

Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile

RICERCA DI SISTEMA ELETTRICO

SPES3 Facility: RELAP5 simulations of the DBE and BDBE DVI line DEG break from 65% and 100% power for design support *R. Ferri*

Report RdS/2011/14

SPES3 FACILITY: RELAP5 SIMULATIONS OF THE DBE AND BDBE DVI LINE DEG BREAK FROM 65% AND 100% POWER FOR DESIGN SUPPORT

R. Ferri, SIET

Settembre 2011

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico – ENEA Area: Governo, Gestione e sviluppo del sistema elettrico nazionale Progetto: Nuovo nucleare da fissione: collaborazioni internazionali e sviluppo competenze in materia nucleare

Responsabile Progetto: Paride Meloni, ENEA

ENEN Ricerca Sistema Elettrico

Titolo

SPES3 facility: RELAP5 simulations of the DBE and BDBE DVI line DEG break from 65% and 100% power for design support

Ente emittente SIET

PAGINA DI GUARDIA

Descrittori

Tipologia del documento:	Rapporto Tecnico
Collocazione contrattuale:	Accordo di programma ENEA-MSE: tema di ricerca "Nuovo nucleare da fissione"
Argomenti trattati:	Reattori nucleari ad acqua
	Reattori nucleari evolutivi

Sommario

This report has been issued in the frame of the ENEA and MSE research program on "Nuovo Nucleare da fissione". It is the deliverable A.1-1 of the task LP2 of the work program 2008-2009 "Verifiche analitiche a supporto del progetto" della facility SPES3. The document deals with the results of RELAP5 simulations of the DVI line DEG break for design and beyond design basis conditions. It describes the influence of PCC and ADS Stage-II actuation time on accident recovery. A comparison between full power and reduced power steady state conditions is reported together with a comparison between transients starting from such conditions. The results demonstrate that SPES3 facility is suitable to simulate accidental transients starting from reduced power and mass flow conditions with little differences by transients starting from full power.

Not	e ia n.		In carico	a:		
2			NOME			
			FIRMA			
1			NOME			
			FIRMA			
0	EMISSIONE	10/00/00	NOME	P. Meloni		P. Meloni
	EMICOICIE	10/00/2011	FIRMA	fler.		Ele.
REV.	DESCRIZIONE	DATA		CONVALIDA	VISTO	APPROVAZIONE

SPES3 facility: RELAP5 simulations of the DBE and BDBE DVI line DEG break from 65% and 100% power for design support

R. Ferri

SIET 01 743 RT 11 Rev.0

ABSTRACT: This report has been issued in the frame of the ENEA and MSE research program on "Nuovo Nucleare da fissione". It is the deliverable A.1-1 of the task LP2 of the work program 2008-2009 "Verifiche analitiche a supporto del progetto" della facility SPES3.

The document deals with the results of RELAP5 simulations of the DVI line DEG break for design and beyond design basis conditions. It describes the influence of PCC and ADS Stage-II actuation time on accident recovery. A comparison between full power and reduced power steady state conditions is reported together with a comparison between transients starting from such conditions. The results demonstrate that SPES3 facility is suitable to simulate accidental transients starting from reduced power and mass flow conditions with little differences by transients starting from full power.

Società Informazioni Esperienze Termoidrauliche Via Nino Bixio, 27c - 29121 Piacenza (I)			Unit	EMITTENTE issued by Unità di Produzione Production Unit				
CLIENTE client:	E: ENEA	COMMESSA: job:	1PN00ING00577	DISCO: disk:	PAG page	INA: 1	DI: of:	203
IDENTIF documen	ICATIVO: S	SIET 01 743 RT	11 Rev.0	Classe Ris.: confidential		ALLEG enclosu	ATI: res:	CD- ROM
TITOLO: title:	SPES3 facility: RE and 100% power f	ELAP5 simulatic or design supp	ons of the DBE a ort	nd BDBE DVI lin	e DEC	6 break f	rom 6	5%
prepared	by:							
	LISTA DI DISTRIBUZIO	NE						
	ENEA	Paride	Ме	loni				
	SIET SIET SIET SIET SIET SIET	Andrea Gustavo Cinzia Roberta Stefano Alfredo Gaetano	Acl Ca Co Fei Ga Luc Toi	nilli Itadori ngiu ri ndolfi ce tora				
0	2011-08-02	ISSUI	Ξ	Roberte Fe R. Ferr	in'	द्धाः G.	عد Cattao	tte en ' dori
Draft A	2011-07-25	DRAFT	A	R. Ferr	i	G.	Catta	dori
REV. rev.	DATA date	DESCRIZ descript	ONE	REDAZIO prepared	NE by	APPF ap	ROVAZ	ZIONE
Informazior Confidentia	i strettamente riservate di p I information property of SIE	roprietà SIET SpA - ET SpA - Not to be us	Da non utilizzare per s sed for any purpose o	scopi diversi da quelli ther than those for wh	per cui hich it is	sono state f supplied.	ornite.	200/2/2

CONTENTS

I. LIST OF TABLES	3
II. LIST OF FIGURES	4
III. NOMENCLATURE	11
1. SCOPE	13
2. INTRODUCTION	14
3. SPES3 AND IRIS MODELS	15
3.1 SPES3 schemes and RELAP5 nodalization	15
3.2 IRIS RELAP5 and GOTHIC nodalization	15
4. BDBE DVI LINE DEG BREAK: SPES3-160	27
4.1 SPES3-160	27
4.1.1 Transient phases and description	28
4.1.2 Case conclusions	32
5. BDBE DVI LINE DEG BREAK SENSITIVITY ANALYSES: spes3-159, 162, 158 AND spes3-163, 1	64, 165,
166	72
5.1 Sensitivity cases: SPES3-159, SPES3-162 and 158	72
5.2 Sensitivity cases: SPES3-163, 164, 165 and 166	73
5.3 IRIS plant sensitivity cases on the ADS Stage-II actuation time	74
5.4 Cases conclusions	74
6. STEADY STATE AT 100% AND 65% POWER: SPES3-167 AND SPES3-169	101
6.1 Steady state: SPES3-167 and SPES3-169	101
6.2 Case conclusion	102
7. DBE DVI LINE DEG BREAK FROM 100% AND 65% POWER: spes3-172 ANd spes3-175	105
7.1 SPES3-172 and SPES3-175 transient phases and description	105
7.2 Case conclusions	110
8. BDBE DVI LINE DEG BREAK FROM 100% AND 65% POWER: SPES3-173 AND spes3-176	150
8.1 SPES3-173 and SPES3-176 transient phases and description	150
8.2 Case conclusions	154
9. CONCLUSIONS	199
10. REFERENCES	200
11. ATTACHMENTS	201

I. LIST OF TABLES

Tab.4. 1 – SPES3-160 and IRIS-HT6_rwstc steady state conditions	34
Tab.4. 2 – SPES3-160 list of the main events	35
Tab.5. 1 – BDBE DVI line DEG break sensitivity cases	75
Tab.5. 2 – SPES3-159 list of the main events	76
Tab.5. 3 – SPES3-162 list of the main events	77
Tab.5. 4 – SPES3-158 list of the main events	78
Tab.5. 5 – SPES3-163 list of the main events	79
Tab.5. 6 – SPES3-164 list of the main events	80
Tab.5. 7 – SPES3-165 list of the main events	81
Tab.5. 8 – SPES3-166 list of the main events	82
Tab.6. 1 – SPES3-167 and IRIS-HT6_rwstc 100% power steady state conditions	103
Tab.6. 2 – SPES3-169 and IRIS-HT6_rwstc 65% power steady state conditions	104
Tab.7. 1 – SPES3-172 and SPES3-175 list of the main events	111
Tab.8. 1 – SPES3-173 and SPES3-176 list of the main events	156

II. LIST OF FIGURES

Fig.3. 1 – SPES3 general view	16
Fig.3. 2 - SPES3 primary, secondary loop B, and containment system layout	17
Fig.3. 3 – SPES3 secondary system A and C layout	18
Fig.3. 4 – SPES3 Primary System RELAP5 nodalization	19
Fig.3. 5 – SPES3 Secondary Systems and EHRSs RELAP5 nodalization	20
Fig.3. 6 – SPES3 Containment System RELAP5 nodalization	21
Fig.3. 7 – IRIS Reactor Pressure Vessel general view	22
Fig.3. 8 – IRIS Containment System general view	23
Fig.3. 9 – IRIS Engineered Safety Feature scheme	24
Fig.3. 10 – IRIS Primary, Secondary and EHRS systems RELAP5 nodalization	25
Fig.3. 11 – IRIS Containment system GOTHIC	26
Fig.4.1 – SPES3-160 DVI line break flow (window)	36
Fig.4.2 – SPES3-160 DVI line break flow	36
Fig.4.3 – SPES3-160 EBT injection mass flow (window)	37
Fig.4.4 – SPES3-160 LGMS injection mass flow	37
Fig.4.5 – SPES3-160 ADS Stage-II mass flow	
Fig.4.6 – SPES3-160 PRZ and DW pressures (window)	
Fig.4.7 – SPES3-160 PRZ pressure (window)	39
Fig.4.8 – SPES3-160 PRZ pressure	39
Fig.4.9 – SPES3-160 DW pressure (window)	40
Fig.4.10 – SPES3-160 DW pressure	40
Fig.4.11 – SPES3-160 ADS Stage-I mass flow (window)	41
Fig.4.12 – SPES3-160 ADS Stage-I mass flow	41
Fig.4.13 – SPES3-160 PCC power (window)	42
Fig.4.14 – SPES3-160 PCC power	42
Fig.4.15 - SPES3-160 PSS to DW flow (window)	43
Fig.4.16 – SPES3-160 PSS to DW flow	43
Fig.4.17 - SPES3-160 DW non-condensable quality (window)	44
Fig.4.18 – SPES3-160 DW non-condensable quality	44
Fig.4.19 – SPES3-160 PSS pressure (window)	45
Fig.4.20 – SPES3-160 PSS pressure	45
Fig.4.21 – SPES3-160 LGMS pressure (window)	46
Fig.4.22 – SPES3-160 LGMS pressure	46
Fig.4.23 – SPES3-160 PSS and DW pressure (window)	47
Fig.4.24 – SPES3-160 PSS and DW pressure	47
Fig.4.25 – SPES3-160 PSS vent pipe level (window)	48
Fig.4.26 – SPES3-160 PSS vent pipe level	48
Fig.4.27 – SPES3-160 PSS level (window)	49

Fig.4.28 – SPES3-160 PSS level	49
Fig.4.29 – SPES3-160 RC level (window)	50
Fig.4.30 – SPES3-160 RC level	50
Fig.4.31 – SPES3-160 DW level	51
Fig.4.32 – SPES3-160 QT level	51
Fig.4.33 – SPES3-160 LGMS level	52
Fig.4.34 – SPES3-160 PSS mass	52
Fig.4.35 – SPES3-160 PSS temperature (window)	53
Fig.4.36 – SPES3-160 PSS temperature	53
Fig.4.37 – SPES3-160 core power (window)	54
Fig.4.38 – SPES3-160 core power	54
Fig.4.39 – SPES3-160 SG power (window)	55
Fig.4.40 – SPES3-160 SG ss mass flow (window)	55
Fig.4.41 – SPES3-160 SG ss outlet pressure (window)	56
Fig.4.42 – SPES3-160 SG ss outlet pressure and RPV mass	56
Fig.4.43 – SPES3-160 SG-A ss level (window)	57
Fig.4.44 – SPES3-160 SG-A ss level	57
Fig.4.45 – SPES3-160 PRZ level	58
Fig.4.46 – SPES3-160 pump inlet liquid fraction	58
Fig.4.47 – SPES3-160 core inlet flow (window)	59
Fig.4.48 – SPES3-160 core inlet flow	59
Fig.4.49 – SPES3-160 RI-DC check valve mass flow (window)	60
Fig.4.50 – SPES3-160 RI-DC check valve mass flow	60
Fig.4.51 – SPES3-160 EBT mass	61
Fig.4.52 – SPES3-160 EBT level	61
Fig.4.53 – SPES3-160 EBT balance line mass flow (mass flow)	62
Fig.4.54 – SPES3-160 EBT balance line mass flow	62
Fig.4.55 – SPES3-160 Core liquid fraction (window)	63
Fig.4.56 – SPES3-160 Core liquid fraction	63
Fig.4.57 – SPES3-160 Core inlet and outlet temperatures (window)	64
Fig.4.58 – SPES3-160 Core inlet and outlet temperatures	64
Fig.4.59 – SPES3-160 Core heater rod clad surface temperatures (normal rods)	65
Fig.4.60 – SPES3-160 Core heater rod clad surface temperatures (hot rods)	65
Fig.4.61 – SPES3-160 RPV mass	66
Fig.4.62 – SPES3-160 RC to DVI line mass flow	66
Fig.4.63 – SPES3-160 DVI line mass flow (window)	67
Fig.4.64 – SPES3-160 DVI line mass flow	67
Fig.4.65 – SPES3-160 PCC mass flow	68
Fig.4.66 – SPES3-160 PCC tank level	68
Fig.4.67 – SPES3-160 PCC inlet and outlet temperature	69
Fig.4.68 – SPES3-160 PCC liquid void fraction (window)	69

Fig.4.69 – SPES3-160 PCC liquid void fraction	70
Fig.4.70 – SPES3-160 LGMS mass	70
Fig.4.71 – SPES3-160 LGMS and DVI pressure (window)	71
Fig.4.72 – SPES3-160 LGMS and DVI pressure (window)	71
Fig.5. 1 – SPES3-159, 162, 158 and 160 DW pressure (window)	83
Fig.5. 2 – SPES3-159, 162, 158 and 160 DW pressure	83
Fig.5. 3 – SPES3-159, 162, 158 and 160 PSS pressure (window)	84
Fig.5. 4 – SPES3-159, 162, 158 and 160 PSS pressure	84
Fig.5. 5 – SPES3-159, 162, 158 and 160 PSS to DW mass flow (window)	85
Fig.5. 6 - SPES3-159, 162, 158 and 160 PSS to DW mass flow	85
Fig.5. 7 – SPES3-159, 162, 158 and 160 PSS mass	86
Fig.5. 8 – SPES3-159, 162, 158 and 160 LGMS-A mass (intact loop)	86
Fig.5. 9 – SPES3-159, 162, 158 and 160 LGMS to DVI line mass flow (intact loop)	87
Fig.5. 10 - SPES3-159, 162, 158 and 160 RC to DVI line mass flow (intact loop)	87
Fig.5. 11 - SPES3-159, 162, 158 and 160 DVI break line (RPV side) mass flow (window)	88
Fig.5. 12 – SPES3-159, 162, 158 and 160 RPV mass	88
Fig.5. 13 - SPES3-159, 162, 158 and 160 Core heater rod clad surface temperature (normal rods)	89
Fig.5. 14 - SPES3-159, 162, 158 and 160 Core heater rod clad surface temperature (hot rods)	89
Fig.5. 15 – SPES3-163, 164, 165 and 166 DW pressure (window)	90
Fig.5. 16 – SPES3-163, 164, 165 and 166 DW pressure	90
Fig.5. 17 – SPES3-163, 164, 165 and 166 PSS pressure (window)	91
Fig.5. 18 – SPES3-163, 164, 165 and 166 PSS pressure	91
Fig.5. 19 - SPES3-163, 164, 165 and 166 PSS to DW mass flow (window)	92
Fig.5. 20 - SPES3-163, 164, 165 and 166 PSS to DW mass flow	92
Fig.5. 21 – SPES3-163, 164, 165 and 166 PSS mass	93
Fig.5. 22 – SPES3-163, 164, 165 and 166 LGMS-A mass (intact loop)	93
Fig.5. 23 - SPES3-163, 164, 165 and 166 LGMS to DVI line mass flow (intact loop)	94
Fig.5. 24 – SPES3-163, 164, 165 and 166 RC to DVI line mass flow (intact loop)	94
Fig.5. 25 - SPES3-163, 164, 165 and 166 DVI break line (RPV side) mass flow (window)	95
Fig.5. 26 - SPES3-163, 164, 165 and 166 RPV mass	95
Fig.5. 27 - SPES3-163, 164, 165 and 166 Core heater rod clad surface temperature (normal rods)	96
Fig.5. 28 – SPES3-163, 164, 165 and 166 Core heater rod clad surface temperature (hot rods)	96
Fig.5. 29 – IRIS plant RPV mass	97
Fig.5. 30 – IRIS plant core mass	97
Fig.5. 31 – IRIS plant heater rod clad surface temperature (TAF)	98
Fig.5. 32 – IRIS plant DW pressure	98
Fig.5. 33 – IRIS plant LGMS mass	99
Fig.5. 34 – IRIS plant RC to DVI mass flow	99
Fig.5. 35 – IRIS plant break mass flow (RPV side)	100

Fig.7. 1 - SPES3-172 and SPES3-175 DVI break flow (window)	112
Fig.7. 2 - SPES3-172 and SPES3-175 DVI break flow (window)	112
Fig.7. 3 - SPES3-172 and SPES3-175 DVI break flow (window)	113
Fig.7. 4 - SPES3-172 and SPES3-175 DVI break flow	113
Fig.7. 5 - SPES3-172 and SPES3-175 EBT mass flow (window)	114
Fig.7. 6 - SPES3-172 and SPES3-175 LGMS mass flow (window)	114
Fig.7. 7 - SPES3-172 and SPES3-175 RC level (window)	115
Fig.7. 8 - SPES3-172 and SPES3-175 PRZ pressure (window)	115
Fig.7. 9 - SPES3-172 and SPES3-175 PRZ pressure (window)	116
Fig.7. 10 - SPES3-172 and SPES3-175 PRZ pressure	116
Fig.7. 11 - SPES3-172 and SPES3-175 DW pressure (window)	117
Fig.7. 12 - SPES3-172 and SPES3-175 DW pressure	117
Fig.7. 13 - SPES3-172 and SPES3-175 ADS Stage-I mass flow (window)	118
Fig.7. 14 - SPES3-172 and SPES3-175 PRZ and DW pressures (window)	118
Fig.7. 15 - SPES3-172 and SPES3-175 PRZ and DW pressures (window)	119
Fig.7. 16 - SPES3-172 and SPES3-175 PRZ and DW pressures	119
Fig.7. 17 - SPES3-172 and SPES3-175 PRZ and DW pressures (detail)	120
Fig.7. 18 - SPES3-172 and SPES3-175 DW to PSS mass flow (window)	120
Fig.7. 19 - SPES3-172 and SPES3-175 PSS to DW integral flow (window)	121
Fig.7. 20 - SPES3-172 and SPES3-175 DW non-condensable gas quality (window)	121
Fig.7. 21 - SPES3-172 and SPES3-175 DW non-condensable gas quality	122
Fig.7. 22 - SPES3-172 and SPES3-175 PSS pressure (window)	122
Fig.7. 23 - SPES3-172 and SPES3-175 PSS pressure	123
Fig.7. 24 - SPES3-172 and SPES3-175 LGMS pressure (window)	123
Fig.7. 25 - SPES3-172 and SPES3-175 LGMS pressure	124
Fig.7. 26 - SPES3-172 and SPES3-175 DW and PSS pressure (window)	124
Fig.7. 27 - SPES3-172 and SPES3-175 DW and PSS pressure	125
Fig.7. 28 - SPES3-172 and SPES3-175 PSS vent pipe level (window)	125
Fig.7. 29 - SPES3-172 and SPES3-175 PSS temperatures (window)	126
Fig.7. 30 - SPES3-172 and SPES3-175 PSS temperatures	126
Fig.7. 31 - SPES3-172 and SPES3-175 Core power (window)	127
Fig.7. 32 - SPES3-172 and SPES3-175 Core power	127
Fig.7. 33 - SPES3-172 and SPES3-175 SG power (window)	128
Fig.7. 34 - SPES3-172 and SPES3-175 SG power	128
Fig.7. 35 - SPES3-172 and SPES3-175 SG ss mass flow (window)	129
Fig.7. 36 - SPES3-172 and SPES3-175 SG ss mass flow	129
Fig.7. 37 - SPES3-172 and SPES3-175 EHRS cold leg mass flow (window)	130
Fig.7. 38 - SPES3-172 and SPES3-175 EHRS cold leg mass flow	130
Fig.7. 39 - SPES3-172 and SPES3-175 EHRS power (window)	131
Fig.7. 40 - SPES3-172 and SPES3-175 EHRS power	131
Fig.7. 41 - SPES3-172 and SPES3-175 SG ss outlet pressure (window)	132

Fig.7. 42 - SPES3-172 and SPES3-175 SG ss outlet pressure	132
Fig.7. 43 - SPES3-172 and SPES3-175 SG-Ass collapsed level (window)	133
Fig.7. 44 - SPES3-172 and SPES3-175 SG-Ass collapsed level	133
Fig.7. 45 - SPES3-172 and SPES3-175 PRZ level (window)	134
Fig.7. 46 - SPES3-172 and SPES3-175 Pump inlet liquid fraction (window)	134
Fig.7. 47 - SPES3-172 and SPES3-175 Pump velocity (window)	135
Fig.7. 48 - SPES3-172 and SPES3-175 Core inlet mass flow (window)	135
Fig.7. 49 - SPES3-172 and SPES3-175 Core inlet mass flow	136
Fig.7. 50 - SPES3-172 and SPES3-175 RI-DC check valve mass flow (window)	136
Fig.7. 51 - SPES3-172 and SPES3-175 RI-DC check valve mass flow	137
Fig.7. 52 - SPES3-172 and SPES3-175 RPV mass (window)	137
Fig.7. 53 - SPES3-172 and SPES3-175 RPV mass	138
Fig.7. 54 - SPES3-172 and SPES3-175 Core liquid fraction (window)	138
Fig.7. 55 - SPES3-172 and SPES3-175 ADS Stage-I integral flow	139
Fig.7. 56 - SPES3-172 and SPES3-175 RC to DVI mass flow IL (window)	139
Fig.7. 57 - SPES3-172 and SPES3-175 RC to DVI mass flow IL	140
Fig.7. 58 - SPES3-172 and SPES3-175 EBT level (window)	140
Fig.7. 59 - SPES3-172 and SPES3-175 EBT to RPV balance line mass flow (window)	141
Fig.7. 60 - SPES3-172 and SPES3-175 Core inlet and outlet fluid temperature (window)	141
Fig.7. 61 - SPES3-172 and SPES3-175 Core inlet and outlet fluid temperature	142
Fig.7. 62 - SPES3-172 and SPES3-175 Core heater rod surface temperature -normal rod (window)	142
Fig.7. 63 - SPES3-172 and SPES3-175 Core heater rod surface temperature -normal rod	143
Fig.7. 64 - SPES3-172 and SPES3-175 Core heater rod surface temperaturehot rod (window)	143
Fig.7. 65 - SPES3-172 and SPES3-175 Core heater rod surface temperature hot rod	144
Fig.7. 66 - SPES3-172 and SPES3-175 LGMS level	144
Fig.7. 67 - SPES3-172 and SPES3-175 DW level	145
Fig.7. 68 - SPES3-172 and SPES3-175 DVI mass flow (window)	145
Fig.7. 69 - SPES3-172 and SPES3-175 DVI mass flow	146
Fig.7. 70 - SPES3-172 and SPES3-175 QT level	146
Fig.7. 71 - SPES3-172 and SPES3-175 LGMS mass (window)	147
Fig.7. 72 - SPES3-172 and SPES3-175 ADS Stage-II mass flow (window)	147
Fig.7. 73 - SPES3-172 and SPES3-175 ADS Stage-II mass flow	148
Fig.7. 74 - SPES3-172 and SPES3-175 RWST temperature	148
Fig.7. 75 - SPES3-172 and SPES3-175 RWST mass	149
Fig.7. 76 - SPES3-172 and SPES3-175 RWST pressure	149

Fig.8. 1 – SPES3-173 and SPES3-176 DVI line break flow (window)	157
Fig.8. 2 – SPES3-173 and SPES3-176 DVI line break flow (window)	157
Fig.8. 3 – SPES3-173 and SPES3-176 DVI line break flow	158
Fig.8. 4 – SPES3-173 and SPES3-176 EBT injection mass flow (window)	158
Fig.8. 5 – SPES3-173 and SPES3-176 LGMS injection mass flow (window)	159

Fig.8. 6 – SPES3-173 and SPES3-176 LGMS injection mass flow	159
Fig.8. 7 – SPES3-173 and SPES3-176 ADS Stage-I mass flow (window)	160
Fig.8. 8 – SPES3-173 and SPES3-176 ADS Stage-I mass flow (window)	160
Fig.8. 9 – SPES3-173 and SPES3-176 ADS Stage-II mass flow (window)	161
Fig.8. 10 – SPES3-173 and SPES3-176 ADS Stage-II mass flow (window)	161
Fig.8. 11 – SPES3-173 and SPES3-176 ADS Stage-II mass flow	162
Fig.8. 12 – SPES3-173 and SPES3-176 PRZ and DW pressures (window)	162
Fig.8. 13 – SPES3-173 and SPES3-176 PRZ and DW pressures (window)	163
Fig.8. 14 – SPES3-173 and SPES3-176 PRZ and DW pressures	163
Fig.8. 15 – SPES3-173 and SPES3-176 PRZ pressure (window)	164
Fig.8. 16 – SPES3-173 and SPES3-176 PRZ pressure (window)	164
Fig.8. 17 – SPES3-173 and SPES3-176 PRZ pressure	165
Fig.8. 18 – SPES3-173 and SPES3-176 DW pressure (window)	165
Fig.8. 19 – SPES3-173 and SPES3-176 DW pressure	166
Fig.8. 20 – SPES3-173 and SPES3-176 PCC power (window)	166
Fig.8. 21 – SPES3-173 and SPES3-176 PCC power	167
Fig.8. 22 – SPES3-173 and SPES3-176 PSS to DW mass flow (window)	167
Fig.8. 23 – SPES3-173 and SPES3-176 PSS to DW mass flow	168
Fig.8. 24 – SPES3-173 and SPES3-176 DW non-condensable quality (window)	168
Fig.8. 25 – SPES3-173 and SPES3-176 DW non-condensable quality	169
Fig.8. 26 – SPES3-173 and SPES3-176 PSS pressure (window)	169
Fig.8. 27 – SPES3-173 and SPES3-176 PSS pressure	170
Fig.8. 28 – SPES3-173 and SPES3-176 LGMS pressure (window)	170
Fig.8. 29 – SPES3-173 and SPES3-176 LGMS pressure	171
Fig.8. 30 – SPES3-173 and SPES3-176 PSS and DW pressure (window)	171
Fig.8. 31 – SPES3-173 and SPES3-176 PSS and DW pressure	172
Fig.8. 32 - SPES3-173 and SPES3-176 PSS vent pipe level (window)	172
Fig.8. 33 – SPES3-173 and SPES3-176 PSS vent pipe level	173
Fig.8. 34 – SPES3-173 and SPES3-176 PSS level (window)	173
Fig.8. 35 – SPES3-173 and SPES3-176 PSS level	174
Fig.8. 36 – SPES3-173 and SPES3-176 PSS mass	174
Fig.8. 37 – SPES3-173 and SPES3-176 RC level (window)	175
Fig.8. 38 – SPES3-173 and SPES3-176 RC level	175
Fig.8. 39 – SPES3-173 and SPES3-176 DW level	176
Fig.8. 40 – SPES3-173 and SPES3-176 QT level	176
Fig.8. 41 – SPES3-173 and SPES3-176 PSS temperature (window)	177
Fig.8. 42 – SPES3-173 and SPES3-176 PSS temperature	177
Fig.8. 43 – SPES3-173 and SPES3-176 core power (window)	178
Fig.8. 44 – SPES3-173 and SPES3-176 core power (window)	178
Fig.8. 45 – SPES3-173 and SPES3-176 core power	179
Fig.8. 46 – SPES3-173 and SPES3-176 SG power (window)	179

Fig.8. 47 – SPES3-173 and SPES3-176 SG power (window)	180
Fig.8. 48 – SPES3-173 and SPES3-176 SG ss mass flow (window)	180
Fig.8. 49 – SPES3-173 and SPES3-176 SG ss outlet pressure (window)	181
Fig.8. 50 – SPES3-173 and SPES3-176 SG ss outlet pressure	181
Fig.8. 51 – SPES3-173 and SPES3-176 SGss level (window)	182
Fig.8. 52 – SPES3-173 and SPES3-176 SGss level	182
Fig.8. 53 – SPES3-173 and SPES3-176 PRZ level	183
Fig.8. 54 – SPES3-173 and SPES3-176 Pump velocity	183
Fig.8. 55 – SPES3-173 and SPES3-176 pump inlet liquid fraction	184
Fig.8. 56 – SPES3-173 and SPES3-176 core inlet flow (window)	184
Fig.8. 57 – SPES3-173 and SPES3-176 core inlet flow	185
Fig.8. 58 – SPES3-173 and SPES3-176 RI-DC check valve mass flow (window)	185
Fig.8. 59 – SPES3-173 and SPES3-176 RI-DC check valve mass flow	186
Fig.8. 60 – SPES3-173 and SPES3-176 RPV mass	186
Fig.8. 61 – SPES3-173 and SPES3-176 EBT mass	187
Fig.8. 62 – SPES3-173 and SPES3-176 EBT level	187
Fig.8. 63 – SPES3-173 and SPES3-176 EBT balance line mass flow (mass flow)	188
Fig.8. 64 – SPES3-173 and SPES3-176 Core liquid fraction (window)	188
Fig.8. 65 – SPES3-173 and SPES3-176 Core liquid fraction	189
Fig.8. 66 – SPES3-173 and SPES3-176 RC to DVI line mass flow	189
Fig.8. 67 – SPES3-173 and SPES3-176 DVI line mass flow (window)	190
Fig.8. 68 – SPES3-173 and SPES3-176 DVI line mass flow	190
Fig.8. 69 – SPES3-173 and SPES3-176 Core inlet and outlet temperatures (window)	191
Fig.8. 70 – SPES3-173 and SPES3-176 Core inlet and outlet temperatures	191
Fig.8. 71 - SPES3-173 and SPES3-176 Core heater rod clad surface temperatures (normal rods) (wir	ndow)
	192
Fig.8. 72 - SPES3-173 and SPES3-176 Core heater rod clad surface temperatures (normal rods)	192
Fig.8. 73 - SPES3-173 and SPES3-176 Core heater rod clad surface temperatures (hot rods) (window	w)193
Fig.8. 74 – SPES3-173 and SPES3-176 Core heater rod clad surface temperatures (hot rods)	193
Fig.8. 75 – SPES3-173 and SPES3-176 PCC mass flow	194
Fig.8. 76 – SPES3-173 and SPES3-176 PCC tank level	194
Fig.8. 77 – SPES3-173 and SPES3-176 PCC inlet and outlet temperature	195
Fig.8. 78 – SPES3-173 and SPES3-176 PCC liquid void fraction (window)	195
Fig.8. 79 – SPES3-173 and SPES3-176 PCC liquid void fraction	196
Fig.8. 80 – SPES3-173 and SPES3-176 LGMS level	196
Fig.8. 81 – SPES3-173 and SPES3-176 LGMS mass	197
Fig.8. 82 – SPES3-173 and SPES3-176 LGMS and DVI pressure (window)	197
Fig.8. 83 – SPES3-173 and SPES3-176 LGMS and DVI pressure (window)	198

III. NOMENCLATURE

ADS	Automatic Depressurization System
ADS-DT	ADS-Double Train
ADS-ST	ADS-Single Train
BAF	Bottom of Active Fuel
BDBE	Beyond Design Basis Event
Bot, bot	Bottom
BC	Base Case
CIRTEN	Consorzio Interuniversitario Nazionale per la Ricerca Tecnologica Nucleare
CRDM	Control Rod Drive Mechanism
CV	Containment Volume
D	Diameter
DBE	Design Basis Event
Di	inner diameter
d	diameter
DC	Downcomer
DEG	Double Ended Guillotine
DP	Differential pressure
DT	Difference of temperature
DTh	Heat transfer Diameter (RELAP5 parameter)
DVI	Direct Vessel Injection
DW	Dry Well
EBT	Emergency Boration Tank
EHRS	Emergency Heat Removal System
FER	University of Zagreb
FF	Fouling Factor (RELAP5 parameter)
FL	Feed Line
FW	Feed Water
GOTHIC	Generation Of Thermal-Hydraulic Information for Containments
HX	Heat Exchanger
IRIS	International Reactor Innovative and Secure
LGMS	Long Term Gravity Make-up System
LM	LOCA Mitigation signal
LOCA	Loss of Coolant Accident
mid	middle
MFIV	Main Feed Isoaltion Valve
MSIV	Main Steam Isolation Valve
n.a.	Not available

NPP	Nuclear Power Plant
NRC	Nuclear Regulatory Commission
Р	Pressure
PCC	Passive Containment Cooling
PRZ	Pressurizer
PSS	Pressure Suppression System
PWR	Pressurized Water Reactor
QT	Quench Tank
RC	Reactor Cavity
RC	Concentric reduction (in the geometrical detail tables)
RCCA	Rod Cluster Control Assembly
RELAP	REactor Loss of coolant Analysis Program
RI	Riser
R&D	Research and Development
RPV	Reactor Pressure Vessel
RV	Reactor Vessel
RWST	Refuelling Water Storage Tank
S	Safeguard signal
SC	Sensitivity case
SG	Steam Generator
SIET	Società Informazioni Esperienze Termoidrauliche
SL	Steam Line
SPES	Simulatore Per Esperienze di Sicurezza
т	Temperature
TAF	Top of Active Fuel
WEC	Westinghouse Electric Company

1. SCOPE

The primary goal of this document is to describe the results of SPES3 facility numerical simulations for the DBE and BDBE DVI line DEG break transients.

The BDBE DVI line DEG break transient simulation, with all the EHRSs unavailable, allowed to investigate the PCC performance and actuation logic. Moreover it put in evidence the importance of the ADS-Stage-II actuation time in the accident mitigation and the need of reducing hydraulic resistance of the RC to DVI line to enhance the water back-flow from containment to RPV. The comparison with IRIS results allowed to verify similarity of the main quantities in the facility and in the plant.

The transients were investigated starting from 100% power, for a direct comparison with the IRIS plant, and from 65% power to define the correct test procedure.

In fact, the need of test beginning from 65% power, due to SIET electric supply limit, led to investigate the initial conditions for the tests that, scaling primary and secondary mass flows according to power, allowed to have same fluid enthalpy conditions as if starting from full power. Steady conditions were thus defined.

Both DBE and BDBE DVI line DEG break transients were simulated starting from steady state at 65% power and the similarity to the 100% power transients was verified.

2. INTRODUCTION

The SPES3 facility was designed for testing on SMR with integral layout and it is being built at SIET laboratories. The facility is based on IRIS reactor design and it is suitable to simulate postulated Design and Beyond Design Basis Events, providing experimental data for code validation and plant safety analyses, [1].

The IRIS reactor is an advanced medium size, integral layout, pressurized water reactor developed by an international consortium of utilities, industries, research centres and universities. It is based on the proven technology of PWR with an innovative configuration and safety features suitable to cope with Loss of Coolant Accidents through a dynamic coupling of the primary and containment systems, [2] [3].

The SPES3 facility reproduces the primary, secondary and containment systems of the reactor with 1:100 volume scale, full elevation, prototypical fluid and thermal-hydraulic conditions, [4] [5] [6] [7] [8] [9] [10] [11] [12] [13].

The RELAP5 thermal-hydraulic code was chosen to simulate the whole SPES3 facility: primary and secondary circuits, safety systems and containment. During the SPES3 design, a complex calculation-design feedback process led to optimize model and design up to the present configuration suitable to simulate the IRIS reactor and reproduce the IRIS results obtained by FER at Zagreb University with the RELAP5 and GOTHIC coupled codes [14] [15] [16] [17] [18] [19] [20] [21] [22] [23].

The process included the simulation of all Design Basis Events specified in the test matrix with a greater attention to the DVI line DEG break, considered the most challenging LOCA in IRIS, potentially maximizing RPV mass depletion [1]. The first simulated Beyond Design Basis Event, specified in the test matrix, was the DVI line DEG break with all the EHRS unavailable. This allowed to verify PCC performance and actuation logic and to investigate ADS Stage-II influence on on accident mitigation.

The need of testing SPES3 starting from 65% nominal power, due to the limit on SIET power supply, led to search for steady conditions with reduced power and mass flows, suitable to maintain the same full power fluid enthalpies. New steady conditions were found as compromise among hardware choices, boundary conditions and acceptable differences by IRIS steady state. The DBE and BDBE DVI line DEG break were simulated starting from 65% power steady state in order to have a direct comparison with 100% power transients.

Work, described in detail in this document, is part of SPES3 facility design review and transient analyses that led to further updating of the facility nodalization and design with particular focus on the SG tube number, the PCC tube bundle and cooling circuit, the RC to DVI line pressure drops and accident mitigation strategies with optimization of PCC and ADS Stage-II actuation time.

3. SPES3 AND IRIS MODELS

This section reports the schemes of the SPES3 facility and the RELAP5 nodalization utilized for the cases described in the following chapters. The IRIS schemes and nodalizations for RELAP5 and GOTHIC codes are reported too.

3.1 SPES3 schemes and RELAP5 nodalization

The general view of SPES3 is reported in Fig.3. 1. The SPES3 flow diagram for primary loop, secondary loop B and containment system is reported in Fig.3. 2. The flow diagrams for secondary loops A and C are reported in Fig.3. 3.

The details of SPES3 base nodalization are reported in [15]. The calculation-design feedback process, carried out to optimize the SPES3 design to better simulate the IRIS plant, led to model updates as described in [18]. Two models, SPES3-146 and SPES3-147, came out of the design review, the first one with 14 tubes SGs and the second one with 13 tubes SGs. The DVI line DEG break calculation results showed that both solutions were valid for IRIS simulation if starting from 100% power. The search for steady conditions to run the facility at 65% power led to choose the case with 13 tubes SGs that showed more adequate heat transfer surface suitable to provide core inlet and outlet temperature close to IRIS ones, with mass flow scaled on power (the 14 tubes SG case resulted in the same core Δ T but primary average temperature 5 K lower). SPES3-147 nodalization was the staring point for the present analysis.

Updates to SPES3-147 nodalization concerned the PCC cooling loop model, for the BDBE simulation, and resizing of RC to DVI line orifice. Fig.3. 4, Fig.3. 5, Fig.3. 6 report the updated SPES3 RELAP5 nodalization.

3.2 IRIS RELAP5 and GOTHIC nodalization

The general view of the IRIS RPV and Containment System are reported in Fig.3. 7 and Fig.3. 8. IRIS Engineered Safety Features are sketched in Fig.3. 9.

Details of IRIS base nodalizations are reported in [20]. The comparison with SPES3 simulation results and system optimization, led to update the IRIS nodalization as reported in [21] up to the IRIS-HT6_rwstc case. Later modifications of some details furthermore updated the nodalization in IRIS-HT6_rwstc1a case as reported in [24].

Fig.3. 10 and Fig.3. 11 report the IRIS RELAP5 and GOTHIC nodalizations.

Fig.3. 1 – SPES3 general view

0	SPES3 facility: RELAP5 simulations of the DBE and	Document 01 743 RT 11 Rev.0
	BDBE DVI line DEG break from 65% and 100%	Page 17 of 203
sperimentiamo le tue idee	power for design support	5

	SPES3 facility: RELAP5 simulations of the DBE and	Document 01 743 RT 11 Rev.0
	BDBE DVI line DEG break from 65% and 100%	Page 18 of 203
sperimentiamo le tue idee	power for design support	5

Fig.3. 3 – SPES3 secondary system A and C layout

Fig.3. 4 – SPES3 Primary System RELAP5 nodalization

IIA	Lĭ				
Scale	Dwg code	File		General	code
	071.01.06	071-01-06	rev6.dwg		

SPES3 facility: RELAP5 simulations of the DBE and	Document 01 743 RT 11 Rev.0
BDBE DVI line DEG break from 65% and 100%	Page 20 of 203
 power for design support	č

Fig.3. 5 – SPES3 Secondary Systems and EHRSs RELAP5 nodalization

	SPES3 facility: RELAP5 simulations of the DBE and	Document 01 743 RT 11 Rev.0
	BDBE DVI line DEG break from 65% and 100%	Page 21 of 203
sperimentiamo le tue idee	power for design support	5

Fig.3. 6 – SPES3 Containment System RELAP5 nodalization

Fig.3. 7 – IRIS Reactor Pressure Vessel general view

Fig.3. 8 – IRIS Containment System general view

	SPES3 facility: RELAP5 simulations of the DBE and	Document 01 743 RT 11 Rev.0
	BDBE DVI line DEG break from 65% and 100%	Page 25 of 203
sperimentiamo le tue (dee	power for design support	3

4. BDBE DVI LINE DEG BREAK: SPES3-160

The calculation-design feedback process led to optimize SPES3 design and nodalization on the basis of the DBE DVI line DEG break, as described in [18]. The test matrix for SPES3 experimental program foresees execution of both Design Basis and Beyond Design Basis Events [1]. All transients must be numerically simulated to identify eventual criticalities in the design, not evidenced in the DBE analyses, and possibly intervene before the completion of the facility construction.

The BDBE 2-inch equivalent DVI line DEG break is a very challenging transient for IRIS, with all EHRS unavailable and PCC the only device to remove decay power and maintain the plant in safe conditions.

SPES3-160 case is based on SPES3-147 nodalization, with 13 tube SGs, as come out of the facility design review described in [18]. The model was updated with an optimized PCC tube bundle and cooling circuit as shown in Fig.3. 6. PCC actuation logic was optimized too. PCC water flow was triggered according to the following logic: reaching of 0.9 MPa containment pressure AND 1800 s delay on LM-signal, assuming such delay as time required to fill-up the containment refuelling cavity that provides the heat sink for passive containment cooling system. PCC is designed to maintain the containment pressure between 0.8 and 0.9 MPa.

The PCC final design includes an horizontal 20 tubes bundle (1-inch Sch. 10, 3.58 m average length) installed at the DW top [9]. The bundle is connected to a water tank at upper elevation. A cold line feeds the bundle with water and a hot line drives steam back to the tank, Fig.3. 2. The tank acts as steam condenser/separator and includes a make-up system suitable to maintain water level at the specified set-point of 0.7 m.

Steady conditions of SPES3-147 case, compared to IRIS ones, showed some differences mostly related to average primary circuit temperature, about 3 °C hig her than IRIS, due to the 13 tubes SG reduced heat transfer surface with respect to SPES3-146 with 14 tubes SGs [18]. For SPES3-160 case, some boundary conditions were optimized to get closer to IRIS steady state. In particular, SG mass flow was increased by 0.8%, which allowed to improve also superheating at SG outlet and SG collapsed level.

The RELAP5 nodalization used for SPES3-160 case is shown in Fig.3. 4, Fig.3. 5, Fig.3. 6. The details of changes, with respect to SPES3-147, are listed below:

- Modified PCC tube bundle with 20 tubes (they were 12);
- Added PCC cooling loop, tank and control system (PCC mass flow was imposed as a boundary condition);
- PCC actuation logic on 0.9 MPa containment pressure AND 1800 s delay on LM-signal (it was only on pressure);
- Modified the trip sequence to exclude the EHRS intervention;
- Increased SG-A and B mass flow to 1.260 kg/s (it was 1.250 kg/s) and SG-C mass flow to 2.520 kg/s (it was 2.50 kg/s);
- Corrected the control variables related to SG secondary side mass for 13 SG tubes (they were for 14 tubes).

The following paragraphs describe the BDBE DVI line DEG break transient results and put in evidence possible interventions to optimize design and accident management procedures.

4.1 SPES3-160

Full power steady conditions, starting point for the transient, are summarized in Tab.4. 1. IRIS conditions for HT6_rwstc case are reported as well for a direct comparison.

The list of the main events occurring during the transient, with timing and quantities, is reported in Tab.4. 2.

4.1.1 Transient phases and description

The first 10 s of SPES3 data (-10 s to 0 s) are steady state conditions.

All times of the events are given with respect to the break time assumed as time 0 s.

The main phases of the transient are shortly summarized here, while a more detailed description is provided in the followings.

- The break opening causes RPV blowdown and depressurization, containment pressurization and steam dumping into PSS with air build-up at PSS top;
- the S-signal triggers the reactor scram and secondary loop isolation. EHRS-A and B actuation fails;
- the low PRZ water level signal triggers the pump coastdown and natural circulation in the core is guaranteed until RPV water level is above the check valves connecting riser and downcomer at one third of SG height;
- the LM-signal, triggers the ADS Stage-I to help RPV depressurization and EBT intervention to inject cold borated water into the primary circuit. EHRS-C actuation fails;
- PCC water flow is actuated when 0.9 MPa containment pressure threshold is reached and after 1800 s since the LM-signal;
- PCC depressurizes the containment and, when PSS pressure is sufficiently high to win the gravity head of PSS vent pipes, cold water flows from PSS to DW increasing containment depressurization and RC flooding;
- the low differential pressure signal between RPV and DW triggers LGMS injection into the DVI line and opens the valves connecting RC and DVI line to increase water back-flow from containment to primary system;
- PCC maintains DW pressure between specified set points;
- the low LGMS mass signal (20% of initial mass) opens ADS Stage-II connecting primary and containment systems at high elevation in the plant. PRZ and DW pressure equalizes and water flows from RC to RPV driven by containment water gravity head;
- in the long term, PCC maintains the system at limited pressure values by condensing steam exiting the RPV, with a water back-flow from RC to RPV.

Break

Break line mass flow, RPV side (SPLIT) and containment side (DEG), is shown in Fig.4.1 and Fig.4.2. The peak of 1.33 kg/s is observed at 2 s, RPV side. Around 1000 s, water level in the RPV decreases below the DVI line elevation, uncovering the break, with a steeper reduction of loss of mass.

Mass flow, containment side, is first related to the safety injection of EBT in the broken loop (starting at 253.65 s) and later to LGMS injection (starting at 6439.05 s), Fig.4.3, Fig.4.4.

Reverse flow from containment (RC) to RPV is observed through the SPLIT line, after ADS Stage-II is opened and RPV and containment pressures are equalized, Fig.4.5, Fig.4.6.

Blowdown, RPV depressurization, containment pressurization

The blowdown phase depressurises RPV with mass and energy transfer to the containment.

SPES3 PRZ pressures is shown in Fig.4.7 and Fig.4.8.

While PRZ depressurises, containment pressure increases as shown in Fig.4.6, Fig.4.9, Fig.4.10. The increase in the pressurization rate at 253.65 s is due to ADS Stage-I intervention that discharges mass and energy into the DW, Fig.4.11, Fig.4.12. After that, pressure increases up to reach the peak of 1.35 MPa at 2060 s.

After the peak, pressure decreases thanks to PCC intervention which removes power from the containment and brings pressure to oscillate between set points of 0.8 and 0.9 MPa, Fig.4.13, Fig.4.14.

At 2290 s, depressurization rate increases due to water flow from PSS to DW that contributes to steam condensation, Fig.4.15, Fig.4.16.

At 6440 s, LGMS cold water injection into RPV (through the intact DVI line) and into RC (through the broken DVI line) helps PCC to maintain the system at specified pressure, Fig.4.4, Fig.4.9.

Steam dumping into PSS

Containment space (DW and RC) pressurization causes the transfer of steam-gas mixture from DW to PSS through the PSS vent lines, starting at 15 s and lasting until PCC intervention and subsequent DW depressurization, Fig.4.15, Fig.4.9.

Within 1000 s, almost all DW non-condensable gas is transferred to PSS, as shown in Fig.4.17 and Fig.4.18. Steam is dumped underwater through the PSS sparger and air pressurizes PSS and LGMS gas space, Fig.4.19, Fig.4.20, Fig.4.21, Fig.4.22. After PSS to DW injection start, PSS and LGMS pressure follows the DW depressurization until PSS pressure is no more sufficient to win the PSS vent pipe gravity head and push water upwards into the DW, Fig.4.15, Fig.4.23, Fig.4.24. Fig.4.25 and Fig.4.26 show water level in the PSS vent pipes that reaches the pipe top elevation only for a few cycles allowing water to be transferred to DW, Fig.4.15. PSS and DW volumes remain separated from pressure point of view until the PSS vent pipes empty and the PSS sparger remains covered. Between about 10000 s and 15000 s, PSS and DW pressures are coupled and follow the oscillations determined by PCC, Fig.4.24.

An non-symmetric behaviour of PSS level is observed since about 15000 s, Fig.4.27, Fig.4.28: PSS-B fills-up again. The reason is LGMS injection into the DVI line, started at 6440 s, that in loop B (the broken loop) enters the RC, through the break line, and contributes to fill-up DW and QT, Fig.4.4, Fig.4.29, Fig.4.30, Fig.4.31, Fig.4.32, Fig.4.33. Even if collapsed DW level does not reach the PSS vent line connections, the fast component fill-up pushes steam into the PSS vent lines. Mass flow from DW to PSS can be observed in Fig.4.16, grater toward PSS-B than PSS-A, probably for lower pressure drops in the pipe. PSS mass is shown in Fig.4.34. Slow, but continuous and cyclic mass increase is observed in both PSS. It is related to cyclic DW pressurization between 0.8 and 0.9 MPa, that anytime causes a mass transfer to PSS through the vent pipes. This phenomenon, slowly stores water in the PSS, making it no more available to be injected into the RPV. It may be a critical point if the amount of water above the core is little.

After ADS Stage-II opening at 35719.18 s, primary and containment system pressures are equalized and PSS and DW pressures oscillate accordingly.

PSS water temperature increases thanks to mass transfer from DW, Fig.4.35, Fig.4.36, Fig.4.16.

Both liquid and gas temperatures are reported in Fig.4.35 and Fig.4.36 and they are very similar. Temperatures always remain below saturation (maximum temperature reached at pressure peak of 1.32 MPa is 428 K (Tsat 465 K) while maximum temperature at minimum pressure of 0.8 MPa is 436 K (Tsat 443.6 K)).

S-Signal: Reactor scram, secondary loop isolation. EHRS-A and B actuation failure

The high containment pressure set-point (1.7e5 Pa) is reached at 33.36 s and it triggers the S-signal.

The S-signal (Safeguard) starts the reactor SCRAM and isolates the three secondary loops. EHRS-A and B actuation is assumed to fail.

Power released to fluid in the core is shown in Fig.4.37 and Fig.4.38. After the reactor isolation, no power is removed through the SGs toward EHRSs, as failed, Fig.4.39.

The MFIV and MSIV of the secondary loops are contemporarily closed in 5 s and secondary loop mass flows set to zero, Fig.4.40.

Secondary side pressures are shown in Fig.4.41 and Fig.4.42. After isolation, pressure increases up to about 11.3 MPa, due to heat transfer from the primary side and tube water evaporation. Water evaporation causes tube level decrease as shown in Fig.4.43, Fig.4.44. SG pressure trend is related to RPV mass inventory, Fig.4.42. The first peak of minimum pressure is related minimum RPV mass. Pressure increases after LGMS injection starts and RPV mass recovery enhances heat transfer to the secondary side. Pressure increase is stopped when water transfer from RC to RPV is enhanced by ADS Stage-II actuation. Primary side water removes heat from SGs up to reach pressure balance.

Pump coastdown and primary circulation through RI-DC check valves

PRZ level is shown in Fig.4.45. Early phase of level decrease, until ADS Stage-I intervention (253.65 s), is due to loss of mass from the break. Level increase after ADS Stage-I actuation is due to water swelling and suction toward the QT, Fig.4.11. Due to loss of mass from the break, the pump uncovers soon, Fig.4.46.

The pump coastdown is triggered by the Low PRZ level signal delayed of 15 s (136.78 s + 15 s). Soon after the pump suction is uncovered, RPV natural circulation through the pump interrupts.

Core inlet flow is shown in Fig.4.47 and Fig.4.48. Natural circulation lasts until the RI to DC check valves are covered (1130 s) and heat transfer is present, Fig.4.49. In the long term, even if RPV mass is recovered, no circulation occurs as the primary and secondary sides are in thermal equilibrium, Fig.4.50.

LM-Signal: ADS Stage-I and EBT actuation, EHRS-C actuation failure, PCC actuation counter start.

The LM-signal (LOCA mitigation) occurs at 253.65 s, when the low PRZ pressure set-point (11.72e6 Pa) is reached, Fig.4.7.

EHRS-C actuation on LM-signal is assumed to fail. Failure of EHRS-C starts the counter for PCC actuation with 1800 s delay on LM-signal. Such delay is assumed as time required to fill the containment refuelling cavity, heat sink for PCC.

The LM-signal triggers the ADS Stage-I and the EBT actuation valves.

ADS Stage-I trains are actuated contemporarily and the valves are fully open in 10 s. ADS Stage-I mass flows are shown in Fig.4.11 and Fig.4.12. Two-peak trend is related to liquid fraction at ADS nozzles. The first peak is due to steam flowing toward the QT. At ADS intervention, water is sucked upwards and PRZ level increases, Fig.4.45. The second ADS mass flow peak is caused by increasing liquid fraction at PRZ top that decreases when PRZ empties.

The LM-signal triggers the EBT valves that are fully open in 15 s. EBT injection mass flows are shown in Fig.4.3. EBT injection into the broken DVI line is initially about 14 times grater than injection into the intact one, due to presence of the break. EBT masses and levels are shown in Fig.4.51 and Fig.4.52, respectively.

Soon after EBT actuation, liquid circulation from RPV toward EBT starts at EBT balance connection to RPV, then, after such connection is uncovered, steam replaces water contained in the EBT top lines and tanks, Fig.4.53, Fig.4.54. The broken loop EBT is empty at 550 s while the intact loop EBT is empty at 3030 s, Fig.4.52.

EBT actuation is responsible for mass flow through the break line, containment side, starting at 254 s, Fig.4.1.

RPV saturation

Fast RPV depressurization and loss of mass from the break, Fig.4.7, Fig.4.1, Fig.4.2, rapidly cause flashing in the primary circuit and void begins at core outlet at 257 s, Fig.4.55. At high level in the core, very low liquid fractions are reached, and only after ADS Stage-II opening (35719.18 s), which enhances back-flow from containment to primary side, high liquid fraction is definitively restored in the RPV, Fig.4.56.

Inlet and outlet core temperatures are shown in Fig.4.57 and Fig.4.58.

Core heater rod surface temperatures are shown in Fig.4.59 and Fig.4.60 for the normal and hot rods, respectively. Strong and long lasting surface temperature excursions, up to 917 K, are evidenced, corresponding to low RPV mass inventory condition, Fig.4.61. The rods are definitively rewetted only after ADS Stage-II intervention that enhances water inlet from RC to RPV through the RC to DVI line and through the break line, RPV side.

RC to DVI line mass flow is shown in Fig.4.62. Water injection into the RPV occurs only through the intact loop. After ADS Stage-II opening, it assumes meaningful values with oscillatory trend linked to the cyclic actuation of PCC.

DVI line mass flows at RPV connections are shown in Fig.4.63 and Fig.4.64 for the intact and broken loop. Water flow into the RPV, through the intact loop, is due to EBT and LGMS injection. The negative values of broken loop mass flow, represent water lost from the break; the positive values represent water back-flow from containment to RPV, driven by primary to containment differential pressure. Mass flow assumes meaningful values only after ADS Stage-II opening and primary and containment pressure equalization.

It is important to note that mass flow entering RPV through the break line is about 20 times grater than RC to DVI line flow and core rewetting mostly occurs thanks to it, Fig.4.62, Fig.4.2.

PCC actuation

The containment pressure peak of 1.35 MPa occurs at 2060 s, Fig.4.9.

Pressure is rapidly dumped thanks to PCC intervention at 2053.66 s (i.e. 1800 s delayed on LM-signal). After that, pressure is maintained between 0.8 MPa and 0.9 MPa, accordingly to PCC actuation logic, Fig.4.13, Fig.4.14.

PCC tube mass flow is shown in Fig.4.65. The tubes discharge into and are fed by the PCC tank that operates as steam condenser and water supply. PCC tank level is controlled by a PI (proportional-integral) control system, 0.7 m level set-point, that injects cold water into the feed line from an auxiliary circuit Fig.4.66. PCC inlet and outlet temperatures are shown in Fig.4.67. Water enters slightly subcooled and exits saturated with a liquid fraction at the outlet of about 0.2, Fig.4.68, Fig.4.69.

Low DP RPV-Containment signal, LGMS and RC to DVI valve actuation

The "Low DP RPV-Containment" signal set point of 50 kPa is reached at 6439.05 s.

Combination of LM-signal AND Low DP RV-Containment signal actuates the LGMSs and opens the valves on the lines connecting RC to DVIs.

The SPES3 LGMS isolation valves are fully open in 2 s as well as the RC to DVI line isolation valves.

LGMS injection into the DVI line is mostly due to gravity. In fact, at the moment of LGMS injection, pressurization for air build-up at LGMS top, through PSS to LGMS balance lines (during RPV blowdown into

RC and DW), is extinguished, for PSS to DW injection with PSS sparger uncovering DW, PSS and LGMS pressure equalization. LGMS injection mass flow is shown in Fig.4.4. LGMS mass is reported in Fig.4.70. LGMS injection into the RPV, through the intact loop DVI line occurs when DVI pressure is lower than LGMS pressure, accordingly to PCC operation, and this explains the oscillatory trend of injection, Fig.4.71, Fig.4.72, Fig.4.4.

PSS water flow to DW, RC flooding

At 2290 s, PSS pressure overcomes the hydrostatic head of water in the PSS vent lines and water is pushed toward the DW through the vent line extensions, Fig.4.15, Fig.4.16. PCC intervention at 2053.66 s and DW depressurization cause discontinuous water injection according to differential pressure between PSS and DW, Fig.4.23.

Since about 7000 s, RPV and DW pressure are coupled, with RPV always at higher pressure. Only after ADS Stage-II opening, at 35719.18 s, RPV and containment pressures are definitively coupled, Fig.4.6.

RC level, initially increased for break and ADS Stage-I mass flow collection, rapidly increases in correspondence of PSS to DW injection up to complete fill-up at 3300 s (11 m level from bottom), Fig.4.29, Fig.4.30.

The QT, initially empty, is partially filled-up by the ADS Stage-I discharge, Fig.4.32. Later fill-up, around 13990 s, is related to rapid increase of the DW level, mostly due to LGMS water injection, Fig.4.31, Fig.4.4.

Low LGMS mass signal: ADS Stage-II actuation, Containment and RPV pressure equalization, reverse flow from containment to RPV

The broken loop LGMS low mass signal is reached at 23345.68 s, when mass decreases to 198 kg (20% of initial mass); the intact loop one at 35719.18 s, Fig.4.70.

Reaching of both LGMS low mass signals actuates the ADS Stage-II valves, fully open in 10 s, Fig.4.5.

At 6433.76 s, the RC to DVI line valves are opened and, as RC level is above the DVI line elevation, water back-flow from RC to RPV is allowed when RPV pressure is lower than containment one (after ADS Stage-II actuation), Fig.4.62. Being the break line at the same DVI line elevation, water back-flow from RC to RPV is allowed through it as well, Fig.4.2.

Long term conditions

In the long term of the transient, system pressure is maintained between 0.8 and 0.9 MPa by the PCC.

Core power, average value between 100000 and 150000 s, is 45.36 kW.

PCC removed power, average value between 100000 and 150000 s, is 25.20 kW.

The difference of about 20 kW is due to facility heat losses to the environment. This value of estimated heat losses can be compensated during the tests by increasing provided core power.

4.1.2 Case conclusions

The detailed analysis of the BDBE DVI line DEG break transient on the SPES3 facility allowed to investigate the phenomena related to the plant behavior in case of total EHRS failure.

It showed weakness of the system in case the ADS Stage-II actuation signal is maintained on the low LGMS mass signal that causes a late ADS actuation. Late ADS Stage-II opening postpones pressure balance between primary and containment systems and delays water back-flow from RC to RPV. The delay of water

back-flow determines long period of core uncovering with high rod clad temperature excursions and possible damages.

Further investigations of PCC and ADS Stage-II actuation time are described in the next chapters.

Tab.4. 1 – SPES3-160 and IRIS-HT6_rwstc steady state conditions

SPES3-160	Primary/Core	SG-A	SG-B	SG-C	EBTA/B	QT	DW	PSSA/B	RC	LGMSA/B	RWSTAB	RWSTC
Pressure (MPa)	15.55 (PRZ)	5.83 (out)	5.83 (out)	5.87 (out)	Primary	Cont.	0.1013	Cont.	Cont.	Cont.	0.1013	0.1013
	0.104 (pump head)			. ,	-							
Tin (℃)	292.5	223.9	223.9	223.9	48.9	48.9	48.9	48.9	48.9	48.9	20	20
Tout (℃)	329.9	318.0	315.0	315.0								
DT (°C)	37.4	94.1	91.1	91.1								
Superheating (℃)		44.25 (Tsat 273.75)	41.25 (Tsat 27 3.75)	40.8 (Tsat 274.2)							
Mass flow (kg/s)	45.64	1.26	1.26	2.52								
	(2.14 in by-pass)											
Power (MW)	10	2.509	2.497	4.990								
Level (m)	2.233 (PRZ)	1.68	1.85	1.88	3.14 full	empty	empty	3.77	empty	2.454	6.961	6.954
-collapsed-												
Mass (kg)	3319 (RV)				127			1480		985	11869	11876

IRIS HT6_rwstc	Primary/Core	SG 1	SG 2	SG 3	SG 4	SG 5	SG 6	SG 7	SG 8	EBTA/B	QT	DW	PSSA/B	RC	LGMSA/B	RWST1	RWST2
Pressure (MPa)	15.5 (PRZ) 0.129 (pump head)	5.81 (out)	5.79 (out)	5.79 (out)	5.78 (out)	5.78 (out)	5.79 (out)	5.79 (out)	5.81 (out)	Primary	Cont.	0.1013	Cont.	Cont.	Cont.	0.1013	0.1013
Tin (℃)	291	223.7	223.7	223.7	223.7	223.7	223.7	22 3.7	223.7	48.9	48.9	48.9	48.9	48.9	48.9	20	20
Tout (℃)	329	318.05	316.24	318.22	316.52	316.52	318.22	316.24	318.05								
DT (°C)	38	94.35	92.54	94.52	92.82	92.82	94.52	92.54	94.35								
Superheating (℃)		44.55 (Tsat 273.5)	43.04 (Tsat 273.2)	45.02 (Tsat 273.2)	43.42 (Tsat 273.1)	43.42 (Tsat 273.1)	45.02 (Tsat 273.2)	43.04 (Tsat 273.2)	44.55 (Tsat 273.5)								
Mass flow (kg/s)	45.24 (2.13 in by-pass)	1.257	1.257	1.257	1.257	1.257	1.257	1.257	1.257								
Power (MW)	10	1.24	1.26	1.24	1.26	1.26	1.24	1.26	1.24								
Level (m) -collapsed-	2.019 (PRZ)	1.93	1.99	1.92	1.98	1.98	1.92	1.99	1.93	3.14 full	empty	empty	3.00	empty	2.668	9.099	9.099
Mass (kg)	3254 (RV)									127			1453		989	11942	11942

Tab.4. 2 - SPES3-160 list of the main events

	BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-160							
N.	Phases and events	Time (s)	Quantity	Notes					
Break									
1	Break initiation	0		break valves stroke 2 s					
2	Break flow peak (Containment side)	1	0.688 kg/s	Break flow = 0 kg/s at 11 s					
3	Break flow peak (RPV side)	2	1.33 kg/s						
Blowdown	, RPV depressurization, containment pressurization, steam c	lumping into PS	S						
4 Steam-air mixture begins to flow from DW to PSS 15									
S-Signal: I	Reactor scram, secondary loop isolation. EHRS-A and B actu	ation failure							
5	High Containment pressure signal	33.36	1.7e5 Pa	S-signal. Set-point for safety analyses					
6	SCRAM begins	33.36							
7	MFIV-A,B,C closure start	33.36		MFIV-A,B,C stroke 5 s					
8	MSIV-A-B-C closure start	33.36		MSIV-A,B,C stroke 5 s.					
9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	33.36		EHRS-A,B IV stroke 2 s.					
10	High SG pressure signal	46.86	9e6 Pa						
11	SG-A high pressure reached	46.86							
12	SG-B high pressure reached	48.30							
13	SG-C high pressure reached	47.86							
		72	111e5 Pa A						
14	Secondary loop pressure peak	70	113e5 Pa B						
_		/1	113e5 Pa C						
Pump coa	stdown and primary circulation through RI-DC check valves	400 70	4 400						
15	Low PRZ water level signal	136.78	1.189 m						
16	RCP coastdown starts	151.78		LOW PRZ level signal + 15 s delay					
17	Natural circulation begins through shroud valves	173							
	Flashing begins at core outlet	257		Voldf 110 (core) < 1					
LIVI-Signal	: ADS Stage-I and EBT actuation, EHRS-C actuation failure. F		unter start. RP	v saturation					
19	Low PRZ pressure signal	253.65	11.72e6 Pa	LIM-Signal (High P cont + Low P PRZ)					
20	EHRS-C actuation failure (EHRS 2 and 4 in IRIS)	253.65		ADC volve strake 10 s					
21	ADS Stage-I opening start (3 trains)	203.00		ADS valve stroke TU'S					
22	ADS Stage-I first peak flow (3 trains)	265	1.364 kg/s	DT 0 804 kg/s;					
				ST 0.662 kg/s					
23	ADS Stage-I second peak flow (3 trains)	328	2.003 kg/s	DT 1.340 kg/s. Due to liquid fraction.					
24	EBT-A and B valve opening start	253.65		EBT valve stroke 15 s					
25	Break flow peak (Containment side)	273		Due to EBT intervention					
26	EBT-RV connections uncovered	308, 333		EBT-B, EBT-A					
27	Natural circulation interrupted at SGs top	311		Pump inlet uncovered (voidf 176-01 ~0)					
28	Core in saturation conditions	306							
29	EBT-B empty (broken loop)	550		550 s almost empty (750 s completely empty)					
30	High containment pressure signal	1001.89	0.9 MPa						
31	1 PCC actuation 2053.66 LM-signal + 1800 s + P cont > 0.9 MPa								
Low DP R	PV-Containment signal, PSS water flow to DW, RC flooding,	LGMS and RC to	DVI valve actu	ation					
32	Containment pressure peak	2060	13.5e5 Pa						
33	DW pressure lower than PSS pressure	2090							
34	Water starts to flow from PSS to DW	2290							
35	RC level at DVI elevation	2740							
36	EBT-A empty (intact loop)	3030							
37	RC full of water	3300							
38	Low DP RV-Containment	6439.05	50e3 Pa						
39	LGMSA/B valve opening start	6439.05		LM + low DP RV-cont. LGMS valve stroke 2 s.					
40	RC to DVI line valve opening	6439.05		RC to DVI valve stroke 2 s.					
41	LGMS-B starts to inject into RC through DVI broken loop	6440							
42	LGMS-A starts to inject into RV through DVI intact loop	6440							
43	QT fill-up starts from DW connection	13990							
Low LGMS	S mass signal: ADS Stage-II actuation, reverse flow from con	tainment to RPV	1	1					
44	Low LGMS mass	23345.68	20% mass (198 kg)	LGMS B (broken loop)					
45		35719.18	20% mass (198 kg)	LGMS A (intact loop)					
46	ADS Stage-II start opening	35719.18	(100 kg)	LGMS-A AND LGMS-B low mass					
47	LGMS-B empty (broken loop)	28590	1						
48	Water starts to flow from RC to DVI-A	35740							
49	Containment and RV pressure equalization	35990							
50	LGMS-A empty (intact loop)	38990							
Lona Tern	n conditions		1	1					
		100000 s to	0.0.00115	Controlled by DOO					
51	Containment and RPV pressure	150000 s	0.8–0.9 MPa	Controlled by PCC					
52	Core power		45.36 kW	Average between 100000 s and 150000 s					
53	PCC removed power		25.20 kW	Average between 100000 s and 150000 s Core and PCC power unbalance due to heat losses					

Fig.4.1 - SPES3-160 DVI line break flow (window)

Fig.4.3 – SPES3-160 EBT injection mass flow (window)

Fig.4.4 - SPES3-160 LGMS injection mass flow

Fig.4.6 – SPES3-160 PRZ and DW pressures (window)

Fig.4.7 – SPES3-160 PRZ pressure (window)

Fig.4.8 – SPES3-160 PRZ pressure

Fig.4.9 – SPES3-160 DW pressure (window)

Fig.4.11 – SPES3-160 ADS Stage-I mass flow (window)

Fig.4.13 – SPES3-160 PCC power (window)

Fig.4.14 - SPES3-160 PCC power

Fig.4.15 - SPES3-160 PSS to DW flow (window)

Fig.4.16 - SPES3-160 PSS to DW flow

Fig.4.17 – SPES3-160 DW non-condensable gas quality (window)

Fig.4.18 – SPES3-160 DW non-condensable gas quality

Fig.4.19 – SPES3-160 PSS pressure (window)

Fig.4.21 - SPES3-160 LGMS pressure (window)

Fig.4.23 – SPES3-160 PSS and DW pressure (window)

Fig.4.25 – SPES3-160 PSS vent pipe level (window)

Fig.4.27 – SPES3-160 PSS level (window)

Fig.4.29 – SPES3-160 RC level (window)

Fig.4.30 - SPES3-160 RC level

Fig.4.31 – SPES3-160 DW level

Fig.4.32 - SPES3-160 QT level

Fig.4.33 – SPES3-160 LGMS level

Fig.4.34 - SPES3-160 PSS mass

Fig.4.35 – SPES3-160 PSS temperature (window)

Fig.4.36 – SPES3-160 PSS temperature

Fig.4.37 – SPES3-160 core power (window)

Fig.4.38 – SPES3-160 core power

Fig.4.41 – SPES3-160 SG ss outlet pressure (window)

Fig.4.42 – SPES3-160 SG ss outlet pressure and RPV mass

Fig.4.43 – SPES3-160 SG-A ss level (window)

Fig.4.44 - SPES3-160 SG-A ss level

Fig.4.45 – SPES3-160 PRZ level

Fig.4.46 – SPES3-160 pump inlet liquid fraction

Fig.4.49 – SPES3-160 RI-DC check valve mass flow (window)

Fig.4.51 – SPES3-160 EBT mass

Fig.4.53 – SPES3-160 EBT balance line mass flow (mass flow)

Fig.4.55 – SPES3-160 Core liquid fraction (window)

Fig.4.57 - SPES3-160 Core inlet and outlet temperatures (window)

Fig.4.58 – SPES3-160 Core inlet and outlet temperatures

Fig.4.59 – SPES3-160 Core heater rod clad surface temperatures (normal rods)

Fig.4.60 – SPES3-160 Core heater rod clad surface temperatures (hot rods)

Fig.4.61 – SPES3-160 RPV mass

Fig.4.63 – SPES3-160 DVI line mass flow (window)

Fig.4.65 – SPES3-160 PCC mass flow

Fig.4.67 – SPES3-160 PCC inlet and outlet temperature

Fig.4.69 – SPES3-160 PCC liquid void fraction

Fig.4.71 – SPES3-160 LGMS and DVI pressure (window)

Fig.4.72 – SPES3-160 LGMS and DVI pressure (window)

5. BDBE DVI LINE DEG BREAK SENSITIVITY ANALYSES: SPES3-159, 162, 158 AND SPES3-163, 164, 165, 166.

On the basis of outcomes of the detailed analyses of SPES3-160 case (Chapter 4.), it was necessary to conduct further investigations on system behaviour under the BDBE DVI line DEG break postulated conditions, to study how the PCC and ADS Stage-II actuation time affect the system response.

PCC actuation time affects the containment pressure peak and ADS Stage-II affects primary and containment system pressure equalization and water back-flow from RC to RPV.

Sensitivity cases SPES3-159, 162 and 158 were run with the characteristics reported in Tab.5. 1. SPES3-160 is included for comparison. Two cases were studied by anticipating PCC actuation time (0 s and 1000 s delay on LM-signal) and a case was investigated with ADS Stage-II intervention anticipated to the low LGMS mass signal moved to 80% initial mass.

Analyses of these cases put in evidence the limitation of RC to DVI line back-flow due to the presence of an orifice, 1 mm diameter, on the pipe. Further four cases, SPES3-163, 164, 165 and 166 were run, with analogous conditions to SPES3-160, 159, 162 and 158, and with the orifice diameter on the RC to DVI line increased to 6 mm, Tab.5. 2.

5.1 Sensitivity cases: SPES3-159, SPES3-162 and 158

Initial steady conditions for the sensitivity cases are the same as for SPES3-160, Tab.4. 1.

The lists of the transient main events are reported in Tab.5. 2, Tab.5. 3, Tab.5. 4, respectively for cases SPES3-159, SPES3-162 and SPES3-158.

Pictures are reported only for the most important variables. SPES3-160 case is included for comparison.

DW pressure is shown in Fig.5. 1 and Fig.5. 2. Cases SPES3-160 and 162 show the same high pressure peak and cycling PCC operation. Cases SPES3-159 and 158 show more limited pressure peaks and same cycling PCC operation. Reduction of containment pressurization limits PSS pressurization with the negative consequence of lack or insufficient water back-flow from PSS to DW and the negative effect on RPV mass recovery. PSS pressure is shown in Fig.5. 3 and Fig.5. 4.

Fig.5. 5 and Fig.5. 6 show total (two vent pipes) DW to PSS mass flow: in the first phase, steam-air mixture flows from DW to PSS and in the second phase water flows from PSS to DW. Due to anticipated PCC intervention, in cases SPES3-159 and 158, mixture transfer is lower than in cases SPES3-160 and 162 and PSS pressurization is not sufficient to overcome the PSS vent line gravity head. That prevents water back-flow from PSS to DW in case SPES3-159 and limits it in SPES3-158, Fig.5. 5.

PSS mass is shown in Fig.5. 7 where it is possible to observe PSS emptying in cases SPES3-160 and 162. SPES3-162 case does not show non-symmetric behaviour observed in case SPES3-160 (described in Chapter 4.) where PSS-B fills-up again, after emptying.

Water transfer from containment to primary system occurs by LGMS and RC, through the RC to DVI line and the break line (RPV side), when containment pressure overcomes RPV pressure. Fig.5. 8 shows intact loop LGMS mass and Fig.5. 9 LGMS to DVI mass flow. Fig.5. 10 and Fig.5. 11 show mass flow from RC to RPV, respectively through the RC to DVI line (intact loop) and through the DVI break line (RPV side). It is important to note that RPV inlet mass flow through the break line, in the long term, is about ten times greater than that through the RC to DVI line. This shows the orifice on the RC to DVI line is under dimensioned.

Anticipation of ADS Stage-II opening, based on the low LGMS mass signal, allows earlier pressure balance between the primary and containment systems, enhancing RPV water inlet both from LGMS and RC with consequent mass inventory recovery, Fig.5. 12.

Fig.5. 13 and Fig.5. 14 report the heater rod clad surface temperatures at high elevation in the core. All the cases show high temperature excursions and only in SPES3-162 the core is definitively rewetted in about 6000 s, thanks to injection of water from RC.

5.2 Sensitivity cases: SPES3-163, 164, 165 and 166

SPES3 core decay power in the long term is around 50 kW. Mass flow of about 0.02 kg/s is required to remove such power by evaporation and mass flow must be guaranteed through the RC to DVI line, neglecting water inlet through the DVI break line, RPV side. Fig.5. 10 shows that, in cases SPES3-160, 159, 162 and 158, water entering the RPV, through the RC to DVI line, is about one tenth of the required 0.02 kg/s.

The solution of increasing the RC to DVI line orifice diameter was adopted, passing from 1 mm to 6 mm, to guarantee required mass flow under estimated differential pressure of about 200 Pa, suitable to overcome local and distributed pressure drops between RC and DVI line.

Further four sensitivity cases, SPES3-163, 164, 165 and 166, were run, as reported in Tab.5. 1, with the same characteristics as SPES3-160, 159, 162 and 158, but different RC to DVI line orifice diameter, in order to investigate the influence of the orifice size on the transient trend.

Initial steady conditions for the sensitivity cases are the same as for SPES3-160, Tab.4. 1.

The lists of the transient main events are reported in Tab.5. 5, Tab.5. 6, Tab.5. 7, Tab.5. 8, respectively for cases SPES3-163, SPES3-164, SPES3-165 and SPES3-166.

Pictures are reported only for the most important variables.

DW pressure is shown in Fig.5. 15 and Fig.5. 16. Cases SPES3-163 and 165 show the same high pressure peak and cycling PCC operation. Cases SPES3-164 and 166 show more limited pressure peak and same PCC cycling operation. As for cases SPES3-159 and 158, lower containment pressurization limits PSS pressurization with the negative consequence of insufficient back-flow from PSS to DW and lower RPV mass make-up. PSS pressure is shown in Fig.5. 17 and Fig.5. 18.

Fig.5. 19 and Fig.5. 20 show total (two vent pipes) DW to PSS mass flow: In the first phase steam-air mixture flows from the DW to the PSS and in the second phase water flows from PSS to DW. Due to anticipated PCC intervention, in SPES3-164 and 166, such mixture transfer is lower than in cases SPES3-163 and 165 and PSS pressurization is not sufficient to overcome the PSS vent line gravity head. Similarly to cases SPES3-159 and 158, this almost prevents back-flow from PSS to DW in case SPES3-164 and limits it in SPES3-166.

PSS mass is shown in Fig.5. 21, where it is possible to observe the emptying in cases SPES3-163 and SPES3-165.

Water transfer from containment to primary system occurs by LGMS and RC, through the RC to DVI line and the break line (RPV side), when containment pressure overcomes RPV pressure. Fig.5. 22 shows intact loop LGMS mass and Fig.5. 23 LGMS to DVI mass flow. Fig.5. 24 and Fig.5. 25 show mass flow from RC to RPV, respectively through the RC to DVI line (intact loop) and through the DVI break line (RPV side). Fig.5. 24 clearly put in evidence the positive effect of the orifice size increase on the RC to DVI line that allows to have required RPV inlet mass flow of at least 0.02 kg/s, suitable to remove decay power.

Anticipation of ADS Stage-II opening, based on the low LGMS mass signal, allows earlier pressure balance between primary and containment systems, enhancing RPV water inlet both from LGMS and RC with consequent mass inventory recovery, Fig.5. 26.

Fig.5. 27 and Fig.5. 28 report the heater rod clad temperatures at high elevation in the core. All the cases show high temperature excursions and in case SPES3-165, as in case SPES3-162, core is rewetted in about 6000 s. Thanks to enhanced injection of water from RC, also the other cases are definitively rewetted after

longer times, up to 50000 s, anyway undergoing very high clad temperatures, up to 1200 K in case SPES3-164.

The improvement in accident mitigation is clearly reached by enhancing water transfer from RC to RPV through the RC to DVI line.

5.3 IRIS plant sensitivity cases on the ADS Stage-II actuation time

Some sensitivity cases were run in the past, on the IRIS nodalization, by FER at Zagreb University. The nodalization used for the analyses is not the last one, as come out of optimization process described in [18], anyway the results provide important information on influence of ADS Stage-II actuation delay on LM-signal.

Four cases were analysed: no delay, half an hour delay, one hour delay and two hours delay. The results are overlapped and showed in the figures.

Fig.5. 29 and Fig.5. 30 report RPV mass and core mass, respectively. All the delayed cases undergo long period of low mass and only in case where ADS Stage-II is actuated at LM-signal, mass recovery is anticipated.

Heater rod clad surface temperatures at top elevation in the core are shown in Fig.5. 31 and, accordingly to low RPV mass, show high peaks of temperature. The 0.5 hour delay case shows high temperature even after core rewetting. Such behaviour is not explained here due to lack of further data and information.

DW pressure is shown in Fig.5. 32. It shows PCC actuation is at reaching of the 0.9 MPa containment pressure set point and maintained between 0.8 and 0.9 MPa. No delay on PCC actuation is imposed, conditioned to containment refuelling cavity fill-up. ADS Stage-II actuation anticipation decreases the slope of pressure increase during the blowdown phase.

LGMS mass is shown in Fig.5. 33.

Fig.5. 34 and Fig.5. 35 report RC to DVI line mass flow and break mass flow (RPV side), respectively. They show that water back-flow from containment to RPV occurs both through the RC to DVI line and through the break line (RPV side).

5.4 Cases conclusions

The sensitivity runs on PCC, ADS Stage-II actuation delay and RC to DVI line orifice size, performed on SPES3 nodalization, showed the importance of such system intervention on the BDBE DVI line DEG break accident recovery.

PCC actuation delay affects DW and PSS pressurization, conditioning later PSS to DW water injection. Limiting the DW pressure peak, with anticipated PCC intervention, affects the transient negatively.

Anticipation of ADS Stage-II intervention to 80% LGMS initial mass (compared to the original 20% LGMS mass signal, foreseen in the DBE), is fundamental to cope with the BDBE. It equalises RPV and DW pressure and enhances water back-flow from containment to RPV with mass inventory recovery and core quenching.

The RC to DVI line orifice diameter increase (from 1 mm original size to 6 mm) is required to allow sufficient back-flow from RC, suitable to remove decay power by evaporation.

Case	PCC actuation delay on LM-signal	ADS Stage-II actuation on low LGMS mass signal	RC to DVI line orifice diameter
SPES3-160	1800 s	20%	1 mm
SPES3-159	0 s	20%	1 mm
SPES3-162	1800 s	80%	1 mm
SPES3-158	1000 s	20%	1 mm
SPES3-163	1800 s	20%	6 mm
SPES3-164	0 s	20%	6 mm
SPES3-165	1800 s	80%	6 mm
SPES3-166	1000 s	20%	6 mm

Tab.5. 1 – BDBE DVI line DEG break sensitivity cases

Tab.5. 2 - SPES3-159 list of the main events

	BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-159		
Ν.	Phases and events	Time (s)	Quantity	Notes
Break			-	
1	Break initiation	0		break valves stroke 2 s
2	Break flow peak (Containment side)	1	0.688 kg/s	Break flow = 0 kg/s at 11 s
3	Break flow peak (RPV side)	2	1.33 kg/s	
Biowdown	I, RPV depressurization, containment pressurization, steam of		5	
4 S-Signal: I	Steam-all mixture begins to now norm DW to PSS	10 ation failure		
5-31gman. 1	High Containment pressure signal	33.36	16 96e6 Pa	S-signal Set-point for safety analyses
6	SCRAM begins	33.36	10.000014	
7	MFIV-A.B.C closure start	33.36		MFIV-A.B.C stroke 5 s
8	MSIV-A-B-C closure start	33.36		MSIV-A,B,C stroke 5 s.
9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	33.36		EHRS-A,B IV stroke 2 s.
10	High SG pressure signal	46.86	9e6 Pa	
11	SG-A high pressure reached	46.86		
12	SG-B high pressure reached	48.30		
13	SG-C high pressure reached	47.86		
		69	111e5 Pa A	
14	Secondary loop pressure peak	70	114e5 Pa B	
D	stelener and mineral simulation through DLDO shock ushes	72	113e5 Pa C	
15	stown and primary circulation through Ri-DC check valves	126 70	1 1 90 m	
15	PCP costdown starts	150.70	1.109 11	Low PR7 level signal + 15 s delay
10	Natural circulation begins through shroud valves	173		
18	Flashing begins at core outlet	257		voidf 110 (core) < 1
LM-Signal	: ADS Stage-I and EBT actuation. EHRS-C actuation failure. P	CC actuation co	unter start. RP	V saturation
19	Low PRZ pressure signal	253.65	11.72e6 Pa	LM-Signal (High P cont + Low P PRZ)
20	EHRS-C actuation failure (EHRS 2 and 4 in IRIS)	253.65		
21	ADS Stage-I opening start (3 trains)	253.65		ADS valve stroke 10 s
22	ADS Stage L first peak flow (2 trains)	265	1.264 kg/s	ST 0.470 kg/s;
22	ADS Stage-I linst peak now (S trains)	200	1.304 Kg/S	DT 0.894 kg/s
23	ADS Stage-I second peak flow (3 trains)	329	2.003 kg/s	ST 0.663 kg/s; DT 1.340 kg/s. Due to liquid fraction.
24	EBT-A and B valve opening start	253.65		EBT valve stroke 15 s
25	Break flow peak (Containment side)	273		Due to EBT intervention
26	EBT-RV connections uncovered	308, 333		EBT-B, EBT-A
27	Natural circulation interrupted at SGs top	482		Pump inlet uncovered (voidf 176-01 ~0)
28	Core in saturation conditions	308		550 a almost amety (750 a completely amety)
29	EBI-B empty (broken loop)	550		550 s almost empty (750 s completely empty)
30	PCC actuation	1036.54	0.9 MPa	I_{M} signal + 0 s + P cont > 0.9 MPa
	PV-Containment signal PSS water flow to DW RC flooding 1	GMS and RC to	DVI valve actua	
32	Containment pressure peak	1590	9.85e5 Pa	
33	DW pressure lower than PSS pressure	NO		
34	Water starts to flow from PSS to DW	NO		
35	RC level at DVI elevation	21490		
36	EBT-A empty (intact loop)	3030		
37	RC full of water	NO		max. water level 10.5 m at 45790 s
38	Low DP RV-Containment	6076.99	50e3 Pa	
39	LGMSA/B valve opening start	6076.99		LM + low DP RV-cont. LGMS valve stroke 2 s.
40	RC to DVI line valve opening	6076.99		RC to DVI valve stroke 2 s.
41	LGMS-B starts to inject into RC through DVI broken loop	6077		
42	LGMS-A starts to inject into RV through DVI intact loop	6077		
43	QT fill-up starts from DW connection	NO		
Low LGMS	S mass signal: ADS Stage-II actuation, reverse flow from cont	tainment to RPV		
44	Low LGMS mass	27027.19	20% mass (198 kg)	LGMS B (broken loop)
45		34789.0	20% mass (198 kg)	LGMS A (intact loop)
46	ADS Stage-II start opening	34789.0		LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.
47	Water starts to flow from RC to DVI-A	34790		
48	Containment and RV pressure equalization	34990		
49	LGMS-B empty (broken loop)	40490		
50	LGMS-A empty (intact loop)	46590		
Long Tern	n conditions	[1	
51	Containment and RPV pressure	100000 s to 150000 s	0.8–0.9 MPa	Controlled by PCC
52	Core power		44.67 kW	Average between 100000 s and 150000 s
53	PCC removed power		14.34 kW	Average between 100000 s and 150000 s Core and PCC power unbalance due to heat losses

Tab.5. 3 – SPES3-162 list of the main events

	BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-162		
N.	Phases and events	Time (s)	Quantity	Notes
Break	1	T _	I	
1	Break initiation	0		break valves stroke 2 s
2	Break flow peak (Containment side)	1	0.688 kg/s	Break flow = 0 kg/s at 11 s
3 Blowdow	Break flow peak (RPV side)	2 Aumping into PS	1.33 Kg/S	
Л	Steam-air mixture begins to flow from DW to PSS		3	
S-Signal	Reactor scram secondary loop isolation EHRS-A and B actu	ation failure		
5	High Containment pressure signal	33.36	1.7e5 Pa	S-signal. Set-point for safety analyses
6	SCRAM begins	33.36		
7	MFIV-A,B,C closure start	33.36		MFIV-A,B,C stroke 5 s
8	MSIV-A-B-C closure start	33.36		MSIV-A,B,C stroke 5 s.
9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	33.36		EHRS-A,B IV stroke 2 s.
10	High SG pressure signal	46.86	9e6 Pa	
11	SG-A high pressure reached	46.86		
12	SG-B high pressure reached	48.30		
13	SG-C high pressure reached	47.86		
		71	111e5 Pa A	
14	Secondary loop pressure peak	/1	114e5 Pa B	
Bump oor		12	11365 Pa C	
15	I ow PPZ water level signal	126 79	1 190 m	
15	RCP coastdown starts	150.78	1.109111	$1 \text{ ow } \text{PR7}$ level signal $\pm 15 \text{ s}$ delay
17	Net coasidown statts	173		
18	Flashing begins at core outlet	257		voidf 110 (core) < 1
I M-Signa	I ADS Stage-Land EBT actuation EHRS-C actuation failure E	PCC actuation co	unter start RP	V saturation
19	Low PRZ pressure signal	253 65	11 72e6 Pa	LM-Signal (High P cont + Low P PRZ)
20	EHRS-C actuation failure (EHRS 2 and 4 in IRIS)	253.65	11.72001 4	
21	ADS Stage-I opening start (3 trains)	253.65		ADS valve stroke 10 s
				ST 0.470 kg/s:
22	ADS Stage-I first peak flow (3 trains)	264	1.364 kg/s	DT 0.894 kg/s
23	ADS Stage-L second peak flow (3 trains)	328	2 003 kg/s	ST 0.663 kg/s;
23	ADS Stage-I second peak now (5 trains)	520	2.003 Kg/S	DT 1.340 kg/s. Due to liquid fraction.
24	EBT-A and B valve opening start	253.65		EBT valve stroke 15 s
25	Break flow peak (Containment side)	274		Due to EBT intervention
26	EBT-RV connections uncovered	308, 333		EBT-B, EBT-A
27	Natural circulation interrupted at SGs top	482		Pump inlet uncovered (voidf 176-01 ~0)
28	Core in saturation conditions	293		
29	EBI-B empty (broken loop)	550		550 s almost empty (750 s completely empty)
30	High containment pressure signal	1001.89	0.9 MPa	LM simply 4000 s + D south 0.0 MDs
	PCC actuation	2053.66		LM-signal + 1800 s + P cont > 0.9 MPa
LOW DP R	PV-Containment signal, PSS water flow to DW, RC flooding, a			
32	DW pressure lower than BSS pressure	2070	13.4e5 Pa	
33	Water starts to flow from PSS to DW	2100		
34	PC lovel at DVL elevation	2290		
36	FBT-A empty (intact loop)	3030		
37	BC full of water	3300		
38	Low DP RV-Containment	6439.05	50e3 Pa	
39	LGMSA/B valve opening start	6439.05		LM + low DP RV-cont. LGMS valve stroke 2 s.
40	RC to DVI line valve opening	6439.05		RC to DVI valve stroke 2 s.
41	LGMS-B starts to inject into RC through DVI broken loop	6440		
42	LGMS-A starts to inject into RV through DVI intact loop	6440		
Low LGM	S mass signal: ADS Stage-II actuation, reverse flow from con	tainment to RPV	•	
43	Low LGMS mass	8822.73	80% mass (788 kg)	LGMS B (broken loop)
44		9203.59	80% mass (788 kg)	LGMS A (intact loop)
45	ADS Stage-II start opening	9203.59	(100 Ng)	LGMS-A AND LGMS-B low mass
46	Water starts to flow from RC to DV/I-A	9210		ADO Olage-il valve slioke 10 5.
47	Containment and RV pressure equalization	9310		
48	QT fill-up starts from DW connection	25490		
49	LGMS-B empty (broken loop)	28590		
50	LGMS-A empty (intact loop)	29590		
Long Terr	n conditions		1	1
51	Containment and RPV pressure	100000 s to 150000 s	0.8–0.9 MPa	Controlled by PCC
52	Core power		46.20 kW	Average between 100000 s and 150000 s
53	PCC removed power		25.53 kW	Average between 100000 s and 150000 s Core and PCC power unbalance due to heat losses

Tab.5. 4 – SPES3-158 list of the main events

	BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-158		
Ν.	Phases and events	Time (s)	Quantity	Notes
Break				1
1	Break initiation	0		break valves stroke 2 s
2	Break flow peak (Containment side)	1	0.688 kg/s	Break flow = 0 kg/s at 11 s
3 Bloudown	Break flow peak (RPV side)	2	1.33 kg/s	
A	Steam air mixture begins to flow from DW to PSS		s 	
4 S-Signal	Reactor scram secondary loop isolation EHRS-A and B actu	ation failure		
5	High Containment pressure signal	33.36	1.7e5 Pa	S-signal, Set-point for safety analyses
6	SCRAM begins	33.36		
7	MFIV-A,B,C closure start	33.36		MFIV-A,B,C stroke 5 s
8	MSIV-A-B-C closure start	33.36		MSIV-A,B,C stroke 5 s.
9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	33.36		EHRS-A,B IV stroke 2 s.
10	High SG pressure signal	46.86	9e6 Pa	
11	SG-A high pressure reached	46.86		
12	SG-B high pressure reached	48.30		
13	SG-C nign pressure reached	47.86		
1.1	Secondary loop pressure peak	69 71	11165 Pa A 11/65 Pa B	
14	Secondary loop pressure peak	72	113e5 Pa C	
Pump coa	stdown and primary circulation through RI-DC check valves		11000140	
15	Low PRZ water level signal	136.78	1.189 m	
16	RCP coastdown starts	151.78		Low PRZ level signal + 15 s delay
17	Natural circulation begins through shroud valves	173		
18	Flashing begins at core outlet	257		voidf 110 (core) < 1
LM-Signal	: ADS Stage-I and EBT actuation, EHRS-C actuation failure. F	PCC actuation co	unter start. RP	V saturation
19	Low PRZ pressure signal	253.65	11.72e6 Pa	LM-Signal (High P cont + Low P PRZ)
20	EHRS-C actuation failure (EHRS 2 and 4 in IRIS)	253.65		
21	ADS Stage-I opening start (3 trains)	253.65		ADS valve stroke 10 s
22	ADS Stage-I first peak flow (3 trains)	265	1.364 kg/s	ST 0.470 kg/s;
				DT 0.894 Kg/S
23	ADS Stage-I second peak flow (3 trains)	328	2.003 kg/s	DT 1.340 kg/s, Due to liquid fraction.
24	EBT-A and B valve opening start	253.65		EBT valve stroke 15 s
25	Break flow peak (Containment side)	274		Due to EBT intervention
26	EBT-RV connections uncovered	308, 333		EBT-B, EBT-A
27	Natural circulation interrupted at SGs top	311		Pump inlet uncovered (voidf 176-01 ~0)
28	Core in saturation conditions	308		
29	EBT-B empty (broken loop)	550		550 s almost empty (750 s completely empty)
30	High containment pressure signal	1001.89	0.9 MPa	
31	PCC actuation	1253.65		LM-signal + 1000 s + P cont > 0.9 MPa
Low DP R	PV-Containment signal, PSS water flow to DW, RC flooding,	LGMS and RC to	DVI valve actu	ation
32	Containment pressure peak	1410	10.765 Pa	
34	Water starts to flow from PSS to DW	2560		cyclic injection until 5710 s
35	EBT-A empty (intact loop)	2000		
36	Low DP RV-Containment	6152 24	50e3 Pa	
37	LGMSA/B valve opening start	6152.24	000014	I M + Iow DP RV-cont I GMS valve stroke 2 s
38	RC to DVI line valve opening	6152.24		RC to DVI valve stroke 2 s.
39	LGMS-B starts to inject into RC through DVI broken loop	6140		
40	LGMS-A starts to inject into RV through DVI intact loop	6140		
41	RC level at DVI elevation	12980		
42	RC full of water	34490		
43	QT fill-up starts from DW connection	NO		
Low LGMS	S mass signal: ADS Stage-II actuation, reverse flow from cont	tainment to RPV		I
44	Low LGMS mass	32439.27	20% mass (198 kg)	LGMS B (broken loop)
45		36007.66	20% mass (198 kg)	LGMS A (intact loop)
46	ADS Stage-II start opening	36007.66		LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.
47	Water starts to flow from RC to DVI-A	35790		
48	Containment and RV pressure equalization	36190		
49	LGMS-B empty (broken loop)	41790		
50	LGMS-A empty (intact loop)	44790		
Long Tern	n conditions			
51	Containment and RPV pressure	100000 s to	0.8–0.9 MPa	Controlled by PCC
52		10000 S	45 20 KM	Average between 100000 a and 150000 a
52			40.29 KVV	Average between 100000 s and 150000 s
53	PCC removed power		27.23 kW	Core and PCC power unbalance due to heat losses

Tab.5. 5 – SPES3-163 list of the main events

N Phases and events Time (a) Guantity Nates Freat Break inlinition 0 besk from pask (Critishment ado) 1 0.858 (Second additional additionadditional additionadditional additional additional additi		BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-163		
Braik Image in the interim Image in the interim Image in the interim Image interiment in the interiment interiment in the interiment interim	Ν.	Phases and events	Time (s)	Quantity	Notes
Break Under inflation Distant function Distant function <thdistant function<="" th=""> <thdistant function<="" th=""> <</thdistant></thdistant>					
1 Break Volge at Containment study 0 Desk Volge at Containment pressurbation, stand dumping the PSE (1) 2 Break Norpad (Containment pressurbation, stand dumping the PSE (1) Break Norpad (Containment pressurbation, stand dumping the PSE (1) 3 Stand at minuter begins tools form XV tools at at an attempting the PSE (1) Exceeded at a stand dumping the PSE (1) 3 Stand at a stand dumping the PSE (1) Exceeded at a stand dumping the PSE (1) 4 Stand at a stand dumping the PSE (1) Exceeded at a stand dumping the PSE (1) 5 Stand At A Stand dumping the PSE (1) Exceeded at a stand dumping the PSE (1) 6 SCRAL begins 33.40 The PS (2) 7 MPTA ABC closure at an at a stand dumping the PSE (2) Exceeded (2) 11 SCA Angle pressure acaded (4) 43.40 Exceeded (2) 12 SCA Engle pressure reached (4) 11105 Px 6 Exceeded (2) 13 SSC Engle pressure acaded (4) 11105 Px 6 Exceeded (2) 14 Secondary loop pressure acaded (4) 13573 Low PR2 water reached (4) 14 Secondary loop pressure acaded (4) 13573 Low PR2 water reached (4)	Break		1		r
2 Brock flow pack (CPV and Constant state) 1 0.888 kpgs 2 Brock flow pack (CPV and Constant state) 1.1 0.888 kpgs 2 State	1	Break initiation	0		break valves stroke 2 s
3 Institution park (MP) add) 138 kg/s 3 Institution park (MP) add) 138 kg/s 3 Institution park (MP) add) 138 kg/s 3 Signit Reader Strem, Secondary logi Isolation, (MP) SS 1765 Pail 3 Signit Reader Strem, Secondary logi Isolation, (MP) SS 1765 Pail 5 Nith/CAR, Colours and 33.40 1765 Pail 6 SCPAM bagins 33.40 MPI CAR, Colours 5. 8 Addition addition addition (LHRS 1 and 3 in IRIS) 30.40 1765 Pail 9 DHSA and Sacutabria 46.50 110 59.4 11 SSA high pressure reached 47.30 11165 Pail 1138 Pail 12 SSG- high pressure reached 70 11165 Pail 1138 Pail 14 Secondary loop pressure reached 173 110 1138 Pail 1138 Pail 16 RCP coaster and gamary criculation through RHOC check value 173 Low PR2 water and gamary criculation through RHOC check value 17 Reader Strem strenge 172 SSG 111288 Pail 11288 Pail	2	Break flow peak (Containment side)	1	0.688 kg/s	Break flow = 0 kg/s at 11 s
Borowany, inv V appersimilation, containing pressuration, action during moress Signal Restrict Note in the photocontrol pressura signal Said of the second se	3	Break flow peak (RPV side)	2	1.33 kg/s	
* Signal Part Mutual Signal Solution Turk One 28 1.00 1.746 Pa Segnal Action Solution Solution Turk One 28 * Signal Part Contain, secondary to pressure signal 33.40 1.746 Pa Segnal Action Solution Solut	Blowdown	n, RPV depressurization, containment pressurization, steam of	lumping into PS	S 	
3-59/Jim Nation Science Support Science Sectional Secti	4 S Signali I	Steam-air mixture begins to flow from DW to PSS	15		
Secondary in present equal Secondary in the second equal in the se	S-Signal: I	High Containment prossure signal		1 705 Do	S signal. Set point for sefety applying
View A BC Stores 6 at View A BC Stores 6 at View A BC Stores 6 at 0 MBV-ABC Scores at 33 40 MBV-ABC Stores 6 at 9 EHRS A and B actuation failure (HRS 1 and 3 in (HS) 43 40 EHRS A B C stroke 6 at 11 SG-A high pressure reached 44 50 EHRS A B C stroke 2 at 12 SG-B high pressure reached 48 34 EHRS A B C Stroke 2 at 13 SG-C high pressure reached 48 34 EHRS A B C Stroke 2 at 14 Scondary loop pressure pack 70 11 36 Pa B 11 Time 2 at Stroke 2 at Time 2 at Stroke 2 at Time 2 at Stroke 2 at 14 Scondary loop pressure pack 70 11 36 Pa B Time 2 at Stroke 2 at 14 Rob ottaber 2 at Stroke 2 at St	6	SCRAM begins	33.40	1.765 Fa	S-signal. Set-point for safety analyses
MSIV-AB C-block start MSIV-AB C-block is a 9 FHR5A And B actuation falue (FHR51 and 3) IRI(5) 33.40 FHR6A, B IV stoke 5 a. 10 High SC pressure signal 46.90 See ThR5A, B IV stoke 2 b. 11 SCA-E high pressure reached 48.90 See Thip pressure reached 47.90 12 SCA E high pressure reached 47.90 11162 FB B 70 11162 FB B 13 SCA-E high pressure reached 70 11162 FB B 70 11162 FB B 14 Secondary loop pressure peak 70 11162 FB B 70 11162 FB B 16 Low PR2 water loop algoint 139.75 100 100 rots (1) 70 17 Natural crication begins through shroug valves 173 void 110 cors (1) 70 18 Flashing begins at cors outlet 255.69 117266 FB WeStrantform 19 Low PR2 pressure signal 255.69 ADS stage 160 EFB CA (10 S (3 mins) 264 1.365 kgs. 21 ADS Stage 160 EFB CA (10 K (3 mins) 255.69 ADS stage 160 EFB CA (10 K (3 mins) 255.69	7	MEIV-A B C closure start	33.40		MEIV-A B C stroke 5 s
9 EHBS-A and Adutation failure (EHRS 1 and 3 in IRIS) 33.40 EHRS-A.B. IV stroke 2 s. 10 High Spressure space 46.90 966 Pa 11 SG-A high pressure reached 48.34 1 12 SG-C high pressure reached 47.90 1 13 SG-C high pressure reached 47.90 1 14 Secondary loop pressure pask 70 11365 Pa C. 70 11365 Pa C. 1 1 14 Secondary loop pressure pask 70 11365 Pa C. 70 11365 Pa C. 1 1 1 70 11365 Pa C. 1 1 1 1 71 1 <td>8</td> <td>MSIV-A.B.C closure start</td> <td>33.40</td> <td></td> <td>MSIV-A B C stroke 5 s</td>	8	MSIV-A.B.C closure start	33.40		MSIV-A B C stroke 5 s
High SQ pressure signal Gen Units is both the second of the	9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	33 40		EHRS-A B_IV stroke 2 s
11 SiG-A high pressure eached 46.39 12 SiG-D high pressure reached 47.30 14 Sec. Fligh pressure reached 70 14 Sec. Fligh pressure reached 70 11336 SP aC Fligh pressure reached 70 11365 SP aC Fligh pressure reached 70 11365 SP aC Flight pressure reached 70 12 ADS Stage and EBT actuation. EHRS-2 actuation fullure. PCC actuation counter start. RPV saturation 13 Low PR2 pressure stagend 255.59 21 ADS Stage lowering start (3 rama) 264 1.365 kg/s 22 ADS Stage lowering start (3 rama) 264 1.365 kg/s 23 ADS Stage lowering start (3 rama) 27 57 24 DS Stage lowering start (3 rama)	10	High SG pressure signal	46.90	9e6 Pa	
12 SG-6 high pressure reached 47.90 13 SG-C high pressure reached 70 113es Pa B 70 113es Pa B 71 113es Pa B 71 113es Pa B 113es Pa B 113es Pa B 71 113es Pa B 113es Pa B 113es Pa B 71 113es Pa B 113es Pa B 113es Pa B 71 113es Pa B 113es Pa B 113es Pa B 71 113es Pa B 113es Pa B 113es Pa B 71 113es Pa B 120es P12 sectors 120es P12 sectors 120es P12 sectors 71 113es Pa B 113es Pa B 113es Pa B 120es P12 sectors 71 113es Pa B 113es Pa B 113es Pa B 120es P12 sectors 72 ADS Stage-I also for Alon P3 113es P3 113es P3	11	SG-A high pressure reached	46.90		
13 SO-C high pressure reached 47.00 11106 PA A 14 Secondary loop pressure peak 70 11106 PA A 14 Secondary loop pressure peak 70 11106 PA A 15 Low PR2 water level signal 136.78 1.1108 PA C 16 RCP coastdown starts 151.78 Low PR2 level signal + 15 s delay 17 Natural ciculation begins through shroud valvee 173 Low PR2 level signal + 15 s delay 18 Flassing begins at core outed 237 Low PR2 level signal 200 19 Low PR2 constant signal 253.09 11.7204 Pa LM-Signat ADS staged not get thigh P cont + Low P PR2) 21 ADS Stagel not get through throug	12	SG-B high pressure reached	48.34		
No. 111 Tiss F Pa B Ti 1113 F Pa B Ti Tiss F Pa C Pump coastdown and primary circulation through RFDC check values 1113 F Pa B Ti Tiss F Pa C 1113 F Pa B Ti Tiss F Pa C 15 Low PRZ water level signal 186.76 1.189 m Ti Tiss F Pa B Low PRZ level signal + 15 s delay 16 RCP coastdown starts 117.02 F Pa Low PRZ level signal + 15 s delay 17 Natural circulation begins through shroud valves 173 vaid 110 (core) < 1 17 Natural circulation begins through shroud valves 173 vaid 110 (core) < 1 18 Flashing begins at core ordet 255 60 1.7.226 F Pa Low PRZ pressure signal 255 60 20 EHRS - Gactuation failure (EHRS 2 and 4 in IRIS) 253 60 ADS stagel segning signal 253 60 ADS valve stroke 10 s 57 0.470 kpr; TO 0.868 kpis 21 ADS Stagel first peak flow (3 trains) 329 2.013 kgis FT 6.8 Stagel beging signal stroke the signal first trains in the start i	13	SG-C high pressure reached	47.90		
14 Secondary loop pressure peak 70 113:85 Pa B 71 113:85 Pa B 71 Pump coastdown and primary circulation through RFDC check valves 15 Low PR2 water feed signal 15:70 Low PR2 level signal + 15 s delay 15 Low PR2 water feed signal 15:70 Low PR2 level signal + 15 s delay 16 RCP coastdown statis 17:70 Low PR2 level signal + 15 s delay 16 RCP coastdown statis 17:70 Low PR2 level signal + 15 s delay 17:8 Low PR2 pressure signal 25:50 11:72 Low PR2 level signal + 15 s delay 18:8 Low PR2 pressure signal 25:50 11:72 Low PR2 level signal + 15 s delay 21 ADS Stage I stag sket first pack to (3 trains) 26:4 1.365 kg/s D1:835 kg/s 23 ADS Stage I stag sket first pack to (3 trains) 32:9 2.013 kg/s D1:835 kg/s D1:835 kg/s 24 EBT-A and B valve opening start 27:3 D2 to loop to loog loop to loop 1:335 kg/s D1:335 kg/s D1:335 kg/s D1:335 kg/s D1:335 kg/s D1:335 kg/s D2:335 kg/s 25 Break flow pack krows at ktrain kto (3 trai			70	111e5 Pa A	
Tri Tit Tit <td>14</td> <td>Secondary loop pressure peak</td> <td>70</td> <td>113e5 Pa B</td> <td></td>	14	Secondary loop pressure peak	70	113e5 Pa B	
Pump costdown and primary circulation through Ri-DC check valves 136.78 1.189 m 16 RCP coastdown starts 151.73 Low PR2 level signal + 15 s delay 17 Natural circulation begins through shroud valves 173 Void 110 (core) < 1			71	113e5 Pa C	
15 Low PRZ water level signal 136,73 1.189 m 16 RCF coastdown starts 151,73 Low PRZ level signal +15 s delay 17 Natural circulation begins through shroud valves 173 Voidf 110 (core) < 1	Pump coa	stdown and primary circulation through RI-DC check valves	Γ		
16 RCP coastown starts 151.73 Value 13 crudiation begins through shroud valves 173 18 Plashing begins at core outlet 273 void 110 (core) < 1	15	Low PRZ water level signal	136.78	1.189 m	
17 Natural circulation begins finougraphical values 173 voidf 110 (core) < 1	16	RCP coastdown starts	151.78		Low PRZ level signal + 15 s delay
18 Plasming begins at Doris Outed [257 [157] [17	Natural circulation begins through shroud valves	173		
Link Signal: ADS Stage1 and Est Actuation, Errors C actuation faultier, PCV actuation counter star. PCV sequation Link Signal 10 Low PR2 pressure signal 253.69 1.726 Pa LM-Signal (High P cont + Low P PR2) 20 EHRS-C actuation failure (EHRS 2 and 4 in IRIS) 253.69 ADS valve stroke 10 s 21 ADS Stage-1 first peak flow (3 trains) 264 1.365 kg/s DT 0.395 kg/s 23 ADS Stage-1 first peak flow (3 trains) 29 2.013 kg/s DT 1.350 kg/s DT 1.350 kg/s 24 EBT-A and B valve opening start 253.69 EBT valve stroke 15 s Dt to EBT intervention 25 Broak flow pak (Containment side) 273 Due to EBT intervention Dt to EBT intervention 26 EBT-RV connections uncovered 308, 333 EBT-RV connections uncovered (void 176-01-0) 28 EBT-RV staft for walve stroke 105 s 500 s 550 s almost empty (760 s completely empty) 30 High containment signal, PSS water flow to DW, RC flooding, LGMS and RC to DVI valve actuation 2053.69 LM-signal + 1800 s + P cont > 0.9 MPa 31 DW PEV-Containment signal, PSS water flow to DW, RC flooding, LGMS and RC to DVI valve actuation 2060 s + P cont >	18	Flashing begins at core outlet	257		voidt 110 (core) < 1
19 LDW TRX pressure signal (regin + Cont + Low P PRZ) 20 EHRSC actuation failure (EHRS 2 and 4 in IRIS) 253.669 21 ADS Stage-I (rist peak flow (3 trains) 264 1.365 kg/s 23 ADS Stage-I (rist peak flow (3 trains) 264 1.365 kg/s 23 ADS Stage-I (rist peak flow (3 trains) 264 1.365 kg/s 24 EBT-A and B valve opening start 253.69 EBT valve stroke 10 s 25 Break flow peak (Containment side) 273 Due to EBT intervention 26 EBT-R connections uncovered 306, 333 EBT-R EBT-A 27 Natural circulation interrupted at SGs top 312 Pump initit uncovered (void 176-01-0) 28 Core in saturation conditions 307 550 S55 os almost empty (760 s completely empty) 31 PCC actuation 2053.69 UM-signal + 1800 s + P cont > 0.9 MPa 32 Containment pressure peak 2060 13.465 Pa 33 DV PPX-Containment signal, PSS to DW 2270 cyclic injection until 4320 s 34 Water starts to flow from PSS to DW 2270 cyclic inj	LM-Signal	: ADS Stage-I and EBT actuation, EHRS-C actuation failure. F		unter start. RP	v saturation
20 ADS Stage-I opening start (3 rains) 253.693 ADS valve stroke 10 s 22 ADS Stage-I opening start (3 rains) 264 1.365 kg/s DT 0.486 kg/s 23 ADS Stage-I opening start (3 rains) 329 2.013 kg/s DT 0.686 kg/s 24 EBT-A and B valve opening start 253.09 EBT valve stroke 15 s 24 EBT-A and B valve opening start 253.09 EBT rakve stroke 15 s 25 Break flow peak (containment side) 273 Due to EBT intervention 26 EBT-Ry connections uncovered 308, 333 EBT-B, EBT -A 27 Natural circulation interrupted at SGs top 312 Pump inite uncovered (void 176-01-0) 27 Natural circulation interrupted at SGs top 307 EBT-B, EBT-A 27 Natural circulation interrupted at SGs top 307 EBT-B, EBT-A 28 Core in saturation conditions 307 EBT-B, EBT-A 29 EBT-B empty (fincten loop) 560 650 s ellos at most empty (760 s completely empty) 20 Containment pressure paix 2060 13.465 Pa 206	19	LOW PRZ pressure signal	253.69	11.72e6 Pa	LIVI-SIGNAI (HIGN P CONT + LOW P PRZ)
21 ADS stage-10pting start (Stratis) 23.39 ADS Area to be 10 s 22 ADS Stage-10pting start (Stratis) 264 1.365 kg/s ST 0.653 kg/s; DT 0.865 kg/s 23 ADS Stage-1 second peak flow (3 trains) 329 2.013 kg/s ST 0.653 kg/s; DT 1.360 kg/s DU to be 3kg/s; DT 1.360 kg/s DU to be 3kg	20	ERRS-C actuation failure (ERRS 2 and 4 in IRIS)	253.69		ADS volvo stroko 10 s
22 ADS Stage-I first peak flow (3 trains) 264 1.365 kg/s D1 0470 kg/s 23 ADS Stage-I second peak flow (3 trains) 329 2.013 kg/s DT 1.350 kg/s DE 1.350 kg/s 24 EBT-And B valve opening start 253.69 EBT valve stroke 15 s 25 Break flow peak (Containment side) 273 Due to EBT intervention 26 EBT-RV connections uncovered 308.333 EBT-R, EBT-N 26 Core in saturation conditions 307 EBT-Bempty (broken loop) 550 31 IPC cactuation 2053.69 LW-signal + 1800 s + P cont > 0.9 MPa 30 High containment signal, PSS water flow to DW, RC flooding, LCMS and RC to DVI valve actuation 2053.69 LW-signal + 1800 s + P cont > 0.9 MPa 31 DV prossure lower than PSS pressure 2120 cyclic injection until 4320 s 3030 32 Containment signal, PSS to DW 2270 cyclic injection until 4320 s 3030 33 DW pressure lower than PSS to DW 2270 cyclic injection until 4320 s 304 34 Water starts to flow from PSS to DW 2320 cyclic injecti	21	ADS Stage-I opening start (3 trains)	253.69		ADS valve stroke 10 s
23 ADS Stage-I second peak flow (3 trains) 329 2.013 kg/s DT 1.360 kg/s. Due to liquid fraction. 24 EBT-A and b valve opening start 253.60 EBT valve stroke 15 s 25 Break flow peak (Containment side) 273 Due to EBT intervention 26 EBT-R/ connections uncovered 306, 333 EBT-R/ EBT-A 27 Natural circulation interrupted at SGs top 312 Pump inter tuncovered (void 176-01-0) 28 Core in saturation conditions 307 550 s almost empty (760 s completely empty) 29 EBT-B empty (broken loop) 550 550 s almost empty (760 s completely empty) 31 PCC actuation 2053.69 LM-signal + 1800 s + P cont > 0.9 MPa 32 Containment pressure signal 206.48 0.9 MPa LM-signal + 1800 s + P cont > 0.9 MPa 33 DW pressure lower than PSS pressure 2120 1 LM-signal + 1800 s + P cont > 0.9 MPa 34 Water starts to low from PSS to DW 2270 cyclic injection until 4320 s 5 35 RC fueld water 3310 E E 5 2 6 <td>22</td> <td>ADS Stage-I first peak flow (3 trains)</td> <td>264</td> <td>1.365 kg/s</td> <td>DT 0.895 kg/s</td>	22	ADS Stage-I first peak flow (3 trains)	264	1.365 kg/s	DT 0.895 kg/s
24 EBT-A and B valve opening start 253.69 EBT valve stroke 15 s 26 Break How peak (Containment side) 273 Due to EBT intervention 26 Break How peak (Containment side) 273 Due to EBT intervention 27 Natural circulation interrupted at SGs top 312 Pump inter uncovered (void 176-01-0) 28 Core in saturation conditions 307 S50 s almost empty (760 s completely empty) 29 EBT-B empty (broken loop) 550 S50 s almost empty (760 s completely empty) 31 PCC actuation 2053.69 LM-signal + 1800 s + P cont > 0.9 MPa 33 DW pressure lower than PSS pressure 2120 How pressure lower than PSS pressure 34 Water starts to flow from PSS to DW 2270 cyclic injection until 4320 s 35 R C level at DV elevation 2730 cyclic injection until 4320 s 36 EBT-A empty (intact loop) 3030 LM-How DP RV-cont. LGMS valve stroke 2 s. 37 R C lud ol water 3310 EM EM valve stroke 2 s. 40 RC to DVI line valve opening start 6328.76 LM + How DP RV-cont	23	ADS Stage-I second peak flow (3 trains)	329	2.013 kg/s	ST 0.663 kg/s; DT 1.350 kg/s. Due to liquid fraction.
25 Break flow peak (Containment side) 273 Due to EBT intervention 26 EBT-RV connections uncovered 308, 333 EBT-8, EBT-A 27 Natural circulation interrupted at SGs top 312 Pump inlet uncovered (voidf 176-01 - 0) 28 Core in saturation containment pressure signal 966 48 0.9 MPa 30 High containment pressure signal 966 48 0.9 MPa 10 PCC actuation 2053,89 LM-signal + 1800 s + P cont > 0.9 MPa 10 PCC actuation 2060 13.4e5 Pa 32 Containment pressure poak 2060 13.4e5 Pa 33 DW pressure lower than PSS pressure 2120 cyclic injection until 4320 s 34 Water starts to flow from PSS to DW 2270 cyclic injection until 4320 s 35 RC level at DV lelevation 2730 36 EBT-A empty (intact loop) 3030 37 RC full of water 6328.76 Sos 29 40 RC to DVI line valve opening 6328.76 RC to DVI valve stroke 2 s. 41 <td< td=""><td>24</td><td>EBT-A and B valve opening start</td><td>253.69</td><td></td><td>EBT valve stroke 15 s</td></td<>	24	EBT-A and B valve opening start	253.69		EBT valve stroke 15 s
26 EBT-RV connections uncovered 308, 333 EBT-A 27 Natural circulation interrupted at SGs top 312 Pump inlet uncovered (void 176-01 - 0) 28 Core in saturation conditions 307 550 s almost empty (760 s completely empty) 29 EBT-B empty (broken loop) 550 550 s almost empty (760 s completely empty) 30 High containment pressure signal 966.48 0.9 MPa 20 DVB PRV-Containment signal, PSS water flow to DW, RC flooding, LCMS and RC to DVI valve actuation 2053.89 LM-signal + 1800 s + P cont > 0.9 MPa 31 DW pressure lower than PSS pressure 2120 13.4e5 Pa 2050 13.4e5 Pa 33 DW pressure lower than PSS to DW 2270 cyclic injection until 4320 s 255 34 Water starts to flow from PSS to DW 2270 cyclic injection until 4320 s 256 35 RC fevel at DVI elevation 2730 14 140 water 3310 14 34 User S Astron Stop (rinket loop) 3300 14 14 CMS-8 starts to inject rink PK through DVI broken loop 6328.76 120 UV LoMS vate stoke 2 s.	25	Break flow peak (Containment side)	273		Due to EBT intervention
27 Natural circulation interrupted at SGs top 312 Pump inlet uncovered (voidt 176-01 - 0) 28 Core in saturation conditions 307 550 s almost empty (760 s completely empty) 30 High containment pressure signal 966.48 0.9 MPa 31 PCC actuation 2053.69 LM-signal + 1800 s + P cont > 0.9 MPa 30 DW pressure lower than PSS pressure 2060 13.465 Pa 31 DW pressure lower than PSS pressure 2120 14.465 Pa 32 Containment pressure peak 2060 13.465 Pa 33 DW pressure lower than PSS pressure 2120 2 34 Water starts to flow trom PSS to DW 2270 cyclic injection until 4320 s 35 RC level at DV lelevation 2300 2 36 EBT-A empty (intact loop) 3030 2 37 RC full of water 3310 2 38 Low DP RV-Containment 6328.76 LM + low DP RV-cont. LGMS valve stroke 2 s. 41 LGMS-B starts to inject into RC through DVI broken loop 6329 2 42 <td>26</td> <td>EBT-RV connections uncovered</td> <td>308, 333</td> <td></td> <td>EBT-B, EBT-A</td>	26	EBT-RV connections uncovered	308, 333		EBT-B, EBT-A
28 Core in saturation conditions 307 550 550 salmost empty (760 s completely empty) 30 High containment pressure signal 966.48 0.9 MPa 550 salmost empty (760 s completely empty) 30 High containment pressure signal 966.48 0.9 MPa LM-signal + 1800 s + P cont > 0.9 MPa 1 Cow DP RPV-Containment signal, PSS water flow to DW, RC flooding, LGMS and RC to DVI valve actuation 13.465 Pa 13.465 Pa 31 DW pressure lower than PSS pressure 2120 13.465 Pa 33 DW pressure lower than PSS pressure 2120 13.465 Pa 34 Water starts to flow from PSS to DW 2270 cyclic injection until 4320 s 35 RC level at DVI elevation 2730 - 36 EBT-A empty (intext loop) 3030 - 37 RC full of water 3310 - 38 Low OP RV-Containment 6328.76 RC to DVI valve stroke 2 s. 40 RC to UI line valve opening 6328.76 RC to DVI valve stroke 2 s. 41 LGMS-B starts to inject into RC through DVI broken loop 6329 -	27	Natural circulation interrupted at SGs top	312		Pump inlet uncovered (voidf 176-01 ~0)
29 EBT-B empty (broken loop) 550 550 s almost empty (760 s completely empty) 30 High containment pressure signal 966.48 0.9 MPa 31 PCC actuation 2053.69 LM-signal + 1800 s + P cont > 0.9 MPa 31 PCC actuation 2053.69 LM-signal + 1800 s + P cont > 0.9 MPa 32 Containment pressure peak 2060 13.4e5 Pa 33 DW pressure lower than PSS pressure 2120 cyclic injection until 4320 s 34 Water starts to flow from PSS to DW 2270 cyclic injection until 4320 s 35 R C level at DVI elevation 2730 cyclic injection until 4320 s 36 EBT-A empty (intact loop) 3030 cyclic injection until 4320 s 37 RC full of water 3310 cyclic injection until 4320 s 38 Low DP RV-Containment 6328.76 RC to DVI valve active stroke 2 s. 40 RC to DVI line valve opening 6328.76 RC to DVI valve stroke 2 s. 41 LGMS-A starts to inject into RC through DVI broken loop 6329 Low LGMS mass signal : ADS Stage-II actuation, reverse flow from containment to RPV	28	Core in saturation conditions	307		
30 High containment pressure signal 966.48 0.9 MPa 31 PCC actuation 2053.69 LM-signal + 1800 s + P cont > 0.9 MPa 32 Containment pressure peak 2060 13.4e5 Pa 33 DW pressure bower than PSS pressure 2120 13.4e5 Pa 34 Water starts to flow from PSS to DW 2270 cyclic injection until 4320 s 35 RC level at DVI elevation 2730 cyclic injection until 4320 s 36 EBT-A empty (intact loop) 3030 38 Low DP RV-Containment 6328.76 Store Sto	29	EBT-B empty (broken loop)	550		550 s almost empty (760 s completely empty)
31 PCC actuation [2053 69 LM-signal + 1800 s + P cont > 0.9 MPa 1 cow DRPV-Containment signal, PSS water flow to DW, RC flooding, LGMS and RC to DV valve actuation 200 13.4e5 Pa 33 DW pressure lower than PSS pressure 2120 2120 34 Water statts to flow from PSS to DW 2270 cyclic injection until 4320 s 35 RC level at DVI elevation 2730 2730 36 EBT-A empty (intact loop) 3030 200 37 RC full of water 3310 200 38 Low DP RV-Containment 6328.76 S0e3 Pa 41 LGMSAB valve opening start 6328.76 RC to DVI valve stroke 2 s. 40 RC to DVI line valve opening 6329 Low LGMS mass signal: ADS Stage-II actuation, reverse flow from containment to RPV 43 Low LGMS mass 23924.56 20% mass (198 kg) LGMS A (intact loop) 44 29206.56 20% mass (198 kg) LGMS A intact loop) LGMS A intact loop) 45 ADS Stage-II start opening 29206.56 LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s. 46 Water starts to flow from RC to DVI-A 28990 LGMS-A AND LGM	30	High containment pressure signal	966.48	0.9 MPa	
Low DP RPV-Containment signal, PSS water flow to DW, RC flooding, LGMS and RC to DVI valve actuation32Containment pressure peak200013.4e5 Pa33DW pressure lower than PSS pressure2120cyclic injection until 4320 s34Water starts to flow from PSS to DW2270cyclic injection until 4320 s35RC level at DVI elevation2730cyclic injection until 4320 s36EBT-A empty (intact loop)303030037RC full of water3310cyclic injection until 4320 s38Low DP RV-Containment6328.76LM + low DP RV-cont. LGMS valve stroke 2 s.40RC to DVI line valve opening start6328.76RC to DVI valve stroke 2 s.41LGMS-B starts to inject into RC through DVI broken loop6329cyclic mass signal: ADS Stage-II actuation, reverse flow from containment to RPV43Low LGMS mass23924.5620% mass (198 kg)LGMS A (intact loop)4429206.5620% massLGMS A (intact loop)45ADS Stage-II start opening29206.56ADS Stage-II valve stroke 10 s.46Water starts to flow from RC to DVI-A299047Containment and RV pressure equalization2924048QT fill-up starts from DW connection2924049LGMS-A empty (intact loop)323050LGMS-A empty (intact loop)323051Containment and RPV pressure100000 s to 15000 s52Core power46.27 kW53PCC removed power27.95 kW	31	PCC actuation	2053.69		LM-signal + 1800 s + P cont > 0.9 MPa
32 Containment pressure peak 2060 13.4e5 Pa 33 DW pressure lower than PSS pressure 2120 34 Water starts to flow from PSS to DW 2270 cyclic injection until 4320 s 35 R C level at DVI elevation 2730 cyclic injection until 4320 s 36 EBT-A empty (intact loop) 3030 cyclic injection until 4320 s 37 R C full of water 3310 cyclic injection until 4320 s 38 Low DP RV-Containment 6328.76 50e3 Pa 40 RC to DVI line valve opening start 6328.76 RC to DVI valve stroke 2 s. 41 LGMS-AB valve opening start 6329 cyclic injection RC through DVI broken loop 42 LGMS-A starts to inject into RC through DVI broken loop 6329 cyclic injection loop 43 Low LGMS mass 23924.56 20% mass (198 kg) LGMS A (intact loop) 44 240 29206.56 20% mass (198 kg) LGMS A (intact loop) 45 ADS Stage-II start opening 29206.56 LGMS A (intact loop) 46 Water starts to flow from RC to DVI-A	Low DP R	PV-Containment signal, PSS water flow to DW, RC flooding,	LGMS and RC to	DVI valve actu	ation
33DW pressure lower than PSS pressure212034Water starts to flow from RC to DVI2270cyclic injection until 4320 s35RC level at DVI elevation2730	32	Containment pressure peak	2060	13.4e5 Pa	
34Water starts to how from PSs to DW2270Cyclic injection until 4320 s35RC level at DVI elevation273036EBT-A empty (intact loop)303037RC full of water311038Low DP RV-Containment6328.7639LGMSA/B valve opening start6328.7640RC to DVI line valve opening6328.7641LGMS-B starts to inject into RC through DVI broken loop632942LGMS-A starts to inject into RC through DVI intact loop632943Low LGMS mass23924.5620% mass (198 kg)4429206.5620% mass (198 kg)LGMS A (intact loop)45ADS Stage-II start opening29206.5620% mass (198 kg)LGMS-A AND LGMS-B low mass ADS stage-II valve stroke 10 s.46Water starts to flow from RC to DVI-A28990LGMS-A AND LGMS-B low mass ADS stage-II valve stroke 10 s.48QT fill-up starts from DW connection29240LGMS-A entry (intact loop)49LGMS-B empty (broken loop)32390224049LGMS-B empty (broken loop)32390LGMS-A entry (intact loop)50LGMS-P empty (intact loop)3240LGMS-D entry (intact loop)51Containment and RV pressure100000 s to 15000 s0.8–0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 s Core and PCC power unbalance due to heat losses53PCC removed power27.95 kW27.95 kWAverage between 100000 s and 150000 s Core a	33	Dvv pressure lower than PSS pressure	2120		
35RC level at DVI elevation27.3036EBT-A empty (intact loop)303037RC full of water331038Low DP RV-Containment6328.7639LGMSA/B valve opening start6328.7639LGMSA/B valve opening tart6328.7640RC to DVI line valve opening6328.7641LGMS-B starts to inject into RC through DVI broken loop632942LGMS-A starts to inject into RC through DVI intact loop632943Low LGMS mass23924.5620% mass (198 kg)4429206.5620% mass (198 kg)LGMS A (intact loop)45ADS Stage-II start opening29206.56LGMS A (intact loop)46Water starts to flow from RC to DVI-A28990LGMS-A IND LGMS-B Iow mass ADS Stage-II valve stroke 10 s.47Containment and RV pressure equalization29240LGMS-A empty (intact loop)48QT fill-up starts from DW connection29240LGMS-A empty (intact loop)50LGMS-A empty (intact loop)32390LGMS-A empty (intact loop)51Containment and RV pressure100000 s to 15000 s0.8-0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 s53PCC removed power27.95 kWControlled by PCC	34	PO level at DV/ alevation	2270		cyclic injection until 4320 s
36 EB1-A Bringty (initial rough) 300 37 RC full of water 3310 38 Low DP RV-Containment 6328.76 50e3 Pa 39 LGMSA/B valve opening start 6328.76 LM + low DP RV-cont. LGMS valve stroke 2 s. 40 RC to DVI line valve opening 6328.76 RC to DVI valve stroke 2 s. 41 LGMS-B starts to inject into RC through DVI broken loop 6329 42 LGMS-A starts to inject into RV through DVI intact loop 6329 43 Low LGMS mass 23924.56 20% mass (198 kg) LGMS A (intact loop) 44 29206.56 20% mass (198 kg) LGMS A (intact loop) 45 ADS Stage-II start opening 29206.56 LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s. 46 Water starts to flow from RC to DVI-A 28990 47 Containment and RV pressure equalization 29240 48 QT fill-up starts from DW connection 29240 49 LGMS-A empty (intact loop) 32390	35	RC level at DVI elevation	2730		
37RC full of water351038Low DP RV-Containment6328.7650e3 Pa39LGMSA/B valve opening start6328.76RC to DVI line valve opening40RC to DVI line valve opening6328.76RC to DVI valve stroke 2 s.41LGMS-B starts to inject into RC through DVI broken loop632942LGMS-A starts to inject into RV through DVI intact loop632943Low LGMS mass23924.5620% mass (198 kg)LGMS A (intact loop)4429206.5620% mass (198 kg)LGMS A (intact loop)45ADS Stage-II start opening29206.5620% mass (198 kg)LGMS A (intact loop)46Water starts to flow from RC to DVI-A2899047Containment and RV pressure equalization2924048QT fill-up starts from DW connection2924049LGMS-A empty (intact loop)3239050LGMS-A empty (intact loop)3239051Containment and RPV pressure100000 s to 15000 s0.8–0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 s Average between 100000 s and 150000 s Average between 100000 s and 150000 s53PCC removed power27.95 kWAverage between 100000 s and 150000 s Average between 100000 s and 150000 s	27	PC full of water	2210		
39LGMSAR valve opening start6328.76LM + low DP RV-cont. LGMS valve stroke 2 s.40RC to DVI line valve opening6328.76RC to DVI valve stroke 2 s.41LGMS-B starts to inject into RC through DVI broken loop632942LGMS-A starts to inject into RV through DVI intact loop632943Low LGMS mass signal: ADS Stage-II actuation, reverse flow from containment to RPVLGMS A starts to inject into RV through DVI intact loop20% mass (198 kg)LGMS A (intact loop)4429206.5620% mass (198 kg)LGMS A (intact loop)LGMS-A NND LGMS-B low mass ADS Stage-II valve stroke 10 s.45ADS Stage-II start opening29206.5620% mass (198 kg)LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.46Water starts to flow from RC to DVI-A2899047Containment and RV pressure equalization2924048QT fill-up starts from DW connection2924049LGMS-A empty (intact loop)3239050LGMS-A empty (intact loop)3229051Containment and RPV pressure100000 s to 150000 s0.8–0.9 MPaControlled by PCC52Core power46.27 KWAverage between 100000 s and 150000 s Core and PCC power unbalance due to heat losses	38	Low DP RV-Containment	6328 76	50e3 Pa	
10010	39	LGMSA/B valve opening start	6328.76	000010	I M + Iow DP RV-cont I GMS valve stroke 2 s
41LGMS-B starts to inject into RC through DVI broken loop632942LGMS-A starts to inject into RC through DVI intact loop632943Low LGMS mass signal: ADS Stage-II actuation, reverse flow from containment to RPV43Low LGMS mass23924.564429206.5620% mass (198 kg)45ADS Stage-II start opening29206.5646Water starts to flow from RC to DVI-A2899047Containment and RV pressure equalization2924048QT fill-up starts from DW connection2924049LGMS-A empty (intact loop)3239050LGMS-A empty (intact loop)3424051Containment and RPV pressure100000 s to 150000 s0.8–0.9 MPa51Contrainment and RPV pressure100000 s to 150000 s0.8–0.9 MPa52Core power46.27 kWAverage between 100000 s and 150000 s Core and PCC power unabalance due to heat losses	40	RC to DVI line valve opening	6328.76		RC to DVI valve stroke 2 s.
42 LGMS-A starts to inject into RV through DVI intact loop 6329 Low LGMS mass signal: ADS Stage-II actuation, reverse flow from containment to RPV 43 Low LGMS mass 23924.56 20% mass (198 kg) LGMS B (broken loop) 44 29206.56 20% mass (198 kg) LGMS A (intact loop) 45 ADS Stage-II start opening 29206.56 LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s. 46 Water starts to flow from RC to DVI-A 28990 LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s. 47 Containment and RV pressure equalization 29240 LGMS-A empty (broken loop) 48 QT fill-up starts from DW connection 29240 Control and the pressure equalization 29240 50 LGMS-A empty (intact loop) 32390 Control by PCC Control by PCC 51 Containment and RPV pressure 100000 s to 150000 s 0.8–0.9 MPa Controlled by PCC 52 Core power 46.27 kW Average between 100000 s and 150000 s Average between 100000 s and 150000 s 53 PCC removed power 27.95 kW Controlled by CC power unbalance due to heat losses	41	LGMS-B starts to inject into RC through DVI broken loop	6329		
Low LGMS mass signal: ADS Stage-II actuation, reverse flow from containment to RPV43Low LGMS mass23924.5620% mass (198 kg)LGMS B (broken loop)4429206.5620% mass (198 kg)LGMS A (intact loop)45ADS Stage-II start opening29206.56LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.46Water starts to flow from RC to DVI-A28990LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.48QT fill-up starts from DW connection29240Image: Containment and RV pressure equalization49LGMS-A empty (intact loop)32390Image: Containment and RV pressure50LGMS-A empty (intact loop)34240Image: Containment and RPV pressure51Containment and RPV pressure100000 s to 150000 s0.8-0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 s53PCC removed power27.95 kWAverage between 100000 s and 150000 s	42	LGMS-A starts to inject into RV through DVI intact loop	6329		
43Low LGMS mass23924.5620% mass (198 kg)LGMS B (broken loop)4429206.5620% mass (198 kg)LGMS A (intact loop)45ADS Stage-II start opening29206.56LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.46Water starts to flow from RC to DVI-A28990LGMS A (intact loop)47Containment and RV pressure equalization29240Image: Containment and RV pressure equalization48QT fill-up starts from DW connection29240Image: Containment and RV pressure equalization50LGMS-A empty (intact loop)32390Image: Containment and RV pressure51Containment and RPV pressure100000 s to 150000 s0.8–0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 s53PCC removed power27.95 kWAverage between 100000 s and 150000 s	Low LGMS	S mass signal: ADS Stage-II actuation, reverse flow from con	tainment to RPV		
4429206.5620% mass (198 kg)LGMS A (intact loop)45ADS Stage-II start opening29206.56LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.46Water starts to flow from RC to DVI-A28990ADS Stage-II valve stroke 10 s.47Containment and RV pressure equalization29240ADS Stage-II valve stroke 10 s.48QT fill-up starts from DW connection29240ADS Stage-II valve stroke 10 s.49LGMS-B empty (broken loop)32390ADS Stage-II valve stroke 10 s.50LGMS-A empty (intact loop)34240ADS Stage-II valve stroke 10 s.51Containment and RPV pressure51Containment and RPV pressure100000 s to 150000 s0.8–0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 sAverage between 100000 s and 150000 s53PCC removed power27.95 kWAverage between 100000 s and 150000 s	43	Low LGMS mass	23924.56	20% mass (198 kg)	LGMS B (broken loop)
45ADS Stage-II start opening29206.56LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.46Water starts to flow from RC to DVI-A28990ADS Stage-II valve stroke 10 s.47Containment and RV pressure equalization29240ADS Stage-II valve stroke 10 s.48QT fill-up starts from DW connection29240ADS Stage-II valve stroke 10 s.49LGMS-B empty (broken loop)32390ADS Stage-II valve stroke 10 s.50LGMS-A empty (intact loop)34240ADS Stage-II valve stroke 10 s. Long Term conditions 51Containment and RPV pressure100000 s to 15000 s0.8–0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 sStage-II valve stroke 10 s.53PCC removed power27.95 kWAverage between 100000 s and 150000 s Core and PCC power unbalance due to heat losses	44		29206.56	20% mass (198 kg)	LGMS A (intact loop)
46Water starts to flow from RC to DVI-A28990Image: constraint of the starts for the starts for the starts for the starts from DW connection2924047Containment and RV pressure equalization29240Image: constraint of the starts for the starts from DW connection48QT fill-up starts from DW connection29240Image: constraint of the starts for the start	45	ADS Stage-II start opening	29206.56		LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.
47Containment and RV pressure equalization2924048QT fill-up starts from DW connection2924049LGMS-B empty (broken loop)3239050LGMS-A empty (intact loop)34240Long Term conditions51Containment and RPV pressure100000 s to 150000 s52Core power46.27 kWAverage between 100000 s and 150000 s53PCC removed power27.95 kWAverage between 100000 s and 150000 s Core and PCC power unbalance due to heat losses	46	Water starts to flow from RC to DVI-A	28990		
48QT fill-up starts from DW connection2924049LGMS-B empty (broken loop)3239050LGMS-A empty (intact loop)34240Long Term conditions100000 s to 150000 s0.8–0.9 MPaControlled by PCC51Containment and RPV pressure100000 s to 150000 s0.8–0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 s53PCC removed power27.95 kWAverage between 100000 s and 150000 s Core and PCC power unbalance due to heat losses	47	Containment and RV pressure equalization	29240		
49LGMS-B empty (broken loop)32390Image: second sec	48	QT fill-up starts from DW connection	29240		
50LGMS-A empty (intact loop)34240Image: Constraint of the second	49	LGMS-B empty (broken loop)	32390		
Long Term conditions51Containment and RPV pressure100000 s to 150000 s0.8–0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 s53PCC removed powerImage: Controlled by PCC power unbalance due to heat losses	50	LGMS-A empty (intact loop)	34240		
51Containment and RPV pressure100000 s to 150000 s0.8–0.9 MPaControlled by PCC52Core power46.27 kWAverage between 100000 s and 150000 s53PCC removed powerL27.95 kWAverage between 100000 s and 150000 s Core and PCC power unbalance due to heat losses	Long Tern	n conditions	1	Γ	1
52Core power46.27 kWAverage between 100000 s and 150000 s53PCC removed power27.95 kWAverage between 100000 s and 150000 s	51	Containment and RPV pressure	100000 s to 150000 s	0.8–0.9 MPa	Controlled by PCC
53 PCC removed power 27.95 kW Average between 100000 s and 150000 s Core and PCC power unbalance due to heat losses	52	Core power		46.27 kW	Average between 100000 s and 150000 s
	53	PCC removed power		27.95 kW	Average between 100000 s and 150000 s Core and PCC power unbalance due to heat losses

Tab.5. 6 – SPES3-164 list of the main events

	BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-164		
Ν.	Phases and events	Time (s)	Quantity	Notes
Break		1	1	
1	Break initiation	0		break valves stroke 2 s
2	Break flow peak (Containment side)	1	0.688 kg/s	Break flow = 0 kg/s at 11 s
3 Blowdown	Break flow peak (RPV side)	2 Iumning into DSI	1.33 Kg/s	
A	Steam-air mixture begins to flow from DW to PSS		3 	
S-Signal	Beactor scram secondary loop isolation EHRS-A and B actu	ation failure		
5	High Containment pressure signal	33.40	16.96e6 Pa	S-signal, Set-point for safety analyses
6	SCRAM begins	33.40		
7	MFIV-A,B,C closure start	33.40		MFIV-A,B,C stroke 5 s
8	MSIV-A-B-C closure start	33.40		MSIV-A,B,C stroke 5 s.
9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	33.40		EHRS-A,B IV stroke 2 s.
10	High SG pressure signal	46.90	9e6 Pa	
11	SG-A high pressure reached	46.90		
12	SG-B high pressure reached	48.34		
13	SG-C high pressure reached	47.90		
14	Secondary loop pressure peak	70 70 72	111e5 Pa A 114e5 Pa B 113e5 Pa C	
Pump coa	stdown and primary circulation through RI-DC check valves	1		1
15	Low PRZ water level signal	136.78	1.189 m	
16	RCP coastdown starts	151.78		Low PR∠ level signal + 15 s delay
1/	Natural circulation begins through shroud valves	1/3		voidf 110 (opro) - 1
10	Flashing begins at core outlet	201	untor start DD	volui i i u (core) < i
	ADS Stage-I and EBT actuation, ERRS-C actuation failure. P		11 7206 Po	V Saturation
19	EHPS-C actuation failure (EHPS 2 and 4 in IPIS)	253.09	11.7200 Fa	LM-Signal (High F Cont + Low F FRZ)
20	ADS Stage-Lopening start (3 trains)	253.69		ADS valve stroke 10 s
22	ADS Stage-I first peak flow (3 trains)	264	1.365 kg/s	ST 0.470 kg/s; DT 0.895 kg/s
23	ADS Stage-I second peak flow (3 trains)	329	2.013 kg/s	ST 0.663 kg/s; DT 1 350 kg/s, Due to liquid fraction
24	EBT-A and B valve opening start	253 69		EBT valve stroke 15 s
25	Break flow peak (Containment side)	273		Due to EBT intervention
26	EBT-RV connections uncovered	308, 333		EBT-B, EBT-A
27	Natural circulation interrupted at SGs top	483		Pump inlet uncovered (voidf 176-01 ~0)
28	Core in saturation conditions	306		
29	EBT-B empty (broken loop)	550		550 s almost empty (750 s completely empty)
30	High containment pressure signal	984.20	0.9 MPa	
31	PCC actuation	1158.19		LM-signal + 0 s + P cont > 0.9 MPa
Low DP R	PV-Containment signal, PSS water flow to DW, RC flooding,	LGMS and RC to	DVI valve actu	ation
32	Containment pressure peak	1560	9.42e5 Pa	lower than PSS-B. PSS-A
34	Water starts to flow from PSS to DW	NO		
35	RC level at DVI elevation	21490		
36	EBT-A empty (intact loop)	3030		
37	RC full of water	NO		max. water level 10.5 m at 45790 s
38	Low DP RV-Containment	6513.3	50e3 Pa	
39	LGMSA/B valve opening start	6513.3		LM + low DP RV-cont. LGMS valve stroke 2 s.
40	RC to DVI line valve opening	6513.3		RC to DVI valve stroke 2 s.
41	LGMS-B starts to inject into RC through DVI broken loop	6500		
42	LGMS-A starts to inject into RV through DVI intact loop	6500		
43	QT fill-up starts from DW connection	NO		
Low LGMS	S mass signal: ADS Stage-II actuation, reverse flow from cont	tainment to RPV	1	
44	Low LGMS mass	30365.69	20% mass (198 kg)	LGMS B (broken loop)
45		47731.28	20% mass (198 kg)	LGMS A (intact loop)
46	ADS Stage-II start opening	47731.28		LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.
47	Water starts to flow from RC to DVI-A	46990		
48	Containment and RV pressure equalization	47590		
49	LGMS-B empty (broken loop)	48240		
50	LGMS-A empty (intact loop)	61790		
Long Tern	n conditions	1 /	1	
51	Containment and RPV pressure	100000 s to 150000 s	0.8–0.9 MPa	Controlled by PCC
52	Core power		44.21 kW	Average between 100000 s and 150000 s
53	PCC removed power		29.84 kW	Average between 100000 s and 150000 s Core and PCC power unbalance due to heat losses

Tab.5. 7 – SPES3-165 list of the main events

	BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-165		
Ν.	Phases and events	Time (s)	Quantity	Notes
Break		1	1	r
1	Break initiation	0		break valves stroke 2 s
2	Break flow peak (Containment side)	1	0.688 kg/s	Break flow = 0 kg/s at 11 s
3 Diaudaum	Break flow peak (RPV side)	2	1.33 kg/s	
BIOWOOWI	I, RPV depressurization, containment pressurization, steam d		ა 	
4 S-Signal:	Beactor scram secondary loop isolation EHRS-A and B actu	10 Internation failure		
5	High Containment pressure signal	33 36	1 7e5 Pa	S-signal, Set-point for safety analyses
6	SCRAM begins	33.36	in corra	
7	MFIV-A,B,C closure start	33.36		MFIV-A,B,C stroke 5 s
8	MSIV-A-B-C closure start	33.36		MSIV-A,B,C stroke 5 s.
9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	33.36		EHRS-A,B IV stroke 2 s.
10	High SG pressure signal	46.86	9e6 Pa	
11	SG-A high pressure reached	46.86		
12	SG-B high pressure reached	48.30		
13	SG-C high pressure reached	47.86		
		70	111e5 Pa A	
14	Secondary loop pressure peak	70	114e5 Pa B	
Bump coa	stdown and primary circulation through PLDC check valves	12	TISES Fall	
15	I ow PRZ water level signal	136 78	1 189 m	
16	RCP coastdown starts	151.78	1.100 m	Low PRZ level signal + 15 s delay
17	Natural circulation begins through shroud valves	173		
18	Flashing begins at core outlet	257		voidf 110 (core) < 1
LM-Signal	ADS Stage-I and EBT actuation, EHRS-C actuation failure. F	CC actuation co	unter start. RP	V saturation
19	Low PRZ pressure signal	253.65	11.72e6 Pa	LM-Signal (High P cont + Low P PRZ)
20	EHRS-C actuation failure (EHRS 2 and 4 in IRIS)	253.65		
21	ADS Stage-I opening start (3 trains)	253.65		ADS valve stroke 10 s
22	ADS Stage-I first peak flow (3 trains)	264	1 364 kg/s	ST 0.470 kg/s;
		201	nee ng,e	DT 0.894 kg/s
23	ADS Stage-I second peak flow (3 trains)	329	2.003 kg/s	ST 0.663 kg/s; DT 1.340 kg/s. Due to liquid fraction.
24	EBT-A and B valve opening start	253.65		EBT valve stroke 15 s
25	Break flow peak (Containment side)	273		Due to EBT intervention
26	EBT-RV connections uncovered	308, 333		EBT-B, EBT-A
27	Natural circulation interrupted at SGs top	483		Pump inlet uncovered (voidf 176-01 ~0)
28	Core in saturation conditions	293		
29	EBT-B empty (broken loop)	550		550 s almost empty (750 s completely empty)
30	High containment pressure signal	1001.89	0.9 MPa	
31	PCC actuation	2053.66		LM-signal + 1800 s + P cont > 0.9 MPa
LOW DP R	PV-Containment signal, PSS water flow to DW, RC flooding, I		12 505 Po	
32	DW pressure lower than PSS pressure	2000	13.365 Fa	
34	Water starts to flow from PSS to DW	2290		
35	RC level at DV/L elevation	2740		
36	EBT-A empty (intact loop)	3030		
37	RC full of water	3310		
38	Low DP RV-Containment	6439.34	50e3 Pa	
39	LGMSA/B valve opening start	6439.34		LM + low DP RV-cont. LGMS valve stroke 2 s.
40	RC to DVI line valve opening	6439.34		RC to DVI valve stroke 2 s.
41	LGMS-B starts to inject into RC through DVI broken loop	6440		
42	LGMS-A starts to inject into RV through DVI intact loop	6440		
Low LGMS	S mass signal: ADS Stage-II actuation, reverse flow from cont	tainment to RPV	1	
43	Low LGMS mass	9194.73	80% mass (788 kg)	LGMS B (broken loop)
44		8819.97	80% mass (788 kg)	LGMS A (intact loop)
45	ADS Stage-II start opening	9194.73		LGMS-A AND LGMS-B low mass
46	Water starts to flow from RC to DVI-A	9200		
47	Containment and RV pressure equalization	9310		
48	LGMS-A empty (intact loop)	23790		
49	LGMS-B empty (broken loop)	30590	1	
50	QT fill-up starts from DW connection	82990		
Long Tern	n conditions	·	·	·
51	Containment and RPV pressure	100000 s to 150000 s	0.8–0.9 MPa	Controlled by PCC
52	Core power	-	46.26 kW	Average between 100000 s and 150000 s
53	PCC removed power		24.73 kW	Average between 100000 s and 150000 s Core and PCC power unbalance due to heat losses

Tab.5. 8 – SPES3-166 list of the main events

	BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-166		
Ν.	Phases and events	Time (s)	Quantity	Notes
Break				I
1	Break initiation	0		break valves stroke 2 s
2	Break flow peak (Containment side)	1	0.688 kg/s	Break flow = 0 kg/s at 11 s
3	Break flow peak (RPV side)	2	1.33 kg/s	
A	Steam air mixture begins to flow from DW to PSS		s 	
4 S-Signal	Reactor scram secondary loop isolation EHRS-A and B actu	ation failure		
5	High Containment pressure signal	33.36	1.7e5 Pa	S-signal, Set-point for safety analyses
6	SCRAM begins	33.36		
7	MFIV-A,B,C closure start	33.36		MFIV-A,B,C stroke 5 s
8	MSIV-A-B-C closure start	33.36		MSIV-A,B,C stroke 5 s.
9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	33.36		EHRS-A,B IV stroke 2 s.
10	High SG pressure signal	46.86	9e6 Pa	
11	SG-A high pressure reached	46.86		
12	SG-B high pressure reached	48.30		
13	SG-C nigh pressure reached	47.86		
1.1	Secondary loop pressure peak	70	11165 Pa A 11/65 Pa B	
14	Secondary loop pressure peak	70	113e5 Pa C	
Pump coa	stdown and primary circulation through RI-DC check valves	1	11000140	
15	Low PRZ water level signal	136.78	1.189 m	
16	RCP coastdown starts	151.78		Low PRZ level signal + 15 s delay
17	Natural circulation begins through shroud valves	173		
18	Flashing begins at core outlet	257		voidf 110 (core) < 1
LM-Signal	: ADS Stage-I and EBT actuation, EHRS-C actuation failure. F	PCC actuation co	unter start. RP	V saturation
19	Low PRZ pressure signal	253.65	11.72e6 Pa	LM-Signal (High P cont + Low P PRZ)
20	EHRS-C actuation failure (EHRS 2 and 4 in IRIS)	253.65		
21	ADS Stage-I opening start (3 trains)	253.65		ADS valve stroke 10 s
22	ADS Stage-I first peak flow (3 trains)	264	1.364 kg/s	ST 0.470 kg/s;
				DT 0.894 Kg/S
23	ADS Stage-I second peak flow (3 trains)	329	2.003 kg/s	DT 1.340 kg/s, Due to liquid fraction.
24	EBT-A and B valve opening start	253.65		EBT valve stroke 15 s
25	Break flow peak (Containment side)	274		Due to EBT intervention
26	EBT-RV connections uncovered	308, 333		EBT-B, EBT-A
27	Natural circulation interrupted at SGs top	311		Pump inlet uncovered (voidf 176-01 ~0)
28	Core in saturation conditions	307		
29	EBT-B empty (broken loop)	550		550 s almost empty (750 s completely empty)
30	High containment pressure signal	1001.89	0.9 MPa	
31	PCC actuation	1253.65		LM-signal + 1000 s + P cont > 0.9 MPa
Low DP R	PV-Containment signal, PSS water flow to DW, RC flooding,	LGMS and RC to	DVI valve actu	ation
32	Containment pressure peak	1380	10.7e5 Pa	
33	DW pressure lower than PSS pressure	1820		
34	FDT A search (integet lear)	2560		cyclic injection until 5600 s
35	EBT-A empty (Intact loop)	3030	50o2 Do	
37	LOW DP RV-Containment	6152.40	5063 Fa	$IM \pm Iow DP P /_cont I GMS value stroke 2 s$
38	RC to DVI line valve opening	6152.40		RC to DVI valve stroke 2 s
39	LGMS-B starts to inject into RC through DVI broken loop	6140		
40	LGMS-A starts to inject into RV through DVI intact loop	6140		
41	RC level at DVI elevation	12510		
42	RC full of water	34490		
43	QT fill-up starts from DW connection	NO		
Low LGMS	S mass signal: ADS Stage-II actuation, reverse flow from con	tainment to RPV	•	
44	Low LGMS mass	29237.3	20% mass	I GMS B (broken loop)
		20201.0	(198 kg)	
45		36376.17	20% mass	LGMS A (intact loop)
			(190 Kg)	I GMS-A AND I GMS-B low mass
46	ADS Stage-II start opening	36376.17		ADS Stage-II valve stroke 10 s
47	Water starts to flow from RC to DVI-A	35990		
48	Containment and RV pressure equalization	36390		
49	LGMS-B empty (broken loop)	41590		
50	LGMS-A empty (intact loop)	44590		
Long Tern	n conditions			
51	Containment and RPV pressure	100000 s to	0.8–0.9 MPa	Controlled by PCC
		150000 s		
52	Core power		46.32 kW	Average between 100000 s and 150000 s
53	PCC removed power		24.82 kW	Average between 100000 s and 150000 s
		1	1	

Fig.5. 1 - SPES3-159, 162, 158 and 160 DW pressure (window)

Fig.5. 2 - SPES3-159, 162, 158 and 160 DW pressure

Fig.5. 3 – SPES3-159, 162, 158 and 160 PSS pressure (window)

Fig.5. 4 - SPES3-159, 162, 158 and 160 PSS pressure

Fig.5. 5 - SPES3-159, 162, 158 and 160 PSS to DW mass flow (window)

Fig.5. 6 - SPES3-159, 162, 158 and 160 PSS to DW mass flow

Fig.5. 7 – SPES3-159, 162, 158 and 160 PSS mass

Fig.5. 8 - SPES3-159, 162, 158 and 160 LGMS-A mass (intact loop)

Fig.5. 9 – SPES3-159, 162, 158 and 160 LGMS to DVI line mass flow (intact loop)

Fig.5. 10 - SPES3-159, 162, 158 and 160 RC to DVI line mass flow (intact loop)

Fig.5. 11 - SPES3-159, 162, 158 and 160 DVI break line (RPV side) mass flow (window)

Fig.5. 13 – SPES3-159, 162, 158 and 160 Core heater rod clad surface temperature (normal rods)

Fig.5. 14 - SPES3-159, 162, 158 and 160 Core heater rod clad surface temperature (hot rods)

Fig.5. 15 - SPES3-163, 164, 165 and 166 DW pressure (window)

Fig.5. 17 – SPES3-163, 164, 165 and 166 PSS pressure (window)

Fig.5. 18 – SPES3-163, 164, 165 and 166 PSS pressure

Fig.5. 20 - SPES3-163, 164, 165 and 166 PSS to DW mass flow

Fig.5. 22 - SPES3-163, 164, 165 and 166 LGMS-A mass (intact loop)

0.00

-0.02

30000

Fig.5. 23 – SPES3-163, 164, 165 and 166 LGMS to DVI line mass flow (intact loop)

Fig.5. 24 – SPES3-163, 164, 165 and 166 RC to DVI line mass flow (intact loop)

Time (s)

90000

120000

150000

60000

Fig.5. 26 – SPES3-163, 164, 165 and 166 RPV mass

Fig.5. 28 – SPES3-163, 164, 165 and 166 Core heater rod clad surface temperature (hot rods)

Fig.5. 29 - IRIS plant RPV mass

Fig.5. 30 – IRIS plant core mass

Fig.5. 31 – IRIS plant heater rod clad surface temperature (TAF)

Fig.5. 33 – IRIS plant LGMS mass

Fig.5. 34 - IRIS plant RC to DVI mass flow

Fig.5. 35 – IRIS plant break mass flow (RPV side)

6. STEADY STATE AT 100% AND 65% POWER: SPES3-167 AND SPES3-169

The maximum electric power supply available for SPES3 facility rod bundle is 6.5 MW. This requires to run the facility at reduced mass flows, in steady state, in order to maintain prototypical fluid pressures, temperatures and enthalpies.

6.1 Steady state: SPES3-167 and SPES3-169

As described in Paragraph 3.1, the SG configuration is with 13 tubes per row (tube number to correctly scaling IRIS 656 tubes per SG), that allows to have average primary side temperature closer to IRIS than with 14 SG tubes, at reduced mass flow conditions. At 65% power, the 14 SG tube configuration resulted in the same core Δ T but 5 °C primary average temperature lower than IRIS. The 13 SG tube case resulted in 3 °C primary average temperature lower than IRIS with about 2 °C gain.

The need to adjust primary side temperatures together with secondary side ones and SG tube collapsed levels, led to investigate how possible rise of secondary side pressure, together with reduction of secondary mass flow, could help to reach steady state values acceptably close to IRIS.

It was found that secondary side mass flow variation, per SG, affects primary average temperature of

 $0.6593 \frac{^{\circ}C}{g/s}$ and that secondary side pressure affects primary average temperature of $1 \frac{^{\circ}C}{bar}$. Moreover,

SG tube collapsed level is affected by secondary side mass flow of $3.73 \frac{cm}{g/s}$ and by secondary pressure of

 $2\frac{cm}{bar}$.

So, it was decided to intervene both on secondary side pressure and mass flow to get steady state conditions at reduced power close to IRIS full power ones.

At 65% power, with 13 SG tubes, the final condition combination was:

- 1) secondary side pressure: 6 MPa (~3.5% higher than in SPES3-147 [18]);
- 2) secondary side mass flow at SG-A and SG-B: 0.8095 kg/s; secondary side mass flow at SG-C: 1.619 kg/s (0.4% lower than 65% scaled mass flow of 0.8125 kg/s);

At 100% power, with 13 SG tubes, secondary side mass flow was slightly adjusted to have steady conditions closer to IRIS than those of case SPES3-147 [18]. In particular, SG-A and SG-B mass flow were set to 1.260 kg/s (0.8% higher than in SPES3-147) and SG-C mass flow at 2.520 kg/s.

On the basis of achievements described in Chapter 5., that imposed the increase of the RC to DVI line orifice diameter from 1 mm to 6 mm, further diameter increase was performed up to 7 mm, after calculation refinements on the basis of the following assumptions:

- 1) SPES3 DVI line scaling by WEC provided a theoretical line diameter of 9.311 mm [25];
- 2) required mass flow from RC to DVI is 0.02 kg/s, to remove 50 kW long term decay power;
- 3) speed in the DVI, corresponding to the required mass flow, is 0.326 m/s with 900 kg/m³ water density;
- 4) distributed pressure drop in a pipe connecting RC to DVI (assumed 1 m long and of the same diameter of the DVI) is 100 Pa;
- 5) adding equivalent value of concentrated pressure drop, the total pressure drop of 200 Pa is assumed;
- 6) the orifice that guarantees required 0.02 kg/s mass flow, under 200 Pa DP, has 6.5 mm diameter.

7)7 mm diameter was chosen to leave a margin on the estimate.

SPES3-167 and SPES3-169 cases include all optimized parameters as described above.

The final steady conditions for cases at 100% and 65% power are summarized in Tab.6. 1 and Tab.6. 2, respectively, and compared with the IRIS steady conditions at full power.

6.2 Case conclusion

Reached SPES3-167 steady conditions, for 100% power case, show a good agreement with the IRIS ones. SPES3 primary side average temperature is 1.2 °C higher than IRIS (0.4% difference). SPES3 secondary side outlet steam is 1.2 °C less superheated than IRIS (0.4% difference). SPES3 RPV mass is 65 kg greater than IRIS (2% difference) due to SPES3 PRZ level 0.212 m (10.5%) higher. SPES3 SG tube collapsed level is, on average, 0.152 m (8.4%) lower than IRIS.

Reached SPES3-169 steady conditions, for the 65% power case, show a good agreement with the IRIS ones. SPES3 primary side average temperature is 0.5 °C lower than IRIS (0.15% difference). SPES3 secondary side outlet steam is 7.25 °C more superhe ated than IRIS (2.3% difference). SPES3 RPV mass is 68 kg greater than IRIS (2% difference) due to SPES3 PRZ level 0.126 m (6.2%) higher. SPES3 SG tube collapsed level is, on average, 0.378 m (24%) lower than IRIS.

From the point o view of fluid enthalpies, reached steady conditions are suitable to reproduce IRIS ones. Optimization of initial levels will be performed for the test execution. At the moment, reached steady states are considered satisfactory for DBE and BDBE DVI line DEG break transient simulations.

Tab.6. 1 – SPES3-167 and IRIS-HT6_rwstc 100% power steady state conditions

SPES3-167	Primary/Core	SG-A	SG-B	SG-C	EBTA/B	QT	DW	PSSA/B	RC	LGMSA/B	RWSTAB	RWSTC
Pressure (MPa)	15.51 (PRZ)	5.83 (out)	5.83 (out)	5.87 (out)	Primary	Cont.	0.1013	Cont.	Cont.	Cont.	0.1013	0.1013
	0.104 (pump head)											
Tin (℃)	292.5	223.9	223.9	223.9	48.9	48.9	48.9	48.9	48.9	48.9	20	20
Tout (℃)	329.9	318.0	315.0	315.0								
DT (℃)	37.4	94.1	91.1	91.1								
Superheating (℃)		44.3 (Tsat 273.7)	41.3 (Tsat 273.7)	41.3 (Tsat 274.2)								
Mass flow (kg/s)	45.64	1.260	1.260	2.520								
	(2.14 in by-pass)											
Power (MW)	10	2.509	2.497	4.991								
Level (m)	2.231 (PRZ)	1.684	1.849	1.877	3.14 full	empty	empty	3.77	empty	2.454	6.961	6.954
-collapsed-												
Mass (kg)	3319 (RPV)				127			1480		985	11869	11876

IRIS HT6_rwstc	Primary/Core	SG 1	SG 2	SG 3	SG 4	SG 5	SG 6	SG 7	SG 8	EBTA/B	QT	DW	PSSA/B	RC	LGMSA/B	RWST1	RWST2
Pressure (MPa)	15.5 (PRZ) 0.129 (pump head)	5.81 (out)	5.79 (out)	5.79 (out)	5.78 (out)	5.78 (out)	5.79 (out)	5.79 (out)	5.81 (out)	Primary	Cont.	0.1013	Cont.	Cont.	Cont.	0.1013	0.1013
Tin (℃)	291	223.7	223.7	223.7	223.7	223.7	223.7	22 3.7	223.7	48.9	48.9	48.9	48.9	48.9	48.9	20	20
Tout (℃)	329	318.05	316.24	318.22	316.52	316.52	318.22	316.24	318.05								
DT (°C)	38	94.35	92.54	94.52	92.82	92.82	94.52	92.54	94.35								
Superheating (℃)		44.55 (Tsat 273.5)	43.04 (Tsat 273.2)	45.02 (Tsat 273.2)	43.42 (Tsat 273.1)	43.42 (Tsat 273.1)	45.02 (Tsat 273.2)	43.04 (Tsat 273.2)	44.55 (Tsat 273.5)								
Mass flow (kg/s)	45.24 (2.13 in by- pass)	1.257	1.257	1.257	1.257	1.257	1.257	1.257	1.257								
Power (MW)	10	1.24	1.26	1.24	1.26	1.26	1.24	1.26	1.24								
Level (m) -collapsed-	2.019 (PRZ)	1.93	1.99	1.92	1.98	1.98	1.92	1.99	1.93	3.14 full	empty	empty	3.00	empty	2.668	9.099	9.099
Mass (kg)	3254 (RPV)									127			1453		989	11942	11942

Tab.6. 2 – SPES3-169 and IRIS-HT6_rwstc 65% power steady state conditions

SPES3-169	Primary/Core	SG-A	SG-B	SG-C	EBTA/B	QT	DW	PSSA/B	RC	LGMSA/B	RWSTAB	RWSTC
Pressure (MPa)	15.51 (PRZ)	6.01 (out)	6.01 (out)	6.03 (out)	Primary	Cont.	0.1013	Cont.	Cont.	Cont.	0.1013	0.1013
	0.041 (pump head)											
Tin (℃)	Γin (℃) 290.6		223.8	223.8	48.9	48.9	48.9	48.9	48.9	48.9	20	20
Tout (℃)	328.5	324.8	324.4	324.3								
DT (°C)	37.9	101.0	100.6	100.5								
Superheating (℃)	4	49.1 (Tsat 275.7)	48.7 (Tsat 275.7)	48.4 (Tsat 275.3)								
Mass flow (kg/s)	29.566	0.8125	0.8125	1.619								
	(1.342 in by-pass)											
Power (MW)	6.5	1.625	1.624	3.246								
Level (m)	2.145 (PRZ)	1.466	1.625	1.640	3.14 full	empty	empty	3.77	empty	2.454	6.961	6.954
-collapsed-												
Mass (kg)	3322 (RV)				127			1480		985	11869	11876

IRIS HT6_rwstc	Primary/Core	SG 1	SG 2	SG 3	SG 4	SG 5	SG 6	SG 7	SG 8	EBTA/B	QT	DW	PSSA/B	RC	LGMSA/B	RWST1	RWST2
Pressure (MPa)	15.5 (PRZ) 0.129 (pump head)	5.81 (out)	5.79 (out)	5.79 (out)	5.78 (out)	5.78 (out)	5.79 (out)	5.79 (out)	5.81 (out)	Primary	Cont.	0.1013	Cont.	Cont.	Cont.	0.1013	0.1013
Tin (℃)	291	223.7	223.7	223.7	223.7	223.7	223.7	22 3.7	223.7	48.9	48.9	48.9	48.9	48.9	48.9	20	20
Tout (℃)	329	318.05	316.24	318.22	316.52	316.52	318.22	316.24	318.05								
DT (°C)	38	94.35	92.54	94.52	92.82	92.82	94.52	92.54	94.35								
Superheating (\mathfrak{C})		44.55 (Tsat 273.5)	43.04 (Tsat 273.2)	45.02 (Tsat 273.2)	43.42 (Tsat 273.1)	43.42 (Tsat 273.1)	45.02 (Tsat 273.2)	43.04 (Tsat 273.2)	44.55 (Tsat 273.5)								
Mass flow (kg/s)	45.24 (2.13 in by- pass)	1.257	1.257	1.257	1.257	1.257	1.257	1.257	1.257								
Power (MW)	10	1.24	1.26	1.24	1.26	1.26	1.24	1.26	1.24								
Level (m) -collapsed-	2.019 (PRZ)	1.93	1.99	1.92	1.98	1.98	1.92	1.99	1.93	3.14 full	empty	empty	3.00	empty	2.668	9.099	9.099
Mass (kg)	3254 (RV)									127			1453		989	11942	11942

7. DBE DVI LINE DEG BREAK FROM 100% AND 65% POWER: SPES3-172 AND SPES3-175

The same DBE DVI line DEG break transient was simulated starting from steady conditions reached at 100% and 65% power (Chapter 6.) and the results compared to verify similarity of quantities and capability of SPES3 to reproduce the IRIS transients, even starting from reduced power.

Case SPES3-172 is the full power transient, starting from steady conditions as reported in Tab.6. 1.

Case SPES3-175 is the reduced power transient, starting from steady conditions as reported in Tab.6. 2.

The details of the DVI line DEG break transient are deeply described in [18]. This chapter reports the main events and compares the quantities, considered fundamental in the simulation of the IRIS reactor.

In the reduced power transient, the core power decay curve and primary cooling pump coastdown curve, initially at reduced rate, join the corresponding curves, starting from full power, simply extending in time the steady state reduced value up to intersect the decay curve. From this point on, the curves are overlapped.

The list of the main events occurring during the transients, with timing and quantities, is reported in Tab.7.1 for both full and reduced power cases.

7.1 SPES3-172 and SPES3-175 transient phases and description

The first 10 s of data (-10 s to 0 s) are steady state conditions.

All times of the events are given with respect to the break time assumed as time 0 s.

Break

Break line mass flow, RPV side (SPLIT) and containment side (DEG), is shown in Fig.7. 1, Fig.7. 2, Fig.7. 3 and Fig.7. 4, for the full and reduced power cases. Trend is very similar for the two cases, both RPV and containment side. The peak of 1.33 kg/s is observed at 2 s, RPV side.

Mass flow, containment side (DEG), is related to safety injection of EBT (~200 s) and later of LGMS (~2220 s), Fig.7. 2, Fig.7. 5, Fig.7. 6.

Reverse flow from containment to RPV is observed through the SPLIT line, after RC level reaches the DVI line elevation, accordingly to phases when containment pressure is higher than RPV pressure, Fig.7. 2, Fig.7. 4, Fig.7. 7.

Blowdown, RPV depressurization, containment pressurization

The blowdown phase depressurises the RPV with mass and energy transfer to containment.

PRZ pressure is shown in Fig.7. 8, Fig.7. 9, Fig.7. 10. Depressurization rate is very similar in the full power (SPES3-172) and the reduced power case (SPES3-175).

While PRZ depressurizes, containment pressure increases as shown in Fig.7. 11 and Fig.7. 12. Pressurization trend is very similar in the two cases with reaching of the same 0.914 MPa peak.

Pressure increase around 200 s is due to ADS Stage-I intervention that discharges mass and energy into the DW, Fig.7. 13. The first mass flow peak is very similar in the two cases, while the reduced power case shows smaller second peak of flow due to lower liquid entrainment.

When RPV and DW pressures equalize, ADS Stage-I mass flow stops and DW pressure decreases thanks to LGMS injection into the RPV (intact loop) and into the RC (broken loop), Fig.7. 13, Fig.7. 14, Fig.7. 6.

Faster DW depressurization occurs when reverse flow from PSS to DW starts through the vent lines, Fig.7. 18. Injected mass is very similar in the two cases, Fig.7. 19.

Steam dumping into PSS

Containment space (DW and RC) pressurization causes transfer of steam-gas mixture from DW to PSS through the vent lines (~16 s) lasting until mass flow exits the ADS-Stage-I, Fig.7. 18, Fig.7. 13. Mass transferred from PSS to DW is shown in Fig.7. 19.

Non-condensable gas quality in the DW is shown in Fig.7. 20 and Fig.7. 21. The way steam sweeps away gas from DW is similar in SPES3-172 and SPES3-175. In the long term of the transient, the full power case has DW non-condensable gas quality stable around 0.5, while in the low power case it stabilizes around 0.6, except at the DW top, probably due to the presence of steam entering the DW from RPV through the ADS Stage-II.

Steam is dumped underwater through the PSS sparger and air pressurizes PSS and LGMS gas space, Fig.7. 18, Fig.7. 22, Fig.7. 23, Fig.7. 24, Fig.7. 25. PSS and LGMS pressure follows the DW pressure trend. When PSS pressure is high enough to overcome the PSS vent line gravity head, water is pushed backward to the DW, enhancing containment depressurization. PSS and LGMS pressure remains above DW pressure until the PSS sparger is uncovered (~4500 s), i.e. the PSS vent pipes are empty. Afterwards, air flows from PSS to DW and DW, PSS and LGMS pressures equalize, Fig.7. 18, Fig.7. 26, Fig.7. 27, Fig.7. 28.

PSS water temperature increases, thanks to mass transfer from DW, Fig.7. 18, Fig.7. 29, Fig.7. 30. Temperature increases more in SPES3-172 than in SPES3-170 accordingly to higher DW pressure and steam energy. Both liquid and gas temperatures are reported in Fig.7. 29 and Fig.7. 30. During the pressurization phase, liquid and gas temperatures are similar. After pressure equalization with the DW, gas temperature is higher than liquid, for the initially preheated heat structures that heat-up gas in the air zone. In the long term, temperature decreases according to containment pressure.

Temperatures always remain below saturation at maximum PSS pressure and also when pressure decreases, Fig.7. 29, Fig.7. 30, Fig.7. 22, Fig.7. 23.

S-Signal: Reactor scram, secondary loop isolation, EHRS-A and B actuation

The high containment pressure set-point (1.7e5 Pa), reached at 32.78 s in SPES3-172 and 31.58 s in SPES3-175, triggers the S-signal.

The S-signal (Safeguard) starts the reactor SCRAM, isolates the three secondary loops and actuates the EHRS-A and B.

Power released to fluid in the core is shown in Fig.7. 31 and Fig.7. 32. Steady state power is 10 MW for SPES3-172 and 6.5 MW for SPES3-175. After the scram signal, the reduced power curve continues at 6.5 MW for 3.35 s, until it intersects the nominal decay power curve. Little lower energy is provided to primary fluid, between the scram signal and 3.35 s later, in the 65% power case than in 100% case. It is about 4 MJ, that correspond to 1.3 kJ/kg of primary fluid. Such value is about 0.08% of fluid enthalpy at nominal conditions and it has no effect on the transient.

Power transferred to steam generators is shown in Fig.7. 33 and Fig.7. 34. The peak of removed power occurs following the EHRS-C intervention with similar values in SPES3-172 and SPES3-175 (1.64 MW at 318 s). In the long term of the transient, power removed by SGs is the same in the two cases.

The MFIV and MSIV of secondary loops are contemporarily closed in 5 s. Secondary loop mass flows are shown in Fig.7. 35 and Fig.7. 36. They stop at secondary loop isolation and re-start at EHRS actuation. EHRS-A and B are actuated at secondary side isolation and natural circulation flow establishes. EHRS-C is actuated at LM-signal, starting secondary loop natural circulation after about 150 s from the loop isolation. After loop isolation, very similar mass flows are observed in the full power and reduced power case.

EHRS-A and B are actuated by opening in 2 s the related isolation valves (EHRS-C is actuated later on LMsignal). The peak mass flow of 0.262 kg/s is reached at 38 s. Between 1000 s and 10000 s, quite steady condition is reached with natural circulation mass flow of about 0.16 kg/s in the loops A and B, Fig.7. 37. After 10000 s, larger oscillations appear and mass flow decreases to low values around 0.02 kg/s in the long term, Fig.7. 38.

Power removed by EHRSs is shown in Fig.7. 39 and Fig.7. 40. The EHRS-A and B peaks of removed power occur at very close times with very similar values. The same for the EHRS-C removed power peak. Power removed in the long term is very similar in the 65% and 100% power cases.

Secondary side pressures are shown in Fig.7. 41 and Fig.7. 42. After isolation, pressure increases due to heat transfer from the primary side that makes water contained in the SG tubes evaporate. SG tube levels decrease until water stored in EHRS heat exchangers is poured into the loops and power begins to be removed, Fig.7. 37, Fig.7. 39. Similar trends are observed for the two cases. Fig.7. 43 and Fig.7. 44 show SG-A secondary side collapsed level, very similar in SPES3-172 and SPES3-175.

Pump coastdown and primary circulation through RI-DC check valves

PRZ level is shown in Fig.7. 45. The early phase of level decrease, until ADS Stage-I intervention (~200 s), is due to loss of mass from the break. Level increase after the ADS Stage-I actuation is similar, but lower in SPES3-175. This justifies lower water entrainment at the ADS nozzle in this case, Fig.7. 13. When RPV and containment pressure equalize (~2300 s), ADS discharge stops and PRZ level decreases down to zero, Fig.7. 14.

Liquid fraction at the pump inlet is reported in Fig.7. 46. Due to loss of mass from the break, the pump uncovers soon.

The pump coastdown is triggered by the Low PRZ level signal delayed of 15 s. The pump velocity curve is shown in Fig.7. 47. Run at reduced velocity in the steady state, the reduced power case curve intersects the full power one, continuing at constant velocity for 2 s after the coastdown signal. Afterwards, the curves are exactly overlapped.

Soon after the pump suction is uncovered, RPV natural circulation through the pump interrupts.

Core inlet flow is shown in Fig.7. 48 and Fig.7. 49. The trend is similar in the two cases.

The pump stop and pressure decreasing in the DC let the RI-DC check valves open around 150 s and allow natural circulation from riser to SG annuli at lower level in the RPV. The RI-DC check valve mass flow is shown in Fig.7. 50 and Fig.7. 51 for each SG annulus. The trend and value of the RI-DC check valve mass flow is strictly related to core flow, Fig.7. 48, Fig.7. 49.

The fast RPV loss of mass and depressurization rapidly cause flashing of the primary circuit and void begins at core outlet at 177 s in SPES3-172 and 237 s in SPES3-175, Fig.7. 52, Fig.7. 53, Fig.7. 54. Low liquid fraction period in the core lasts until about 6000 s in SPES3-172 and 5000 s in SPES3-175.

LM-Signal: EHRS-C, ADS Stage-I and EBT actuation

The LM-Signal (LOCA mitigation) occurs at 196.68 s in SPES3-172 and 196.42 s in SPES3-175 when the low PRZ pressure set-point (11.72e6 Pa) is reached, Fig.7. 8.

The LM-signal actuates the EHRS-C and opens the ADS stage-I and EBT actuation valves.

SPES3 EHRS-C is actuated by opening in 2 s the related isolation valves. The peak mass flow of 0.547 kg/s is reached at 200 s in SPES3-172 and SPES3-175. After the peak, quite steady natural circulation of about 0.32 kg/s is present between 3000 s and 9000 s. After that, strong oscillations appears and mass flow decreases. The long term values are similar in the two cases, Fig.7. 37, Fig.7. 38.

Power removed by SPES3 EHRS-C is shown in Fig.7. 39, Fig.7. 40. The EHRS-C peak of removed power occurs around 35 s with a value of 712 kW, in the two cases. Average power removed by EHRS-C in the long term is around 20 kW.

The three trains of ADS Stage-I are actuated contemporarily on LM-signal and the actuation valves are fully opened in 10 s. ADS Stage-I mass flows are shown in Fig.7. 13.

When ADS intervene, PRZ is empty, Fig.7. 45, and the ADS flow peak is due to steam flowing toward the QT. At ADS intervention, water is sucked upwards and PRZ level increases. The second ADS mass flow peak is caused by increasing liquid void fraction at the PRZ top that decreases when the PRZ empties. SPES3-172 case shows the second peak of flow greater than SPES3-175.

ADS Stage-I integral flow is shown in Fig.7. 55 and mass exited from the RPV through the ADS in SPES3-172 is about 50 kg more than in SPES3-175.

RPV mass is shown in Fig.7. 52 and Fig.7. 53. The trend is similar in the two cases until about 4500 s. Between 4500 s and 10000 s, the lower power case shows stronger mass increase, related to higher water back-flow from containment to RPV, through the RC to DVI line (intact loop) and break line, RPV side (split), Fig.7. 56, Fig.7. 3. The final value of mass in the RPV is around 2300 kg in both cases.

The LM-signal triggers EBT actuation, by fully opening the valves in 15 s. EBT injection mass flow is shown in Fig.7. 5 and it is very similar in SPES3-172 and SPES3-175. EBT injection into the broken DVI line is initially about 14 times larger than injection into the intact DVI line, due to the presence of the break. EBT injection continues until both EBTs are empty, Fig.7. 58.

Soon after EBT actuation, liquid circulation from the RPV toward the EBT starts at the EBT to RPV connection, then, after such connection is uncovered, steam replaces water contained in the EBT top lines and tanks, Fig.7. 59.

EBT actuation is responsible for mass flow through the break line, containment side, Fig.7. 2. EBT injected mass enters the RPV through the intact DVI line, while flow occurs through the broken DVI (SPLIT break line) toward the containment, Fig.7. 2. Such reverse flow lasts until RPV and containment pressures equalize, Fig.7. 14. After that, DVI line mass flow is driven by differential pressure between RPV and containment and by level of water in one or the other side of the plant.

RPV saturation

RPV mass decreases due to loss of mass from the break, Fig.7. 52, Fig.7. 53. Fast RPV depressurization leads to reach the saturation conditions (core bottom liquid fraction < 1) at 177 s in SPES3-172 and 237 s in SPES3-175. Two-phase mixture occurs in the core, but natural circulation through the RI-DC check valves allows to remove the decay heat and temperature difference establishes again between core inlet and outlet when core is under liquid single-phase, Fig.7. 54, Fig.7. 50, Fig.7. 60, Fig.7. 61. Inlet and outlet core temperatures are shown in Fig.7. 60, Fig.7. 61 and they are very similar in the two cases.

Core heater rod temperatures are shown in Fig.7. 62, Fig.7. 63, Fig.7. 64, Fig.7. 65 for the normal and hot rods, respectively. Notwithstanding the core liquid void fraction decrease, rod surface temperatures never overcomes maximum steady state temperature.

Low DP RPV-Containment signal, LGMS and RC to DVI line valve actuation

The containment pressure peak of 0.914 MPa occurs at 2270 s in SPES3-172 and SPES3-175, Fig.7. 11.

The "Low DP RV-Containment" signal set point (50 kPa) is reached at 2267.3 s in SPES3-172 and 2257.04 s in SPES3-175.

The combination of LM-signal AND Low DP RV-Containment signal actuates the LGMSs and opens the valves on the lines connecting the RC to the DVI lines.

The LGMS isolation valves are fully open in 2 s as well as the RC to DVI line isolation valves.

LGMS injection is related both to gravity and to LGMS air space pressurization (through PSS to LGMS balance lines) by non-condensable gas entering the PSS from DW. LGMS injection mass flow is shown in Fig.7. 6. Consequently to LGMS injection into the broken DVI line, mass flow from restarts, around 2200 s, through the break line, containment side, lasting until LGMS-B is empty, Fig.7. 2, Fig.7. 66.

Containment and RPV pressure equalization, PSS water flow to DW, RC flooding, reverse flow from containment to RPV

RPV and containment pressure equalize at 2390 s in SPES3-172 and SPES3-175. After this, loss of mass through the break, RPV side, depends on the periods when RRV pressure is higher than containment pressure, Fig.7. 2, Fig.7. 14.

After the peak, containment pressure decreases for steam condensation on containment wall and for LGMS injection. After RPV and containment pressure are coupled, pressures decreases due to EHRS heat removal from the primary side, Fig.7. 39, Fig.7. 40. At 2600 s, in both cases, DW pressure decreases below PSS pressure, Fig.7. 26. When differential pressure between PSS and DW is sufficient to overcome the hydrostatic head of PSS vent pipes, a reverse flow starts from PSS to DW through the vent line extension, lasting between 3520 s and 4500 s in both cases, Fig.7. 18.

RC level, initially increased for break and ADS mass flow collection, rapidly increases in correspondence of PSS injection up to the complete fill-up at 4490 s (11 m level from bottom), Fig.7. 7. After the RC is full, water partially fill-up also the DW, Fig.7. 67. In SPES3-175 case, RC level decreases below the top, in correspondence of strong water injection toward the RPV. Correspondingly, the DW fill-up is delayed. The RC level is definitively restored around 13000 s in SPES3-175.

When RC level is above the DVI connection and containment pressure overcomes RPV pressure, water enters the RPV through the RC to DVI line connections, Fig.7. 56, Fig.7. 57. The injection occurs soon after the RC to DVI line valves are open, according to primary side and containment differential pressure, Fig.7. 14, Fig.7. 15, Fig.7. 16.

Total water mass flow entering the RPV, from the containment (RC to DVI line and break line, RPV side), passes through the DVI line, as shown in Fig.7. 68, Fig.7. 69.

The QT, initially empty, is partially filled-up by the ADS discharge, Fig.7. 70, Fig.7. 13. Later fill-up is related to rapid increase of DW level after the RC fill-up, Fig.7. 70, Fig.7. 7.

Low LGMS mass signal: ADS Stage-II actuation

The LGMS low mass signal occurs when, in both tanks, mass reaches 20% of initial mass (198 kg, 20% of 1 m^3 water at 48.9 °C), Fig.7. 71.

The low LGMS mass signals actuates the ADS Stage-II valves, fully open in 10 s, to equalize primary and containment pressure and to allow steam circulation between RPV and DW in the upper part of the plant. This enhances steam condensation on the SG tubes in the long term, Fig.7. 72, Fig.7. 73.

SPES3 RWSTs begin to heat-up as soon as the EHRS are actuated, Fig.7. 74. Both in SPES3-172 and SPES3-175, temperature reaches the saturation around 83500 s.

RWST mass is shown in Fig.7. 75 and pressure in Fig.7. 76. Both in SPES3-172 and SPES3-175, the trend of mass is similar and a grater decrease is observed when water reaches saturation.

7.2 Case conclusions

The full power simulation of the DBE DVI line DEG break (SPES3-172), represents the base case for this transient, evolution of SPES3-147 [18], with the 13 SG tubes and 7 mm orifice diameter on the RC to DVI line.

The comparison between the DBE DVI line DEG break transients, starting from 100% (SPES3-172) and 65% power (SPES3-175), shows very good similarity of the results. This demonstrate that running the SPES3 facility at reduced power in steady state, with properly scaled mass flows, does not affect the transient trend and the IRIS reactor can be properly represented.

Tab.7. 1 – SPES3-172 and SPES3-175 list of the main events

	DVI-B line DEG break 2 inch equivalent	SPES3-172		SPES3-175		
N.	Phases and events	Time (s)	Quantity	Time (s)	Quantity	Notes
Break	1	1		r		1
1	Break initiation	0	0.000 / /	0	0.0001	break valves stroke 2 s
2	Break flow peak (Containment side)	1	0.688 Kg/s	1	0.688 Kg/S	Break flow = 0 kg/s at 11 s
Blowdo	wn RV depressurization containment pressurizat	∠ ion_Steam.du	mning into PS	2 2 2	1.55 Kg/5	
4 Steam-air mixture begins to flow from DW to PSS 16 16						
S-Signa	al: Reactor scram, secondary loop isolation, EHRS	-A and B actu	ation			
5	High Containment pressure signal	32 78	1 7e5 Pa	31 58	1 7e5 Pa	S-signal. Set-point for safety
		02.70	1.70010	01.00	1.70010	analyses
6	SCRAM begins	32.78		31.58		
/ 8	MSIV-A,B,C closure start	32.70		31.50		MSIV-A, B, C Stroke 5 S
9	EHRS-A and B opening start (EHRS 1 and 3 in IRIS)	32.78		31.58		EHRS-A.B IV stroke 2 s.
10	EHRS-A and B peak mass flow	38	0.262 kg/s	37	0.264 kg/s	
11	High SG pressure signal	46.47	9e6 Pa	48.58	9e6 Pa	
12	SG-A high pressure reached	46.47		48.58		
13	SG-B high pressure reached	47.52		49.96		
14	SG-C high pressure reached	47.28		50.38		
15	EHRS-A power peak	232	375 kW	220	380 kW	
17	EHRS-B power peak	238	368 kW	225	375 kW	
Pump c	oastdown and primary circulation through RI-DC o	heck valves				1
18	Low PRZ water level signal	122.64	1.189 m	121.72	1.189 m	
19	RCP coastdown starts	137.64		136.72		Low PRZ level signal + 15 s delay
20	Secondary loop propulse pack	68 70	107e5 Pa A	90	104e5 Pa	
20	Secondary loop pressure peak	70	10965 Pa B	91	10865 Pa	
		16			TICO Fa	SG-A,B
21	Natural circulation begins through shroud valves	158, 161		154, 161		SG-C
22	Flashing begins at core outlet	177	voidf 110	237	voidf 110	<1
		111	(core)	201	(core)	
LM-Sig	nal: EHRS-C, ADS Stage-I and EBT actuation. RV s	aturation	44 70-0 D-	400.40	44 70-0 D-	M Circuit (Link D and the Low D DDZ)
23	LOW PRZ pressure signal EHRS-C opening start (EHRS 2 and 4 in IRIS)	196.68	11.72e6 Pa	196.42	11.72eb Pa	LM-Signal (High P cont + Low P PRZ)
24	EHRS-C opening start (EHRS 2 and 4 m Rts)	200	0.547 ka/s	200	0.547 kg/s	
26	RWST-C begins to heat-up	217	0.017 109/0	217	0.017 109/0	
27	EHRS-C power peak	341	716 kW	334	719 kW	
28	ADS Stage I start opening (3 trains)	196.68		196.42		ADS valve stroke 10 s
29	ADS Stage I first peak flow (3 trains)	207	1.348 kg/s	207	1.301 ka/s	ST 0.454 kg/s; DT 0.854 kg/s SPES3-172
						ST 0.454 kg/s; DT 0.854 kg/s SPES3-175
30	ADS Stage L second neak flow (3 trains)	266	2 30 ka/s	201	1 /181 ka/s	ST 0.760 Kg/s; DT 1.630 Kg/s SPES3-172 ST 0.471 kg/s; DT 1.010 kg/s SPES3-175
00	Abe etager second peak new (o trains)	200	2.00 Ng/3	201	1.401 kg/5	Due to liquid fraction.
31	EBT-A and B valve opening start	196.68		196.42		EBT valve stroke 15 s
32	Break flow peak (Containment side)	214	0.695 kg/s	214	0.695 kg/s	Due to EBT intervention
33	EBT-RV connections uncovered	251, 279		242, 274		EBT-B, EBT-A
32	Natural circulation interrupted at SGs top	253		247		Pump inlet uncovered (voidf 176-01 ~0)
36	Core in saturation conditions	234		339		E20 a almost ampty (670 a completely
37	EBT-B empty (broken loop)	670		670		empty)
Low DF	RV-Containment signal, LGMS and RC to DVI valv	e actuation				
38	Containment pressure peak	2260	9.14e5 Pa	2260	9.14e5 Pa	
39	Low DP RV-Containment	2267.3	50e3 Pa	2257.04	50e3 Pa	
40	LGMSA/B valve opening start	2267.3		2257.04		LM + low DP RV-cont.
11	PC to DV/Lline volve exercise	2267.2		2257.04		LGMS valve stroke 2 s.
41	I GMS-B starts to inject into BC through DVI broken	2207.3		2257.04		RC to DVI valve stroke 2 S.
42	loop	2310		2257.04		
40	LGMS-A starts to inject into RV through DVI intact	2220		2220		
43	Іоор	2330		2330		
Contair	ment and RV pressure equalization, PSS water flo	w to DW, RC f	looding, rever	se flow from	containment	to RV
44	Containment and RV pressure equalization	2390		2390		
45	Mixture starts to flow from RC to DVI-A	2380		2380		
46	DW pressure lower than PSS pressure	2610		2610		
48	Water starts to flow from PSS to DW	3600 3520		3570 3520		PSS A PSS-B
49	Steam and gas mixture flows again from RV to QT	3750 to 4540		3750 to 4510		RPV P > DW P
50	RC level at DVI elevation	4130		4130		
51	RC full of water	4490		4490		
52	QT fill-up starts from DW connection	9740		4470		
Low LG	MS mass signal: ADS Stage-II actuation		2 2 2 1			T
53	Low LGMS mass	19854.98	20% mass (198 kg)	17480.73	(185 kg)	LGMS-A (intact loop)
			20% mass			
54		24485.98	(198 kg)	23321.78	(185 kg)	LGMS-B (broken loop)
55	ADS stage-II start opening	24485.98		23321.78		ADS Stage-II valve stroke 10 s.
56	LGMS-A empty (intact loop)	36590		52790		~30 kg residual mass SPES3-172
						~30 kg residual mass SPES3-175
56	LGMS-B empty (broken loop)	46590		55990		~40 kg residual mass SPES3-172 ~40 kg residual mass SPES3-175
57	Flow from RC to RV (intact loop) stable	33190		37790		
Lona Te	erm conditions	00100		0.100		1
58	Core power	150000	46.00	150000	46.04	Average between 100000-150000 s
59	SG tot power	150000	43.50	150000	42.07	
60	RWST tot power	150000	41.35	150000	39.30	
61	RWST-A/B temperature	150000	100	150000	100	saturated
62	KWSI-C temperature	150000	100	150000	100	saturated

Fig.7.1 - SPES3-172 and SPES3-175 DVI break mass flow (window)

Fig.7. 2 - SPES3-172 and SPES3-175 DVI break mass flow (window)

Fig.7. 3 - SPES3-172 and SPES3-175 DVI break mass flow (window)

Fig.7. 5 - SPES3-172 and SPES3-175 EBT mass flow (window)

Fig.7. 6 - SPES3-172 and SPES3-175 LGMS mass flow (window)

Fig.7. 7 - SPES3-172 and SPES3-175 RC level (window)

Fig.7. 8 - SPES3-172 and SPES3-175 PRZ pressure (window)

Fig.7. 9 - SPES3-172 and SPES3-175 PRZ pressure (window)

Fig.7. 11 - SPES3-172 and SPES3-175 DW pressure (window)

Fig.7. 12 - SPES3-172 and SPES3-175 DW pressure

Fig.7. 13 - SPES3-172 and SPES3-175 ADS Stage-I mass flow (window)

Fig.7. 14 - SPES3-172 and SPES3-175 PRZ and DW pressures (window)

Fig.7. 15 - SPES3-172 and SPES3-175 PRZ and DW pressures (window)

Fig.7. 16 - SPES3-172 and SPES3-175 PRZ and DW pressures

Fig.7. 17 - SPES3-172 and SPES3-175 PRZ and DW pressures (detail)

Fig.7. 18 - SPES3-172 and SPES3-175 DW to PSS mass flow (window)

Fig.7. 19 - SPES3-172 and SPES3-175 PSS to DW integral flow (window)

Fig.7. 20 - SPES3-172 and SPES3-175 DW non-condensable gas quality (window)

Fig.7. 22 - SPES3-172 and SPES3-175 PSS pressure (window)

Fig.7. 23 - SPES3-172 and SPES3-175 PSS pressure

Fig.7. 24 - SPES3-172 and SPES3-175 LGMS pressure (window)

Fig.7. 25 - SPES3-172 and SPES3-175 LGMS pressure

Fig.7. 27 - SPES3-172 and SPES3-175 DW and PSS pressure

Fig.7. 28 - SPES3-172 and SPES3-175 PSS vent pipe level (window)

Fig.7. 29 - SPES3-172 and SPES3-175 PSS temperatures (window)

Fig.7. 30 - SPES3-172 and SPES3-175 PSS temperatures

Fig.7. 31 - SPES3-172 and SPES3-175 Core power (window)

Fig.7. 32 - SPES3-172 and SPES3-175 Core power

Fig.7. 33 - SPES3-172 and SPES3-175 SG power (window)

Fig.7. 34 - SPES3-172 and SPES3-175 SG power

Fig.7. 35 - SPES3-172 and SPES3-175 SG ss mass flow (window)

Fig.7. 37 - SPES3-172 and SPES3-175 EHRS cold leg mass flow (window)

Fig.7. 38 - SPES3-172 and SPES3-175 EHRS cold leg mass flow

Fig.7. 39 - SPES3-172 and SPES3-175 EHRS power (window)

Fig.7. 40 - SPES3-172 and SPES3-175 EHRS power

Fig.7. 41 - SPES3-172 and SPES3-175 SG ss outlet pressure (window)

Fig.7. 42 - SPES3-172 and SPES3-175 SG ss outlet pressure

Fig.7. 43 - SPES3-172 and SPES3-175 SG-Ass collapsed level (window)

Fig.7. 44 - SPES3-172 and SPES3-175 SG-Ass collapsed level

Fig.7. 45 - SPES3-172 and SPES3-175 PRZ level (window)

Fig.7. 46 - SPES3-172 and SPES3-175 Pump inlet liquid fraction (window)

Fig.7. 47 - SPES3-172 and SPES3-175 Pump velocity (window)

Fig.7. 48 - SPES3-172 and SPES3-175 Core inlet mass flow (window)

Fig.7. 49 - SPES3-172 and SPES3-175 Core inlet mass flow

Fig.7. 50 - SPES3-172 and SPES3-175 RI-DC check valve mass flow (window)

Fig.7. 51 - SPES3-172 and SPES3-175 RI-DC check valve mass flow

Fig.7. 52 - SPES3-172 and SPES3-175 RPV mass (window)

Fig.7. 53 - SPES3-172 and SPES3-175 RPV mass

Fig.7. 54 - SPES3-172 and SPES3-175 Core liquid fraction (window)

Fig.7. 55 - SPES3-172 and SPES3-175 ADS Stage-I integral flow

Fig.7. 56 - SPES3-172 and SPES3-175 RC to DVI mass flow IL (window)

Fig.7. 57 - SPES3-172 and SPES3-175 RC to DVI mass flow IL

Fig.7. 58 - SPES3-172 and SPES3-175 EBT level (window)

Fig.7. 59 - SPES3-172 and SPES3-175 EBT to RPV balance line mass flow (window)

Fig.7. 60 - SPES3-172 and SPES3-175 Core inlet and outlet fluid temperature (window)

Fig.7. 61 - SPES3-172 and SPES3-175 Core inlet and outlet fluid temperature

Fig.7. 62 - SPES3-172 and SPES3-175 Core heater rod surface temperature -normal rod (window)

Fig.7. 63 - SPES3-172 and SPES3-175 Core heater rod surface temperature -normal rod

Fig.7. 64 - SPES3-172 and SPES3-175 Core heater rod surface temperature -hot rod (window)

Fig.7. 65 - SPES3-172 and SPES3-175 Core heater rod surface temperature -hot rod

Fig.7. 66 - SPES3-172 and SPES3-175 LGMS level

Fig.7. 67 - SPES3-172 and SPES3-175 DW level

Fig.7. 68 - SPES3-172 and SPES3-175 DVI mass flow (window)

Fig.7. 69 - SPES3-172 and SPES3-175 DVI mass flow

Fig.7. 71 - SPES3-172 and SPES3-175 LGMS mass (window)

Fig.7. 72 - SPES3-172 and SPES3-175 ADS Stage-II mass flow (window)

Fig.7. 73 - SPES3-172 and SPES3-175 ADS Stage-II mass flow

0 + 0

30000

Fig.7. 75 - SPES3-172 and SPES3-175 RWST mass

Fig.7. 76 - SPES3-172 and SPES3-175 RWST pressure

Time (s)

90000

120000

150000

60000

8. BDBE DVI LINE DEG BREAK FROM 100% AND 65% POWER: SPES3-173 AND SPES3-176

The same BDBE DVI line DEG break transient was simulated starting from steady conditions reached at 100% and 65% power (Chapter 6.) and the results compared to verify similarity of quantities.

As come-out of the sensitivity analysis on the BDBE DVI line DEG break transient (Chapter 5.), the signal combination to trigger the PCC is based on 0.9 MPa DW pressure AND LM-signal delayed of 1800 s.

Instead, the ADS Stage-II intervention, was anticipated to the LM-signal, as for ADS Stage-I, accordingly to the accident management procedure reported in [22] [23] (triggering signal no more based on low LGMS mass signal).

Case SPES3-173 is the full power transient, starting from steady conditions as reported in Tab.6. 1.

Case SPES3-176 is the reduced power transient, starting from steady conditions as reported in Tab.6. 2.

In the reduced power transient, the core power decay curve and the pump coastdown curve, initially at reduced rate, reach the corresponding decay curves, from full power, as described in Chapter 7., for the DBE DVI line transient.

The list of the main events occurring during the transients, with timing and quantities, is reported in Tab.8.1 for both full and reduced power cases.

8.1 SPES3-173 and SPES3-176 transient phases and description

The first 10 s of SPES3 data (-10 s to 0 s) are steady state conditions.

All times of the events are given with respect to the break time, assumed as time 0 s.

Break

Break line mass flow, RPV side (SPLIT) and containment side (DEG), is shown in Fig.8. 1, Fig.8. 2 and Fig.8. 3. The peak of 1.33 kg/s is observed, RPV side, in both cases, at 2 s.

Mass flow, containment side, is first related to safety injection of EBT in the broken loop (~250 s) and later to LGMS injection (~1000 s), Fig.8. 4, Fig.8. 5, Fig.8. 6.

Reverse flow from containment (RC) to RPV is observed through the SPLIT line, after the ADS Stage-I and ADS Stage-II are opened with RPV depressurization below the containment value (~3500 s), Fig.8. 7, Fig.8. 8, Fig.8. 9, Fig.8. 10, Fig.8. 11, Fig.8. 12, Fig.8. 13, Fig.8. 14.

Blowdown, RPV depressurization, containment pressurization

The blowdown phase depressurises the RPV with mass and energy transfer to containment.

PRZ pressures is shown in Fig.8. 15, Fig.8. 16, Fig.8. 17.

While PRZ depressurises, containment pressure increases as shown in Fig.8. 14, Fig.8. 18, Fig.8. 19. The increase in pressurization rate, around 250 s, is due to ADS Stage-I and Stage-II intervention that discharges mass and energy into the DW, Fig.8. 7, Fig.8. 9. Around 900 s, PRZ and DW pressure are coupled and both increase up to reach the containment peak of 1.59 MPa at 2055 s.

After the peak, pressure decreases thanks to PCC intervention (~2050 s) which removes power from containment and brings pressure to oscillate between 0.8 and 0.9 MPa set points, Fig.8. 25, Fig.8. 26.

Around 1850 s, RPV is sufficiently depressurized to allow LGMS injection through the intact DVI line for RPV water inventory restoring, Fig.8. 5.

Around 2150 s, water back-flow from PSS to DW occurs that contributes to increase the amount of water available for RC to RPV injection, Fig.8. 22, Fig.8. 23.

Steam dumping into PSS

Containment space (DW and RC) pressurization causes transfer of steam-gas mixture from DW to PSS through the PSS vent lines, starting at 16 s and lasting up to PCC intervention and consequent DW depressurization, Fig.8. 22.

Within 500 s, almost all DW non-condensable gas is transferred to the PSS, as shown in Fig.8. 24, Fig.8. 25. Steam is dumped underwater through the PSS sparger and air pressurizes the PSS and LGMS gas space, Fig.8. 26, Fig.8. 27, Fig.8. 28, Fig.8. 29. After PSS to DW injection start, PSS and LGMS pressure follows the DW depressurization until the PSS sparger is uncovered and consequent DW, PSS and LGMS pressure equalization, Fig.8. 30, Fig.8. 31. Water level in the PSS vent pipes and extension is shown in Fig.8. 32, Fig.8. 33. It reaches the top only when PSS pressure is sufficiently high to overcome the PSS vent pipe gravity head and push water upwards into the DW, Fig.8. 32, Fig.8. 33. The PSS and DW volumes remain separated from the pressure point of view until the PSS sparger uncovers (0.75 m from PSS bottom), then they are coupled and follow the oscillations determined by PCC, Fig.8. 34, Fig.8. 35, Fig.8. 30, Fig.8. 31.

Soon after PSS sparger uncovering and water injection stop, PSS level slowly increases due to cyclic DW to PSS mass transfer in accordance to period of higher DW pressure, determined by the PCC operation mode. Around 40000 s, non-symmetric behaviour of PSS-A and B is observed with greater level and mass increase in PSS-B, probably related to slightly different pressure drops in the two PSS vent pipes, Fig.8. 35, Fig.8. 36. Level oscillations observed in the RC, Fig.8. 37, Fig.8. 38 and DW Fig.8. 39, push DW steam toward the PSS vent lines, with an oscillatory mode. Around 40000 s, fast DW level increase is observed, Fig.8. 39, corresponding to PSS level step increase. As DW level increases, water is transferred into the QT up to complete fill-up, Fig.8. 40. The phenomenon of slow water accumulation into the PSS, makes it no more available to be injected into the RPV and it may be critical if amount of water above the core is little. Both in SPES3-173 and SPES3-176 cases, sufficient amount of water is available in the primary circuit to keep the core cooled.

PSS water temperature increases thanks to the mass transfer from DW, Fig.8. 22, Fig.8. 41, Fig.8. 42. Both the liquid and gas temperatures are reported in Fig.8. 41 and Fig.8. 42 and they are very similar. Water temperature remains below saturation (maximum temperature reached at the pressure peak of 1.57 MPa is around 450 K (Tsat 473 K)), but without great margin for steam condensation. This causes the containment pressurization up to 1.59 MPa. After the end of injection toward the DW, residual PSS water is close to saturation (temperature at the minimum pressure of 0.8 MPa is around 430 K (Tsat 443.6 K)).

S-Signal: Reactor scram, secondary loop isolation. EHRS-A and B actuation failure

The high containment pressure set-point (1.7e5 Pa) is reached at 32.78 s in SPES3-173 and at 31.58 in SPES3-176. It triggers the S-signal.

The S-signal (Safeguard) starts the reactor SCRAM and isolates the three secondary loops. EHRS-A and B actuation is assumed to fail.

Power released to fluid in the core is shown in Fig.8. 43, Fig.8. 44, Fig.8. 45. Steady state power of the cases are 10 MW for SPES3-173 and 6.5 MW for SPES3-176. After the scram signal, the reduced power curve continues at 6.5 MW for 3.35 s, until it intersects the nominal decay power curve. After the reactor isolation, no power is removed through the SGs toward the EHRSs, as failed, Fig.8. 46, Fig.8. 47.

The MFIV and MSIV of the secondary loops are contemporarily closed in 5 s and the secondary loop mass flows set to zero, Fig.8. 48.

Secondary side pressures are shown in Fig.8. 49, Fig.8. 50. After isolation, pressure increases up to 11.3 MPa in SPES3-173 and to 11.5 MPa in SPES3-176, due to heat transfer from primary side and tube water evaporation. Such water evaporation causes tube level decrease, as shown in Fig.8. 51 and Fig.8. 52.

Pump coastdown and primary circulation through RI-DC check valves

PRZ level is shown in Fig.8. 53. The early phase of level decrease, until the ADS Stage-I and Stage-II intervention (~250 s), is due to loss of mass from the break. Level increase, after the ADS actuation, is due to water swelling and suction toward the QT (Stage-I) and the DW (Stage-II), Fig.8. 7, Fig.8. 8. Due to loss of mass from the break and ADS, the pump uncovers soon, Fig.8. 55.

The pump coastdown is triggered with 15 s delay on the Low PRZ level signal, Fig.8. 54. Pump speed, in SPES3-176 steady state, is scaled on power to maintain the nominal inlet-outlet core Δ T. After the pump coastdown signal, speed is kept constant for 2 s, up to intersect the nominal pump velocity decay curve. After that, speed is reduced accordingly in SPES3-173 and SPES3-176 cases. Soon after the pump suction is uncovered, Fig.8. 55, RPV natural circulation through the pump interrupts.

Core inlet flow is shown in Fig.8. 56 and Fig.8. 57. Natural circulation lasts until the RI to DC check valves are covered (~500 s), Fig.8. 58. After about 10000 s, when RPV mass inventory is restored from the RC, through the intact loop RC to DVI line, circulation in the check valves is present again with oscillations related to PCC operation, Fig.8. 59, Fig.8. 60.

LM-Signal: ADS Stage-I, ADS Stage-II and EBT actuation, EHRS-C actuation failure, PCC actuation counter start.

The LM-Signal (LOCA mitigation) occurs at about 250 s, when the low PRZ pressure set-point (11.72e6 Pa) is reached, Fig.8. 15.

EHRS-C actuation on LM-signal is assumed to fail. Failure of EHRS-C starts the counter for PCC actuation with 1800 s delay on LM-signal. Such delay is assumed as time required to fill the containment refuelling cavity, heat sink for PCC.

The LM-signal triggers the ADS Stage-I and the EBT actuation valves.

The ADS Stage-I and Stage-II trains are actuated contemporarily and the valves are fully open in 10 s. ADS Stage-I mass flows are shown in Fig.8. 7 and Fig.8. 8. ADS Stage-II mass flows are shown in Fig.8. 9, Fig.8. 10, Fig.8. 11. Mass flow peak of about 2.5 kg/s and 1.25 kg/s are observed in the ADS Stage-I DT and ST, respectively, while flow peak of about 10 kg/s and 5 kg/s are observed in the ADS Stage-II DT and ST. Initially, steam is discharged toward the QT and the DW. Soon after the ADS opening, PRZ water is sucked upwards and PRZ level increases with great liquid fraction at the ADS nozzles, Fig.8. 53. The contemporary ADS Stage-I and II opening causes great mass and energy transfer from primary to containment that leads to strong DW pressurization, up to about 1.59 MPa at 2050 s, Fig.8. 18. Such DW pressurization, overcomes the SPES3 containment design pressure of 1.5 MPa and it will be necessary to adjust the test procedures, for this specific transient, in order to conduct the tests and contemporarily protect the plant.

The LM-signal triggers the EBT valves that are fully open in 15 s. EBT injection mass flows are shown in Fig.8. 4. The EBT injection into the broken DVI line is initially about 14 times grater than injection into the intact one, due to the presence of the break. EBT masses and levels are shown in Fig.8. 61 and Fig.8. 62, respectively.

Soon after the EBT actuation, liquid circulation from the RPV toward the EBT starts at the EBT balance connection to RPV, then, after such connection is uncovered, steam replaces water contained in the EBT top

lines and tanks, Fig.8. 63. The broken loop EBT is empty around 700 s while the intact loop EBT is empty at about 2800 s, Fig.8. 62.

EBT actuation is responsible for mass flow through the break line, containment side, starting around 250 s, Fig.8. 1.

RPV saturation

Fast RPV depressurization and loss of mass from the break, Fig.8. 1, Fig.8. 15, rapidly cause flashing of the primary circuit and void begins at the core outlet at 265 s in SPES3-173 and 282 s in SPES3-176, Fig.8. 64, Fig.8. 65. At high level in the core, liquid fractions are reached down to 0.4. After about 2800 s, water enters the RPV through the intact loop RC to DVI line, Fig.8. 66, and break line, RPV side, Fig.8. 67, Fig.8. 68, RPV mass begins to be restored, Fig.8. 60, core circulation restarts through the RI-DC check valves, Fig.8. 58, Fig.8. 59, and this guarantees to keep core cooled and heater rod clad temperature at limited values.

Inlet and outlet core temperatures are shown in Fig.8. 69 and Fig.8. 70. Limited temperature excursion (~25 $^{\circ}$ C) is observed due to the break and ADS opening that cause fast system depressurization, flashing and cooling capability reduction.

Core heater rod surface temperatures are shown in Fig.8. 72, Fig.8. 73 and Fig.8. 74, Fig.8. 75, for the normal and hot rods, respectively. As for core fluid temperatures, they show little excursions in the early phases of the transient. After that, liquid in the core is sufficient to maintain it cooled.

RC to DVI line mass flow is shown in Fig.8. 66. Water injection into the RPV occurs only through the intact loop. Thanks to rapid RPV depressurization by the ADS, water injection starts soon after the RC is full (~2700 s). It's oscillatory trend is linked to cyclic actuation of PCC.

DVI line mass flows at the RPV connections are shown in Fig.8. 67 and Fig.8. 68 for the intact and broken loop. Water flow into the RPV, through the intact loop, is due to the EBT and LGMS injection. Negative values of broken loop mass flow, represent water lost from the break; positive values represent back-flow from containment to RPV, driven by primary to containment differential pressure.

Mass flow entering the RPV through the break line is of the same order of magnitude of that entering the RPV through the RC to DVI line and core rewetting occurs for both contributions, Fig.8. 67, Fig.8. 68, Fig.8. 66.

PCC actuation

The containment pressure peak of 1.59 MPa occurs at about 2050 s, Fig.8. 18.

Pressure is rapidly dumped thanks to PCC intervention at 2053.85 s in SPES3-173 and 2043.63 s in SPES3-176 (i.e. 1800 s delayed on the LM-signal), Fig.8. 20, Fig.8. 21. After that, pressure is maintained between 0.8 MPa and 0.9 MPa, according to PCC actuation logic, Fig.8. 18, Fig.8. 19.

PCC tube mass flow is shown in Fig.8. 75. The tubes discharge into and are fed by the PCC tank that operates as steam condenser and water supply. PCC tank level is controlled by a PI (proportional-integral) control system, 0.7 m level set-point, that injects cold water into the feed line from an auxiliary circuit, Fig.8. 76. PCC inlet and outlet temperatures are shown in Fig.8. 77. Water enters slightly subcooled and exits saturated with a liquid fraction at the outlet of about 0.2, Fig.8. 78, Fig.8. 79.

Low DP RPV-Containment signal, LGMS and RC to DVI valve actuation

The "Low DP RPV-Containment" signal set point of 50 kPa is reached at about 870 s.

The combination of LM-signal AND Low DP RV-Containment signal actuates the LGMSs and opens the valves on the lines connecting RC to DVIs.

The LGMS isolation valves are fully open in 2 s as well as the RC to DVI line isolation valves.

LGMS injection into the IL DVI line starts around 1850 s and it is due both to gravity and air pressurization at the top, through the PSS to LGMS balance lines (pressurized during the RPV blowdown into RC and DW). After PCC intervention and containment and RPV fast depressurization (after coupling around 2050 s), injection mass flow increases until PSS sparger is uncovered and LGMS, PSS and DW pressure are equalized. After that, gravity drives water injection. LGMS injection mass flow is shown in Fig.8. 5, Fig.8. 6. LGMS level and mass are reported in Fig.8. 80 and Fig.8. 81, respectively. LGMS injection into the RPV, through the IL DVI line occurs when DVI pressure is lower than LGMS pressure, accordingly to PCC operation, and this explains the oscillatory trend of injection, Fig.8. 82, Fig.8. 83, Fig.8. 5, Fig.8. 6.

PSS water flow to DW, RC flooding, Containment and RPV pressure equalization, reverse flow from containment to RPV

At 2830 s, PSS pressure overcomes the hydrostatic head of water in the PSS vent lines and water is pushed toward the DW through the vent line extensions, Fig.8. 22, Fig.8. 23. Strong DW and consequently PSS pressurization, after the PCC intervention, causes continuous and strong water injection from PSS to DW, Fig.8. 22.

RC level, initially increased for the break and ADS mass flow collection, rapidly increases in correspondence of PSS to DW injection up to the complete fill-up at 2710 s (11 m level from bottom), Fig.8. 37, Fig.8. 38.

The QT, initially empty, is partially filled-up by ADS Stage-I discharge, Fig.8. 40. Later fill-up around 23000 s in SPES3-173 and 16100 in SPES3-176 is related to rapid increase of DW level, mostly due to LGMS water injection, after RC fill-up, Fig.8. 39, Fig.8. 81.

After the RC to DVI line valves are opened, (~875 s) and RC level is above the DVI line elevation, water back-flow from RC to RPV is allowed after the systems pressure equalization and when RPV pressure is lower than containment one, Fig.8. 66, Fig.8. 67, Fig.8. 68. Being the break line at the DVI line elevation, water back-flow from RC to RPV is allowed through it as well, Fig.8. 2.

Long term conditions

In the long term of the transient, system pressure is maintained between 0.8 and 0.9 MPa by PCC.

Core power, average value between 100000 and 150000 s, is about 46.3 kW in SPES3-173 and SPES3-176.

PCC removed power, average value between 100000 and 150000 s, is about 54.2 kW and this contributes to slowly cool-down the system.

8.2 Case conclusions

The comparison between the full power (SPES3-173) and reduce power (SPES3-176) cases showed a great similarity of the results with very similar phenomena and event timing.

On the basis of the results obtained by the analysis of SPES3-160 case, similar to SPES3-173 and SPES3-176, but with ADS Stage-II actuated on low (20%) LGMS mass, the present cases, with ADS Stage-II anticipated actuation on LM-signal, show that the system can cope with the BDBE DVI line DEG break transient and maintain the plant in safe conditions.

The combination of signals that triggers the ADS Stage-II together with ADS-Stage-I, on LM-signal, and the PCC with 1800 s delay on LM-signal, with DW pressure greater than 0.9 MPa, seems the best to recover the studied BDBE.

According to the calculated DW pressure peak value (15.9 MPa), criticalities can arise for the SPES3 facility containment designed at 1.5 MPa. Proper test procedures will be need to execute a BDBE DVI line DEG break test contemporarily representative of the IRIS one and not impairing the facility integrity. Little delay on ADS Stage-II actuation could be sufficient to solve the problem.

Tab.8. 1 – SPES3-173 and SPES3-176 list of the main events

	BDBE DVI-B line DEG break (2-inch equivalent)	SPES3-173		SPES3-176			
Ν.	Phases and events	Time (s)	Quantity	Time (s)	Quantity	Notes	
			-				
Break							
1	Break initiation	0				break valves stroke 2 s	
2	Break flow peak (Containment side)	1	0.688 kg/s	1	0.688 kg/s	Break flow = 0 kg/s at 11 s	
3	Break flow peak (RPV side)	2	1.33 kg/s	2	1.33 kg/s		
Biowdown, RFV depressurization, containment pressurization, steam dumping into FSS							
Sestimat: Reactor scram secondary loop isolation FHRS-A and B actuation failure							
5-31gi	High Containment pressure signal	32 78	1 7e5 Pa	31.58	1 7e5 Pa	S-signal, Set-point for safety analyses	
6	SCRAM begins	32.78		31.58			
7	MFIV-A,B,C closure start	32.78		31.58		MFIV-A,B,C stroke 5 s	
8	MSIV-A-B-C closure start	33.78		31.58		MSIV-A,B,C stroke 5 s.	
9	EHRS-A and B actuation failure (EHRS 1 and 3 in IRIS)	32.78		31.58		EHRS-A,B IV stroke 2 s.	
10	High SG pressure signal	46.28	9e6 Pa	48.69	9e6 Pa		
11	SG-A high pressure reached	46.28		48.69			
12	SG-B high pressure reached	47.73		50.61			
13	SG-C high pressure reached	47.28		50.36			
		69	111e5 Pa	87	111e5 Pa	SG-A	
14	Secondary loop pressure peak	69 70	113e5 Pa	86	11565 Pa	SG-B	
Pump	coastdown and primary circulation through PLD	C check valves	LIJEJ FA	30	T T T T T T T T T T T T T T T T T T T	00-0	
15	Low PRZ water level signal	136.90	1.189 m	144	1.189 m		
16	RCP coastdown starts	151.90		159		Low PRZ level signal + 15 s delav	
47	Notural airculation basing through characterity	170. 174		170 170 100		SPES3-173 A,C; B	
17	watural circulation begins through shroud valves	173, 174		176,179,180		SPES3-176 C, B, A	
18	Flashing begins at core outlet	255		248		voidf 110 (core) < 1	
LM-Si	gnal: ADS Stage-I, ADS Stage-II and EBT actuation	n, EHRS-C act	uation failure. PC	C actuation cou	inter start. RPV s	saturation. Reverse flow from containment to RPV	
19	Low PRZ pressure signal	253.85	11.72e6 Pa	243.63	11.72e6 Pa	LM-Signal (High P cont + Low P PRZ)	
20	EHRS-C actuation failure (EHRS 2 and 4 in IRIS)	253.85		243.63		ADC value strake 40 s	
21	ADS Stage-I opening start (3 trains)	253.85		243.63		ADS valve stroke 10 s	
22	ADS Stage-I first peak flow (3 trains)	279	3.77 kg/s	266	3.76 kg/s	SPES3-176 ST 1.27 kg/s; DT 2.30 kg/s SPES3-176 ST 1.24 kg/s; DT 2.52 kg/s Due to liquid fraction	
23	ADS Stage-I second peak flow (3 trains)	344	1.61 kg/s	345	1.58 kg/s	SPES3-173 ST 0.46 kg/s, DT 1.13 kg/s SPES3-176 ST 0.46 kg/s; DT 1.12 kg/s Due to liquid fraction.	
24	ADS Stage-II start opening	253.85		243.63		LGMS-A AND LGMS-B low mass ADS Stage-II valve stroke 10 s.	
25	ADS Stage-II first peak flow (3 trains)	291	14.26 kg/s	272	15.88 kg/s	SPES3-173 ST 4.74 kg/s; DT 9.52 kg/s SPES3-176 ST 5.18 kg/s; DT 10.07 kg/s Due to liquid fraction	
26	ADS Stage-II second peak flow (3 trains)	344, 359	6.16 kg/s	345, 366	5.83 kg/s	SPES3-173 ST 1.71 kg/s; DT 4.45 kg/s SPES3-176 ST 1.59 kg/s; DT 4.24 kg/s Due to liquid fraction.	
27	EBT-A and B valve opening start	253.85		243.63		EBT valve stroke 15 s	
28	Core in saturation conditions	265		282			
29	Break flow peak (Containment side)	269		263		Due to EBT intervention	
30	High containment pressure signal	294.15	0.9 MPa	285.22	0.9 MPa		
31	EBT-RV connections uncovered	379, 316		263, 302		EBI-B, EBI-A	
32	ERT B empty (broken loop)	434		440 650		Fump milet uncovered (voidi 176-01 ~0)	
	Low DP RPV-Containment signal, PSS water flow to DW, RC flooding, LGMS and RC to DVI valve actuation						
34	Low DP RV-Containment	874.21	50e3 Pa	876.24	50e3 Pa		
35	LGMSA/B valve opening start	874.21		876.24		LM + low DP RV-cont. LGMS valve stroke 2 s.	
36	RC to DVI line valve opening	874.21		876.24		RC to DVI valve stroke 2 s.	
37	LGMS-B starts to inject into RC through DVI broken loop	1020		1030			
38	LGMS-A starts to inject into RV through DVI intact loop	1850		1850			
39	PCC actuation	2053.85		2043.63		LM-signal + 1800 s + P cont > 0.9 MPa	
40	Containment pressure peak	2055	15.9e5 Pa	2055	15.9e5 Pa		
41	DVV pressure lower than PSS pressure	2080		2060	-	evelie intertion write 4000 c	
42	PC lovel at DV/L elevation	2160		2150		cyclic injection until 4320 s	
43	FBT-A empty (intact loop)	2810		2340			
45	RC full of water	2710		2710			
46	Water starts to flow from RC to DVI-A	2830		2830	1		
47	Containment and RV pressure equalization	2050		2060			
48	QT fill-up starts from DW connection	23190		16010			
49	LGMS-B empty (broken loop)	33490		33490			
50	LGMS-A empty (intact loop)	27240		27240			
Long	Term conditions			-			
51	Containment and RPV pressure		0.8–0.9 MPa		0.8–0.9 MPa	PCC controlled	
52 53	PCC removed power		40.32 KVV		40.21 KVV	Average between 100000 s and 150000 s	
55		1			07.00 KVV	Average between 100000 5 and 100000 5	

Fig.8. 1 – SPES3-173 and SPES3-176 DVI line break flow (window)

Fig.8. 2 – SPES3-173 and SPES3-176 DVI line break flow (window)

Fig.8. 3 – SPES3-173 and SPES3-176 DVI line break flow

Fig.8. 4 – SPES3-173 and SPES3-176 EBT injection mass flow (window)

Fig.8. 5 – SPES3-173 and SPES3-176 LGMS injection mass flow (window)

Fig.8. 6 – SPES3-173 and SPES3-176 LGMS injection mass flow

Fig.8. 7 – SPES3-173 and SPES3-176 ADS Stage-I mass flow (window)

Fig.8. 8 - SPES3-173 and SPES3-176 ADS Stage-I mass flow (window)

Fig.8. 9 – SPES3-173 and SPES3-176 ADS Stage-II mass flow (window)

Fig.8. 10 – SPES3-173 and SPES3-176 ADS Stage-II mass flow (window)

Fig.8. 11 – SPES3-173 and SPES3-176 ADS Stage-II mass flow

Fig.8. 12 – SPES3-173 and SPES3-176 PRZ and DW pressures (window)

Fig.8. 13 – SPES3-173 and SPES3-176 PRZ and DW pressures (window)

Fig.8. 14 – SPES3-173 and SPES3-176 PRZ and DW pressures

Fig.8. 15 – SPES3-173 and SPES3-176 PRZ pressure (window)

Fig.8. 16 – SPES3-173 and SPES3-176 PRZ pressure (window)

Fig.8. 17 – SPES3-173 and SPES3-176 PRZ pressure

Fig.8. 18 – SPES3-173 and SPES3-176 DW pressure (window)

Fig.8. 19 – SPES3-173 and SPES3-176 DW pressure

Fig.8. 20 – SPES3-173 and SPES3-176 PCC power (window)

Fig.8. 21 – SPES3-173 and SPES3-176 PCC power

Fig.8. 22 - SPES3-173 and SPES3-176 PSS to DW mass flow (window)

Fig.8. 23 - SPES3-173 and SPES3-176 PSS to DW mass flow

Fig.8. 24 – SPES3-173 and SPES3-176 DW non-condensable quality (window)

Fig.8. 25 - SPES3-173 and SPES3-176 DW non-condensable quality

Fig.8. 26 – SPES3-173 and SPES3-176 PSS pressure (window)

Fig.8. 27 – SPES3-173 and SPES3-176 PSS pressure

Fig.8. 28 – SPES3-173 and SPES3-176 LGMS pressure (window)

Fig.8. 29 – SPES3-173 and SPES3-176 LGMS pressure

Fig.8. 30 – SPES3-173 and SPES3-176 PSS and DW pressure (window)

Fig.8. 31 – SPES3-173 and SPES3-176 PSS and DW pressure

Fig.8. 33 – SPES3-173 and SPES3-176 PSS vent pipe level

Fig.8. 35 – SPES3-173 and SPES3-176 PSS level

Fig.8. 36 – SPES3-173 and SPES3-176 PSS mass

Fig.8. 37 – SPES3-173 and SPES3-176 RC level (window)

Fig.8. 38 – SPES3-173 and SPES3-176 RC level

Fig.8. 39 – SPES3-173 and SPES3-176 DW level

Fig.8. 41 - SPES3-173 and SPES3-176 PSS temperature (window)

Fig.8. 42 – SPES3-173 and SPES3-176 PSS temperature

Fig.8. 43 – SPES3-173 and SPES3-176 core power (window)

Fig.8. 44 – SPES3-173 and SPES3-176 core power (window)

Fig.8. 45 – SPES3-173 and SPES3-176 core power

Fig.8. 46 – SPES3-173 and SPES3-176 SG power (window)

Fig.8. 47 – SPES3-173 and SPES3-176 SG power (window)

Fig.8. 49 – SPES3-173 and SPES3-176 SG ss outlet pressure (window)

Fig.8. 50 – SPES3-173 and SPES3-176 SG ss outlet pressure

Fig.8. 51 - SPES3-173 and SPES3-176 SGss level (window)

Fig.8. 52 – SPES3-173 and SPES3-176 SGss level

Fig.8. 53 – SPES3-173 and SPES3-176 PRZ level

Fig.8. 54 – SPES3-173 and SPES3-176 Pump velocity

Fig.8. 55 – SPES3-173 and SPES3-176 pump inlet liquid fraction

Fig.8. 58 – SPES3-173 and SPES3-176 RI-DC check valve mass flow (window)

Fig.8. 59 – SPES3-173 and SPES3-176 RI-DC check valve mass flow

Fig.8. 61 – SPES3-173 and SPES3-176 EBT mass

Fig.8. 62 – SPES3-173 and SPES3-176 EBT level

Fig.8. 63 – SPES3-173 and SPES3-176 EBT balance line mass flow (mass flow)

Fig.8. 64 – SPES3-173 and SPES3-176 Core liquid fraction (window)

Fig.8. 65 – SPES3-173 and SPES3-176 Core liquid fraction

Fig.8. 66 – SPES3-173 and SPES3-176 RC to DVI line mass flow

Fig.8. 68 – SPES3-173 and SPES3-176 DVI line mass flow

Fig.8. 70 – SPES3-173 and SPES3-176 Core inlet and outlet temperatures

Fig.8. 71 – SPES3-173 and SPES3-176 Core heater rod clad surface temperatures (normal rods)

Fig.8. 72 – SPES3-173 and SPES3-176 Core heater rod clad surface temperatures (normal rods)

Fig.8. 74 – SPES3-173 and SPES3-176 Core heater rod clad surface temperatures (hot rods)

Fig.8. 75 - SPES3-173 and SPES3-176 PCC mass flow

Fig.8. 77 – SPES3-173 and SPES3-176 PCC inlet and outlet temperature

Fig.8. 78 – SPES3-173 and SPES3-176 PCC liquid void fraction (window)

Fig.8. 79 – SPES3-173 and SPES3-176 PCC liquid void fraction

Fig.8. 81 – SPES3-173 and SPES3-176 LGMS mass

Fig.8. 82 – SPES3-173 and SPES3-176 LGMS and DVI pressure (window)

Fig.8. 83 – SPES3-173 and SPES3-176 LGMS and DVI pressure (window)

9. CONCLUSIONS

This document reports the results of the RELAP5 simulation of Design and Beyond Design Basis Events foreseen in the test matrix [1]. The DVI line DEG break is the analyzed transient, starting from 100% and 65% power with (DBE) and without (BDBE) EHRS availability.

A configuration of the facility, in terms of geometry and boundary conditions, was found suitable to simulate the postulated transients starting from 100% power and reduced power conditions.

Sensitivity analyses on PCC and ADS Stage-II intervention allowed to optimize the safety signal actuation sequence to cope with the most challenging transient of DVI line DEG break with all EHRS failure.

The comparison between full and reduced power transients, both for the DBE and BDBE DVI DEG break, showed a great similarity of results and finally led to affirm SPES3 reduced power simulations are fully representative of those at full power.

The present SPES3 nodalization for RELAP5 code will be the starting point for further simulations of transients included in the test matrix.

10. REFERENCES

- [1] G. D. Storrick: IRIS integral system test specification. Westinghouse Electric Company STD-AR-08-01 Rev.2, June 2010.
- [2]. M.D. Carelli, L.E. Conway, L. Oriani, B. Petrović, C.V. Lombardi, M.E. Ricotti, A.C.O. Barroso, J.M. Collado, L. Cinotti, N.E. Todreas, D. Grgić, M.M. Moraes, R.D. Boroughs, H. Ninokata, D.T. Ingersoll, F. Oriolo: The Design and Safety Features of the IRIS Reactor. Nuclear Engineering and Design 2004, 230, pp. 151-167.
- [3]. M. D. Carelli, B. Petrovic, L.E. Conway, L. Oriani, C.L. Kling, K. Miller, C.V. Lombardi, M.E. Ricotti, A.C.O. Barroso, J.M. Collado, L. Cinotti, S. Storai, F. Berra, N.E. Todreas, H. Ninokata, N. Cavlina, D. Grgic, F. Oriolo, M.M. Moraes, C. Frederico, F. Henning, W. Griffith, J. Love, D.T. Ingersoll, R. Wood, G. Alonso, N. Kodochigov, V. Polunichev, J. Augutis, R. Alzbutas, R.D. Boroughs, A. Naviglio, B. Panella: IRIS design overview and status update. ICONE13-50442 Beijing, China. May 16-20, 2005.
- [4] R. Ferri, C. Congiu: Conceptual design of the SPES3-IRIS facility. SIET 01 334 RT 07 Rev.1. Piacenza (I), September 5th, 2008
- [5] R. Ferri: Impianto SPES3 Progetto esecutivo: Elenco elaborati. SIET 01 488 ST 09 Rev.0. Piacenza (I), 25 Marzo 2009.
- [6] A. Achilli: Impianto SPES3 Progetto esecutivo: Dimensionamento e caratteristiche delle tubazioni. SIET 01 487 ST 09 Rev.0. Piacenza (I), 25 Marzo 2009.
- [7] C. Congiu, G. Tortora: Impianto SPES3 Design review del piping. SIET 01 662 RT 10 Rev. 0. Piacenza (I), 24 Settembre 2010.
- [8] S. Botti: Impianto SPES3 Progetto esecutivo: Specifica tecnica dei serbatoi. SIET 01 338 ST 07 Rev.0. Piacenza (I), 19 Marzo 2009.
- [9] C. Congiu: Impianto SPES3: Specifica tecnica per la fornitura di serbatoi e scambiatori di calore. SIET 01 338 ST 07 Rev.1. Piacenza (I), 24 Maggio 2011.
- [10] A. Achilli: Dossier di progettazione del canale centrale dell'impianto SPES3: Elenco documenti. SIET 01 556 ED 09 Rev.1. Piacenza (I), 29 Marzo 2010.
- [11] R. Ferri: Dossier di progettazione del canale centrale dell'impianto SPES3: Specifiche e relazioni. SIET 01 593 ED 10 Rev.0. Piacenza (I), 29 Marzo 2010.
- [12] R. Ferri: Dossier di progettazione del canale centrale dell'impianto SPES3: Disegni. SIET 01 594 ED 10 Rev.0. Piacenza (I), 29 Marzo 2010.
- [13] R. Ferri: Dossier di progettazione del canale centrale dell'impianto SPES3: Note e rapporti di calcolo. SIET 01 595 ED 10 Rev.0. Piacenza (I), 29 Marzo 2010.
- [14] RELAP5 code manual. NUREG/CR-5535/Rev1. Idaho National Engineering Laboratory (USA), May 2001.
- [15] R. Ferri, C. Congiu: SPES3-IRIS facility nodalization for RELAP5 Mod.3.3 code and steady state qualification. SIET 01 423 RT 08 Rev.0. Piacenza (I), January 30th, 2009.
- [16] R. Ferri, C. Congiu: SPES3-IRIS facility RELAP5 base case transient analyses for design support. SIET 01 489 RT 09 Rev.0. Piacenza (I), April 7th, 2009.
- [17] R. Ferri, C. Congiu: SPES3-IRIS facility RELAP5 sensitivity analyses of the Lower Break transient for design support. SIET 01 499 RT 09 Rev.0. Piacenza (I), June 11th, 2009.
- [18] R. Ferri: SPES3-IRIS facility RELAP5 sensitivity analyses on the containment system for design review. SIET 01 526 RT 09 Rev.0. Piacenza (I), August 31st, 2010.
- [19] R. Ferri, P. Meloni: Approach for a correct simulation of the SPES3-IRIS Emergency Heat Removal System with the RELAP5/MOD3 code. SIET 01 745 RT 11 Rev.0. Piacenza (I), May 31st, 2011.
- [20] L. Oriani, D. Grgic, T. Bajis, V. Segon, F. Berra: IRIS base input deck and steady state qualification for RELAP5 Mod.3.3. WEC STD-ES-04-19 Rev. 2.4, August 2004.
- [21] D. Grgic: Influence of Containment Modelling on IRIS Long Term Behaviour during Lower Break SBLOCA Reference Case. FER-ZVNE/SA/DA-TR05/09-0 (DRAFT).
- [22] e-mail May 25th, 2011 (10:56) from D. Grgic to R. Ferri. Subject: Re: ADS Stage-II.
- [23] e-mail May 25th, 2011 (13:21) from D. Grgic to R. Ferri. Subject: Re: ADS Stage-II.
- [24] A. Achilli, C. Congiu, R. Ferri, F. Bianchi, P. Meloni, D. Grgic, M. Dzodzo: SPES3 facility RELAP5 sensitivity analyses on the containment system for design review. Science and Technology of Nuclear Installations, Special Issue 2011 "Integral Test Facilities and Thermal-Hydraulic System Codes in Nuclear Safety Analysis" (under publication).
- [25] e-mail March 23rd, 2007 from M. Dzodzo to G. Storrick et. al. Subject: SPES3 DVI Line Diameter.

11. ATTACHMENTS

The RELAP5 input deck files and results are provided for all cases described in this document. The list of files and details are reported in Tab.11. 1.

Case	File	Notes
SPES3-160	spes3-157_3.i	Steady state input-deck (10000 s)
	restart-160.i	Restart of spes3-157_3 since 10000 s
	spes3-160a.xls	·
	spes3-160a_1.xls	
	spes3-160c.xls	
	spes3-160c.xls	Results
	spes3-160d.xls	
	spes3-160e.xls	
	spes3-160f.xls	
	spes3-160g.xls	
	spes3-160i.xls	
	spes3-160I.xls	
	restart-159.i	Restart of spes3-157_3 since 10000 s
	spes3-159a.xls	• —
	spes3-159a_1.xls	
	spes3-159c.xls	
	spes3-159c.xls	
SPES3-159	spes3-159d.xls	Booulto
	spes3-159e.xls	Results
	spes3-159f.xls	
	spes3-159g.xls	
	spes3-159i.xls	
	spes3-159I.xls	
	restart-162.i	Restart of spes3-157_3 since 10000 s
	spes3-162a.xls	
	spes3-162a_1.xls	
	spes3-162c.xls	
	spes3-162c.xls	
SPES3-162	spes3-162d.xls	Results
	spes3-162e.xls	
	spes3-162f.xls	
	spes3-162g.xls	
	spes3-162i.xls	
	spes3-162l.xls	
	restart-158.i	Restart of spes3-157_3 since 10000 s
	restart-158_2.i	Restart of restart-158 since 50000 s
	spes3-158a.xls	Results
	spes3-158a_1.xls	
	spes3-158c.xls	
00000 / 50	spes3-158c.xls	
SPES3-158	spes3-158d.xls	
	spes3-158e.xls	
	spes3-158f.xls	
	spes3-158g.xls	
	spes3-158i.xls	
	spes3-158l.xls	

Tab.11.1 – Files attached to document

Case	File	Notes
SPES3-163	restart-163.i	Restart of spes3-157_3 since 10000 s
	restart-163_2.i	Restart of restart-163 since 14100 s
	spes3-163a.xls	
	spes3-163a_1.xls	
	spes3-163c.xls	
	spes3-163c.xls	Results
	spes3-163d.xls	
	spes3-163e.xls	
	spes3-163f.xls	
	spes3-163g.xls	
	spess-1631.XIS	
	spes3-1631.xis	
	restart-164.i	Restart of spes3-157_3 since 10000 s
	spes3-164a.xls	
	spes3-164a_1.xls	
	spes3-164c.xls	
	spes3-164c.xls	
SPES3-164	spes3-164d.xls	Results
	spes3-164e.xls	
	spes3-164f.xls	
	spes3-164g.xls	
	spes3-164i.xls	
	spes3-164I.xis	
	restart-165.i	Restart of spes3-157_3 since 10000 s
	spes3-165a.xls	
	spes3-165a_1.xls	
	spes3-165c.xls	
	spes3-165c.xls	Results
SPES3-165	spes3-165d.xls	
	spes3-165e.xls	
	spes3-165f.xls	
	spes3-165g.xis	
	spes3-1651.XIS	
	spess-rool.xis	
	restart-166.i	Restart of spes3-157_3 since 10000 s
	spes3-166a.xls	
	spes3-166a_1.xls	
SPES3-166	spes3-166c.xls	
	spes3-166C.XIS	Results
	spes3-1660.XIS	
	spess-166e.xis	
	spess-1667 via	
	spess-1009.XIS	
	spess-1001.XIS	
	3001.001.00	

Case	File	Notes
SPES3-167	spes3-167.i	Steady state input-deck (10000 s) 100% power
SPES3-169	spes3-169.i	Steady state input-deck (10000 s) 65% power
	restart-172.i	Restart of spes3-167 since 10000 s
SPES3-172	spes3-172a.xls spes3-172a_1.xls spes3-172c.xls spes3-172c.xls spes3-172d.xls spes3-172e.xls spes3-172f.xls spes3-172f.xls spes3-172i.xls spes3-172l.xls	Results
	restart-172.i	Restart of spes3-169 since 10000 s
SPES3-175	spes3-175a.xls spes3-175a_1.xls spes3-175c.xls spes3-175c.xls spes3-175d.xls spes3-175e.xls spes3-175f.xls spes3-175f.xls spes3-175j.xls spes3-175j.xls	Results
	restart-173.i	Restart of spes3-167 since 10000 s
SPES3-173	spes3-173a.xls spes3-173a_1.xls spes3-173c.xls spes3-173c.xls spes3-173d.xls spes3-173d.xls spes3-173f.xls spes3-173f.xls spes3-173f.xls spes3-173f.xls	Results
	restart-176.i	Restart of spes3-169 since 10000 s
SPES3-176	spes3-176a.xls spes3-176a_1.xls spes3-176c.xls spes3-176c.xls spes3-176d.xls spes3-176e.xls spes3-176f.xls spes3-176f.xls spes3-176i.xls spes3-176i.xls	Results