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1. Introduction 
 
This report deals with the fragility assessment of the IRIS reactor building in its base-isolated 
version, following the previous configuration without any isolation system [1]. The aim of this 
step consists in the evaluation of the effectiveness of the base-isolation when applied to the IRIS 
NPP for the reduction of the seismic risk and in the comparison between the performance of the 
traditional and the isolated reactor building. Since the behavior of the isolators is markedly 
hysteretic, the hypothesis of linearity of the building response, typical of the traditional building, 
has been removed herein, and a suitable force-displacement literature model is adopted to 
represent the isolators inelastic response to horizontal loading.  
The probabilistic assessment is based on the procedure described in [2], on a nonlinear analytical 
model, by performing sequential seismic analyses in the MATLAB framework [3], with the 
application of an explicit direct integration method. Previous studies [4] on an extensive finite 
element model of the isolated IRIS reactor building allow to introduce the rigid body condition 
for the structural equation of motion.  
The most important requirement of the procedure remains to reduce as much as possible the 
uncertainties related to the incomplete knowledge and accuracy in defining models and methods; 
this reduction is here sought by refining analysis procedures and using consolidated analytical 
and numerical tools.  
The characterization of the isolator devices has been preliminarily performed by testing scaled 
prototypes, in view of further full scale laboratory experimentations; the definition of the limit 
state domain for the reference device in terms of the total vertical and horizontal forces has been 
also evaluated.  
The definition of the random variables and the generation of the seismic excitations are also key 
aspects of the analysis. They represent significant requisites for setting up the probabilistic 
assessment of the response of the structural system. 
The exceedance probability of the control system limit state domain is here computed via Monte 
Carlo simulations; to reduce the computational effort, the response surface (RS) method  is used 
to express the seismic response as a function of the variation of the adopted random parameters. 
The generation of the RSs is performed in terms of mean and standard deviation of the minimum 
distance from a specific limit domain. In such setting, the RS evaluation must be repeated for 
every value of peak ground acceleration; on the other hand, to evaluate the isolators’ behavior, 
the seismic behavior of the isolated building can be captured by means of a very simple 
mechanical model which can be based on the hypothesis of rigid-body motion of the building. 
Finally, the results of the fragility analysis are computed, also in view of a refinement of the 
response surfaces, within a complete risk assessment for a prototype site. 
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2. A literature review for a mathematical model of a base isolation system  
 
Following the choice of implementing high damping rubber bearings (HDRB)for the IRIS NPP 
isolation system, a preliminary literature review has been developed for assessing the suitable 
numerical model. Some main features characterize the isolator devices are the strong nonlinear 
response, the scragging and Mullins’ effects (stiffness and damping degradation), the horizontal 
stiffness variation (due to temperature and axial load), strain-rate dependence and ageing. 
A first overview on this technology, including modeling and analysis options, can be found in 
the research report [5]. Even if it is oriented not specifically to NPP buildings, the report 
describes the main characteristics of a seismic isolation system, listing several models for the 
unidirectional numerical simulation. Finally, a bidirectional model is also proposed for 
representing the bearings response to bidirectional loading in terms of stiffness, damping and 
degradation. It consists in a decomposition of the bearing resisting force as the sum of elastic 
component (from Mooney-Rivlin strain energy function) and an hysteretic force.  
Kikuchi and Aiken proposed a non-differential unidirectional model for elastomeric isolation 
bearings [6], developed from the Fujita one, in order to improve the performance into the large 
strain range. The Fujita model has the characteristic of including a procedure to update model 
parameters in contrary to other differential models as Ozdemir or Wen one. The proposed model 
neglects the effects of strain rate and variation of axial load on the bearing hysteresis.  
Hwang et al [7] present a different analytical unidirectional model developed from a previous 
version by Pan and Yang for high damping elastomeric isolation devices. This model has been 
developed for describing the damping and the restoring force of a rubber material; the first 
component of the total resisting force is considered herein as a viscoelastic dissipation, that 
depends on the strain rate. The study investigates in particular the Mullins’ and scragging effect, 
frequency and temperature dependence. Axial loads and rubber compounds are not considered. 
The model parameters identification is also not included in this study, which is mainly focused 
on the potential of the proposed approach in the prediction of the force-displacement hysteresis. 
The differential unidirectional model for HDRB by Tsai et al [8] has been developed by 
modifying the Wen model to include rate-dependent effects under constant axial loads. The good 
correlation between experimental and numerical results does not show the stiffness and damping 
degradation, induced by Mullins and scragging effects, which is distinctive of such devices. 
A nonlinear rate dependent unidirectional model for HDRB is proposed by Jankovsky in [9] 
under constant axial loads. It is a non-differential model developed from the Pan and Yang 
solution. The cyclic experimental tests are well reproduced by the model, even if it seems to 
loose its good performance when a seismic signal is applied. 
Abe et al [10,11] propose differential hysteretic models of laminated rubber bearings (HDRB, 
rubber bearings (LRB), natural rubber bearings (NRB)) under biaxial and triaxial loading 
conditions on the basis of experimental results. Firstly, an unidirectional model is proposed by 
extending the Ozdemir elasto-plastic model; second, a bidirectional model of the bearing is 
derived. They result accurate in the simulation of the device response also under the seismic 
action.  
The study proposed by Ryan et al [12] approaches the problem of the influence of the axial load 
variation in the isolator horizontal stiffness and yielding strength (in particular when the lead 
core is implemented or HDRB are considered). The following considerations has been 
underlined for both HDRB and lead LRB: 
• the lateral stiffness decreases with the increasing axial load; 
• the lateral yield strength decreases with decreasing axial load (LRB only); 
• the vertical stiffness decreases with increasing lateral deformation. 
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Some considerations on the numerical modeling of HDRB and LRB devices are also included 
but the proposed solutions, although an improvement, are reported by the Authors as an 
incomplete representation of the experimental response. 
 

Table 1. Main characteristics of the evaluated models 
 Grant et al. [5] Kikuchi et al. [6] Hwang et al. [7] Tsai et al. [8] Jankovsky [9] 

Dimension Bidirectional Unidirectional Unidirectional Unidirectional Unidirectional 

Formulation Differential Non-differential Non-differential Differential Non-differential 

Device HDRB LRB-HDRB HDRB HDRB HDRB 

Axial load Constant Constant Constant Constant Constant 

Modified version of - Fujita Pan & Yang Bouc-Wen Pan & Yang 

Degradation Y Y Y Y Y 

Hysteretic damping Y Y N Y N 

Viscoelastic damping Y N Y Y Y 

Rate-dependent effects Y N Y Y Y 

Temperature  N N Y N N 

Parameters  
identification 

Y Y N Y Y 

Cyclic response  Y Y Y Y Y 

Seismic response  N Y Y N N 

 
 Abe et al. [10,11] Ryan et al. [12] Yamamoto et al. [13] Kikuchi et al. [14] 

Dimension Uni & Bidirectional Unidirectional Unidirectional Bidirectional (**) 

Formulation Differential Non-differential Non-differential Non-differential 

Device NRB-LRB-HDRB LRB-HDRB LRB-HDRB LRB-HDRB 

Axial load Constant Variable (*) Variable (*) Variable (*) 

Modified version of Ozdemir Kelly Kikuchi & Aiken Yamamoto et al. 
[13] 

Degradation Y N Y Y 

Hysteretic damping Y Y Y Y 

Viscoelastic damping N N N N 

Rate-dependent effects N N N N 

Temperature  N N N N 

Parameters  
identification 

Y Y Y Y 

Cyclic response  Y N Y Y 

Seismic response  Y N Y N 

(*   the model properties vary with the applied axial load)  
(** three dimensional loading paths have not been evaluated) 

 
The study by Yamamoto et al. [13] proposes a two-dimensional analytical model the numerical 
simulation of seismic isolation bearings including the influence of axial load. Such model is an 
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analytical mechanical model comprising shear and axial springs with properties varying with the 
vertical load. It has the advantage that the shear hysteresis used need not to incorporate the 
influence of axial load, since the influence of axial load on shear is implicitly captured by the 
material nonlinearity of the axial springs and the geometric nonlinearity in the model. A three 
dimensional development of this model has been reported in [14] but it lack of the evaluation 
under three dimensional loading paths (e.g. circular or “8” shapes in the horizontal plane) and 
also under seismic loads.  
Table I reports the main characteristics of the evaluated models. The approach proposed by Abe 
et al. [10, 11] has been selected for the numerical simulations presented in the next sections for 
its versatility (uni and bidirectional application) and for the good representation of the 
experimental response for both the seismic and cyclic loading; also considering three 
dimensional loading paths in the horizontal plane. One feature lacking in this model could be 
found in the parameters definition as function of the axial load variation. It should be a further 
development, by including a updating time step procedure. 
 
3. The structural models of the base-isolated reactor building 
 
IRIS (International Reactor Innovative and Secure) is a medium power (335 MWe) pressurized 
light water reactor under development by an international consortium which includes more than 
20 partners from 10 countries (see [15]). Installation in a site characterized by a low-to-average 
seismicity level has been here assumed. 
In a tentative design of the NSSS building (see Figure 1a), the introduction of an isolation system 
was considered; the system is made by High Damping Rubber Bearings (HDRB) installed 
between the foundation slab and the base (Figure 2b). The main scheme of the isolators layout, 
as considered in the preliminary design approach, is depicted in Figures 2c-d. The HDRB 
devices are made of alternated rubber layers and steel plates, bonded through vulcanization. 
Damping factor ranges from 10% to 20%, while shear modulus (G) lies in the 0.8-1.4 MPa 
range. 
Steel plates give a high vertical stiffness to the isolator, though allowing large horizontal 
deformations. Therefore, the isolated building has low natural frequencies for motions lying in 
the horizontal plane, typically in the range 0.5 - 0.7 Hz, where the spectrum of ground motion 
has generally quite low energy. In such vibration modes the isolated building moves like a rigid 
body (see also [4]) over the isolators, which are strained in shear (continuously carrying the dead 
load). The absolute acceleration of the building can be much smaller than the PGA, with no 
amplification at higher floors. This is obtained at the price of large relative displacements 
between the building and the adjacent ground; this can be a problem for the design of the 
expansion joints and the connections with non isolated buildings of all the pipelines and service 
networks. The design of the isolation system, therefore, must reach a reasonable compromise 
between limitation of absolute accelerations and relative displacements. For the case of the IRIS 
NSSS, having a fixed-base first natural frequency of 5.91 Hz (on firm ground) and natural 
frequencies around 9 Hz for the vessel local motion, this led to a 0.7 Hz isolation frequency, i.e. 
to a value which can be seen as an upper limit for the parameter. If some equipment component 
(e.g., some wide span pipeline) has a lower natural frequency a local specific measure (stiffening 
or energy dissipation device) must be adopted. 
The choice of 0.7 Hz as isolation frequency limits the relative displacement between the isolated 
building and the ground to 10 cm at the SSE level which is advantageous both for the 
performance of the isolators in beyond design conditions and for the design of steam lines 
connecting the NSSS building with the turbine units. 
To compute the fragility of the IRIS isolation system, as detailed in following sections, the 
following aspects will be considered 
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• a first 3-DOFS vertical plane model has been adopted for the reactor building, under the 
hypothesis that the isolated superstructure behaves like a rigid body; soil-structure interaction 
has been neglected. Also a 6-DOFS 3D-model has been implemented, as a more general 
evaluation of the structural problem. 
• The behavior of isolators under horizontal and vertical loading has been regarded as 
independent; it is assumed that isolators behave as linear elastic under vertical loading, showing 
the same stiffness in tension and compression. Their non linear behavior under horizontal 
loading has been modeled according to the uni and bidirectional models described in [11] 
respectively for the 3 and 6-DOFS reactor building simulation. 
 

 
50 m

23
 m

21
 m

56 m

~ 1 m gap

Horizontal Fail-safe System

~ 1 m thick

a) b) 

 

 

c) d) 
Figure 1. IRIS NSSS building (a); isolation system (b); isolators layout (c-d) 

 
According to the unidirectional approach in [11] the restoring force for the HDRB device is the 
sum of three contributions, i.e. an elastic-plastic model (F2 contribution) and two elastic non-
linear springs, namely a non-linear elastic spring (F1) and an hardening spring (F3); the model 
allows to reproduce analytically some aspects of the experimental behavior of laminated rubber 
bearings. In light of these observations the resulting scheme for the Abe et al. [11] model is 
represented in Fig. 2a.  
 

a) 
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F1 

F2 

F3 

 
Figure 2. Scheme of the HDRB model [11] (a); F1,F2,F3 components under cyclic loading (b) 

 
From an analytical point of view the force-displacement relation for the first non-linear spring 
consists of 

[ ] )sgn()exp(1)exp()1( max
11 UUbaUUKF −−+

⎭
⎬
⎫

⎩
⎨
⎧ −−+=

α
ββ      

 (1) 
where U  is the relative displacement and K1, a e b parameters. In Equation (1), the first term 
reproduces the force linear evolution, while the second one the non-linear behavior. In Figure 2b 
the F1 contribution is depicted for a cyclic experimental test on a reference specimen as force-
displacement diagram up to displacement values equal to 300% of the rubber height. The 
stiffness degradation during the variable cycle amplitude is also highlighted by F1. 
The hysteretic contribution F2 is described with a differential equation  

2 2
2 sgn( )

n

t

t t t

Y F FF U U
U Y Y

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

& & &           

 (2) 
The values of Yt and Ut are defined as 

)1(0

p

H
t U

UYY +=   ;    )1( max
0

S
t U

UUU +=          

 (3) 
where Y0 is the initial yielding force, U0 the initial yielding displacement, UH the displacement 
where hardening starts, US a parameter for controlling the degradation of the elastic stiffness of 
the elasto-plastic spring, Umax the maximum displacement experienced during the loading 
history, p a parameter governing the shape of the hardening branch. Fig. 2b depicts the hysteretic 
components F2 when the displacement is imposed according to loading cycles of increasing 
amplitude. 
Finally a new non-linear spring is introduced in parallel for capturing the increment of the 
tangential stiffness experienced by the devices at very high strain levels. This results in the F3 
contribution (Fig. 2b), defined theoretically as  

U
U
UKF

r

H
23 =            

 (4) 
where r is the parameter to prescribe the shape of the hardening curve, K2 the proportional 
constant to describe the contribution of the hardening spring to the other springs.  
 
3.1 Analytical approach by Lagrange equation (3-DOFS) 
The reactor building is now considered as a cylindrical rigid body supported by a bed-HDRBs in 
an axial-symmetric configuration (see Figures 1b, 1c, 1d). The passive control system is 
characterized by axial and shear deformability; the state of the structure is now represented by 3 
Lagrangian coordinates. 

F1 

F2 

F3 

b) 
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The equations of motion for the 3-DOFS arrangement can be computed by the Lagrange 
approach; it allows to describe the dynamic properties of any properly restrained system for 
small oscillations around the stable equilibrium position. The general form of the k-Lagrange 
equation can be expressed as the following [16]  

kDk
kk

QQ
q
L

q
L

dt
d

,+=
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
&

  ( nk ,,1K= )                

 (5) 
where VTL −=  is the Lagrangian function, T and V are respectively the kinetic energy and the 
potential energy of the system, qi are the Lagrangian coordinates, Qk and QD,k are respectively 
the conservative active forces and the generalized component of the damping forces.  
Figure 3 depicts the system discretization where the main building of the IRIS NPP has been 
assumed to a cylindrical rigid body supported by the isolation system and its centroid G is 
generally placed into a xy reference system. At this stage the base isolation has been represented 
by linear springs and dashpots. 
 

 
 

Figure 3. System discretization 
 
The kinetic energy T can be expressed by the following relation (König theorem) 

( )2
3

2
2

2
1

2
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2
2

2
1 2

1
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2
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 (6) 
it can be represented by the quadratic form [16] 

qMqT T &&
2
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 (7) 
so, it is possible to define the mass matrix of the system: 
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where m is the concentrated mass of the NPP and IG its inertia momentum.  
The potential energy expression can be obtained by effects superposition. The rigid body results 
supported by rheological elements and it is possible to determine the displacement components 
of the generic connection point P at the cylinder base. Considering different combinations for the 
Lagrangian coordinates, the horizontal and vertical displacements of the centroid G can be 
defined as follows:  
 

• q1 = 1, q2 = q3 = 0 
 
 
 
       1quP =  
       0=Pv  
 
 
 
 
 
 
 
 

• q2 = 1, q1 = q3 = 0 
 
 
 
 
       0=Pu  
       2qvP =  
        
 
 
 

• q3 = 1, q1 = q2 = 0 
 
 
 
 
 
       3qzu GP =  
       ( ) 2qxxv GPP −=  
 
 
 
 
By effects superposition, for the generic point P under the cylinder base: 

31 qzqu GP +=           
 (9) 

G

q1=1

G'

G

q2=1
G'

G=G'
q3=1
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( ) 22 qxxqv GPP −+=           
 (10) 
and the potential energy results  
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 (11) 
where n represents the number of the isolators, ko and kv are stiffness coefficients respectively in 
horizontal and vertical direction. By some algebra one obtains: 
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 (14) 
The stiffness matrix coefficient for the 3-DOFS system are defined by the following relation 
[16]: 
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and they result in the stiffness matrix: 
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The dissipation function is defined similarly to the potential energy definition as [16] 
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The damping matrix coefficients are defined as  
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and they result 
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The Lagrangian component of the active forces is defined as [16]  
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Finally, the system of equations of motion is expressed as following  
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or, substituting eqs. 8, 16, 19, 20 in eq. 21: 
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And, explicitly, by the following equations: 
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3.2 Implementation of the base isolation system into the 3-DOFS equations of motion 
Taking now into consideration an horizontal hysteretic reaction force computed by the Abe et al. 
unidirectional model [11], the eq. 22, 23, 24 are rewritten by including the following 
replacement: 

( ) ( ) fPoPoGoGo Fvcukqzqcqzqk =+=+++ 3131 &&       
 (25) 
where Ff  is the hysteretic control force relative to each passive base isolation device. In 
particular considering eq. 22 one obtains  

oGooGoo maqnzknqkqnzcqncqm −=++++ 31311 &&&&  
( ) ( )[ ] oGoGo maqzqcqzqknqm −=++++ 31311 &&&&       

 (26) 
and the following equation results 
1) of manFqm −=+1&&           
 (27) 
Eq. 23 involves only kv and cv terms and the implementation of the hysteretic elements does not 
change its expression.  
Focusing now the attention on Eq. 24, it can be rearranged as 
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 (28) 
where it is possible to recognize the term relative to the hysteretic control force (eq. 25). In 
particular Ff is now amplified by the zG coordinate (rotational moment). The final form of Eq. 24 
is 
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3.3 6-DOFS generalized approach 
By following the same Lagrangian approach, it is possible to write the equation of motion of the 
3D IRIS base isolated NPP model including the hysteretic control forces. The Abe et al. [11] 
scheme allows to simulate the bidirectional response of the control device, so the equations of 
motion can be generalized to 6-DOFS including the whole base isolation system.  
It is worth noting that in the previous 3-DOFS approach the isolation system could be assumed 
as a super-element under the IRIS NPP, including the characteristic of all n-HDRB devices, 
where the total reaction force was subdivided equally by n components. Moving to the 6-DOFS 
each isolator has to be considered separately and the integration of the whole equations of 
motion must be split into two phases 

• evaluation of system state, recording displacements and velocities at the (i)-step for each 
isolators positions; 

• evaluation of the control force exerted by each device for further the (i+1) integration 
step. 
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4. Experiments on scaled prototypes and tuning of the model parameters 
 
For the case of a building resting on an isolation system based on the introduction of HDRB devices, the 
following overall procedure is proposed, based on experimental and numerical activity, for the evaluation 
of the seismic fragility of the isolated IRIS NPP. 
 
4.1 Details of the isolation system and experimental tests 
Experimental tests of the behavior of the adopted HDRB devices under imposed cyclic relative 
displacements and constant axial force have been carried on. 
Due to the very large dimensions of the HDRB elastomeric devices specifically designed for the IRIS 
reactor building, preliminary standard tests on ½ scaled HDRB seismic isolator prototypes (see Table 2) 
have been performed in two phases by the following laboratories: 

• CESI-ISMES LPS (www.cesi.it) laboratory in Seriate (Italy); 
• FIP (www.fip-group.it) laboratory in Selvazzano Dentro (Italy). 

The first phase the experiments aimed to characterize the quasi-static and dynamic behavior of the 
seismic devices with constant axial loads and cyclic horizontal excitation. In this step the average shear 
deformation has exceeded 1.5 times the design one (100%) (see report [17] for details).  
 

Table 2. Characteristics of the tested isolator 
Isolator external diameter 500mm 
Steel reinforcing plate diameter 480mm 
Thickness of internal steel plates 2mm 
Number of elastomeric layers 10 
Thickness of an individual elastomeric layer 5mm 
Total elastomeric thickness 50mm 
First shape factor 24.0 
Second shape factor 9.60 
Full isolator height 128mm 
Nominal dynamic shear modulus 1.4 MPa 
Hardness 75 Shore A3 
Equivalent viscous damping coefficient 10/15 % 

 

The second phase of the experimental campaign was focused on characterizing the ultimate limit state of 
the seismic device (see report [18] for details). Vertical compression and shear tests up to collapse have 
been performed; in the latter, maximum shear deformation has exceeded 300%. Figure 4 depicts a 
representative outcome of a cyclic shear tests at FIP laboratory in quasi-static condition (0.005mm/s); this 
sample has been adopted in the remaining sections as experimental target for tuning the numerical model.  
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Figure 4. Cyclic shear test in quasi-static condition 
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4.2 Finite element analysis 
In order to support the experimental activity and validate simplified analytical approaches, a refined finite 
element (FE) model was developed taking into account all significant sources of mechanical and 
geometrical nonlinearities. The FE model (≈105 DOF) allows to: 

• simulate complex tests, with triaxial loading path; 
• assess “first damage” conditions based on equivalent stress peaks; 
• assess actual failure conditions; 
• evaluate reliability and validity domain of the analytical approach developed by Corradi et al. 
[19] for a straightforward statement of the first damage limit state function; 
• quantify the problem nonlinearity at high horizontal strain values (300%), under horizontal and 
vertical forces simultaneously. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. HDRB isolator FE model 
 
The model, tuned against static and dynamic experimental results, has the following properties: 
• parametric geometry and mesh generation: solid discs simulating high-damping rubber (3 
elements per layer) + interposed shell elements for intermediate steel plates; 
• constraint: shell nodes have translational DOF tied to aligned solid elements nodes by means of 
rigid links; 
• finite elements: linear 3D 8-node brick element for rubber, with 3 DOF at each node, large strain 
capabilities, suitable for fully incompressible material; shell steel elements, with 4+4 node elements 
and 3+3 DOF at each node, allowing for finite membrane strains (Figure 5); 
• material: 9 parameter Mooney-Rivlin nonlinear hyperelastic material. 
 

For a more accurate evaluation of stresses, a single layer of rubber is also modeled (Figure 6): 
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Figure 6. Single-layer FE model. 
 
4.3 Fitting of model parameters toward the numerical simulations  
The phenomenological model of the non-linear hysteretic behavior of the isolator (based on the 
experimental results) has been implemented to be used in the dynamic analyses for fragility estimation. 
Some satisfactory tests have been performed on several isolator prototypes in this respect, by adopting the 
model proposed by Abe et al (see also sections 2 and 3 for additional details). 
For an appreciation of the model capabilities, in Figure 7a its results (thick line) are compared to the 
experimental behavior (thin line) of Figure 4, showing an extremely good accuracy up to an average shear 
deformation of about 300% (see also figure 4b and 4c where some details on 100% shear deformation 
cycle and 250% one are reported).  

 
 

 
 

 

 

(a) 

 
 

 
 

 

 

 

(b) 

 
 

 
 

 
 
(c) 
 

Figure 7. Isolator phenomenological model: comparison of experimental (thin line) and numerical (thick 
line) experimental behavior. (a) Whole cyclic experimental test (50%, 100%, 150%, 200%, 250%, 300% 
shear cyclic deformations and constant axial force 2000kN), (b) the second cycle detail, and the fifth one 
(c). 
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Table 3 reports the quantitative comparison between the experimental results and the numerical fitting 
performed by the model with reference to the cyclic loading in Figure 7a; the overall picture of the results 
appears satisfactory even though hysteretic damping looks slightly overestimated. 
 

Table 3. Quantitative comparison between the experimental results and the model fitting 
  EXPERIMENTAL NUMERICAL 
 Shear 

deformation 
[%] 

EQUIVALENT 
VISCOUS 
DAMPING 
FACTOR 

[%] 

SECANT 
STIFFNESS 

[KN/mm] 

EQUIVALENT 
VISCOUS 
DAMPING 
FACTOR 

[%] 

SECANT 
STIFFNESS 

[KN/mm] 

1° CYCLE 50 11.05 5.83 11.63 5.68 
2° CYCLE 100 9.54 4.72 9.07 4.60 
3° CYCLE 150 8.78 4.47 8.58 4.17 
4° CYCLE 200 8.69 4.46 8.82 4.10 
5° CYCLE 250 8.80 4.53 9.22 4.26 
6° CYCLE 300 8.38 4.68 9.61 4.64 
 
The Abe et al. [11] model parameters are finally converted from the ½ scale to the full scale for 
simulating the isolators into the dynamic analyses. The resulting values are the following 

• K1 = 10000  [KN/m] 
• α = 0.1 [m] 
• β = 0.3 
• a = 4.87 [KN] 
• b = 60 [1/m] 
• n = 0.36  
• Y0 = 70 [KN] 
• Uh = 0.06 [m] 
• p = 2.4 
• U0 = 0.006 [m] 
• Us = 0.05 [m] 
• K2 = 100 [KN/m] 
• r = 3.0 

 
5. Fragility analysis of isolated NPP building components  
 
Following the PEER (Pacific Earthquake Engineering Research) approach (see [20] and included 
references), the annual failure rate for a mechanical component under seismic loading can be obtained 
from the integral: 

{ } ( ) ( ) ( ) ( )f f EDP IMP P DM dm EDP edp p edp IM im p im d edp d im= > = =∫∫     

(29) 

where DM is a Damage Measure, associated to the assumed limit state (dmf denotes the damage level at 
failure), EDP is an Engineering Demand Parameter (support acceleration, relative displacement,…) 
expressing the level of the dynamic excitation imposed to the component due to the global seismic 
response of the structure (reactor building) and IM is an Intensity Measure (peak ground acceleration, 
spectral acceleration,…) characterizing the severity of the earthquake motion at the reactor site. As 
pointed out by Der Kiureghian [20] all statistics in (29) must be intended in term of annual extreme 
values, so that the equation delivers a risk estimate in terms of annual probability of failure of the 
component. For a “simple” equipment component, or for a preliminary evaluation, the limit state can be 
directly defined in terms of the EDP value at failure edpf, thus avoiding the damage analysis step, i.e: 
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{ } ( ) ( )f f IMP P EDP edp IM im p im d im= > =∫               (30) 
We shall denote in the following the fragility function F(edp,im) as: 

{ }( , ) 1 ( / )EDPF edp im P EDP edp IM im P edp IM im= > = = − =         
(31) 
where PEDP is the conditional CDF of the edp random variable. 

 
When a base-isolation system based on HDRB (High Damping Rubber Bearings) is introduced (see for 
example Perotti et al, 2009), the acceleration values inside the building undergo a dramatic decrease. This 
is obtained at the price of significant relative displacements imposed to isolation devices, which are likely 
to become the “weakest link” in terms of seismic safety of the building; therefore the extreme value u of 
the relative displacement across the most strained isolator will be here taken as a first choice for the edp. 
The fragility function is therefore expressed as: 

{ }( , ) ( , )g g exc gF edp im P U u A a P u a= > = =
       

 (32) 
The associated limit state function can be expressed in the following “capacity minus demand” format: 

( , , ) ( , ) ( , ) 0g g gg u a C D a u U a= − = − =X X X       
 (33) 
where U  is the random variable whose distribution delivers, for fixed random variables X, the result of 
the random vibration analysis. Note that no linearization is here exploited, since the behavior of HDRB is 
markedly non-linear, especially at the high level of deformations here anticipated. The random response 
U can be modeled through appropriate response surfaces, as functions of the basic random variables X.   
According to the well-established Response Surface Methodology (RSM [22,23]), the “true” response 
function is replaced by a simple analytical representation. Here, assuming that the distribution of U can be 
described by its mean value µU and its standard deviation σU, the so called “dual response surface” 
approach [24] has been adopted for modelling their dependency on X. Assuming that the same model can 
be used for the mean and the standard deviation the following response functions have been introduced:  
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1
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=

+=
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i
iiU XzbX

1
)()( σεσ                     

(34b) 
    

where the ai’s and bi’s are coefficients to be estimated, the zi’s are usually polynomial functions and two 
“error” terms (εµ , εσ ) are introduced as a zero mean random deviations. The latter account for the 
variability of estimated quantities and for the lack of fit of the adopted model, i.e. for the inadequate 
analytical form of the RS’s and for missing variables (i.e. not comprised in (34a,b) though influencing the 
response). To compute the coefficients in (34a,b) a number of experiments must be run according to the 
chosen experimental design; at each of them the random vibration problem can be addressed via either an 
analytical or a simulation approach. In the second solution a sample of ground motion realizations must 
be generated, according to the spectral parameters appearing in X. For each realization, the extreme value 
of U is computed (e.g. via step-by-step analysis); the mean and variance of U are then estimated. The 
procedure is repeated for all experimental points, leading to n observed values for the statistical 
parameters of U(X). 

We shall assume in the following that the experiments are performed in homogeneous 
conditions (i.e. differing for the xi values only), that their results are independent and that the 
error terms are normal with constant variance; under these hypotheses an unbiased estimate of 
the coefficients ai, bi can be obtained by the Least Square (OLS) method, independently of the 
variance of the ε’s. An unbiased estimate of the latter terms can be subsequently obtained is 
defined, in terms of the residual values.  
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Once expressions of the type of eq. (34a,b) are established and given the properties of the basic random 
variable, Monte Carlo Simulations (MCS) can be applied to the evaluation of the integral delivering the 
exceedance probability as 

0

( , ) ( , )exc g U
g

P u a p u du d
<

= ∫∫∫ x x
        

 (35) 
Differently from the linear case, however, the RSs evaluation must be repeated for every value of peak 
ground acceleration, this representing, potentially, a huge computational task. It can be considered, 
however, that in the isolated case the seismic behavior of the building can be captured, to the aim of 
evaluating the isolators’ behavior, by means of very simple mechanical models; the latter, in fact, can be 
based on the hypothesis of rigid-body motion of the building above the isolators. 

 

 
Figure 8.  Limit state function for the isolator 

 
5.1 Fragility computation via isolator limit state domain 
As a second option, adopted herein, the “capacity minus demand” function - eq. (33) - can be associated 
to a limit state function (see [19]) expressed in terms of horizontal and vertical loads acting on the most 
severely strained isolator; for typical HDRBs, made by alternate rubber and steel layers, the limit state 
here considered is the “first damage” condition related to the attainment of an admissible peak tensile 
stress at the steel-rubber interface. 
In this light and with reference to Figure 8, demand is here defined, at each instant, as the distance 
between the points describing the static vertical loading on the isolator (point S) and the current loading 
(point C), while capacity is computed as the total distance, measured along SC, between the static loading 
condition and the limit state surface (point L). Both are made non-dimensional with respect to the 
capacity so that the edp is represented by the ratio SC/SL, this being the inverse of the “instantaneous” 
safety factor, while the limit value edpf  takes a constant unit value. As an alternative, the actual distance 
CT can replace CL in the formulation of the safety factor. 
Note that considering first damage instead of actual failure in the formulation of the limit state surface 
appears to be reasonable choice until a complete experimental characterization of the behavior of large 
HDRBs at collapse will be available. 
The evaluation of the limit state domain, in terms of global vertical and horizontal forces, has been 
addressed in [19,25] as a delamination consequence between steel and rubber layers of the device, by 
accounting a tension Mohr-Coulomb approach. Such failure mechanism occurs when higher isolator 
shape factors  (main horizontal dimensions over total rubber height) are recognized. 

 
6. The assumed random variables 

Vertical  
Force 
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Safety domain limit 

Current loading 
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Static vertical loading 
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Four independent random variables have been considered in the fragility analysis, namely  

• x1 device stiffness 
• x2 device damping 
• x3 limit domain quadratic coefficient 
• x3 limit domain constant term 
 

6.1 Device random variables 
The first two random variables (RV) account for the randomness of the dynamic properties of the 
isolator, represented via the model in [11]; according to this the restoring force is the sum of 
three contributions, i.e. an elastic-plastic model (F2 contribution) and two elastic non-linear 
springs, namely a non-linear elastic spring (F1) and an hardening spring (F3); the model allows to 
reproduce analytically the experimental behavior of laminated rubber bearings. So, it results: 
 

• RV x1 - the stiffness of the isolator device has been varied by multiplying the 
stiffness parameters K1 and a in eq. (1), K2 in eq. (4) and dividing the initial 
yielding displacement U0 in eq. (2) by the coefficients defined in the design of 
experiment. This random variable has lognormal distribution with 0.22 coefficient 
of variation (c.o.v.). 

• RV x2 - the damping of the isolator has been tuned by multiplying the initial 
yielding force Y0 by the coefficients defined in the design of experiment. This 
random variable has lognormal distribution with 0.22 c.o.v. 

 
A numerical sensitivity analysis has been performed by extensive cyclic simulations on the 
unidirectional model [11] for evaluating the variability of the original numerical stiffness and 
damping (Table 3 and Figure 7a) performed by the designed device prototype. Table 4 reports a 
brief example on the variability of the stiffness and the damping when a coefficient α  has been 
employed in the numerical model for amplifying their intensity by using the procedure itemized 
above. Figure 9 depicts the hysteresis cycles resulting by the forth options considered in Table 4. 
It is shown how stiffness and damping into a hysteretic cycling are strictly correlated and it is 
impossible to vary one independently to the other one. However, the proposed procedure is able 
to emphasize the amplification of the selected mechanical parameter.  
 

Table 4. Sensitivity analysis on the unidirectional model [11] 
(αK1, αK2, U0/α) 

 α = 1.2 α = 1.6 
 EQUIVALENT 

VISCOUS 
DAMPING FACTOR 

[%] 

SECANT 
STIFFNESS 

[KN/mm] 

EQUIVALENT 
VISCOUS 

DAMPING FACTOR  
[%] 

SECANT 
STIFFNESS 

[KN/mm] 

1° CYCLE 10.6 13.1 9 16.5 
2° CYCLE 8.1 10.7 6.6 13.6 
3° CYCLE 7.7 9.7 6.3 12.4 
4° CYCLE 7.8 9.5 6.4 12 
5° CYCLE 8.2 9.8 6.7 12.3 
6° CYCLE 8.5 10.6 7 13.3 

 
(αY0) 

 α = 1.2 α = 1.6 
 EQUIVALENT 

VISCOUS 
DAMPING FACTOR 

[%] 

SECANT 
STIFFNESS 

[KN/mm] 

EQUIVALENT 
VISCOUS 

DAMPING FACTOR  
[%] 

SECANT 
STIFFNESS 

[KN/mm] 
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1° CYCLE 13.2 12 16 13.1 
2° CYCLE 10.4 9.5 13 10.3 
3° CYCLE 10 8.7 12.2 9.4 
4° CYCLE 10 8.6 12.2 9.5 
5° CYCLE 10.4 9 12.5 10.1 
6° CYCLE 10.4 9.9 12.7 11.2 

 
 

αK1, αK2, U0/α ; α = 1.2 αK1, αK2, U0/α ; α = 1.6 

αY0 ; α = 1.2 αY0 ; α = 1.6 
 

Figure 9. Hysteresis cycles resulting by the forth options considered in Table 4 (black line 
reference cycling test) 

 
6.2 Limit domain random variables 
The remaining two RV account for the uncertainty of the limit state function (Figure 8). A 
parabolic shape (H=aV2+c, H horizontal reaction, V vertical reaction) has been assumed 
following the procedure in [19]. The coefficients of the quadratic (a) and the constant (c) terms 
have been taken respectively as x3 and x4 RVs with lognormal distribution, evaluating the 
reference mean value [19] and assuming the c.o.v. as 0.22. The resulting shape of the mean 
safety domain is depicted in Figure 10 for two reference horizontal strain levels: 300% and 400% 
of rubber height. The second one corresponds in particular to the first damage level evaluated in 
the laboratory tests and it has been adopted (a = -0.00431, c = 207230.6 ).  
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Figure 10. Safety domain levels 

 
 
7. The seismic excitation 
 
The Response Spectra prescribed by the USNRC 1.60 (1973) [26] was adopted as seismic input. 
The spectral parameters where treated as deterministic, so that a single set of 20 input motions, 
each described by three components, has been generated and used at all experimental points. 
Generation was performed starting from white-noise accelerograms, modulated in the time 
domain, and iteratively correcting their Fourier Amplitude Spectra in order to match the USNRC 
1.60 (1973) curve. An example of accelerograms is given in Figure 11.  
The set of 20 input motions have been prepared by this procedure for being applied to the follow 
probabilistic assessment on the reactor building models: in particular the 3-DOFS option 
implements only two components (one horizontal and one vertical), the 6-DOFS option all the 
seismic components (two horizontal and one vertical). 
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Figure 11. Example of an artificial accelerogram with the target spectra from  

USNRC 1.60 (1973) – damping 5% 
 
8. Numerical simulations in Matlab 
 
The 3- and 6-DOFS ordinary differential (ODE) equations of motions, accounting the isolation 
effects by the numerical model [11], are integrated directly by the explicit Runge-Kutta (2,3) pair 
of Bogacki and Shampine [27] by using the ODE23 function in Matlab. This function is useful 
for non stiff problems; remembering that a problem is stiff when the numerical solution has its 
step size limited more severely by the stability of the numerical technique than by the accuracy 
of the technique.  
The 6-DOFS system is represented by larger computational efforts, so it has been decided to 
implement a greater time integration step (0.01s), with respect to the 3-DOFS system (0.005s), 
for limiting the time calculation of the procedure. This choice has been supported by considering 
the main natural frequencies of the system, efficiently captured by the selected integration step, 
and by testing the non linear solution accuracy.  
From a quantitative point of view, if the differential system to be integrated is the following: 

),(' ytfy =            
 (36) 
accounting yn as the numerical solution at time tn and hn is the step size, defined by hn = tn + 1 − 
tn, the one step of the Bogacki–Shampine method is given by: 
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Here, yn+1 is a third-order approximation to the exact solution. On the other hand, zn+1 is a 
second-order approximation, so the difference between yn+1 and zn+1 can be also used to evaluate 
the suitable step size.  
 
9. Design of experiments: Central Composite Design 
 
For representing the isolated building response a second-order model can be used in the 
application of the Response Surface Method to the structural problem [2]. A full model (i.e. 
encompassing all quadratic terms) requires, for k random variables, the estimation of  
p=1+k+k(k + 1)/2 coefficients. In this situation the most suitable experimental strategy is the 
“Central Composite Design” (CCD); once fixed a “center point”, CCD is the combination of a 
classical “two-level factorial design”, in which all the combinations of two levels (high/low) of 
the random variables are considered, with a “Star Design”. In the latter 2k points are considered 
in which one variable takes an intermediate value and the others are at the central value. 
Including the central point, a total number of experiments equal to n=2k +2k + 1 is reached. 
Reasoning in terms of non-dimensional zero-mean random variables xixiii x σµη /)( −=  while 

for preserving the “rotatability” of the design the star points must be placed at 4 2k
i == ηα =2. 

In this study for k=4, it results p=15, n=25 and 2=α . 
Table 5 summarizes the design of experiments (DoE) for the selected random variables, 
normalized to the mean value. 
 

Table 5. DoE with mean value normalization 
 Abe et al. [11] model 

parameters 
Safety domain 

Experiment x1 
(stiffness) 

x2 
(damping) 

x3 
(a) 

x4 
(c)  

1 1.00 0.56 1.00 1.00 
2 1.44 1.00 1.00 1.00 
3 1.00 1.00 1.00 1.44 
4 1.00 1.00 1.00 0.56 
5 1.00 1.00 0.56 1.00 
6 0.56 1.00 1.00 1.00 
7 1.00 1.00 1.44 1.00 
8 1.00 1.44 1.00 1.00 
9 1.61 0.59 0.59 1.61 
10 1.61 0.59 0.59 0.59 
11 0.59 0.59 0.59 1.61 
12 0.59 0.59 0.59 0.59 
13 0.59 0.59 1.61 0.59 
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14 1.61 0.59 1.61 1.61 
15 0.59 0.59 1.61 1.61 
16 1.61 0.59 1.61 0.59 
17 1.61 1.61 0.59 1.61 
18 1.61 1.61 0.59 0.59 
19 0.59 1.61 0.59 1.61 
20 0.59 1.61 0.59 0.59 
21 0.59 1.61 1.61 0.59 
22 1.61 1.61 1.61 1.61 
23 0.59 1.61 1.61 1.61 
24 1.61 1.61 1.61 0.59 
25 1.00 1.00 1.00 1.00 

10. Application of the response surface method 
 
Running the experiments detailed in Table 4, spanning from lower (0.3g) to higher (1.1g) values 
of seismic peak ground acceleration, it is possible to compute the extreme structural response in 
terms of mean and standard deviation of the ratio SC/SL (see Figure 8). In particular the most 
strained device in the whole isolation system has been selected step by step for each PGA.  
Tables 6 and 7 report the 25 experiments for the central composite design with the resulting 
mean and standard deviation, respectively for the 3-DOFS and 6-DOFS model option: the last 
one presents always higher mean and standard deviation levels due to the input characteristic: the 
horizontal resultant is generally more intense.  
 

Table 6. 3-DOFS: mean and standard deviation of the ratio SC/SL for each PGA level 

Experiment E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL)
1 0.3548 0.0557 0.5624 0.1190 0.8485 0.1597
2 0.3346 0.0383 0.5068 0.0635 0.7171 0.1117
3 0.2365 0.0424 0.3663 0.0768 0.5273 0.1060
4 0.3910 0.0717 0.6040 0.1280 0.8650 0.1771
5 0.2160 0.0396 0.3337 0.0707 0.4780 0.0978
6 0.2406 0.0406 0.3750 0.0528 0.5471 0.1045
7 0.3424 0.0613 0.5301 0.1112 0.7632 0.1535
8 0.2646 0.0444 0.3994 0.0783 0.5542 0.1094
9 0.2678 0.0293 0.4071 0.0553 0.6111 0.1281

10 0.4576 0.0504 0.6948 0.0966 1.0553 0.2260
11 0.1697 0.0339 0.2681 0.0538 0.3905 0.0869
12 0.2865 0.0602 0.4547 0.0985 0.6657 0.1544
13 0.4713 0.0944 0.7449 0.1498 1.0851 0.2416
14 0.4394 0.0488 0.6702 0.0909 0.9971 0.2082
15 0.2806 0.0545 0.4416 0.0857 0.6422 0.1387
16 0.7441 0.0812 1.1312 0.1538 1.6986 0.3563
17 0.1731 0.0211 0.2613 0.0402 0.3620 0.0583
18 0.2948 0.0377 0.4451 0.0725 0.6191 0.1013
19 0.1366 0.0224 0.2098 0.0422 0.2938 0.0651
20 0.2301 0.0375 0.3587 0.0735 0.5027 0.1113
21 0.3794 0.0623 0.5830 0.1174 0.8165 0.1810
22 0.2855 0.0343 0.4307 0.0644 0.5959 0.0948
23 0.2259 0.0383 0.3443 0.0693 0.4822 0.1069
24 0.4809 0.0586 0.7259 0.1120 1.0061 0.1620
25 0.2862 0.0516 0.4429 0.0932 0.6368 0.1286

PGA [g] 0.3 0.4 0.5
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Experiment E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL)
1 1.1204 0.2652 1.4273 0.2813 1.6693 0.4312
2 0.9312 0.1616 1.1623 0.2217 1.4642 0.3081
3 0.7030 0.1341 0.8966 0.1702 1.0925 0.2013
4 1.1535 0.2192 1.4794 0.2817 1.8142 0.3450
5 0.6374 0.1211 0.8173 0.1556 1.0021 0.1903
6 0.7140 0.1482 0.9277 0.1793 1.1462 0.2139
7 1.0175 0.1941 1.2977 0.2463 1.5813 0.2914
8 0.7388 0.1320 0.9465 0.1790 1.1668 0.2020
9 0.7732 0.1852 1.0398 0.3189 1.3705 0.3470

10 1.3308 0.3330 1.7718 0.5723 2.3545 0.6149
11 0.5427 0.1567 0.6756 0.1579 0.8711 0.1995
12 0.9225 0.2766 1.1545 0.2726 1.4879 0.3583
13 1.5079 0.4358 1.8772 0.4390 2.4204 0.5551
14 1.2639 0.2980 1.7101 0.5066 2.2433 0.5600
15 0.8920 0.2531 1.1116 0.2560 1.4330 0.3194
16 2.1490 0.5152 2.8891 0.8875 3.8092 0.9651
17 0.4772 0.0731 0.6091 0.0935 0.7567 0.1318
18 0.8150 0.1306 1.0513 0.1655 1.3064 0.2355
19 0.3804 0.0837 0.5023 0.0964 0.6239 0.1119
20 0.6462 0.1452 0.8561 0.1683 1.0635 0.1937
21 1.0569 0.2328 1.3958 0.2679 1.7337 0.3111
22 0.7818 0.1195 0.9950 0.1504 1.2333 0.2107
23 0.6261 0.1371 0.8242 0.1580 1.0256 0.1843
24 1.3261 0.2033 1.6930 0.2601 2.1033 0.3668
25 0.8489 0.1614 1.0843 0.2059 1.3241 0.2463

PGA [g] 0.80.70.6

 

Experiment E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL)
1 2.1410 0.6236 2.6760 0.5628 3.1225 0.7929
2 1.7690 0.3760 2.1489 0.4387 2.4379 0.5397
3 1.2510 0.1997 1.5016 0.2679 1.8105 0.3308
4 2.0788 0.3484 2.4836 0.4697 2.9983 0.5863
5 1.1482 0.1921 1.3720 0.2589 1.6562 0.3233
6 1.4095 0.2561 1.6832 0.2936 1.9133 0.3214
7 1.8107 0.2892 2.1733 0.3879 2.6205 0.4791
8 1.3855 0.2109 1.6390 0.2186 1.9139 0.3262
9 1.6360 0.2851 2.2373 0.7759 2.7612 0.9252

10 2.8195 0.5185 3.8364 1.3432 4.7705 1.6649
11 1.1193 0.2723 1.2761 0.2859 1.4919 0.4177
12 1.9278 0.5003 2.1908 0.5173 2.5840 0.7519
13 3.1109 0.7586 3.5468 0.7955 4.1474 1.1627
14 2.6826 0.4521 3.6676 1.2635 4.4988 1.4656
15 1.8320 0.4237 2.0884 0.4519 2.4296 0.6608
16 4.5467 0.7940 6.2179 2.1568 7.6756 2.5749
17 0.9166 0.1582 1.0930 0.1798 1.2892 0.2159
18 1.5776 0.2864 1.8841 0.3279 2.2215 0.3897
19 0.7160 0.1520 0.8284 0.1728 0.9750 0.1896
20 1.2184 0.2521 1.4100 0.2849 1.6525 0.3120
21 1.9895 0.4218 2.3017 0.4796 2.7089 0.5261
22 1.5000 0.2520 1.7907 0.2812 2.1070 0.3433
23 1.1774 0.2558 1.3654 0.2881 1.6045 0.3228
24 2.5476 0.4401 3.0379 0.5008 3.5831 0.6010
25 1.5172 0.2457 1.8184 0.3301 2.1918 0.4111

PGA [g] 1 1.10.9

 
 

Table 7. 6-DOFS: mean and standard deviation of the ratio SC/SL for each PGA level 
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Experiment E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL)
1 0.4158 0.0484 0.6775 0.0899 0.9907 0.1200
2 0.3939 0.0301 0.5908 0.0488 0.8347 0.0821
3 0.2833 0.0305 0.4387 0.0549 0.6231 0.0837
4 0.4763 0.0514 0.7375 0.0921 1.0472 0.1402
5 0.2630 0.0284 0.4072 0.0508 0.5782 0.0774
6 0.2999 0.0484 0.4447 0.0741 0.6477 0.1257
7 0.4101 0.0442 0.6351 0.0795 0.9020 0.1212
8 0.3164 0.0347 0.4766 0.0624 0.6655 0.0973
9 0.3094 0.0328 0.5075 0.0707 0.7778 0.1379

10 0.5401 0.0574 0.8856 0.1237 1.3566 0.2401
11 0.2075 0.0339 0.3350 0.0590 0.4877 0.0942
12 0.3624 0.0588 0.5852 0.1034 0.8516 0.1645
13 0.5771 0.0943 0.9316 0.1642 1.3562 0.2618
14 0.5003 0.0530 0.8207 0.1141 1.2580 0.2231
15 0.3356 0.0551 0.5415 0.0952 0.7884 0.1521
16 0.8604 0.0913 1.4113 0.1966 2.1627 0.3833
17 0.2120 0.0229 0.3194 0.0391 0.4460 0.0565
18 0.3699 0.0400 0.5570 0.0677 0.7778 0.0978
19 0.1662 0.0316 0.2540 0.0412 0.3541 0.0559
20 0.2905 0.0555 0.4446 0.0711 0.6192 0.0974
21 0.4621 0.0878 0.7065 0.1146 0.9846 0.1554
22 0.3430 0.0372 0.5167 0.0634 0.7216 0.0918
23 0.2686 0.0509 0.4104 0.0671 0.5718 0.0905
24 0.5895 0.0638 0.8882 0.1086 1.2403 0.1570
25 0.3449 0.0372 0.5341 0.0668 0.7586 0.1018

PGA [g] 0.3 0.50.4

 

Experiment E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL) E (SC/SL) σ  (SC/SL)
1 1.6405 0.2582 2.1153 0.4335 2.8542 0.7393
2 1.3859 0.1865 1.7293 0.1939 2.1599 0.3672
3 1.0446 0.1511 1.2861 0.1690 1.5163 0.1800
4 1.7542 0.2530 2.1596 0.2822 2.5464 0.3020
5 0.9686 0.1397 1.1925 0.1558 1.4060 0.1668
6 1.1238 0.2233 1.3504 0.2474 1.6245 0.2756
7 1.5122 0.2188 1.8618 0.2446 2.1949 0.2606
8 1.1611 0.1672 1.4261 0.2036 1.7210 0.2301
9 1.5032 0.3618 1.8630 0.6014 2.5985 0.7681

10 2.6238 0.6335 3.2538 1.0535 4.5404 1.3419
11 0.8443 0.1501 1.0978 0.1602 1.3229 0.2159
12 1.4725 0.2636 1.9169 0.2787 2.3108 0.3754
13 2.3475 0.4174 3.0526 0.4453 3.6785 0.6003
14 2.4300 0.5839 3.0108 0.9701 4.1983 1.2412
15 1.3656 0.2417 1.7744 0.2594 2.1377 0.3498
16 4.1798 1.0062 5.1804 1.6725 7.2258 2.1359
17 0.7386 0.0989 0.9209 0.1335 1.1299 0.1571
18 1.2886 0.1707 1.6067 0.2336 1.9724 0.2741
19 0.6169 0.1087 0.7672 0.1251 0.8975 0.1496
20 1.0771 0.1898 1.3395 0.2167 1.5663 0.2609
21 1.7155 0.3022 2.1332 0.3479 2.4956 0.4160
22 1.1943 0.1609 1.4894 0.2154 1.8265 0.2539
23 0.9975 0.1757 1.2400 0.2033 1.4511 0.2420
24 2.0537 0.2748 2.5607 0.3712 3.1417 0.4368
25 1.2714 0.1838 1.5653 0.2053 1.8454 0.2190

PGA [g] 0.7 0.90.8
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Experiment E (SC/SL) σ  (SC/SL)
1 4.2553 0.9807
2 3.2456 0.5047
3 2.2643 0.3569
4 3.8062 0.6000
5 2.1016 0.3313
6 2.3182 0.4739
7 3.2778 0.5166
8 2.3911 0.3263
9 3.9414 1.6361

10 6.8933 2.8667
11 1.8406 0.3962
12 3.2143 0.6925
13 5.1181 1.1017
14 6.3645 2.6390
15 2.9748 0.6399
16 10.9603 4.5499
17 1.6397 0.1940
18 2.8630 0.3390
19 1.2521 0.2472
20 2.1854 0.4315
21 3.4818 0.6875
22 2.6502 0.3136
23 2.0243 0.3997
24 4.5594 0.5395
25 2.7567 0.4345

PGA [g] 1.1

 
 
 
 
A specific RS must be computed for each considered PGA and it is a distinctive procedure of the 
non linear configuration. On the contrary, for the linear approach, typically applied to non 
isolated reactor buildings, it is sufficient evaluating one RS for a certain PGA level and deriving 
the other RSs by interpolation.  
The so called “dual response surface” approach for solving the reliability problem under 
stochastic input is herein adopted. The analytical expression of the generic response surface has 
the following form for both the mean and the standard deviation surface: 
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 (38) 
In other words, the mean and the standard deviation value of the maximum ratio SC/SL (this last 
recorded in the most strained device of whole isolation system during each realization) over 20 
time histories is evaluated for each design point. In light of these considerations several RSs, 
function of four random variables and the input PGA, have been processed by an ordinary least 
squares (OLS) method. 
Tables 8 and 9 reports the RS coefficient calculated by OLS method for the 3-DOFS 
configuration, in the range of considered PGA, respectively for the mean and the standard 
deviation values. By the same, Tables 10 and 11 for the 6-DOFS structural model. This set of 
RSs allows to define a series of meta-models useful in the remaining of this report for 
performing fragility analyses on the isolated reactor building.  
 

Table 8. 3-DOFS: mean RS coefficients for each PGA level 
PGA [g] 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

a0 0.28032 0.47724 0.72932 1.09656 1.32180 1.92557 3.02343 3.19535 3.76347 
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a1 0.22709 0.35670 0.54195 0.76059 0.99912 0.81540 0.24414 0.59017 1.45682 
a2 -0.18526 -0.35582 -0.64749 -0.96345 -1.06827 -0.91987 -2.44640 -2.84500 -2.93103 
a3 0.30590 0.48484 0.73519 0.93933 1.15024 1.14386 1.70307 2.10916 1.95177 
a4 -0.32813 -0.51581 -0.71650 -1.05396 -1.37089 -1.94875 -1.86445 -1.97857 -2.97467 
a5 0.00526 -0.01170 0.00036 -0.09570 -0.05600 0.20055 0.45075 0.80154 0.76475 
a6 -0.10517 -0.14974 -0.25913 -0.22878 -0.43208 -0.62704 -0.54405 -1.18576 -1.62165 
a7 0.05510 0.08110 0.11942 0.13324 0.20092 0.26014 0.30193 0.52355 0.66981 
a8 -0.06130 -0.08330 -0.13042 -0.15020 -0.20652 -0.28897 -0.32380 -0.54132 -0.70425 
a9 0.08420 0.15356 0.27650 0.36002 0.45894 0.38993 0.92616 1.24403 1.32124 
a10 -0.05160 -0.08400 -0.13672 -0.18370 -0.25165 -0.35691 -0.45346 -0.64959 -0.79319 
a11 0.05650 0.08880 0.15631 0.20500 0.25959 0.37128 0.49444 0.69547 0.88975 
a12 -0.03160 -0.05220 -0.08670 -0.08580 -0.08800 0.05150 -0.07180 -0.11750 0.10702 
a13 -0.07680 -0.11702 -0.16785 -0.22344 -0.28820 -0.36947 -0.44072 -0.54966 -0.66298 
a14 0.11407 0.17338 0.22623 0.34075 0.45139 0.65909 0.53339 0.54268 0.92265 

 
Table 9. 3-DOFS: standard deviation RS coefficients for each PGA level 

PGA [g] 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 
a0 0.07540 0.10699 0.21899 0.57440 0.44030 0.62863 1.11669 1.04662 1.68766 
a1 0.08490 0.30835 0.18591 0.07250 0.15156 0.18983 -0.00313 0.04000 0.32844 
a2 -0.02580 -0.16409 -0.10060 -0.51858 -0.14401 -0.70216 -1.94466 -0.38383 -1.40198 
a3 0.03200 0.04990 0.06160 0.13586 0.08270 0.28731 0.65404 -0.03610 0.04960 
a4 -0.11829 -0.20141 -0.27412 -0.32097 -0.42995 -0.34309 -0.03270 -0.79562 -1.01646 
a5 -0.04430 -0.13991 -0.03080 0.01260 0.14397 0.09410 0.02880 0.59004 0.50572 
a6 0.00590 -0.00448 -0.08250 -0.06890 -0.28491 -0.21893 -0.01030 -0.82210 -0.83084 
a7 -0.00254 0.00084 0.01510 0.00503 0.05880 0.06740 0.00115 0.20864 0.20062 
a8 0.00281 0.00144 -0.01510 -0.01230 -0.07970 -0.07910 -0.01970 -0.22530 -0.26821 
a9 0.00021 0.06400 0.04690 0.19033 0.08970 0.29623 0.75443 0.29418 0.64303 
a10 -0.00751 -0.00982 -0.03450 -0.07060 -0.11264 -0.11503 -0.07300 -0.28235 -0.34783 
a11 0.00937 0.01320 0.04330 0.08590 0.13054 0.14119 0.13588 0.31610 0.44555 
a12 0.00557 0.00832 0.02940 0.03900 0.08180 -0.00042 -0.14927 0.25023 0.28656 
a13 -0.01000 -0.01780 -0.03350 -0.04700 -0.06640 -0.07430 -0.07940 -0.14277 -0.17044 
a14 0.04160 0.07250 0.09190 0.08040 0.13334 0.07800 -0.09850 0.24256 0.27428 

Table 10. 6-DOFS: mean RS coefficients for each PGA level 
PGA [g] 0.3 0.4 0.5 0.7 0.8 0.9 1.1 

a0 0.40947 0.73645 1.12704 2.05909 2.93084 3.66000 4.61979 
a1 0.19526 0.44836 0.56827 0.74296 1.00838 1.28657 2.66833 
a2 -0.19438 -0.48932 -0.73945 -0.95929 -1.89482 -3.59547 -4.59323 
a3 0.34331 0.48230 0.68554 0.94996 1.17029 1.75463 2.54247 
a4 -0.44047 -0.75502 -1.08094 -1.97164 -2.46494 -2.33104 -3.51244 
a5 0.01982 -0.01612 0.06228 0.42957 0.43303 0.90390 1.23460 
a6 -0.09580 -0.18293 -0.33754 -0.92048 -1.05011 -1.78545 -2.92272 
a7 0.06078 0.09883 0.16005 0.32740 0.38428 0.63256 1.03795 
a8 -0.06693 -0.10719 -0.17114 -0.35081 -0.41606 -0.67992 -1.12151 
a9 0.07752 0.20052 0.31022 0.49525 0.86877 1.75044 2.34515 
a10 -0.05465 -0.10640 -0.18485 -0.39991 -0.51077 -0.75559 -1.14532 
a11 0.06283 0.12134 0.20906 0.43861 0.56452 0.84350 1.29846 
a12 -0.03330 -0.01614 -0.00856 0.12587 0.18509 0.09462 0.10923 
a13 -0.08922 -0.14168 -0.20703 -0.37282 -0.46793 -0.59585 -0.86793 
a14 0.15205 0.25744 0.35832 0.65126 0.79420 0.65423 1.03373 

 
Table 11. 6-DOFS: standard deviation RS coefficients for each PGA level 

PGA [g] 0.3 0.4 0.5 0.7 0.8 0.9 1.1 
a0 0.12990 0.22297 0.35710 0.51338 0.59202 0.82298 1.53995 
a1 -0.05222 -0.02672 -0.16411 -0.20207 0.04326 0.08824 0.18166 
a2 -0.06211 -0.12990 -0.04847 -0.03600 -0.59002 -1.85794 -0.87744 
a3 0.02709 0.03429 0.02706 0.05648 0.10713 0.58251 -0.13196 
a4 -0.06580 -0.13606 -0.23353 -0.35015 -0.21576 0.26484 -0.93255 
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a5 0.02540 0.02560 0.12540 0.35450 0.51323 0.63801 1.47036 
a6 -0.01276 -0.02321 -0.07414 -0.37919 -0.73557 -0.92778 -2.20988 
a7 -0.00337 0.00505 0.02086 0.08838 0.19313 0.23898 0.50552 
a8 0.00441 -0.00381 -0.01854 -0.08824 -0.19851 -0.24977 -0.52892 
a9 0.02960 0.05018 0.01313 0.08391 0.43247 1.02551 0.86188 
a10 -0.00483 -0.01927 -0.04914 -0.12202 -0.20121 -0.26682 -0.63950 
a11 0.00515 0.02233 0.05170 0.13475 0.22250 0.30306 0.70352 
a12 0.00877 0.02124 0.05065 0.09181 0.09652 -0.07591 0.47003 
a13 -0.01217 -0.02140 -0.03525 -0.07290 -0.10274 -0.12725 -0.25102 
a14 0.01863 0.04157 0.07190 0.09839 0.03284 -0.21660 0.21101 

 
11. Fragility analysis 
 

The fragility functions have been computed by the “hit or miss” Monte Carlo Method 
(MCM) [2,28]. The RSs support the computational procedures. In particular the application 
of the MCM consists in a sequential generation of samples of lognormal variables (x1 x2 x3 
x4). 
Taking into account the probabilistic parameters of a lognormal distributed random variable, 
one can evaluate the parameters of the variable’s natural logarithm (by definition, the 
variable’s logarithm is normally distributed) as 
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where a  and σ  are the mean and standard deviation of the variable’s natural logarithm. 
Table 12 reports the main normalized random variables statistic parameters where x is a 
generic random variable with a lognormal distribution, then y = ln(x) has a normal 
distribution. 
 
 
 

Table 12. Normalized random variables statistic parameters  
 Lognormal Normal 

x1 
Μ (x)=1 

Σ (x)=0.22 

ā =-0.02363 
σ =0.217406 
Σ 2=0.047265 

x2 
Μ (x)=1 

Σ (x)=0.22 

ā =-0.02363 
σ =0.217406 
Σ 2=0.047265 

x3 
Μ (x)=1 

Σ (x)=0.22 

ā =-0.02363 
σ =0.217406 
Σ 2=0.047265 

x4 
Μ (x)=1 

Σ (x)=0.22 

ā =-0.02363 
σ =0.217406 
Σ 2=0.047265 

 
For each sample extracted by the lognormal distributions it is possible to evaluate, by the 
mean and standard deviation response surfaces, the probability density function of the 
maximum ratio SC/SL (Figure 8). The mean and standard deviation computed via the RSs are 
subsequently used for extracting the extreme value from the Gumbel distribution. The 
extracted value is finally compared to the critical threshold. By this procedure the 
exceedance probability is evaluated and the MCM fragility curve is completed. 
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Figure 12 depicts the fragility functions processed by MCM for the 3-DOFS structural 
model. The fragility is represented as the probability of exceeding the limit state domain.  
Figure 13 presents a comparison between the fragility curves respectively for 3- and 6-
DOFS. 
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Figure 12. MCM fragility function for the 3-DOFS model 
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Figure 13. Comparison: MCM fragility functions for the 3- and 6-DOFS models 

 
The 6-DOFS system emphasizes more fragility than the 3-DOFS due to the different weight 
of the seismic input. The 3-DOFS presents only one component in the horizontal direction; 
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instead, the 6-DOFS implements the resultant of both horizontal components. This last 
horizontal resulting force is in general more intense than the single component; even if, 
formally, both the inputs are characterized by the same PGA.  

 
12. Application to the computation of seismic risk 
 

The remaining of this report is devoted to the evaluation of the seismic risk by integrating the 
hazard and fragility evaluations. In particular both the fragility function of the maximum ratio 
SC/SL for 3- and 6-DOFS models are considered. 
The problem of establishing the hazard curve is complex due to the fact the statistical 
parameters over a certain limit, in terms of return period, lacks of observable data. Therefore, 
some assumptions have been introduced. The hazard is related to a site described by return 
period vs ground acceleration in Figure 14. 
In the estimation of the seismic risk two hypotheses has been introduced: 
1) the PDF (probability density function, Figure 15) for the hazard is extended and truncated 
to 16m/s2 (Figure 16); 
2) the PDF is extended to 20m/s2 and it is not truncated (Figure 17). 

 
Figure 14. Seismic hazard 
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Figure 15. PDF  

 
 

Figure 16. Detail: PDF extended and truncated to 16m/s2 
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Figure 17. Detail: PDF extended to 20m/s2 

 
Following these assumptions, the probability of failure has been computed for both the 
structural systems, plane and three-dimensional: Table 13 summarizes the total probabilities 
of failure for truncated and not truncated PDF. The 3-DOFS system presents a lower risk of 
failure due to the lower fragility feature; the truncated PDF also is a conservative 
assumptions for the total probability of failure. 
 
 

Table 13. Failure probabilities 
 Pf 

(16m/s2 extended and 
truncated PDF) 

Pf 
(20m/s2 extended PDF) 

3-DOFS 1.1642e-005 1.1799e-005 
6-DOFS 1.6542e-005 1.6699e-005 

 

0 4 8 12 16 20
ag(m/s2)

0

5E-007

1E-006

1.5E-006

2E-006

2.5E-006

P
f*

P
a g

(a
g)

0 4 8 12 16 20
ag(m/s2)

0

4E-006

8E-006

1.2E-005

P

 
    a)      b) 



  

 34

Figure 18. 3-DOFS system: (a) integrand function (total probability theorem) with (b) probability 
of failure function 
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Figure 19. 6-DOFS system compared to 3-DOFS one: (a) integrand function (total probability 
theorem) with (b) probability of failure function 

 
Figure 18a reports the integrand function computed by combining the not truncated, less 
conservative, hazard and the fragility function with the total probability theorem for the 3-DOFS 
option. Figure 18 b depicts the total failure probability. Similarly, Figures 19a and 19b shown the 
6-DOFS model results; a comparison is also proposed. 
 
 
 
13. Conclusions 
 
This study reports about the seismic risk computation of the isolated IRIS Reactor Building. 
When the base-isolation system based on HDRB is implemented, the acceleration values inside the 
building undergo a dramatic decrease. The isolation system itself becomes the weakest element in terms 
of seismic safety of the building. 
MATLAB models of the Auxiliary Building are adopted with rigid body motion assumption by 
considering 3-and 6-DOFS approaches. The fragility analysis of the Reactor Building is then 
performed by consolidated analytical and numerical tools. The seismic risk is finally computed 
by considering an hazard function related to a medium seismicity site with two different 
extended PDFs (truncated and not truncated).  
The proposed procedure, funded on consolidated numerical methods, results effective, though 
considering a limited number of random variables and a first tentative limit state domain for the devices. 
 
14. Recommendations and future developments 
 
The limit state domain definition for delamination behaviour  plays a significant role in the final 
risk assessment and its definition remains under development by this research group, studying 
similar approaches in literature on composite structures.  
The laboratory activity is also a key point of the procedure and full scale assessment of the 
control devices seems mandatory for characterizing their mechanical behaviour in quasi-static 
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and dynamic conditions. The influence of the vertical force on the isolator horizontal behaviour 
seems also to be an remarkable aspect to be deepen.   
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