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ABSTRACT

The present report comes further to a previous one on the subject (A. Caronia et al ., Modellazione

numerica del campo di moto e dello scambio termico in condotti elicoidali, Rapporto CIRTEN-UNIPA

RL-1202/2008), which should be regarded as Part 1 of a broader study.

Here, time-dependent numerical simulation results are presented for the flow with heat transfer of a

constant property fluid with Pr=1 in toroidal pipes. Two curvatures (=0.1 and 0.3) were considered.

The friction Reynolds number was made to vary between 220 and 525, yielding flow Reynolds

numbers (based on bulk velocity and pipe diameter) between 4531 and 14710 and Dean numbers

between 1625 and 7219. A finite volume method was used and the full torus was discretized by

computational grids having 3.3106 nodes for the higher curvature (=0.3) and 11.4106 nodes for

the smaller one (=0.1). According to the Reynolds number, different flow regimes were predicted.

For Re<5200, the flow was stationary for both curvatures. For 5200Re6000, the flow was

periodic for =0.3 and quasi-periodic for =0.1; spectra exhibited isolated frequencies associated with

the existence of travelling waves which were also identified and characterized by flow visualization.

Proper Orthogonal Decomposition (POD) was applied to the results in order to identify different

modes. For Re>6000, both curvatures exhibited chaotic flow which became fully turbulent, with a

continuous frequency spectrum, for Re>10 000. In the whole range of conditions examined, heat

transfer results were in good agreement with the Reynolds analogy.

Although the conditions explored in the present study are different from those expected for helical

pipe steam generators under normal operation, the present results are a useful complement to more

industrially-oriented studies like those reported in the previous report. A full understanding of a

component’s behaviour under its prescribed nominal operating conditions may come only from

considering the influence of parameters such as flow rate, curvature and torsion in a sufficiently broad

interval. Moreover, at the higher end of the present Reynolds number range (Re14,000) the present

simulations aim to set high-quality reference results against which to validate RANS simulations,

while in the transitional range (Re4,000 - 6,000) they are aimed at clarifying the mechanisms by

which low-Reynolds number, steady and laminar solutions lose stability and chaotic (turbulent) flow

is eventually established, thus assisting the designers to interpret experimental friction and heat

transfer results such as those reported by Cioncolini and Santini19. The issue of the applicability of

zero-pitch results to the case of finite pitch (helical coils) will be better discussed in the Conclusions.
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NOMENCLATURE

a tube radius [m]

ai(t) time-dependent coefficients of POD

c coil radius [m]; dimensionless celerity, ĉ / âvu

ĉ celerity of a travelling wave [m s1]

De Dean number, Re 

f Darcy-Weisbach friction coefficient; dimensionless frequency, f̂ / 0̂f

f̂ frequency [s1]

0̂f frequency scale, (De ) / (2a2) [s1]

K dimensionless turbulent kinetic energy, K̂ / 2
âvu

K̂ turbulent kinetic energy [m2 s2]

k* number of wavelengths contained in the torus

KDean Dean parameter, 2 7 2 4 4( ) /(8 ) (1/ 2)Resp a c  

L dimensionless wavelength, L̂ /a

L̂ wavelength [m]

N number of control volumes (grid cells)

Nu Nusselt number, 2 ( )w b wq a T T 

Pr Prandtl number,cp /

ps driving pressure gradient [Pa m1]

qw wall heat flux [W m-2]

Re bulk Reynolds number, uav 2a/

Re friction Reynolds number, ûa/

r̂ radial coordinate from cross section centre [m]

r dimensionless radial coordinate from cross section centre, r̂ /a

p̂r radial coordinate from torus centre [m]
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rp dimensionless radial coordinate from torus centre,
p̂r /a

T̂ temperature [K]

T dimensionless temperature, ˆ ˆ ˆ ˆ( ) /( )w b wT T T T 

us dimensionless axial velocity, ŝu / âvu

ŝu axial velocity [m s1]

âvu average velocity [m s1]

û friction velocity [m s-1]

z dimensionless vertical coordinate

Greek symbols

i eigenvalues of POD

i cumulative fraction of variance in POD, /i i 

 dimensionless curvature, a/c

 dissipation of turbulence energy [m2 s3]

K Kolmogorov length scale [m]

 kinematic viscosity [m2 s-1]

 density [kg m-3]

 thermal conductivity [W m-1 K-1]

 azimuthal angle [radians]

w wall shear stress [Pa]

0 equilibrium wall shear stress , (a/2)ps [Pa]

i(x,y) spatial eigenfunctions of POD

0 reference angular velocity, ˆ2 /avu a  [s1]

2 dimensionless angular celerity of a travelling wave, 2̂ /0

2̂ angular celerity of a travelling wave [s1]
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2,fl dimensionless angular velocity of the fluid, 2 ,ˆ fl /0

2 ,ˆ fl angular velocity of the fluid [s1]

Subscripts

AX axial

av average

b bulk

cr critical (for transition to turbulence)

RAD radial

RMS root mean square

s straight tube

sec secondary flow

w wall

 azimuthal

I, II different modes (in POD)

Superscripts

MIN minimum

MAX maximum
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1. INTRODUCTION: FLOW AND HEAT TRANSFER IN CURVED

PIPES

1.1. Fundamental studies

Although curved pipes are used in a wide range of applications, flow in curved pipes is relatively

less well known than that in straight ducts. Due to the imbalance between inertial and centrifugal

forces, a secondary motion develops in the cross section of a curved pipe. The earliest qualitative

observations on the complexity involved can be found in Boussinesq 1; the author, in his

comprehensive analytical work which includes several prototypical flow cases, shows a clear insight

of the correct leading mechanisms of the secondary flow, and predicts the presence of two symmetric

secondary vortices in a curved duct. Thomson2 noticed the erosion effects on the outer side of river

bends due to the secondary circulation. Williams et al.3 observed that the location of the maximum

axial velocity is shifted towards the outer wall of a curved pipe, and Grindley and Gibson4 observed

the effect of curvature on the fluid flow during experiments on the viscosity of air. Later, Eustice5

showed the existence of a secondary flow by injecting ink into water. Einstein6, in a famous short

work, revealed the physical mechanisms driving secondary flows in river bends and the formation of

meanders.

A more quantitative approach to the problem was proposed by Dean7, who wrote the Navier-

Stokes equations in a toroidal frame of reference, and, under the hypothesis of small curvature and

laminar stationary flow, derived a solution for the stream function of the secondary motion and for the

main axial velocity, both expanded in power series, whose the first term corresponded to Poiseuille

flow. From his analysis a new governing parameter emerged: the Dean number De Re  which

couples together inertial and centrifugal effects. Here,is the non-dimensional curvature a/c, where a

is the radius of the section and c is the radius of curvature; ˆRe 2 /avu a  and âvu is the average axial

velocity in the pipe. Here and in the following, dimensioned flow quantities will be indicated by a

caret (^) while dimensionless quantities will be indicated by symbols with no caret. Dean showed that,

in curved pipes, two symmetric secondary cells develop with a characteristic velocity scale

seĉ âvu u  . This scale for the secondary motion emerges from a simple balance between
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centrifugal and inertial force in the cross section; by applying the kinetic energy theorem, the work

done by the mean centrifugal force 2̂ /avu c equals the kinetic energy of the secondary flow:

2
2
sec sec

ˆ
ˆ ˆ ˆav

av
u a u u u
c

   (1)

The maximum of the axial velocity shifts towards the outer wall, and the unifying governing

parameter becomes the Dean number. It is possible to derive, from the Dean solution, an analytical

expression for the ratio of flow rates in slightly curved pipes and straight pipes under the same

pressure gradient. This ratio is expressed in terms of a power series expansion of the Dean number

(see Van Dyke8), and it is less than 1 in the range of validity of this latter. This shows that the mass

flow rate decreases with respect to straight pipes.

McConalogue and Srivastata9 obtained two-dimensional stationary semi-analytical solutions by

expanding the flow variables in Taylor series for the azimuthal angle and then integrating numerically

the resulting ordinary differential equations in the radial coordinate. They showed that the flow field is

not self-similar, but its shape changes with the Dean number: the maximum axial velocity shifts

towards the outer side of the pipe, and the centre of the secondary circulation towards the inner side,

as the Dean number increases.

Other analytical asymptotic studies based on power series expansions have been presented in the

last decades. Larrain and Bonilla10 studied the asymptotic case of creeping fully developed flow in

curved pipes at low curvatures. In creeping motion, when the Reynolds number is negligibly small,

there is no secondary motion, and a purely parallel flow develops. The authors found an analytical

solution for the axial velocity in power series of curvature. Their solution shows that, under this

condition, the mass flow rate in slightly curved pipes actually increases with respect to a straight pipe

under the same pressure gradient. This is because, at these low Reynolds numbers, against the

common intuition, the axial velocity maximum shifts towards the inner side of the pipe. A thorough

literature review of flow in curved pipes has been presented by Berger et al.11.

Fig. 1 shows a schematic representation of a closed torus; the torus radius, i.e. the radius of

curvature, will be indicated with c, while the cross-section radius with a. The inner side will be

indicated with I and the outer side with O; the cross-section azimuthal angle will be measured in a
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clockwise direction looking from upstream, with(I)=-/2, (O)=/2.

A very important engineering application of curved pipes are helical coils, which are used as heat

exchangers as well as steam generators in power plant because they are compact and easily

accommodate thermal expansion. Several theoretical fundamental studies appeared in the last decades

on this geometry (see for example Germano12, Chen and Yan13, Jinsuo and Benzhao14); these works

revealed that coil torsion, which characterizes a helical pipe with respect to a toroidal one, has only a

higher order effect on flow features, and moderate torsion do not significantly affect global quantities.

1.2. Friction

Pressure drop in slightly curved pipes was first investigated analytically in the creeping region

(Larrain and Bonilla10), and through the Dean solution (e.g. Van Dyke8, McConalogue and Srivastata9)

in the laminar range. The extended Stokes series (ESS) method, developed by Van Dyke 8 on the basis

of the Dean solution, first suggested the friction factor ratio between curved and straight pipes to

behave as 1/4De , while boundary layer techniques (Mori and Nakayama15) and numerical techniques

(Collins and Dennis16) suggested a dependence upon De1/2 for high Dean numbers in the laminar

range. The discrepancy was addressed by Jayanti and Hewitt17 and was explained by the relevant

number of terms in the ESS method needed to achieve accurate convergence.

Experimental investigations in a wide range of curvatures and Reynolds numbers were presented

by Ito18, who derived accurate correlations for the Darcy-Weisbach friction factor f (four times the

Fanning coefficient) in the laminar and turbulent ranges:

5.73
10

64 21.5 De
Re (1.56 log De)

f  


(Laminar flow) (2)

0.250.304 Re 0.029f    (Turbulent flow) (3)

valid for 51040.2. Eq. (2) shows that for laminar flow the friction ratio can not be accurately

expressed by simple power law behaviour, like in Van Dyke8 and Collins and Dennis16.

Eqs. (2) and (3) have recently been confirmed by the extensive experimental work of Cioncolini

and Santini19 in a wide range of curvatures (2.71030.143) and Reynolds numbers (Re=103-7104).

The authors found a good agreement with Ito’s correlations both in the laminar and in the fully
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turbulent range.

1.3. Transition to turbulence

As regards transition to turbulence, Cioncolini and Santini19, for relatively high values of the

curvature (0.04160.143), observed a smooth transition from laminar to turbulent flow; the friction

coefficient decreased monotonically with Re and transition to turbulence was indicated only by a

change in slope of the f-Re curve. Therefore for high curvatures it is not possible to derive a strict

transition criterion based on the friction factor behaviour. Nevertheless, an indicative value of the

transitional Reynolds number can be provided by the intersection of fully laminar and fully turbulent

asymptotic laws. On the basis of their experimental data, the authors proposed the following

correlation for the critical Reynolds number:

0.47Re 30000cr   (4)

in the range 0.04160.143. For lower curvatures (<0.0416), the authors observed that in the

proximity of transition the f-Re curves exhibited a local minimum followed by an inflection point and

by a local maximum; also in this range of they proposed transition correlations, more complex than

Eq. (4) and based on identifying transition with the local minimum of f, i.e. with the first departure

from the laminar behaviour. Similarly, Ito18 gives an upper bound for the applicability of the laminar

flow friction correlation (2), which can be identified with a transition criterion:

 0.6Re 2000 1 13.2cr   (5)

in the range 51040.2.

Srinivasan et al.20 studied the transition to turbulence on the basis of friction factor measurements,

and proposed a correlation for the critical Reynolds number in curved pipes:

 Re 2100 1 12cr   (6)

Eqs. (4) through (6) show that the effect of curvature is to increase Recr with respect to straight

pipes. For typical values of the curvature, Eqs. (4) through (6) yield similar values of Recr; for

example, they predict Recr =10 165, 8631 and 10 069, respectively, for =0.1, and Recr = 17 036, 14

820 and 15 902, respectively, for =0.3. Note, however, that the latter case is outside the range of
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validity of Eqs.(4) and (5); note also that only Eqs. (5) and (6) exhibit a correct asymptotic behaviour

for=0 (straight ducts).

A number of two-dimensional studies on transition and stability exist on curved ducts of circular

(Dennis and Ng21) and square (Wang and Yang22, Daskopoulos and Lenhoff 23) cross-section. These

works study by perturbation methods the amplification of disturbances in laminar stationary solutions

under the assumption that there is no variation of any quantity along the duct axis. These studies show

that four-vortex modes can develop as a second family of solutions at sufficiently high Dean numbers;

this four-vortex flow is stable to symmetric disturbances but unstable to asymmetric ones (Yanase et

al.24). In this latter work, it is shown that, for circular cross section, the four-cell solution in curved

pipes exists only in an open region of the Re-plane and is impossible for Re<252. For example, the

critical Reynolds number for the appearance of a second family four-vortex solution is

4Re 380C  for =0.1 and 4Re 240C  for =0.3. These studies have a purely theoretical interest

because the perturbation modes found are not the actual three-dimensional modes which develop in a

3-D configuration (e.g. the travelling wave instability modes discussed later on in the present study).

As a terminology issue, it is perhaps worth noting that in most works on square cross-section channels

(Wang and Yang22, Daskopoulos and Lenhoff 23 ), it is common to call ‘Ekman vortices’ the first

vortices which develop from the imbalance of centrifugal and inertial terms, whose equivalents in

circular pipes are the original ‘Dean vortices’ found by Dean7 in 1927 and before by Boussinesq1. To

increase the confusion in vocabulary, the same works use ‘Dean vortices’ for the secondary vortices

which develop at higher Dean numbers in four-cells or many-cells solutions.

1.4. Heat Transfer

As regards heat transfer, here the classical definition of the Nusselt number for the inner (tube) side

will be used:

 
2̂

ˆ ˆ
w

b w

q a
Nu

T T



(7)

where ŵq is the wall heat flux, is the fluid thermal conductivity, b̂T is the bulk fluid temperature and
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ŵT is the wall temperature. In a previous work (Di Piazza and Ciofalo25), a systematic computational

study of heat transfer in curved pipes was carried out. The study showed that an excellent reduction of

the results data set for the Nusselt number can be obtained by applying the Pethukov momentum -heat

transfer analogy (Pethukov26) to curved pipes:

 
 2 /3

Pr Re / 8
Nu

1.07 12.7 /8 Pr 1
f

f


  
(8)

using Ito’s friction factor correlations, Eqs. (2) and (3), for f. It was shown that this approach is by far

superior to any power–law dependence. For Pr1, Eq. (8) approximately reduces to the Reynolds

analogy Nu=Re (f/8). Keeping in mind Eqs. (2) and (3), it emerges clearly that in the laminar range,

for Pr1, heat transfer is fully governed by the Dean number, i.e. Nu=Nu(De). In the turbulent range,

introducing Eq. (3) into the analogy (8) for Pr1 yields sNu Nu Dec  , where Nus is the Nusselt

number in a straight pipe at the same Reynolds number, and cis a constant. Ref. (Di Piazza and

Ciofalo25) contains also a thorough review of the literature on heat transfer in curved pipes.

1.5. Previous CFD studies and experimental works

Numerical simulations of incompressible turbulent flow in helical and curved pipes are presented

by Friedrich and co-workers (Hüttl and Friedrich27, Friedrich et al.28, Hüttl et al.29). The authors

numerically solve the Navier-Stokes equations written in orthogonal helical coordinates (Germano12)

and compare toroidal and helical pipe results for Re5600 (Re230) and =0.1. Unfortunately, the

authors present statistics of the flow (Reynolds stress distributions in the cross section) for transitional

cases which are not turbulent, but rather time-dependent laminar flows. In fact, their test case ‘DT’ is

basically coincident in curvature and Re with our case D1P analyzed in the following as a quasi-

periodic laminar flow. Thus, the statistics presented in Hüttl and Friedrich27 and Friedrich et al.28 can

indeed be formally defined and computed but should not be interpreted as proper Reynolds stresses.

Under similar conditions (Re5000-6000, 5.510-2) a travelling wave instability in helical pipes

was experimentally evidenced by Webster and Humphrey30. As recognized by the authors, the

presence of travelling waves makes the length of curved pipe chosen for the experiments a crucial
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parameter, because inlet-outlet conditions will inevitably affect wave length and propagation. For

similar reasons, also the CFD simulations documented in Hüttl and Friedrich27 and Friedrich et al.28

would be inadequate to resolve travelling waves, since only a small portion of pipe, 7.5 diameters

long, was modelled with periodic boundary conditions and in fact travelling waves are not mentioned

in these latter papers.

The possible presence of travelling waves motivated our choice to study via numerical simulation

the ideal case of a closed torus, where boundary conditions are not necessary in the axial direction

because the domain is circularly closed, and the travelling wave instability can properly develop with

a physically consistent wavelength. In the present paper, results for flow in a torus are presented for

two values of curvature, i.e. =0.1, 0.3 and three values of the Reynolds number, in the laminar

(Re<5200), transitional (Re5200-6000) and chaotic range (Re>6000).

2. MODELS AND METHODS

2.1. CFD Numerical methods

The geometry simulated was a torus (Fig. 1) with no slip conditions at the wall. A constant source

term ps in the axial momentum equation was adopted as the driving force which balances pressure

drop. This is equivalent to imposing the equilibrium mean shear stress 0̂ ( / 2) sa p and the

corresponding friction velocity 0ˆ /̂u   . A friction Reynolds number ˆRe /u a   can be

defined on the basis of this latter. As thermal boundary condition a constant wall temperature ŵT was

imposed. In order to maintain a finite temperature difference between fluid and walls, a local energy

source term was applied to compensate, at each time step, the integrated wall heat flux. Due to the

definition of the Nusselt number, Eq. (7), based on the bulk temperature b̂T , this local source term is

proportional to the local specific mass flow rate in the main flow direction. With this treatment, the

fluid energy content, and thus the bulk temperature remain constant during a simulation, and

statistically fully developed conditions are obtained. The Prandtl number was fixed to 1 in all cases.

The computational method involved a finite volume technique, a coupled solver, a second-order
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time-marching algorithm, and a multi-grid approach. The central interpolation scheme was used for

the advection terms.

2.2. Computational mesh

The mesh is multi-block structured, and it is identified by the parameters NRAD and Nas shown in

Fig.2. In the present work the values used are NRAD=46, N=24 and a geometric refinement is used at

the wall with a maximum/minimum cell ratio of 5 in the radial direction. With these choices, the

cross section is resolved by 11136 cells, and the first point of the grid close to the wall is well within

the viscous sublayer (y+2.5) at the highest Reynolds number (Re14 000) simulated. In the axial

direction the domain is discretized by NAX=1024 cells for =0.1 and NAX=300 cells for =0.3; this leads

to an overall number of cells of 11.4106 for=0.1 and 3.34106 for =0.3.

The Kolmogorov length scale 3 1/ 4( / )K    can be computed for the present configuration

as  1/ 4/ Re ReK a    ; for a resolution of K, the minimum number of cells in half radius can be

computed as 1/ 4( / 2) / Re Re / 2MIN
RAD KN a     and the minimu number of cells in the axial

direction as 1/ 4Re Re /MIN
AXN    . In the most critical case (Re14 000), these latter formulae

yield 120MIN
RADN  and 7540MIN

AXN  (=0.1) or 2513 (=0.3). Therefore, the present mesh provides a

resolution of 2.6K in the radial direction and 78 K in the axial direction. Taking account of near-

wall grid refinement, these values are of the same order as those usually adopted in Direct Numerical

Simulation of turbulence (Kim et al.31). The time step was set at most equal to 0.8(/u
2) for all cases;

this time discretization is sufficient to capture both turbulent variations (Choi and Moin32) and the

dynamic features of laminar time-dependent flows. It should be stressed that in the present work

emphasis is placed on these latter rather than on fully turbulent flows. For the present axial grid, the

above criterion is basically equivalent to that of a Courant number less than 1 in all cases.

Zero velocity and uniform temperature initial conditions were set for all the numerical

simulations. Instabilities, if present, were spontaneously triggered by small numerical fluctuations due

to truncation and round-off errors.
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2.3. Scales and frames of reference

Although the friction velocity ûis the a-priori known quantity (due to the source term imposed in

the momentum equation), the average velocity âvu was chosen as the velocity scale. This is because

for any curvature the velocity of the Dean vortex scales with âvu , as shown by Eq. (1).

The corresponding frequency scale of the Dean circulation can be computed as:

0 2

ˆ Deˆ
2

avu
f

a a
 

   (9)

which reflects the number of turns of the Dean vortex per unit time. This frequency scale can be

viewed also as an amplification, by a factor proportional to the Dean number, of the molecular

momentum diffusion frequency 2/ a . The time scale follows as 0 0̂
ˆ 1/t f . The scale for angular

velocity is naturally 0 0̂ˆ 2 f  .

The non-dimensional temperature T was computed as ˆ ˆ ˆ ˆ( ) /( )w b wT T T T  ; the turbulence energy

was scaled by 2̂
avu , while pressure and wall shear stress were scaled by 2̂

avu . All coordinates were

scaled by the cross section radius a; the non-dimensional radial coordinate measured from the torus

axis is /̂p pr r a , while the non-dimensional local radial coordinate, measured from the centre of the

cross section, is /̂r r a . Assuming a cylindrical general frame of reference (rp, , z) for the torus,

and a local 2-D polar frame of reference (r, ) for the cross section, one has sin( ) 1/pr r    and

cos( )z r  . The local Nusselt number Nu and non-dimensional wall shear stress w are computed

as:

Nu( ) 2
w

dT
dr

 (10)

2
( )

Rew
w

du
dr

   (11)
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2.4. Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) technique was used to post-process the raw

simulation results in the generic cross section. This technique was introduced in the study of turbulent

flows by Lumley33 and a complete description is given by Berkooz, Holmes and Lumley34; it is also

used with other names (Principal Component Analysis, Karhunen-Loève Transform) in several

disparate research fields like meteorology and psychology. It is based on a two-point correlation and is

able to capture the highest possible variance of the system with the least possible number of

orthogonal eigenfunctions.

For a 2-D time-dependent problem, eigenvalues i and eigenfunctions i(x,y) are computed from

the time-covariance matrix built with the raw data, which leads to the following decomposition:

1

( , ) ( ) ( , )
N

i i
i

u u x y a t x y


   (12)

where ( , )u x y  is the time-averaged field of a generic quantity u while the generic term

ai(t)i(x,y) is the product of the i-th time-dependent coefficient by the i-th spatial eigenfunction. This

decomposition does not postulate a particular shape for i(x,y), but finds the ‘natural’ spatial

eigenfunctions of the system in a specific flow condition; the modes which posses the highest variance

(energy in the case of a velocity field) can be captured and separated from one another. In this way,

the time-dependent field can be filtered using only the first, highest-variance, N eigenfunctions. The

quantity /i i i    represents the fraction of variance described by the i-th eigenfunction.

An in-house computer program was developed to perform numerically the Proper Orthogonal

Decomposition on arbitrary data sets. The software is able to treat 2-D or 3-D fields and extracts all

the eigenvalues and eigenfunctions of the two-point correlation matrix. The time-dependent

coefficients ai(t) are computed by projecting the original data set into the new eigenfunctions basis.

2.5. Range of parameters explored

In the present study, a systematic investigation in the range Re=220-525 was carried out for the

curvatures =0.1, 0.3. The range was investigated by letting Revary in steps, and the following

conclusions were derived on the different regimes:
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 The transition is governed by the flow Reynolds number Re;

 Laminar stationary solutions were encountered for Re<5200 for both curvatures;

 Periodic or quasi-periodic flows with single spectral peaks, associated with travelling

waves, were found in the range5200<Re<6000;

 For Re>6000 chaotic phenomena progressively started while the Reynolds number

increased; a continuous fluctuation spectrum, characterizing a fully turbulent flow,

was obtained for Re>10 000.

Table 1 summarizes the six selected test cases presented in this paper. They cover two values of

the curvature, i.e. =0.1 and 0.3, denoted by D1 and D3, and three different regimes, i.e. stationary

laminar, transitional (periodic or quasi-periodic) and chaotic (turbulent), denoted by L, P and C,

respectively. Both Reynolds numbers Re and Re are provided in Table 1 for the sake of

completeness; the friction factor can be computed simply by f=32(Re/Re)2, and its values predicted

by Ito’s resistance correlations (2) and (3) are also reported. For future comparison with other works,

the Dean number De, as defined in section I, and the Dean number KDean originally introduced by

Dean7, are also reported. The latter form of the Dean number is based on the pressure gradient, and

can be related to the other non-dimensional parameters as 2 7 2 4 4
DeanK ( ) /(8 ) (1/ 2)Resp a c   

(Berger et al.11).

3. STATIONARY LAMINAR CASES (D1L-D3L)

The main reason to discuss stationary laminar results is to establish a basis of comparison for the

subsequent unsteady solutions presented in section IV. Of course, since these solutions are strictly 2-

D, a fully 3-D simulation would not be necessary, but this can be stated only by hindsight.

The results presented here are for Re=5139, =0.1 (case D1L) and Re=4531, =0.3 (case D3L).

The corresponding Darcy-Weisbach friction factor and mean Nusselt number are summarized in Table

1; the higher values found in D3L with respect to D1L are justified by the higher Dean number, and

thus the more intense secondary circulation at higher curvatures.

It has been observed that in the present curved-pipe geometry, stationary laminar solutions are not
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self similar for different Re and given (McConalogue and Srivastata9), as confirmed by the fact that

the f/fs ratio, Eq. (2), varies with De Re  and thus varies with Re for any given . This is

equivalent to saying that the pressure drop in curved pipes is not proportional to the flow rate even in

steady laminar flow.

Fig. 3 shows the non-dimensional solutions in the cross-section for D3L (top row) and D1L

(bottom row). The graphs in the first column (a, d) report contours of the axial velocity us, those in the

second column (b, e) contours of the temperature T. The graphs in the third column report vector plots

of the secondary motion in their top half, with the reference unitary vector drawn, and corresponding

streamlines in the bottom half. It can be observed that the Dean vortex is smaller but stronger for D3L

with respect to D1L, with the iso-lines more stretched in the near-wall region by the secondary flow;

for each curvature, temperature and velocity fields appear similar in the Dean vortex region and in the

secondary wall boundary layer.

Fig. 4(a) shows profiles of axial velocity us and temperature T along the equatorial midplane I-0

for D3L and D1L. Once made dimensionless, all profiles collapse on a similar roughly linear

behaviour characterized by a slope 3/4. It should be observed that in a rigid-body rotation the

dimensionless slope would be O(), i.e. much smaller. Increasing the curvature results only in a

moderate increase of the peak us and T near the outer wall and in a moderate decrease of us and T near

the inner wall. The behaviour of us in the core region can be related to that of the radial velocity urp

(referred to the torus radius) by an inviscid balance between inertial forces and pressure drop, which

can be approximately written as:

2ˆ ˆ/ (2 / ) ( / )s p rp avu r u u u    (13)

This balance expresses the physical elementary mechanism that shifts the axial velocity maximum

towards the outer wall.

Fig. 4(b) shows the radial velocity urp along the I-0 line. In the core region this quantity oscillates

around 0.015, yielding / 1s pu r   which is of the correct order; the relative maxima and minima of

urp in Fig. 4(b) correspond to the minima and maxima in the slope of the velocity profiles in Fig. 4(a),

as predicted by Eq. (13).
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4. PERIODIC AND QUASI-PERIODIC CASES (D1P-D3P)

This section will be devoted to a thorough analysis of cases D1P, D3P of Table 1. In a closed

torus, the Dean cells form closed symmetric vortex tubes in the laminar-stationary range. As the

Reynolds number increases, these vortex tubes become unstable and varicose modes develop; this

yields a travelling wave instability moving inside the toroidal waveguide. Being Pr=1 for the present

cases, heat and momentum have the same molecular diffusivity. Therefore, the temperature T can be

regarded as a tracer to evidence the flow structures.

4.1. Curvature =0.3 (case D3P)

a) Flow features

For the higher curvature, a Hopf bifurcation with the onset of periodic flow and simultaneous

break-up of the symmetry between the upper and lower halves of the torus occurs for Re>5200.

Examples of instantaneous temperature fields in the generic cross section, computed for Re=5562,

case D3P, are shown in Fig. 5; (a) and (b) represent instants of time separated by half a period. In the

generic cross section, the Dean vortices located in the upper part and in the lower part vary

periodically in intensity, coupled in phase opposition: when the upper vortex grows, the lower vortex

decreases in intensity, and viceversa . This corresponds to a break-up of instantaneous symmetry and

to a periodic single-mode motion. At any instant, the 3-D flow field is spatially periodic along the

torus; it moves rigidly in the flow direction along the toroidal channel as a travelling wave whose

angular celerity differs from the average convective angular velocity of the fluid. This can be regarded

as a travelling varicose instability of each Dean vortex tube, as anticipated above. The temperature

field in a plane parallel to the torus midplane, and the vertical velocity field in the midplane are shown

in Figs. 6 (a) and (b) respectively; the scales were chosen to evidence the trace of the spatially periodic

travelling structure with k*=7 waves in the whole torus. The non-dimensional angular celerity (scaled

by 0 ˆ2 /avu a   ) is 2=0.0523. The non-dimensional frequency associated with the transit of

one of the periodic cells in Fig. 6 can be computed as f1=k*2=0.365. This frequency would appear in
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any time-dependent quantity at a fixed point. If the wave celerity coincided with the average axial

velocity of the fluid, its non-dimensional frequency would be 2 / 2 0.0872fl    ; therefore in

this case the wave is slower than the fluid in the average, being 2 2 fl   . As a consequence, the

wave will lead the fluid only in low speed regions (e.g., near the walls) but will lag behind the fluid

over most of the domain.

b) Analysis by Proper Orthogonal Decomposition

Following Eq.(12), the time dependent field can be decomposed via POD into the time-averaged

field and a series of spatial eigenfunctions i(x,y) times time-dependent coefficients ai(t). Applying

POD to the two-dimensional axial velocity field in a generic cross section of the torus, the periodic

mode emerges clearly. In fact, the first two eigenfunctions resulting from the analysis capture about

96% of the energy, as shown in Table 2, where the first 6 eigenvalues are reported; the residual

portion can be interpreted as numerical noise. Two is the minimum number of terms required to

describe the periodic change in shape that represents the cross sectional trace of a coherent structure

travelling through the domain; the two terms together make up a single mode. This is an important

property which seems to have been overlooked in the POD literature.

Fig. 7 shows, from (a) to (c), the time-averaged axial velocity field and the first two

eigenfunctions 1,2, while the corresponding time-dependent coefficients a1(t), a2(t) are shown for

some periods in Fig. 8(a). The time-averaged cross-section field, Fig. 7(a), is similar to that discussed

above for the same and stationary solutions, Fig. 3(a). The eigenfunctions spatially localize

fluctuations, which are of the order of 0.06 in dimensionless amplitude, and identify the alternate

pulsation of the Dean vortices; no fluctuations exist in the outer region, coherently with what was

observed in some experimental work (Webster and Humphrey30). Each eigenfunction, and thus the

global fluctuation field, is anti-symmetric with respect to the section midline I-O, i.e.

( , ) ( , )i p i pr z r z   . The Fourier spectra of a1(t), a2(t) are shown in Fig. 8(b); there is a clear

spectral peak at f10.36, as it was previously predicted by the kinematic analysis of the travelling

structure; due to the almost single-peak spectrum, the coefficients a1(t), a2(t) in this special case are
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almost perfectly sinusoidal functions sharing the same period and shifted in phase with respect to each

other. This corresponds to the fact that the varicose travelling modes in the upper and lower Dean

vortex tubes are spatially shifted by half wavelength. As a consequence, the overall flow field

possesses the semi-periodicity property with respect to the vertical direction z and time, i.e., for any

quantity , ( , , ) ( , , / 2)p pr z t r z t     where the sign + is for , ,s ru u T while the sign – is for

,zu uand vorticity, and is the dimensionless time period.

A phase-space projection of the system’s trajectory is shown in Fig. 9, where axial velocities at

two different points of the domain are plotted one against the other; the graph shows clearly that the

system’s attractor appears almost exactly a limit cycle.

4.2. Curvature =0.1 (case D1P)

a) Flow features

Also for the lower curvature examined in this paper, i.e. =0.1, a transition from steady to time-

dependent flow occurs as Re>5200. However, in this case the instantaneous distributions of any

quantity over the generic cross section exhibit symmetry with respect to the torus equatorial midplane,

as shown in Fig. 10(a) and (b) which reports temperature at different instants of time for case D1P

(Re=5638).

The transition results in a more complex system of travelling waves than in the higher curvature

case D3P. The main axial travelling wave is present again, as in D3P. The trace of the three

dimensional axial wave in the torus equatorial midplane is shown in Fig. 11(a) by reporting the

instantaneous map of temperature. Here, k*=16 periodic cells can be visualized in the whole torus.

This structure travels in the same direction as the mean flow (anti-clockwise in this case) with a non-

dimensional angular celerity 2=0.0532, very close to that obtained in D3P (2=0.0523). This

angular celerity is also similar to that found experimentally in Webster and Humphrey30, where a

dimensionless value of about 0.05 was measured; the value k*=19 obtained in Webster and

Humphrey30 for a lower curvature is also consistent with the present results. The non-dimensional

frequency associated with the transit of one of the periodic is fI=k*2=0.852. This mode ‘I’ is
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associated with the pulsation of the Dean vortices which now, however, occurs in phase between the

upper and lower halves of the torus. In this case, if the wave celerity coincided with the average axial

velocity of the fluid, its non-dimensional angular celerity would be 2 / 2 0.0503fl    for

=0.1. Therefore, the wave celerity is close to the mean fluid velocity and the wave will lead the fluid

in the inner region while it will lag behind it in the outer region.

A second, weaker, mode can be discovered by looking, for example, at the temperature field on a

concentric torus of radius r=0.9, as shown in Fig. 11(b). By using pictures like this latter and building

an animation in the Lagrangian frame of reference of the travelling wave ‘I’, a new oblique wave ‘II’

appears within each of the k* cells, travelling (with respect to wave ‘I’) in the direction indicated by

the arrow in the figure. From a visual analysis of such animations, a Lagrangian non-dimensional

frequency L
IIf can be measured. Indicating with ˆˆ,I IIc c the dimensioned celerities of the travelling

waves of mode ‘I’ and ‘II’, and with ˆ ˆ,I IIL L the corresponding dimensional wavelengths, the above

frequency, in dimensional form, can be expressed as: ˆ ˆˆ ˆ( ) /L
II I II IIf c c L  ; the corresponding

dimensionless expression is:

L I II
II

II

c c
f

L 


 (14)

where

2
* *

2
II

II II

L
L

k k
 


 


(15)

and *
IIk is the number of oblique waves in the whole torus.

Once , ,L
II I IIf c L are known, the dimensionless wave celerity cII of the oblique wave can be derived. In

the present case, *
21.278, (2 / ) 1.057, 36, 1.745L

II I II IIf c f k L       , and thus cII=0.352.

The frequency of the second (oblique) mode in the laboratory frame of reference is now:

0.638II
II

II

c
f

L 
  (16)

Thus the frequency of mode ‘II’ is lower than that of mode ‘I’ and, to the degree of accuracy allowed

by numerical simulations, the two frequencies appear incommensurate, which corresponds to a quasi
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periodic flow.

b) Analysis by Proper Orthogonal Decomposition

The two modes can be better characterized by applying POD analysis to the cross-section,

similarly to what was done for case D3P. Table 2 reports the first 6 eigenvalues of the axial velocity.

Eigenvalues 1 to 4 collect about 82% of the energy. Fig. 12 from (b) to (e) shows the corresponding

spatial eigenfunctions from 1 to 4 for the axial velocity, while Fig. 12(a) is its time-averaged

distribution. Eigenfunctions 1 (Fig. 12(b)) and 2 (Fig. 12(c)) are mostly associated with mode ‘I’, i.e.

with the axial travelling wave related to Dean vortex pulsation. In this case the maxima are located in

the vicinity of the Dean vortices; mode ‘I’ carries about 67% of velocity variance. Eigenfunctions 3

(Fig. 12(d)) and 4 (Fig. 12(e)) are mostly associated with mode ‘II’, and represent a trail of near -wall

vortices which are produced in the Dean vortex areas, and travel from I to O, i-e- upstream with

respect to the secondary flow boundary layers, at the edge of these latter, following the wall curvature.

This latter mode carries about 15% of the velocity variance, and thus it is much less energetic than

mode ‘I’. Fig. 13 represents the POD decomposition of the vorticity normal to the cross-section: Fig.

13(a) is the average field while Figs. 13(b) to (e) are the eigenfunctions from 1 to 4. Vorticity

eigenfunctions are anti-symmetric with respect to the I-O horizontal line, and exhibits more clearly

than velocity the separation of modes; mode ‘II’ exhibits about three times more vorticity variance

(enstrophy) than mode ‘I’, in opposition to what happens for the velocity variance (energy). This is

coherent with the smaller spatial scale associated with mode ‘II’.

Figs. 14(a) and (b) show time-dependent vorticity coefficients a1,a2(a) and a3,a4(b), over an

arbitrary time interval. The coefficients a1-a2, mainly associated with mode ‘I’, and a3-a4, mainly

associated with mode ‘II’, are characterized by a different periodicity. In Fig. 14(c), the spectrum of

the vorticity coefficients is shown. Frequencies associated to mode ‘I’ and ‘II’ clearly emerge

respectively as fI0.87, fII0.64, as derived above from a wave kinematic analysis based on flow

visualization.

Fig. 15 shows temperature at a point against velocity at another point (arbitrary units); the graph

represents a projection of the system’s trajectory onto a 2-D subspace. The figure illustrates as the
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orbits approaching a limit cycle existing in the periodic case D3P, characterized by a single frequency,

are replaced by orbits which do not exactly repeat themselves at each turn and approach a torus

attractor characteristic of a quasi-periodic behaviour with two incommensurate frequencies. This

effect is entirely due to the second frequency fII appearing in the present case D1P.

c) Comparison with previous numerical results and experimental data

Fig. 16 shows a comparison between present results and computations presented by Friedrich and

co-workers (Hüttl and Friedrich27 and Friedrich et al.28) for =0.1 and Re5632 (Re230). The

comparison is made on the time-averaged fields. As discussed in Section I.A, the authors simulated a

tract of a toroidal pipe, 7.5 diameters in length, whereas in the present simulations the computational

domain included the whole torus.

Fig. 16(a) shows the axial velocity versus the non-dimensional radial coordinate r along the

equatorial line I-0 of a cross section, from the inner wall (r=-1) to the outer wall (r=1) and along the

vertical midline from the wall (r=-1) to the centre of the section (r=0); in the latter case the problem is

symmetric in the average with respect to the torus midplane so that only one half of the graph needs to

be reported. Symbols denote the experimental results presented by Webster and Humprey30 for

Re=5480 and =5.510-2. The agreement is very good with the numerical simulations and fair with the

experimental data (taken with a different curvature). It should be noticed that the radial gradient of the

axial velocity along the I-0 line in Fig. 16(a), once made dimensionless, is 3/4, as in the stationary

laminar cases. Fig. 16(b) shows a comparison for the time-averaged radial profile of the azimuthal

velocity along the U-D line, see Fig. 1. It shows a characteristic peak associated with the secondary

stream boundary layer; the agreement with numerical results in Hüttl and Friedrich27 and Friedrich et

al.28 is fully satisfactory also for this quantity. Fig. 17 shows profiles of dimensionless fluctuation

kinetic energy K along the I-O and D-U midlines of a cross section. Present results are compared with

the numerical predictions in Hüttl and Friedrich27 and Friedrich et al.28. There is a general good

agreement of the profiles, and the main differences are located in the outer region for the I-O line and

in the boundary layer peaks for the D-U line.

To complete this section, Fig. 18 shows the time-averaged axial velocity field (a), (d), temperature
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field (b), (e) and secondary flow field (c), (f) in a cross section for cases D3P (first row) and D1P

(second row). The graphs (c) and (f) report velocity vectors in their upper half and streamlines of the

secondary flow in their lower half. Time-averaged results are very similar to those obtained for the

stationary cases D3L and D1L, and similar considerations yield. Therefore the travelling waves only

‘disturb’ the stationary solution, and cases D3P and D1P, far to be turbulent, can be classified as time-

dependent laminar flows.

5. CHAOTIC FLOW

In this section, results for the fully turbulent cases D1C and D3C (Re13000-14000) will be

presented. In contrast with straight pipe turbulence, where fluctuations are azimuthally uniform, in

curved pipes they are localized mainly in specific regions, where particular flow featurwes, such as

Dean vortices, occur.

For these chaotic cases, first- and higher-order statistics can be computed from time-dependent

results. The spectrum of the axial velocity at a monitoring point for case D3C is shown in Fig. 19; it

appears almost continuous and a wide range of frequencies are present, with a small but recognizable

inertial sub-range with the characteristic slope -5/3. A similar behaviour holds for case D1C. Also

Proper Orthogonal Decomposition, once applied to these chaotic cases, shows a continuous

eigenvalues spectrum; the first 600 eigenmodes collect 99% of the energy. Therefore, cases D3C and

D1C can be characterized as fully turbulent.

From a phenomenological point of view, middle-size vortices are continuously produced

throughout the cross section, as shown by instantaneous vector plots for cases D3C and D1C in Fig.

20. However, time-averaged flow fields, as reported in Fig. 21, show that almost all structures average

out leaving the Dean vortices in the usual locations near the inner wall, and, only in the high curvature

case, a weaker counter-rotating couple of vortices near the outer wall. These small vortices are

reminiscent of the structures predicted by Dennis and Ng21 and by Yanase et al.24 in their four-vortex

family of solutions for laminar flow in curved circular pipes. However, in the present simulations such

other-side vortices only emerge as time-averages of turbulent flow, and were not obtained in steady-

flow simulations, coherently with the finding in Yanase et al.24 that such four-vortex solutions are
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unstable to disturbances which are asymmetric with respect to the midplane. Although both cases

exhibit instantaneous lack of symmetry, in the average flow symmetry is recovered. The same

conclusions can be drawn by looking at time-averaged maps of axial velocity and temperature, Fig.

22. As for the transitional cases, the detachment angle of the Dean vortex is lower for the lower

curvature, i.e. the secondary vortex is larger for=0.1.

The dimensionless time-averaged axial velocity and temperature along the I-0 line is shown in

Fig. 23(a). Both temperature and velocity stratification is O(1) in dimensionless form, as in the

stationary flow results presented in Fig. 4(a). Fig. 23(b) reports the time-averaged radial velocity urp

along the same I-O line. In the proximity of the outer wall urp is always positive (i.e., directed in the I-

0 direction) for the low curvature case D1C, whereas it becomes negative ine the region 0.5<r<0.8

for the high curvature case D3C, in correspondence with the existence of the above mentioned

counter-rotating secondary vortices in the time-mean flow. In the core region, profiles of the axial and

radial velocity components are approximately related by the same inviscid balance discussed for the

case of stationary flow, see Eq. (13) and Fig. 4.

Fig. 24 shows the distribution of dimensionless kinetic energy K, fluctuating pressure pRMS and

fluctuating temperature TRMS for cases D3C and D1C. The highest values of turbulent kinetic energy

are located in the outer region, in the upper and lower wall streams and in the Dean vortex region.

Therefore, the secondary flow, although much less intense than the main flow in the average, plays an

important role in causing the distribution of turbulence intensity over the cross section. As it was

expected, fluctuation levels are higher for the higher curvature; thus, despite the stabilizing effect of

curvature as regards transition, reflected in Eqs. (4) through (6), curvature enhances the levels of

turbulence once it is established, as confirmed by its effects on friction and heat transfer.

A projection of the system trajectory on a 2-D subspace for D3C is shown in Fig.25; the

trajectory, as it was expected, appears chaotic, confirming the turbulent nature of the flow at these

Reynolds numbers.

6. OVERALL ANALOGIES

The local wall shear stress ( )w  profiles computed for all flow regimes and both curvatures are
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represented in Fig. 26. In all cases, the higher curvature =0.3 has a higher dimensionless wall shear

stress with respect to =0.1. In the turbulent cases (D3C, D1C), the azimuthal profile is flatter than in

laminar and transitional ones (D3P, D3L, D1P, D1L). For each case, the w profile grows

monotonically from =-45° to =90°; the maximum at =90° corresponds to the outer wall region.

This behaviour reflects the I-0 stratification of the axial velocity.

Corresponding profiles of the local Nusselt number are shown in Fig.27. The higher curvature

geometry exhibits higher values of Nu for all flow regimes. The local minimum of the curves around

=-60° marks the detachment point of the Dean vortex. Remarkably the detachment angle is about -

60°, very close to that predicted by the boundary layer integral asymptotic model of Barua34 for high

Reynolds numbers. The local Nusselt number grows from I to O , in analogy with momentum transfer,

and is associated with the temperature stratification in the I-0 direction. As shown in a recent work (Di

Piazza and Ciofalo25), a modified Reynolds analogy is applicable to curved ducts for heat transfer.

This is valid in the average, but it is still approximately valid also locally, as shown in Fig. 28, where

the ratio ( ) /( ( )Re Pr)wNu    is reported against the azimuthal angle for all cases simulated here.

For the lower curvature, the ratio varies from 0.8 to 1.2, while for the higher curvature (=0.3), the

analogy is less applicable, and the ratio ranges from 0.7 to 1.4. The analogy between momentum and

heat transfer explains why the non-dimensional profiles of velocity and temperature shown throughout

the paper are similar and exhibit the same stratification.

Focussing the attention on the I-0 midline, it is interesting to investigate the local momentum

equilibrium. Along this line, in the core region far from the boundary layer, both convective and

viscous terms are unimportant, so that an inviscid balance between pressure gradient and centrifugal

forces approximately yields:

2
s

p

up
r r

 


(17)

This is shown in Fig. 29(a), where the ratio   2 / / /s pu r p r  is plotted along the I-0 line. The

ratio is O(1) from r=-0.75 to r=0.75, i.e. in the core region, for all cases examined (laminar,

transitional and turbulent flow). As a consequence of the momentum-heat transfer analogy discussed
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above, for Pr1 the pressure gradient in the core region is tied both to the velocity and to the thermal

stratification, i.e. 2 2/ / /s p pp r u r T r   . Considering that both axial velocity and temperature

exhibit a linear stratification with a slope b3/4 regardless of the Reynolds number, see Figs. 23(a)

and 4(a), by integrating the inviscid balance in Eq. (17) it can be shown that, in the core region and in

dimensionless form, for <<1, the pressure profile can be approximated as

2
3 2

3
p b r br r

   (18)

This is valid both for laminar stationary cases and for the time-averaged field in the transient and

chaotic cases as shown in Fig. 29(b), where all the time-averaged profiles p/are compared with the

above-mentioned analytical expression. The agreement is better around r=0 where the inviscid

balance is more closely valid.

7. CONCLUSIONS

Time-dependent numerical simulations were conducted for flow and heat t ransfer in toroidal

pipes. A constant property fluid with Pr=1 was assumed. Two curvatures (=0.1 and 0.3) were

examined. A streamwise driving pressure gradient was imposed and its magnitude was made to vary

in steps so that the friction Reynolds number Re /u a   spanned the range 220 to 525, yielding

flow Reynolds numbers between 4531 and 14710, and Dean numbers De Re  between 1625

and 7219.

A finite volume method was used; the computational domain included the whole torus and was

discretized by 3.4106 nodes for the higher curvature (=0.3) and 11.3106 nodes for the lower one

(=0.1).

Transition between different flow regimes was found to be controlled by the Reynolds number.

For Re<5200, stationary flow was predicted, exhibiting the general properties well documented in

the literature for steady flow in curved circular pipes. For Re>6000, the flow became chaotic and

exhibited a broad frequency spectrum, although it became fully turbulent, with an inertial sub -range

and overall properties (f, Nu) typical of turbulent flows in curved pipes, only for Re>10 000.
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In the narrow intermediate range 5200Re6000, a more complex behaviour was predicted. In

this range, the nature of the flow was identified and quantitatively characterized by the simultaneous

use of different techniques including static and dynamic flow and scalar (T) visualization on different

sections of the torus; Proper Orthogonal Decomposition; spectral analysis; and projections of the

system’s trajectories on 2-D variable sub-sets.

For the higher curvature (=0.3) the flow exhibited a periodic behaviour, with a single sharp peak

in POD spectra and a limit-cycle attractor in phase space. Periodicity was associated with a varicose

instability of the twin toroidal Dean vortices, propagating streamwise along the flow direction as a

couple of travelling waves in opposition of phase with respect to each other. This behaviour is

indicative of a Hopf bifurcation occurring at Re5200 and yielding distributions of flow and

temperature which were instantaneously asymmetric with respect to the equatorial plane in each cross

section. The number of wavelengths associated with this varicose instability was 7 (in 2) in this

range of the Reynolds number.

For the lower curvature (=0.1), the flow followed a nearly quasi-periodic behaviour,

characterized by the existence of two incommensurate peaks in frequency spectra and by a torus

attractor in the appropriate phase space. The higher frequency mode (mode ‘I’) was associated with a

travelling wave similar to that observed in the previous, high curvature, case, but symmetric with

respect to the equatorial midplane of the torus and thus yielding instantaneous cross-section

distributions which preserved up-down symmetry. The number of wavelengths associated with this

mode was 16 in 2. The lower-frequency mode (mode ‘II’) was associated with oblique waves

propagating mainly in the top and bottom near-wall regions adjacent to the Dean vortices; in each

cross section, it appeared as a couple of trails of weak vortices, detaching themselves from each Dean

vortex and travelling along the walls from the inner to the outer pole, i.e. against the secondary near-

wall streams. Mode ‘II’ contained less velocity variance (energy), but more vorticity variance

(enstrophy), than mode ‘I’.

For both curvatures, the angular celerity of the main travelling wave associated with the instability

of the toroidal Dean vortices scaled well with the Dean number, in agreement with the experimental

findings of Webster and Humprey30.
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The radial stratification of axial velocity and temperature in the core flow was approximately

described by a linear behaviour with the same dimensionless slope of O(1) in all cases. The relation

between axial velocity, radial velocity and pressure gradient in the core flow was found to be mainly

governed by inviscid balances for all flow regimes.

As a conclusive remark, it must be pointed out that the results presented in this work and their

physical interpretation have mainly an exploratory value, are limited to a small number of test cases

and thus do not have the ambition of being exhaustive. Further systematic investigations may be

needed to achieve a full classification of flow regimes in toroidal pipes.

Similar remarks hold as regards the extension of the present results to the case of helical pipes

(coils with non-zero pitch). While experimental results like those by Webster and Humprey30 suggest

that travelling waves occur also for finite pitches, it is clear that the details of these intermediate flow

regimes and of their transitions will depend on the specific pich considered and may exhibit different

features, which can be clarified only by further direct numerical simulations.
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Table 1 Synoptic table of the main global quantities for all the toroidal cases simulated. NuPP

represents the Nusselt number computed according to Eq.(8) using the numerical Darcy friction factor

f, also reported. k* is the number of waves in the whole torus, and 2is the dimensionless angular

celerity of the main travelling wave. Cases are identified by the reference name in the first row.

Case D1L D1P D1C D3L D3P D3C

 0.1 0.1 0.1 0.3 0.3 0.3

Re 220 235 480 235 275 525

Re 5139 5638 14710 4531 5562 13180

De 1625 1783 4652 2482 3046 7219
KDean 1.16108 1.51108 2.651010 4.68109 8.51109 1.131010

Regime Steady Q-Periodic Chaotic Steady Periodic Chaotic

f(102) 5.811 5.512 3.407 8.681 7.766 5.058

f(102) Lam Eq.(2) 5.627 5.362 3.332 7.847 7.086 4.700

f(102) Turb Eq.(3) 3.880 3.798 3.050 4.575 4.390 3.707

Nu 31.0 31.6 55.4 39.1 43.1 69.6

NuPP 34.9 36.3 58.5 45.9 50.5 77.8

k* - 16 - - 7 -

2 - 0.0532 - - 0.0523 -
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Table 2 Eigenvalues of the axial velocity obtained by Proper Orthogonal Decomposition in the

transitional cases D3P (=0.3), and D1P (=0.1).

D3P D1P

Eigenvalue number i
1

i

j
j



 i

1

i

j
j





1 0.585 0.523

2 0.378 0.964 0.146 0.668
3 0.017 0.082

4 0.016 0.997 0.070 0.821
5 0.010 0.044

6 0.005 0.999 0.023 0.888
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Fig. 1 Schematic representation of a toroidal pipe with its main geometrical parameters: a, tube

radius; c, coil radius. The inner (I), outer (O), lower (D) and upper (U) sides of the

curved duct are also indicated; represents the azimuthal angle in the cross-section,

measured clockwise from U in the figure.
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Fig. 2 Cross section of the multi-block structured computational mesh. The total number of cells in

the cross section is NSEC=4N(N+2 NRAD).
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Fig. 3 Dimensionless solutions for the stationary laminar cases D3L (top row) and D1L

(bottom row): (a), (d) axial velocity; (b), (e) temperature; (c), (f) secondary vector plot

(unity vector drawn besides) in the upper part and streamlines in the lower part of the

section. For velocity and temperature, 16 contour levels from 0 to 1.5 are shown. Here

and in all the following figures, the cross section is represented with the inner side I on

the left and the outer side O on the right.
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Fig. 4 Dimensionless profiles along the I-O horizontal midline for the stationary laminar cases

D3L and D1L: (a) axial velocity and temperature; (b) radial velocity.
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Fig. 5 Snapshots of the temperature field in the periodic case D3P: (a) and (b) represent

instants of time separated by half a period. Note the breakup of instantaneous symmetry.
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Fig. 6 Different snapshots of case D3P: (a) temperature field in a plane parallel to the torus

midplane; (b) vertical velocity in the torus midplane. The grey scales were chosen to
evidence the trace of the spatially periodic travelling structure with k*=7 wavelengths in

the whole torus.



42

Fig. 7 POD of the axial velocity field in the cross-section for case D3P: (a) time-averaged field;

(b) first spatial eigenfunction 1; (c) second spatial eigenfunction 2. The

eigenfunctions are anti-symmetric with respect to the I-O line.
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Fig. 8 (a): time dependent behaviour of the coefficients a1(t), a2(t) obtained by applying POD

analysis to the axial velocity in the case D3P; (b): spectral analysis of the coefficients,

which evidences a single frequency.
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Fig. 9 Velocities at two different points of the domain plotted one against the other for case
D3P; the graph represents a phase-space projection of the system’s trajectory onto a 2-D

subspace.
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Fig.10 Instantaneous temperature distribution in the cross-section at two different instants of
time for case D1P. The instantaneous field exhibits symmetry with respect to the I-O

line.
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Fig. 11 Instantaneous maps of temperature for case D1P: (a) in the torus midplane; (b) in a
toroidal surface of radius r=0.9. The main travelling wave (mode ‘I’, (a)) exhibits k*=16

wavelengths in the whole torus. The oblique waves (mode ‘II’) travel in the direction

indicated by the arrow in (b).
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Fig. 12 POD of the axial velocity in the cross-section for case D1P: (a) time-averaged field; (b)-

(e) spatial eigenfunctions 1, 2, 3, 4. Eigenfunctions 1 and 2 are representative

of mode ‘I’, while 3 and 4 are representative of mode ‘II’.
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Fig. 13 POD of the vorticity component normal to the cross-section for case D1P: (a) time-

averaged field; (b)-(e) spatial eigenfunctions 1, 2, 3, 4.. Eigenfunctions 1 and 2,

are representative of mode ‘I’, while 3 and 4 are representative of mode ‘II’.
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Fig. 14 Time dependent behaviour of the coefficients a1(t), a2(t)(a) and a3(t), a4(t)(b) obtained by

applying POD analysis to the normal cross-section vorticity in case D1P; (c): spectral

analysis of the coefficients, which shows two dominant frequencies.
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Fig. 15 Temperature at a point against velocity at another point for case D1P; the graph

represents a phase-space projection of the system’s trajectory onto a 2-D subspace.
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Fig. 16 Comparison of the present results (solid line) with other computational results (broken
line) and experimental data (symbols): (a) mean axial velocity profile against the non-

dimensional radius r, along the I-0 line and along the D-U line; (b): mean azimuthal

velocity profile along theD-U line.
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Fig. 17 Dimensionless fluctuation kinetic energy K along the I-O line and along the D-U line.
Present results are compared with the numerical predictions in Hüttl and Friedrich27 and

Friedrich et al.28.
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Fig. 18 Dimensionless time-averaged solutions for cases D3P (top row) and D1P (bottom row):
(a),(d) axial velocity; (b),(e) temperature; (c),(f) secondary vector plot (unity vector

drawn besides) in the upper part and streamlines in the lower part of the section. For

velocity and temperature, 16 contour levels from 0 to 1.5 are shown .
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Fig. 19 Spectrum of the axial velocity in a monitoring point for case D3C. The spectrum appears

continuous denoting a chaotic flow, with a characteristic slope -5/3 in the inertial sub-

range.
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Fig. 20 Instantaneous secondary vector plots for the chaotic cases D3C (a) and D1C (b); the

dimensionless unity vector is also reported.
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Fig. 21 Time-averaged secondary vector plot in the upper part and streamlines in the lower part

of the section for cases D3C (a) and D1C (b). The enlarged figure evidences the

secondary counter-rotating vortex in the outer region for D3C. Reference vectors are

reported beside the figures.
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Fig. 22 Dimensionless time-averaged solutions for cases D3C (top row) and D1C (bottom row):
(a),(c) axial velocity; (b),(d) temperature.
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Fig. 23 Dimensionless profiles along the I-0 line for cases D3C and D1C: (a) axial velocity and

temperature; (b) radial velocity. The gradient of velocity in the core region is related to

the radial velocity by an inviscid balance.
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Fig. 24 Dimensionless second-order statistics for cases D3C (top row) and D1C (bottom row):

(a),(d) turbulent kinetic energy K; (b),(e) pressure fluctuations pRMS; (c),(f) temperature

fluctuations TRMS.
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Fig. 25 Phase-space projection of the system’s trajectory onto a 2-D subspace for case D3C; the

trajectory appears chaotic, confirming the turbulent nature of the flow at this Reynolds

number.



61

Fig. 26 Local wall shear stress against the cross section azimuthal angle , computed for all flow

regimes and both curvatures.
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Fig. 27 Local Nusselt number against the cross section azimuthal angle distribution, computed

for all flow regimes and both curvatures.
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Fig. 28 Ratio ( ) /( ( )Re Pr)wNu    against the azimuthal angle  for all cases presented. For

the lower curvature (D1), the ratio varies from 0.8 to 1.2, while for the higher curvature

(D3) the analogy is less applicable, and the ratio ranges from 0.7 to 1.4.
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Fig. 29 (a): Ratio of the centrifugal force and radial pressure gradient along the I-0 line for cases

D1L, D1P, D1C; (b): time-averaged profiles p/for all cases presented. The analytical

expression 2 3 2/ ( /3)p b r br r   , derived from an inviscid balance, is reported for

a dimensionless velocity slope b=3/4.
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