside the genfit software package, a test case has been considered: the SANS
signal of a sample of Eurofer alloy before and after being subjected to irradiation in a nuclear
reactor has been analyzed by us, comparing mps and the new genfit software packages. Re-
sults have been discussed in terms of the number of cubic B-splines used and of the selection
of “regularization” constraints. As a result, it appears very clear that a good fit of SANS
curves can be obtained only under proper and appropriate hypotheses, but while fitting results
obtained by us using the mps method appear to strongly depend on the considered q-range and
on the number of used B-splines even in the reference sample (where only carbide precipitates
are expected), the new genfit subroutine gives very stable solutions, especially when “regu-
larization” methods are applied, reproducing with very high accuracy the experimental data in
all the measured q-range and conditions.
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FULLPROF analysis of neutron diffraction data on Eurofer-

97 martensitic steel containing Y2O3 nanoparticles

Introduction

The investigated material is oxide-dispersion strengthened (ODS) Eurofer-97 martensitic steel
(8.9 Cr, 1.1 W, 0.2 V, 0.14 Ta, 0.42 Mn, 0,11 C wt%), that is being developed for future
fusion reactors. In this material, in particular, Y2O3 nanoparticles were dispersed into the steel
matrix with a nominal content of 0.5 wt%. Such a system was previously studied by SANS [R.
Coppola et al., Physica B 350 (2004) e545-e548], and, as a result, the size distributions of Y2O3

nanoparticles were obtained, in a very good agreement with TEM observations.
The aim of the neutron diffraction experiment was the detection (despite the low content

of the particles) of the Y2O3 diffraction peaks and possibly the determination of their crystal-
lographic features inside the Eurofer-97 matrix.

Material and Experimental data

The investigated material is oxide-dispersion strengthened (ODS) Eurofer-97 martensitic steel
(8.9 Cr, 1.1 W, 0.2 V, 0.14 Ta, 0.42 Mn, 0.11 C wt%). In the present investigated material,
Y2O3 nanoparticles are dispersed into the steel matrix, with a nominal content of 0.5 wt%.
Diffraction experiments were performed at the D1A neutron diffractometer of ILL - Grenoble,
using a wavelength of 0.191 nm.

Rietveld refinement

The diffraction patterns were analyzed using the Rietveld refinement technique: the neutron or
X-ray diffraction of powder samples results in a pattern characterised by reflections (peaks in
intensity) at certain positions, the height, width and position of which can be used to determine
many aspects of the materials structure.

In particular, a powder diffraction pattern can be recorded in numerical form for a discrete
set of scattering angles, times of flight or energies (the scattering variable generally indicated as
T ). Then, the experimental powder diffraction pattern is usually given as two arrays {Ti, yi}.
In the case of data that have been manipulated or normalized in some way, the three arrays
{Ti, yi, σi}, where σi is the standard deviation of the profile intensity yi, are needed in order
to properly weight the residuals in the least squares procedure. The profile can be modeled
using the calculated counts yc,i at the i-th step by summing the contribution from neighbouring
Bragg reflections plus the background:

yc,i =
∑
φ

Sφ
∑
h

Iφ,hΩ(Ti − Tφ,h) + bi (1)

The vector h labels the Bragg reflections, the subscript φ labels the phase.
The general expression of the integrated intensity is:

Iφ,h = {LAPCF 2}φ,h (2)

The meaning of the different terms appearing in Eqs. 1 and 2 is the following:
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• Sφ is the scale factor of the phase φ

• Lh contains the Lorentz, polarisation and multiplicity factors

• Fh is the structure factor

• Ah is the absorption correction

• Ph is the preferred orientation function

• Ω is the reflection profile function that models both instrumental and sample effects

• Ch includes special corrections (non linearity, efficiencies, special absorption corrections,
extinction, etc.)

• bi is the background intensity

Different functions can be chosen to represent the peak shape: Gaussian, Lorentzian, Pearson-7,
Pseudo-Voigt.

The Rietveld Method consists of refining a crystal structure by minimizing the weighted
squared difference between the observed yi and the calculated pattern yc,i, against the parameter
vector α = {α1, α2, . . . , αp}. The function minimised in the Rietveld Method is

χ2 =
n∑
i=1

wi{yi − yc,i(α)}2 (3)

with wi = 1/σ2
i , σi being the variance of yi.

Running the fullprof program

The fullprof program has been mainly developed for Rietveld analysis [H.M. Rietveld, Acta
Cryst. 22, 151 (1967); H.M. Rietveld, J. Applied Cryst. 2, 65 (1969); A.W. Hewat, Harwell
Report No. 73/239, ILL Report No. 74/H62S; G. Malmros & J.O. Thomas, J. Applied Cryst.
10, 7 (1977); C.P. Khattak & D.E. Cox, J. Applied Cryst. 10, 405 (1977)] (structure profile
refinement) of neutron (nuclear and magnetic scattering) or X-ray powder diffraction data
collected at constant or variable step in scattering angle 2θ. The program can be also used as
a Profile Matching (or pattern decomposition) tool, without the knowledge of the structure.
Single Crystal refinements can also be performed alone or in combination with powder data.
Time-of-flight (TOF) neutron data analysis is also available. Energy dispersive X-ray data can
also be treated but only for profile matching.

Input files

filename.pcr

Input control file, containing crystallographic data. This file is normally updated, or written
to filename.new, every time the program is run.
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filename.dat

Intensity data file, its format depends on the instrument. This corresponds to the profile
intensity of a powder diffraction pattern.

filename.bac

Background file. The program uses this file to calculate the background at each value of the
scattering variable. The program may generate this file, from refined polynomial or interpolated
data, if the user asks for it. In the presented case, the background has been refined using a
linear interpolation between the 14 given points.

myresol.irf

File describing the instrumental resolution function. In the presented case, the instrumental
resolution was contained in the D1A 19A280606.irf file and was obtained using Na2Ca3Al2F14.

Output files

filename.out

This is the main output file that contains all control variables and refined parameters.

filename.prf

Observed and calculated profile, to be fed into visualisation programs.

filename.sum

Parameter list after last cycle: summary of the last parameters, their standard deviations and
reliability factors.

filenameN.mic

File containing microstructural information for the N-th phase.

Refinement results

In the present case, the refinement was carried out assuming the possible presence of four
different phases:

1. α-Fe: body-centered cubic space lattice (space group: Im3m), cell parameter: 0.287 nm,
density 7.847 g/cm3.

2. Y2O3: body-centered cubic space lattice (space group: Ia-3), cell parameter 1.06 nm,
density 5.031 g/cm3.

3. Fe3O4 (magnetite): face-centered cubic space lattice (space group: Fd-3m), cell parameter
0.84 nm, density 5.176 g/cm3.
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4. M23C6 (carbides precipitates): body-centered cubic space lattice (space group: Fm3m),
cell parameter 1.066 nm, density 0.306 g/cm3.

The background was refined using a linear interpolation on 14 given points.
While the experimental diffraction pattern and the corresponding refinement curve are

shown in Fig. 1, the fitting results are reported in the .out and .sum output files which have

Figure 1: Diffraction pattern and corresponding refinement curve; only peaks corresponding to
α-Fe are visible at this scale.

been included in the Appendix B. The same Appendix also reports the output microstructure
(.mic) files for phases 1, 2 and 4 described above, since the phase 3 turned out to be absent in
the investigated material.

In Fig. 1 only the peaks corresponding to α-Fe are visible, due to the fact that the content of
this phase is actually exceeding 99% wt. Anyway, by looking at the output files, the fullprof
refinement gives some information for the other phases too. In particular, Fig. 2 shows the
observed and calculated (from Rietveld refinement) diffraction patterns for Y2O3. According
to the good superposition of the observed and calculated peak spacings and the rather excellent
reproducibility of the relative peak intensities, the presence of Y2O3 body-centered cubic Ia-3
phase is strongly suggested.

The following Table reports the percentage of the integrated diffraction intensity from each
phase (the Rietveld results are reported in Appendix B, .sum file, for sake of completeness):
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Figure 2: Calculated and observed (from Rietveld refinement) diffraction patterns for Y2O3

nanoparticles.

Phase %Cont Nintdp Nprofp Nref
1 99.54 1 6 4
2 0.32 0 1 118
3 0.00 0 1 26
4 0.14 0 1 56

where %Cont is the percentage of diffracted intensity of each phase with respect to the total
integrated intensity (100×), Nintdp is the number of intensity-affecting refined parameters,
Nprofp is the number of profile refined parameters and Nref is the number of contributing
reflections. Results are interesting as the indication that Y2O3 diffraction peaks only provide
the 0.3 % of the integrated intensity is in full agreement with the very low content of Y2O3

nanoparticles inside the Eurofer-97 (the nominal content is 0.5 wt%). According to the very
low diffracted intensity, however, an accurate analysis of the background will be necessary to
confirm the presence of the Y2O3 phase.

Conclusion

The presented Rietveld analysis of the considered diffraction pattern is actually able to demon-
strate the presence of Y2O3 phase (body-centered cubic space lattice, space group: Ia-3) inside
the Eurofer-97 matrix, with a content compatible to the expected one. However, an accurate
analysis of the background will be necessary to confirm such a result.
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