

RICERCA DI SISTEMA ELETTRICO

Attività di sviluppo, validazione e benchmarking del codice ERANOS

A. Gandini, A. Naviglio, V. Peluso

Report RdS/2012/036

ATTIVITA' DI SVILUPPO, VALIDAZIONE E BENCHMARKING DEL CODICE ERANOS

A. Gandini, A. Naviglio CIRTEN UNIROMA1, V. PELUSO ENEA

Settembre 2012

Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico - ENEA Area: Governo, gestione e sviluppo del sistema elettrico nazionale Progetto: Nuovo nucleare da fissione: collaborazioni internazionali e sviluppo competenze in materia nucleare

Responsabile del Progetto: Mariano Tarantino, ENEA

Attività di sviluppo, validazione e benchmarking del codice ERANOS

A. Gandini, A. Naviglio, V. Peluso

<u>Consorzio</u> Interuniversitario per la <u>R</u>icerca <u>TE</u>cnologica <u>N</u>ucleare

Indice

Sor	nmario3
1.	Introduzione4
2.	Il codice di calcolo ERANOS
3.	Validazione del codice ERANOS
	3.1. Applicazione del metodo GPT ad un rapporto di tassi di reazione10
-	3.2 Applicazione del metodo EGPT17
	3.2.1 Sistema modificato variabile con perturbazione costante17
	3.2.2 Sistema Modificato costante con Perturbazione variabile
4.	Implementazione della metodologia GPT nel campo nonlineare neutroni-nuclidi
5.	Conclusioni25
Rife	erimenti bibliografici
A.1	. Campo neutronico. Stato stazionario29
/	A.1.1. Funzionali del flusso neutronico reale
,	A.1.2. Funzionali del flusso neutronico reale ed aggiunto
,	A.1.3. Coefficienti di reattività
A.2	. Campo neutroni/nuclidi
,	A.2.1. Specifici casi d'Interesse
B.1 Ser	. Costruzione del termine di Sorgente per l'equazione della Funzione Importanza Generalizzata ed Analisi di Isibilità in GPT per un rapporto di tassi di reazione46
l	3.1.1. Procedura prevista
I	3.1.2. Esempio di output
B.2	. Calcolo della Perturbazione per una Variazione del Coefficiente di Reattività δ(Δρ) con la metodologia EGPT50
C.1	. Procedura prevista
C.2	. Esempio di output60

Sommario

Il lavoro si propone di validare, attraverso il confronto con i risultati ottenuti con metodi diretti, la metodologia di calcolo perturbativo GPT implementata nel codice ERANOS. Per lo studio è stato scelto il progetto di un reattore veloce refrigerato a piombo (ELSY) preso in esame come possibile reattore di riferimento della quarta generazione.

La metodologia GPT implementata nel codice consente l'analisi di quantità rappresentative di rapporti di funzionali lineari del flusso reale (quali i rapporti di tassi di reazione) e di funzionali bilineari del flusso reale e del flusso aggiunto (quali i coefficienti di reattività). Essa viene descritta nella parte introduttiva mettendone in evidenza gli aspetti salienti e le formulazioni finali implementatate nel codice stesso. In Appendice viene descritta anche la metodologia GPT per calcoli nonlineari di interesse nell'analisi del comportamento del campo accoppiato neutroni/nuclidi con l'evoluzione del nocciolo durante il burn-up. Questa metodologia non è attualmente implementata nella versione corrente del codice. La sua implementazione, che richiede un complesso lavoro di elaborazione di dati per la preparazione dell'input negli step in cui è stato suddiviso il tempo di evoluzione, è prevista nella fase finale del lavoro.

In Appendice sono illustrate le varie procedure previste dal codice per i calcoli GPT, oltre ad esempi di output dei calcoli eseguiti nel processo di validazione.

1. Introduzione

Con questo lavoro ci si è proposti di affrontare problematiche relative all'uso del codice ERANOS, di interesse nell'ambito dei programmi europei sui reattori di quarta generazione. Le attività previste riguardano, in particolare, l'utilizzazione e l'ulteriore sviluppo di metodologie per l'analisi di sensitività al fine di consentire:

- il calcolo dei coefficienti di sensitività di quantità integrali (effetti di reattività, rapporti di tassi di reazione, ecc) misurate su facilities sperimentali in rapporto ai parametri fisici di reattori (come sezioni d'urto, densità dei materiali costituenti, ecc.). Questi coefficienti consentono, in particolare, di trasferire l'informazione ottenuta attraverso campagne di misura in facilities sperimentali ai reattori di riferimento;

- l'implementazione di metodologie di sensitività avanzate, attualmente non inserite nel codice ERANOS, per l'analisi del ciclo del combustibile. Tale implementazione consentirà di disporre di metodi di analisi dettagliate relative a grandezze di interesse per la vita dei reattori in rapporto ai parametri di progetto (per es., la composizione iniziale del combustibile), alle strategie di controllo della reattività (per es., la distribuzione dei veleni bruciabili), ecc..

Le metodologie di analisi di sensitività su accennate possono essere anche utilizzate per valutare la propagazione delle incertezze dei parametri fisici sul calcolo dei parametri integrali relativi al sistema in esame. Tali incertezze sono oggi disponibili sotto forma di matrici di varianza/covarianza nelle librerie dei dati nucleari.

Il calcolo dei coefficienti di sensitività su accennati si basano, sia nel caso di stati stazionari (come negli studi in condizioni iniziali del reattore) che nel caso di stati variabili col tempo (come negli studi in rapporto all'evoluzione dei nuclidi durante il burn-up), sui metodi perturbativi generalizzati (GPT) [1,2,3] (v. Appendice A). Nella versione attuale del codice ERANOS risulta implementata solo la metodologia GPT per i campi lineari. Non è previsto quindi il calcolo dei coefficienti di sensitività in quelli nonlineari, quali il campo neutroni/nuclidi, relativo all'evoluzione del nocciolo durante la vita. Uno degli scopi del presente lavoro, oltre a quelli di validazione e benchmarking del codice per quanto riguarda la metodologia nelle condizioni di stato stazionario, è quello di avviare

un'azione per affrontare questo problema. La metodologia da implementare è presentata nella sezione A.2 dell'Appendice A. Essa potrà essere utilizzata per studi relativi a:

- valori della fluenza in punti e intervalli di tempo definiti,
- tassi di reazione in punti e tempi definiti,
- accumulo di uno o più materiali ad un tempo definito,
- valore del controllo residuo (per es., la densità del boro nel refrigerante di un reattore ad acqua) a fine vita.

Il lavoro verrà quindi suddiviso in tre parti, cui corrisponderanno altrettante fasi di attività:

- la prima relativa alla validazione del codice per quanto riguarda le modalità d'uso secondo
 la metodologia GPT ed EGPT nel campo neutronico in condizioni stazionarie,
- la seconda per: a) l'analisi della modalità d'uso per il calcolo dei coefficienti di correlazione tra dati di esperienze benchmark e quantità integrali del sistema, o dei sistemi di riferimento e b) l'analisi dell'utilizzo del codice per calcoli di sensitività nel campo (lineare) dei nuclidi in relazione alla loro evoluzione durante il burn-up,
- la terza per lo sviluppo di un modulo da accoppiare al codice ERANOS per studi di sensitività nel campo accoppiato (nonlineare) neutroni/nuclidi. Da notare che al campo accoppiato neutroni-nuclidi dovrà essere associata anche una variabile (intensiva) di controllo tale da assicurare il mantenimento del livello di potenza previsto durante la vita del reattore.

ACCORDO DI PROGRAMMA MSE-ENEA

2. Il codice di calcolo ERANOS

I calcoli neutronici sono stati effettuati con il codice deterministico ERANOS-2.1 [6]. Questo codice è costituito da librerie di dati, programmi di calcolo specifici e procedure di calcolo che consentono un'elevata flessibilità e modularità. Un calcolo tipico di ERANOS viene eseguito utilizzando diversi moduli, collegati tra loro in procedure che utilizzano un linguaggio specifico. Le sequenze di calcolo consigliate sono fornite a seconda degli obiettivi, da veloci studi di fattibilità a calcoli di riferimento. In un codice deterministico come ERANOS, i parametri neutronici del nocciolo (p. es., il fattore di moltiplicazione o il flusso neutronico fine in ciascun punto di mesh del sistema) vengono calcolati secondo due fasi:

- 1) calcolo di cella/reticolo eseguito con il codice ECCO e
- calcolo del nocciolo, utilizzando il metodo variazionale nodale TGV / VARIANT per una geometria core 3D, o alle differenze finite Sn con il codice BISTRO per una geometria 2D. Questi codici risolvono problemi relativi ad equazioni omogenee e non omogenee (per la presenza di una sorgente esterna. Possono essere ottenute sia soluzioni dirette che aggiunte.

Più in particolare, nella prima fase del calcolo, il codice di cella ECCO viene utilizzato per la preparazione di sezioni d'urto macroscopiche auto-schermate. Le celle possono essere descritte come omogenee o eterogenee (tipicamente, un elemento composto di barrette di combustibile disposte in reticolo). Le geometrie disponibili sono:

- 1. mezzo omogeneo o infinito,
- reticolo 2D rettangolare di barre cilindriche e/o barrette all'interno di una scatola a sezione quadrata,
- 3. slab 3D,
- 4. reticolo 2D esagonale di pin cilindriche all'interno di una scatola esagonale.

Alla fine dei calcoli con il codice ECCO, le sezioni d'urto vengono normalmente pesate con i flussi all'interno di ciascuna cella e collassate secondo una struttura a numero di gruppi energetici definito (tipicamente 33). Esse vengono quindi utilizzate per i calcoli neutronici del reattore.

Il codice Eranos-2.1 contiene due librerie di sezioni d'urto neutroniche, entrambe derivate dal file di dati nucleari valutati JEF-2.2 : JECCOLIB2 e ERALIB1. Ogni libreria contiene:

- Una libreria a 1968 gruppi di energia per i nuclidi principali (41 isotopi, tra cui 235U, 238U, 239U, 240Pu, 241Pu, 242Pu, Zr, Gd, Al, 56Fe, 58Ni, 52Cr, Na, O, C, 10B, H vincolato). La libreria è ottenuta dal processamento dei dati del file JEF-2.2, attraverso una versione convalidata di NJOY,
- 2. Una libreria a 33 gruppi di energia per applicazioni in spettri veloci (287 isotopi),
- 3. Una libreria a 175 gruppi di energia (schema VITAMINE-J) per calcoli di schermatura,
- 4. Una libreria a 172 gruppi di energia (schema XMAS) per applicazioni in spettri termici (287 isotopi),
- 5. Una libreria a 36 gruppi di energia per calcoli di sorgente gamma.

Il codice BISTRO è particolarmente efficiente in termini di convergenza. In esso sono disponibili le opzioni in trasporto Sn e in diffusione. L'opzione in diffusione è utilizzato anche nella modalità in trasporto per accelerare lo schema di convergenza. In termini più dettagliati, il metodo standard Sn è usato per discretizzare l'equazione di Boltzmann per geometrie bidimensionali (XY o RZ).

Con ERANOS sono pure possibili calcoli di burn-up, per singola cella o per l'intero nocciolo. Il codice risolve le equazioni di evoluzione per ogni step temporale, aggiornando ogni volta le sezioni d'urto macroscopiche mediante ECCO (opzionalmente) e quindi BISTRO per lo step successivo.

Con il codice ERANOS possono essere effettuati calcoli perturbativi per analisi di sensitività. Le procedure di calcolo si basano sull'uso della soluzione aggiunta dell'equazione di Boltzman. Esse consentono di ottenere al primo ordine le variazioni di quantità integrali (k_{eff}, tassi di reazione, concentrazioni isotopiche, coefficienti di reattività, ecc) in relazione a variazioni dei parametri differenziali presenti nella libreria dei dati nucleari. Utilizzando i moduli implementati, è così possibile calcolare i valori di reattività e i coefficienti di sensibilità di sistemi neutronici, utilizzando la metodologia perturbativa standard, con precisione al primo ordine, così come la forma esatta e quella generalizzata (GPT).

ACCORDO DI PROGRAMMA MSE-ENEA

La teoria delle perturbazioni ha una vasta gamma di applicazioni, in particolare il calcolo dei coefficienti di reattività necessari, ad esempio, per i calcoli di cinetica puntuale. L'analisi di sensitività permette inoltre di studiare, in modo sistematico, gli effetti della variazione dei parametri di base (p_j) (p. es., sezioni d'urto, densità, ecc.) su un valore integrale Q (p. es., fattore di moltiplicazione k_{eff}, tassi di reazione, ecc.). In sintesi, si possono calcolare quantità del tipo

$$\Delta Q = \sum_{i} \frac{dQ}{dp_{i}} \Delta p_{i}$$
⁽¹⁾

$$s_{i} = \frac{\Delta Q/Q}{\Delta p_{i}/p_{i}} .$$
 (2)

Uno dei vantaggi usando la teoria lineare delle perturbazioni è che i valori delle perturbazioni e i coefficienti di sensibilità sono (salvo che nella forma perturbativa esatta) indipendenti dalla perturbazione stessa e possono essere calcolati velocemente, a differenza dei calcoli diretti.

I moduli perturbativi di ERANOS consentono in definitiva di calcolare, sulla base della (2),

- i coefficienti di sensibilità relativi al fattore di moltiplicazione. I calcoli si basano sulla teoria delle perturbazioni standard;
- i coefficienti di sensibilità relativi ai rapporti di tassi di reazione;
- le variazioni dei coefficienti di reattività a seguito di perturbazioni dei parametri di base;
- le incertezze (ε_Q) dei parametri integrali. In questo caso, il calcolo richiede i coefficienti di sensibilità s_i e la matrice di covarianza (D) associata alla libreria dei dati nucleari. Esse sono date dal prodotto scalare

$$\varepsilon_{\rm O} = S^{\rm T} D S \tag{3}$$

dove S è un vettore che ha come componenti i coefficienti di sensitività definiti dall'equazione (2). Il vettore S è anche denominato profilo di sensitività.

- coefficienti di correlazione. Questi coefficienti danno un'indicazione della somiglianza, dal punto di vista dei dati nucleari, della stessa quantità integrale rispetto a due sistemi diversi, cioè:
 - la facility in cui vengono ottenuti i dati sperimentali (il cui profilo di sensitività verrà indicato con S_A)
 - il reattore di riferimento (il cui profilo di sensitività verrà indicato con S_B).

Mettendo in relazione i profili di sensitività S_A ed S_B attraverso la matrice di covarianza (D) associata ai dati nucleari si potrà ottenere il coefficiente di correlazione dato dall'espressione

$$r_{AB} = \frac{S_A^T D S_B}{\sqrt{(S_A^T D S_A)(S_B^T D S_B)}}$$
(4)

Il valore di r_{AB} si trova tra 0 e 1. Più esso è vicino all'unità, più l'esperimento è rappresentativo delle condizioni del reattore di riferimento.

ACCORDO DI PROGRAMMA MSE-ENEA

3. Validazione del codice ERANOS

Il codice deterministico ERANOS [5] è un sistema di tipo modulare nel quale differenti moduli si concatenano l'uno all'altro mediante opportune semplici istruzioni. Questi moduli permettono sia la creazione che la modifica e l'eventuale edizione di grandezze tipiche dei reattori nucleari. Nel corso degli anni, un'importante ed ampia sezione del codice è stata dedicata allo studio di fenomeni nucleari nei reattori mediante metodologie perturbative. Per qualsiasi tipologia di analisi perturbativa (CPT, GPT e EGPT), nel sistema ERANOS sono presenti:

- moduli che calcolano l'entità della perturbazione come differenze di sezioni d'urto e/o densità materiali.
- moduli che calcolano gli integrali perturbativi sia in teoria della diffusione che del trasporto.
- moduli che determinano l'effetto in reattività della perturbazione con le relative componenti perturbative del bilancio neutronico.
- moduli per il calcolo di sensibilità di parametri integrali per determinati parametri di base mediante scomposizione degli effetti per zona geometrica, nuclide e gruppo energetico.
- moduli per l'analisi di incertezza e rappresentatività (correlazione) di esperienze su una facility rispetto ad un reattore di riferimento.

3.1. Applicazione del metodo GPT ad un rapporto di tassi di reazione

Per lo studio della metodologia GPT implementata nel codice ERANOS si è preso in considerazione il reattore veloce refrigerato a piombo ELSY nella versione esagonale [6],. Viene dapprima effettuata un'analisi di sensibilità su alcuni tipici rapporti di tassi di reazione ed indici di spettro. Viene determinata solo la componente "indiretta" dell'effetto di sensibilità, cioè quella dovuta ad un cambiamento di densità e/o sezioni d'urto del sistema che come conseguenza implica un cambiamento (perturbazione) del flusso neutronico che agisce sui tassi di reazione. La componente cosiddetta "indiretta", cioè quella dovuta all'eventuale presenza nel rapporto studiato di parametri corrispondenti a quelli perturbati, non viene considerata nello studio in quanto di facile valutazione.

Per un'analisi di sensibilità per un funzionale lineare nel flusso reale (come è il caso di un rapporto di tassi di reazione) il calcolo ERANOS si decompone in tre step: nel primo si calcola il termine di

sorgente (sulla base della tipologia dei tassi di reazione e del volume in cui sono essi definiti), nel secondo step si ottiene la soluzione dell'equazione GPT non omogenea, cioè la funzione importanza generalizzata aggiunta ψ^* , infine, nel terzo step, dopo il calcolo propedeutico degli integrali perturbativi e quindi lo svolgimento di un'analisi di sensibilità, si ottengono per gruppo/nuclide/reazione i coefficienti di sensibilità del rapporto dei tassi in questione rispetto alla perturbazione considerata.

Per la validazione del codice sono stati considerati i seguenti funzionali

- indice di spettro 'tasso di fissione U-238 su tasso di fissione U-235' nella zona centrale dell'elemento centrale (centro nocciolo);
- indice di spettro 'tasso di fissione Pu-239 su tasso di fissione U-235' nella zona centrale dell'elemento centrale (centro nocciolo);
- rapporto tra tasso di fissione totale a centro nocciolo e tasso di fissione totale in tutto il nocciolo.

Come perturbazione, si è scelto di diminuire del 10% il refrigerante (piombo) nella zona combustibile.

Il calcolo sono stati eseguiti sia in teoria della diffusione che del trasporto. Essi mostrano differenze totalmente trascurabili (vedi tabella 1). Come verifica della validità dei risultati ottenuti, viene anche riportato il valore esatto, calcolato in teoria del trasporto, dei funzionali considerati. Come si vede dalla tabella 1, i valori ottenuti utilizzando la metodologia GPT vengono ampiamente confermati dal confronto con quelli esatti ottenuti con calcoli diretti.

PERTURBAZIONE = -10% Densità Piombo nel Combustibile						
FUNZIONALE LINEARE	DIFFUSIONE	TRASPORTO	TRASPORTO			
	GPT	GPT	CALC. DIRETTO			
Fiss. Rate U-238 / Fiss. Rate U-235	3.2%	3.5%	3.1%			
Fiss. Rate Pu-239 / Fiss. Rate U-235	0.3%	0.3%	0.4%			
Fiss. Rate center core / Fiss. Rate total core	0.2%	≈ 0	0.3%			

Tab.1 Sensibilità indiretta del funzionale per una diminuzione del 10% di piombo nel combustibile

Successivamente sono state esaminate traverse (valori di una funzione lungo una direzione) sia radiali che assiali dell'andamento della funzione importanza generalizzata ψ^* avendo definito la sorgente a centro nocciolo (vedi figure 1-4) per alcuni tipici funzionali lineari. Differenze, tra i calcoli in teoria del trasporto e della diffusione, si hanno unicamente nei valori di picco della ψ^* (cioè a centro nocciolo). In teoria del trasporto si osservano anche delle oscillazioni (comunque molto contenute) nella zona spaziale confinante con quella definita dalla sorgente. Tali differenze sono più che altro imputabili ad una maggior difficoltà di convergenza locale del flusso in teoria del trasporto per alcuni gruppi energetici.

La procedura ERANOS sia per la costruzione del termine di sorgente dell'equazione della funzione importanza generalizzata ψ^* sia per l'analisi di sensibilità per un rapporto di tassi di reazione o di un indice di spettro, viene presentata in Appendice B.1

Fig.1 Traversa Radiale della ψ^{*} per l'indice spettrale σ_{fiss} U-238 / σ_{fiss} U-235

Fig.2 Traversa Assiale della ψ^{*} per l'indice spettrale σ_{fiss} U-238 / σ_{fiss} U-235

Fig.3 Traversa Radiale della ψ^{*} per l'indice spettrale σ_{fiss} Pu-239 / σ_{fiss} U-235

(La Traversa Radiale della ψ^* per il rapporto tra la Fissione totale a centro core e la Fissione totale in tutto il nocciolo, ha il medesimo andamento e non viene quindi riportata)

ACCORDO DI PROGRAMMA MSE-ENEA

Fig.4 Traversa Assiale della ψ^* per l'indice spettrale σ_{fiss} Pu-239 / σ_{fiss} U-235 (La Traversa Assiale della ψ^* per il rapporto tra la Fissione totale a centro core e la Fissione totale in tutto il nocciolo, ha il medesimo andamento e non viene quindi riportata)

3.2 Applicazione del metodo EGPT

Per il calcolo della variazione di un funzionale definito come rapporto di due funzionali bilineari del flusso reale ed aggiunto (per esempio, un coefficiente di reattività) causata da una perturbazione dei parametri (per esempio, una sezione d'urto) viene generalmente usato il metodo EGPT (Equivalent GPT) (vedi Appendice A1.3.1) onde evitare delle difficoltà che si incontrano (per mancanza di moduli espressamente dedicati) nella costruzione del termine di sorgente che appare nelle equazioni relative alle funzioni importanza. Il metodo EGPT consiste nell'utilizzare, in luogo delle equazioni inomogenee per il calcolo delle funzioni importanza, un'equazione omogenea, di più semplice risoluzione, modificando opportunamente gli operatori. Più precisamente, ad un sistema di riferimento ed allo stesso con i parametri di base perturbati (per esempio, per variazione delle sezioni d'urto), viene applicata un'alterazione (la medesima su entrambi i sistemi) corrispondente alla modifica del sistema implicita nel funzionale considerato (per esempio, la variazione della densità del refrigerante nel caso sia in studio l'effetto di vuoto dello stesso). In questo modo per ottenere un'espressione perturbativa equivalente a quella che si ha con il metodo GPT risultano sufficienti due calcoli perturbativi classici (CPT) al primo ordine relativi: uno alla configurazione di riferimento e l'altro a quella modificata. Le variazioni del funzionale studiato si hanno quindi come differenza tra i due valori così ottenuti.

Per la validazione della metodologia EGPT è stato quindi scelto, come funzionale, la variazione di reattività del reattore veloce ELSY, nella versione esagonale già considerata, conseguente a variazioni progressive della densità del refrigerante (piombo) nella zona combustibile, come illustrato nel paragrafo seguente.

3.2.1 Sistema modificato variabile con perturbazione costante

Le modifiche della densità del refrigerante vengono effettuate in modo progressivo, con diminuzione che vanno dal 5% fino al 50%. La perturbazione (costante) consiste nel raddoppiare la sezione d'urto di cattura dell'U-238.

Le medesime variazioni di reattività sono state ottenute mediante calcoli esatti al fine di valutare il limite di validità delle corrispondenti variazioni ottenute col metodo EGPT al primo ordine (vedi tabella 2 e 3).

I calcoli sono stati effettuati sia in teoria della diffusione che del trasporto ed ancora una volta mostrano tra loro differenze minime. Si può osservare che mentre con la diffusione la variazione in percentuale rispetto al valore esatto resta costante, con il trasporto invece tale variazione diminuisce al diminuire dell'entità della modifica sul sistema corrispondente.

Tutto ciò viene messo in evidenza in fig.5.

Tab.2 Confronto della variazione di reattività $\delta_s \tilde{\rho}_c$ con calcolo EGPT e calcolo esatto in diffusione

DIFFUSIONE PERTURBAZIONE = +100% Σ _{capt} U-238						
SISTEMA MODIFICATO	$δ_s \widetilde{p}_c$ _{EGPT} Diffusione (pcm)	$\delta_s \widetilde{ ho}_c$ Esatto Diff. (pcm)	Variazione %			
Refrigerante -5%	147	128	14.6			
Refrigerante -10%	297	259	14.6			
Refrigerante -20%	605	528	14.6			
Refrigerante -50%	1599	1396	14.6			

Tab.3 Confronto della variazione di reattività $\delta_s \widetilde{\rho}_c\,$ con calcolo EGPT e calcolo esatto in trasporto

TRASPORTO PERTURBAZIONE = +100% Σ _{capt} U-238						
SISTEMA MODIFICATO	${f \delta}_s {f \widetilde{ ho}}_c$ _{EGPT} Trasporto (pcm)	$\delta_s \widetilde{p}_c$ Esatto Trasp. (pcm)	Variazione %			
Refrigerante -5%	151	139	8.6			
Refrigerante -10%	300	268	11.7			
Refrigerante -20%	605	531	13.9			
Refrigerante -50%	1600	1403	14.0			

con sistema modificato variabile e perturbazione costante

ACCORDO DI PROGRAMMA MSE-ENEA

3.2.2 Sistema Modificato costante con Perturbazione variabile

In questo caso la variazione di reattività del sistema modificato (rispetto alle condizioni iniziali) è calcolato mantenendo costante la modifica (una diminuzione del 20% di refrigerante nel combustibile) ed aumentando la sezione d'urto di cattura dell'U-238 da un minimo del 5% fino al 100%. Tale aumento rappresenta la perturbazione apportata in eguale misura sia sul sistema di riferimento che su quello modificato.

Successivamente si sono anche calcolate le variazioni dei coefficienti di reattività su un altro tipo di perturbazione, consistente nell'aumentare la sezione d'urto di scattering totale (elastica + anelastica) dell'U-238 sempre da un minimo del 5% fino al 100%.

I calcoli sono stati effettuati sia in diffusione che in trasporto e mostrano tra loro minime differenze. Per variazioni delle sezioni d'urto fino al 20%, il metodo EGPT al primo ordine approssima molto bene (\leq 10 pcm) il valore esatto della variazione di reattività $\delta_s \tilde{\rho}_c$ per entrambi i tipi di perturbazione come si può verificare dalle fig.6 e 7.

Fig.6 Variazione della reattività: Confronto calcolo EGPT-Calcolo Esatto (in pcm) con sistema modificato costante (PB = 80%) e perturbazione variabile (Σ_{scatt} U-238)

Fig.7 Variazione della reattività: Confronto calcolo EGPT-Calcolo Esatto (in pcm)con sistema modificato costante (PB = 80%) e perturbazione variabile (Σ_{capt} U-238)

4. Implementazione della metodologia GPT nel campo nonlineare neutroni-nuclidi

Nella sezione A2 dell'Appendice A viene illustrata la metodologia GPT relativa al campo accoppiato neutroni/nuclidi. In questo caso le equazioni da risolvere a tempi discreti t_i, relative alla densità dei neutroni, a quella dei nuclidi ed alla variabile di controllo, risultano, rispettivamente

$$\mathbf{m}_{n,i+1} \equiv B(\mathbf{c}_i, \rho_i)\mathbf{n}_i + \mathbf{s}_{n,i} = 0$$
(5)

$$\mathbf{m}_{c,i+1} = -\frac{d\mathbf{c}}{dt} + E(\mathbf{n}_i)\mathbf{c} + \mathbf{s}_c$$
(6)

$$\mathbf{m}_{\rho,i+1} \equiv \langle \mathbf{c}_{f,i}^{\mathrm{T}} \ S \, \mathbf{n}_{i} \rangle_{\mathrm{V}} - \mathbf{W}_{i} = 0 \tag{7}$$

mentre quelle relative alla funzioni importanza associate, ottenuta previa linearizzazione di una soluzione 'diretta' di riferimento:

$$B^{*}\mathbf{n}_{i}^{*} + <\Omega_{c}^{*}\mathbf{c}^{*} >_{i+1} + S^{T}\mathbf{c}_{f,i}\mathbf{p}_{i}^{*} + \mathbf{h}_{n,i}^{+} = 0$$
(8)

$$-\frac{\overline{\partial}\mathbf{c}^{*}}{\partial t} = E^{\mathrm{T}}\mathbf{c}^{*} + (\Omega_{n,i}^{*}\mathbf{n}_{i}^{*} + \mathbf{h}_{c,i}^{+})\delta(t - t_{i})$$
(9)

$$<\mathbf{n}_{i}^{*\mathrm{T}}, \frac{\partial (B\,\mathbf{n}_{i}+\mathbf{s}_{n,i})}{\partial \rho}>_{\mathrm{V}} + \mathbf{h}_{\rho,i}^{+} = 0$$
, (10)

A queste equazioni corrispondono condizioni finali definite, come indicato nella sezione A.2.1, sulla base dei funzionali analizzati.

L'integrazione viene effettuata a partire dal tempo 'finale', cioè dal tempo oltre il quale il funzionale non è più definito, procedendo quindi a ritroso per il calcolo:

- dell' importanza neutronica \mathbf{n}_i^* , a tempi discreti t_i,

- dell'importanza dei nuclidi che evolve negli intervalli Δt_i ,
- dell'importanza associata alla variabile di controllo a tempi discreti t_i .

Ad ogni step temporale viene preparato l'input per lo step successivo, sulla base dell'output di quello precedente. Per questo calcolo verrà quindi sviluppato un apposito modulo, 'esterno' al codice ERANOS, che assume in questo caso il ruolo di subroutine.

In un tempo successivo, una volta validato il modello, sono previste trattative con il CEA per la sua interiorizzazione nello stesso codice ERANOS.

Come detto in precedenza, l'applicazione della metodologia GPT al campo nonlineare neutroni/nuclidi prevede la linearizzazione di una soluzione di riferimento rispetto alla quale poi procedere per il calcolo delle funzioni importanza. Per le prove previste in questo lavoro, verrà fatto riferimento alla soluzione di un calcolo di burn-up relativo al reattore ELSY in geometria esagonale (vedi Appendice C).

5. Conclusioni

Con questo lavoro si è dato avvio ad una sistematica analisi di validazione e quindi di sviluppo del codice di calcolo neutronico ERANOS, in particolare in rapporto al suo utilizzo sulla base della metodologia GPT per i calcoli perturbativi generalizzati. In questa prima fase di attività sono stati eseguiti calcoli sistematici della variazione di quantità integrali importanti per i reattori veloci (quali l'effetto di vuoto del refrigerante), a seguito di variazioni parametriche (sezioni d'urto e densità di elementi costitutivi). Per lo studio è stato scelto il progetto di un reattore veloce refrigerato a piombo (ELSY), preso in esame come possibile reattore rappresentativo della quarta generazione. I risultati ottenuti con la metodologia perturbativa sono stati quindi confrontati con metodi di calcolo diretti, cioè basati sul calcolo diretto dei flussi perturbati, utilizzando sia la modalità di calcolo in diffusione che quella in trasporto. E' stata verificata la convergenza dei risultati dei calcoli perturbativi on quelli diretti al diminuire dell'entità della perturbazione. Ciò dimostra la validità della modalità perturbativa GPT implementata nel codice.

In previsione dello sviluppo del codice ERANOS per analisi perturbative in campi non.lineari, quale quello accoppiato neutroni/nuclidi, di interesse per studi relativi alla evoluzione del nocciolo durante il burn-up, è stata messa a punto una procedura di calcolo atta a poter calcolare le funzioni importanza, in questo caso dipendenti anche dal tempo, che entrano nelle formulazioni perturbative. In particolare sono state definite le condizioni da cui partire all'inizio del primo step temporale, in funzione delle quantità che si sceglie di analizzare, cioè:

- Funzionali dipendenti, direttamente o indirettamente, del flusso neutronico, quali la fluenza in un punto ed in un intervallo di tempo assegnati, un tasso di reazione ad un certo istante, ecc.
- 2. Funzionali dipendenti dalla densità di uno o più nuclidi, quali ad esempio la quantità di attinidi minori accumulati a fine ciclo.
- 3. Funzionali dipendenti dalla variabile di controllo (per il mantenimento della potenza assegnata) implicita nella metodologia proposta. Un funzionale di questo tipo è, ad esempio, la reattività residua a fine vita. Uno studio di sensitività relativo a questa quantità potrebbe essere utilizzato, ad esempio, per massimizzare la durata del ciclo di combustibile attraverso opportune variazioni parametriche (per es., la distribuzione dei veleni bruciabili).

In questa prospettiva, è stato definito e svolto un calcolo di riferimento, consistente in cinque step temporali di evoluzione del reattore ELSY in geometria esagonale, per una durata complessiva del ciclo di cinque anni.

Riferimenti bibliografici

- Gandini A. "Generalized Perturbation Theory Methods. A Heuristic Approach", <u>in</u> Advances in Nuclear Sci. and Techn., Vol 19, J. Lewins and M. Becker Eds., Plenum Press, New York, p 205 (1987).
- Gandini A., "Time-dependent Generalized Perturbation Methods for Burn-up Analysis") Rapporto CNEN, RT/FI(75)4 (1975)
- 3. A. Gandini, "Sensitivy Analysis of Subcritical Systems by the HGPT Methodology", Annals of Nuclear Energy, 24, 1241 (1997).
- 4. A. Gandini, M. Salvatores, "The Physics of Subcritical Multiplying Systems", Journal of Nuclear Science and Technology, Vol.39 No.6 (2002)
- 5. A. Gandini, G. Palmiotti and M. Salvatores, "Equivalent Generalized Perturbation Theory (EGPT)", Annals of Nuclear Energy, 13 (3), 109 (1986)
- 6. G. Rimpault. et al.,. "The ERANOS Code and Data System for Fast Reactor Neutronics Analyses", *Proc. Int. Conf. PHYSOR 2002*, Seoul, Korea, October 7-10 (2002).
- 7. L. Cinotti et al., the ELSY Project, *International Conference on the Physics of Reactors*, Interlaken (2008).

Appendice A. Metodologia GPT

La metodologia GPT (Generalized Perturbation Theory) è stata dapprima sviluppata in relazione al campo lineare della densità neutronica. Poi è stata estesa ad altri campi lineari. In tutti questi casi l'equazione che governa la funzione importanza è stata ottenuta direttamente imponendo che in media il contributo alla risposta prescelta da parte di una particella [un neutrone, o un nuclide, o un vettore energetico] introdotto in un determinato momento nello spazio delle fasi in un determinato punto del sistema venga conservato nel tempo (principio di conservazione dell'importanza). Ovviamente tale importanza risulterà generalmente dipendente dalla posizione, dal tempo, e, se il caso, energia e direzione, della particella inserita.

Si consideri il campo lineare di una densità di particelle rappresentata dal vettore **f** (ad esempio, il campo della densità neutronica nella forma multigruppo) e una risposta Q del tipo

$$Q = \int_{t_0}^{t_F} \langle \mathbf{s}^{+T} \mathbf{f} \rangle dt \equiv \langle \langle \mathbf{s}^{+T} \mathbf{f} \rangle \rangle , \qquad (A.1)$$

dove s^+ è una funzione vettoriale assegnata e dove < > indicano integrazione nello spazio delle fasi.

Ponderando tutte le particelle inserite nel sistema, supponiamo attraverso una sorgente s, con la corrispondente importanza (f^*) darà ovviamente la stessa risposta, cioè,

$$\ll \mathbf{f}^{*T}\mathbf{s} \gg \mathbf{Q} = \ll \mathbf{s}^{+T}\mathbf{f} \gg , \tag{A.2}$$

che rappresenta un importante rapporto di reciprocità.

Con le prime derivazioni di cui sopra, sono state identificate le regole che consentono di determinare l'equazione che governa la funzione importanza f^* . Esse implicano:

- cambio di segno delle derivate dispari,
- trasposizione degli elementi di matrice,
- inversione dell'ordine degli operatori,

- sostituzione della sorgente reale **s** con quella aggiunta **s**⁺.

Le prime tre regole vengono generalmente chiamate regole di " inversione degli operatore".

La metodologia HGPT è stata poi estesa a qualsiasi campo governato da operatori lineari per i quali fossero conosciute le regole per la loro inversione. In particolare, essa è stata estesa ai campi derivati, ottenuti dall'espansione al primo ordine, attorno ad una data soluzione di partenza, di importanti equazioni non lineari, come quelle che governano il campo accoppiato neutroni/nuclidi, relativo all'evoluzione del nocciolo durante il burn-up..

A.1. Campo neutronico. Stato stazionario

Consideriamo dapprima la metodologia HGPT per studi di analisi di sensitività relativi a sistemi in stato stazionario, in condizioni cioè critiche. Le quantità che interessano in generale possono essere dei funzionali solo del flusso neutronico reale, oppure funzionali del flusso neutronico reale e di quello aggiunto.

A.1.1. Funzionali del flusso neutronico reale

In questo caso considereremo quantità d'interesse rappresentate da rapporti di tassi di reazione, del tipo

$$\mathbf{R} = \frac{\mathbf{Q}_1}{\mathbf{Q}_2} \equiv \frac{\langle \mathbf{h}_1^+, \boldsymbol{\phi} \rangle}{\langle \mathbf{h}_2^+, \boldsymbol{\phi} \rangle}$$
(A.3)

dove $\mathbf{h}_1^+(\mathbf{r}) \in \mathbf{h}_2^+(\mathbf{r})$ sono funzioni date del posto, mentre $\boldsymbol{\phi}$ (\mathbf{r}) è il flusso neutronico retto dall'equazione (lineare) di bilancio

$$\mathbf{B}\boldsymbol{\phi} \equiv (\mathbf{A} + \mathbf{F})\boldsymbol{\phi} = \mathbf{0} \quad . \tag{A.4}$$

dove **B** rappresenta l'operatore (in approssimazione del trasporto o della diffusione) che governa il flusso neutronico. Esso dipende da parametri (sezioni d'urto e densità dei materiali costituenti il mezzo) che indicheremo con p_i (J=1,2,...,J).

Secondo la metodologia HGPT [1] l'equazione che esprime la variazione $\delta R/R$ dovuta all'alterazione δB dell'operatore **B** a seguito alla perturbazione δp_j dei parametri p_j risulta, al primo ordine,

$$\frac{\delta \mathbf{R}}{\mathbf{R}} = \langle \delta \mathbf{g}^+, \boldsymbol{\phi} \rangle + \langle \boldsymbol{\psi}^*, \delta \mathbf{B} \boldsymbol{\phi} \rangle \tag{A.5}$$

dove

$$\mathbf{g}^{+} = \frac{\mathbf{h}_{1}^{+}}{Q_{1}} - \frac{\mathbf{h}_{2}^{+}}{Q_{2}} , \qquad (A.6)$$

e dove ψ^* è la funzione importanza retta dall'equazione

$$\mathbf{B}^* \boldsymbol{\psi}^* + \mathbf{R} \mathbf{g}^+ = 0 \quad . \tag{A.7}$$

Il primo termine nel membro a destra dell'Eq. (A.5) rappresenta il cosiddetto 'effetto diretto', in quanto riguarda la variazione di R dovuto all'eventuale alterazione di $\mathbf{h}_1^+ \mathbf{e} \ \mathbf{h}_2^+$, e quindi di \mathbf{g}^+ , prodotta dalle perturbazioni del parametri, mentre il secondo termine rappresenta l''effetto diretto', cioè la variazione che la perturbazione degli stessi parametri produce su R attraverso l'alterazione del flusso neutronico.

La soluzione generale della (A.7) è data dalla somma della soluzione della equazione omogenea corrispondente più una soluzione particolare, cioè

$$\boldsymbol{\Psi}^* = \boldsymbol{\Psi}^*_{\text{part}} + \alpha \boldsymbol{\phi}^* \tag{A.8}$$

essendo α un coefficiente arbitrario, mentre ϕ^* è il flusso aggiunto convenzionale che obbedisce all'equazione

$$B^* \phi^* = 0. \tag{A8a}$$

La funzione ψ^* risulta inoltre soddisfare la condizione di ortogonalità

$$\langle \boldsymbol{\psi}^*, \frac{\partial \mathbf{B}}{\partial \boldsymbol{\rho}} \mathbf{n} \rangle = 0$$
 (A.9)

Essendo ρ un parametro di controllo per il mantenimento della criticità, che viene imposta dopo la perturbazione. Generalmente ρ è rappresentato dal coefficiente λ che moltiplica la sorgente di fissione per cui si ha $\partial \mathbf{B}/\partial \rho \equiv \partial \mathbf{B}/\partial \lambda = \mathbf{F}$.

Sostituendo l'espressione di ψ^* data dalla (A.8), si ottiene

$$\alpha = -\frac{\langle \Psi_{\text{part}}^* \frac{\partial B}{\partial \rho} \mathbf{n} \rangle}{\langle \phi^* \frac{\partial B}{\partial \rho} \mathbf{n} \rangle} . \tag{A.10}$$

La soluzione cercata della funzione importanza associata ai neutroni sarà quindi

$$\mathbf{n}^{*} = \mathbf{n}_{part}^{*} - \frac{\langle \boldsymbol{\psi}_{part}^{*} \frac{\partial \mathbf{B}}{\partial \rho} \mathbf{n} \rangle}{\langle \boldsymbol{\phi}^{*} \frac{\partial \mathbf{B}}{\partial \rho} \mathbf{n} \rangle} \boldsymbol{\phi}^{*} \quad . \tag{A.11}$$

La metodologia perturbativa HGPT consente di analizzare parametricamente quantità definite come rapporti di attività, in particolare tassi di fissione, rapporti di conversione, ecc.

A.1.2. Funzionali del flusso neutronico reale ed aggiunto

Data la simmetria tra flusso neutronico e flusso aggiunto, possiamo estendere la metodologia perturbativa relativa a rapporti di funzionali lineari rispetto al flusso (o densità) reale, anche a rapporti bilineari rispetto ai flussi reale ed aggiunto, quali i coefficienti di reattività, la vita media dei neutroni pronti, la frazione effettiva dei neutron ritardati, come illustrato nel seguito, definibili, in generale da espressioni de tipo

$$Z = \frac{T_1}{T_2} = \frac{\langle \boldsymbol{\phi}^* G_1 \mathbf{n} \rangle}{\langle \boldsymbol{\phi}^* G_2 \mathbf{n} \rangle}$$
(A.12)

Dove G1 e G2 rappresentano operatori (matrici) assegnati.

Si otterrà l'espressione perturbativa

$$\delta Z = Z \langle \phi^* \delta L, \mathbf{n} \rangle + \langle \psi^*, \delta B \mathbf{n} \rangle + \langle \phi^*, \delta B \psi \rangle, \tag{A.13}$$

dove

$$L = \frac{G_1}{T_1} - \frac{G_2}{T_2}$$

e le funzioni ψ^* e ψ soddisfano le equazioni

 $\mathbf{B}^* \boldsymbol{\psi}^* + \mathbf{Z} \mathbf{L}^* \boldsymbol{\phi}^* = \mathbf{0} \tag{A.14}$

$$\mathbf{B}\boldsymbol{\psi} + \mathbf{Z}\mathbf{L}\mathbf{n} = \mathbf{0},\tag{A.15}$$

Mentre la funzione ψ^* soddisfa la condizione di ortogonalità (A.9), la funzione ψ risulta soddisfare la condizione

$$\langle \phi^*, \frac{\partial B}{\partial \rho} \psi \rangle = 0$$
. (A.16)

A.1.3. Coefficienti di reattività

L'equazione della cinetica che si ottiene direttamente dalle equazioni che reggono il flusso neutronico in funzione del tempo, avendo assunto che la distribuzione spazio-energetica del flusso, e quella spaziale della distribuzione dei precursori siano separabili da quella temporale, risulta

$$\omega \frac{\int_{\text{sist}} \boldsymbol{\phi}^{*T} \mathbf{V}^{-1} \boldsymbol{\phi}' d\mathbf{r}}{\int_{\text{sist}} \boldsymbol{\phi}^{*T} \mathbf{F}' \boldsymbol{\phi}' d\mathbf{r}} + \omega \sum_{i=1}^{M} \frac{\beta_i}{\lambda_i + \omega}' = \frac{\int_{\text{sist}} \boldsymbol{\phi}^{*T} (\delta \mathbf{A} + \delta \mathbf{F}) \boldsymbol{\phi}' d\mathbf{r}}{\int_{\text{sist}} \boldsymbol{\phi}^{*T} \mathbf{F}' \boldsymbol{\phi}' d\mathbf{r}}$$
(A.17)

dove al primo membro notiamo l'espressione della vita media effettiva dei neutroni pronti, mentre al secondo membro l'espressione (esatta) della reattività corrispondente alla variazione degli operatori **A** ed **F** rispetto alle condizioni critiche, Trascurando termini del secondo ordine tale espressione si potrà scrivere

$$\rho \equiv \frac{k_{eff} - 1}{k_{eff}} = \frac{\int_{sist} \phi^{*T} (\delta \mathbf{A} + \delta \mathbf{F}) \phi d\mathbf{r}}{\int_{sist} \phi^{*T} \mathbf{F} \phi d\mathbf{r}}$$
(A.18)

Questa l'espressione della reattività potremo definirla 'dinamica', in quanto ottenuta partendo dalle equazioni che descrivono il bilancio neutronico e dei precursori in funzione del tempo.

Consideriamo ora una particolare variazione di reattività

$$\rho_{1} \equiv \frac{k_{\text{eff},1} - 1}{k_{\text{eff},1}} = \frac{\int_{\text{sist}} \boldsymbol{\phi}^{*T} (\delta_{1} \mathbf{A} + \delta_{1} \mathbf{F}) \boldsymbol{\phi} d\mathbf{r}}{\int_{\text{sist}} \boldsymbol{\phi}^{*T} \mathbf{F} \boldsymbol{\phi} d\mathbf{r}}$$
(A.19)

e successivamente un'altra in cui alla prima si aggiunge una seconda, per cui si ha, sempre al primo ordine,

$$\rho_{1+2} \equiv \frac{\mathbf{k}_{\text{eff},1+2} - 1}{\mathbf{k}_{\text{eff},1+2}} = \frac{\int_{\text{sist}} \boldsymbol{\phi}^{*T} (\boldsymbol{\delta}_{1+2} \mathbf{A} + \boldsymbol{\delta}_{1+2} \mathbf{F}) \boldsymbol{\phi} d\mathbf{r}}{\int_{\text{sist}} \boldsymbol{\phi}^{*T} \mathbf{F} \boldsymbol{\phi} d\mathbf{r}}$$
(A.20)

L'incremento di reattività potrà quindi scriversi

$$\delta \rho = \rho_{1+2} - \rho_1 = \frac{k_{eff,1+2} - 1}{k_{eff,1+2}} - \frac{k_{eff,1} - 1}{k_{eff,1}} = \frac{k_{eff,1+2} - k_{eff,1}}{k_{eff,1}k_{eff,1+2}} = \frac{1}{k_{eff,1}} - \frac{1}{k_{eff,1+2}}$$
$$= \frac{\int_{sist} \phi^{*T} (\delta_2 \mathbf{A} + \delta_2 \mathbf{F}) \phi d\mathbf{r}}{\int_{sist} \phi^{*T} \mathbf{F} \phi d\mathbf{r}}$$
(A.21)

Generalmente si fa riferimento alla reattività cosiddetta 'statica', in quanto ottenuta attraverso la definizione di equazioni statiche, cioè l'equazione di partenza

$$\mathbf{B}\boldsymbol{\phi} \equiv (\mathbf{A} + \frac{1}{k_{\text{eff}}}\mathbf{F})\boldsymbol{\phi} = 0 \qquad , \tag{A.22}$$

cui va associata quella relativa al flusso aggiunto

$$\mathbf{B}^* \boldsymbol{\phi}^* \equiv (\mathbf{A}^* + \frac{1}{k_{\text{eff}}} \mathbf{F}^*) \boldsymbol{\phi}^* = 0,.$$
(A.23)

e l'equazione 'perturbata'

$$\mathbf{B}'\mathbf{\phi}' \equiv (\mathbf{A}' + \frac{1}{\mathbf{k}_{eff}'}\mathbf{F}')\mathbf{\phi}' = 0.$$
(A.24)

L'espressione perturbativa della reattività 'statica', che indicheremo con $\tilde{\rho}$, si ottiene moltiplicando l'Eq. (A.23) per **\phi**' e l'Eq. (A.24) per **\phi***, integrando le due equazione su tutto lo spazio e quindi sottraendo l'una dall'altra le due equazioni risultanti. Si ottiene così l'espressione 'esatta'

$$\tilde{\boldsymbol{\rho}} = \frac{1}{k_{eff}} - \frac{1}{k_{eff}} \equiv \frac{k_{eff}^{'} - k_{eff}}{k_{eff} k_{eff}^{'}} = \frac{\int_{sist} \boldsymbol{\phi}^{*T} \left(\delta \mathbf{A} + \frac{1}{k_{eff}} \delta \mathbf{F}\right) \boldsymbol{\phi}' d\mathbf{r}}{\int_{sist} \boldsymbol{\phi}^{*T} \mathbf{F}' \boldsymbol{\phi}' d\mathbf{r}}, \qquad (A.25)$$

Trascurando termini del secondo ordine, si potrà scrivere

$$\tilde{\rho} = \frac{\int_{\text{sist}} \phi^{*T} \left(\delta \mathbf{A} + \frac{1}{k_{\text{eff}}} \delta \mathbf{F} \right) \phi d\mathbf{r}}{\int_{\text{sist}} \phi^{*T} \mathbf{F} \phi d\mathbf{r}} .$$
(A.26)

che assomiglia alla definizione della reattività dinamica, a parte il coefficiente $1/k_{eff}$ che moltiplica $\delta \mathbf{F}$ al numeratore.

Consideriamo un effetto di reattività particolare, per esempio dovuto ad una variazione parziale o totale della densità del refrigerante in una certa zona del nocciolo, o ad una variazione della temperatura del combustibile. Indichiamo con $\Delta_c \mathbf{B}$ ($\equiv \Delta_c \mathbf{A} + \frac{1}{k_{eff}} \Delta_c \mathbf{F}$) la variazione dell'operatore \mathbf{B} e con $\tilde{\rho}_c$ la reattività corrispondente. Si avrà così,

$$\tilde{\rho}_{c} = \frac{\int_{sist} \boldsymbol{\phi}^{*T} \Delta_{c} \mathbf{B} \boldsymbol{\phi} d\mathbf{r}}{\int_{sist} \boldsymbol{\phi}^{*T} \mathbf{F} \boldsymbol{\phi} d\mathbf{r}}$$
(A.27)

Consideriamo lo stesso effetto di reattività in un sistema perturbato da una alterazione $\delta_s \mathbf{B}$. Indichiamo con $\Delta_c \mathbf{B}_{(s)}$ la variazione dell'operatore perturbato $\mathbf{B}_{(s)}$ ($\equiv \mathbf{B} + \delta_s \mathbf{B}$). In questo caso l'effetto di reattività sarà

$$\tilde{\rho}_{(s)c} = \frac{\int_{sist} \boldsymbol{\phi}_{(s)}^{*T}, \Delta_c \mathbf{B}_{(s)} \boldsymbol{\phi}_{(s)} d\mathbf{r}}{\int_{sist} \boldsymbol{\phi}_{(s)}^{*T}, \mathbf{F}_{(s)} \boldsymbol{\phi}_{(s)} d\mathbf{r}}$$
(A.28)

Per calcolare la variazione della reattività $\tilde{\rho}_c$ dovuta alla perturbazione $\delta_s \mathbf{B}$ si possono utilizzare i metodi perturbativi generalizzati (GPT) secondo i quali si ha, al primo ordine,

$$\delta_{s} \tilde{\rho}_{c} = \tilde{\rho}_{c} \langle \phi^{*}, \delta_{s} L, \phi \rangle + \langle \psi^{*}, \delta_{s} B \phi \rangle + \langle \phi^{*}, \delta_{s} B \psi \rangle, \qquad (A.29)$$
(effetto diretto) (eff indir $\rightarrow \delta \phi$) (eff indir $\rightarrow \delta \phi^{*}$)

dove

$$\mathbf{L} = \frac{\Delta_{c} \mathbf{B}}{\int_{\text{sist}} \boldsymbol{\phi}^{*T} \Delta_{c} \mathbf{B} \boldsymbol{\phi} d\mathbf{r}} - \frac{\mathbf{F}}{\int_{\text{sist}} \boldsymbol{\phi}^{*T} \mathbf{F} \boldsymbol{\phi} d\mathbf{r}}$$
(A.30)

e le funzioni ψ^* e ψ soddisfano le equazioni

$$\mathbf{B}^* \boldsymbol{\psi}^* + \boldsymbol{\tilde{\rho}}_c \mathbf{L}^* \boldsymbol{\phi}^* = 0 \tag{A.31}$$

$$\mathbf{B}\boldsymbol{\psi} + \tilde{\boldsymbol{\rho}}_{c}\mathbf{L}\mathbf{n} = 0. \tag{A.32}$$

A.1.3.1 Metodo EGPT

Alla metodologia HGPT su descritta viene spesso preferita quella denominata EGPT (Equivalent GPT) [4]. Per dimostrarla, partiremo dalle equazioni che reggono il flusso nelle condizioni iniziali ed in quelle alterate. Ricordando la (A.22) si avrà

$$\mathbf{B}\boldsymbol{\phi} \equiv (\mathbf{A} + \frac{1}{k_{\text{eff}}}\mathbf{F})\boldsymbol{\phi} = \mathbf{0}$$
(A.33)

$$\mathbf{B}_{(c)}\phi_{(c)} \equiv (\mathbf{A}_{(c)} + \frac{1}{k_{\text{eff}(c)}}\mathbf{F}_{(c)})\phi_{(c)} = \mathbf{0}$$
(A.34)

Riprendendo in considerazione la reattività $\tilde{\rho}_c$, ed assumendo un suo cambiamento a seguito di una perturbazione $\delta_s \mathbf{B}$, potremo scrivere

$$\delta_{s}\tilde{\rho}_{c} = \left(\frac{1}{k_{(s)}} - \frac{1}{k_{(cs)}}\right) - \left(\frac{1}{k} - \frac{1}{k_{(c)}}\right) \equiv \left(\frac{1}{k_{(c)}} - \frac{1}{k_{(cs)}}\right) - \left(\frac{1}{k} - \frac{1}{k_{(s)}}\right) \quad .$$
(A.35)

Il terzo membro corrisponde alla differenza di due espressioni perturbative standard relative ad una stessa perturbazione $\delta_s \mathbf{B}$, la prima in condizioni alterate, la seconda in condizioni iniziali. Si potrà quindi scrivere, al primo ordine,

$$\delta_{s}\tilde{\rho}_{c} = \frac{\int_{sist} \boldsymbol{\phi}_{(c)}^{*T} \delta_{s} \mathbf{B}_{(c)} \boldsymbol{\phi}_{(c)} d\mathbf{r}}{\int_{sist} \boldsymbol{\phi}_{(c)}^{*T} \mathbf{F}_{(c)} \boldsymbol{\phi}_{(c)} d\mathbf{r}} - \frac{\int_{sist} \boldsymbol{\phi}^{*T} \delta_{s} \mathbf{B} \boldsymbol{\phi} d\mathbf{r}}{\int_{sist} \boldsymbol{\phi}^{*T} \mathbf{F} \boldsymbol{\phi} d\mathbf{r}}.$$
(A.36)

La metodologia EGPT richiede quindi il calcolo di due flussi aggiunti, soluzioni di equazioni omogenee: il primo in condizioni iniziali, il secondo con gli operatori A ed F modificati in corrispondenza dell'effetto di reattività che si intende studiare.

A.2. Campo neutroni/nuclidi

La metodologia HGPT può essere applicata all'evoluzione temporale del campo neutroni/nuclidi in sistemi critici, o sottocritici. Le quantità coinvolte possono essere:

 Isotopi del combustibile. In questo caso il metodo potrebbe essere utilizzato per l'analisi della vita del nocciolo durante il burnup ed essere quindi ricercati valori ottimali di parametri di progetto oppure strategie ottimali di caricamento del combustibile,,

- Forti assorbitori tra i prodotti di fissione. In questo caso il metodo potrebbe essere usato per analizzare l'effetto di avvelenamento da xeno su quantità importanti per il funzionamento del reattore.
- Il controllo residuale (ρ) alla fine del ciclo di vita reattore. L'analisi di questa quantità può essere di particolare interesse in studi volti ad estendere il ciclo di vita del reattore.

Nel seguito verrà illustrata la derivazione delle espressioni HGPT relative al caso generale. Le densità de nuclidi sono date dal vettore $\mathbf{c} = \begin{vmatrix} \mathbf{c}_p \\ \mathbf{c}_f \end{vmatrix}$, dove \mathbf{c}_p corrisponde ai prodotti di fissione e c_f agli isotopi pesanti. La densità dei neutroni¹, dipendente dallo spazio e dal tempo, è data nella forma multigruppo dal vettore **n**. Alle densità **n** (**r**, t) e **c** (**r**, t), definite nell'intervallo (t_o , t_f), viene associata una variabile intensiva di controllo, p(t), tale da mantenere la potenza totale assegnata W(t). p(t) può rappresentare, per esempio, il grado complessivo di penetrazione delle barre di controllo nel nocciolo (non il loro movimento relativo, che può essere generalmente descritta da parametri p_i), oppure la densità media di un veleno veleno neutronico nel refrigerante . In un sistema sottocritico (ADS), p(t) può rappresentare l'intensità della sorgente (attraverso la regolazione della corrente dell'acceleratore). Le equazioni non lineari cui debbono soddisfare le variabili **n**, **c** e p possono quindi essere scritte formalmente come

$$\mathbf{m}_{(\mathbf{n})}(\mathbf{n},\mathbf{c},\rho \mid \mathbf{p}) = -\frac{\partial \mathbf{n}}{\partial t} + B \mathbf{n} + \mathbf{s}_{\mathbf{n}} = 0$$
(A.37)

$$\mathbf{m}_{(c)}(\mathbf{n},\mathbf{c} | \mathbf{p}) = -\frac{\partial \mathbf{c}}{\partial t} + E\mathbf{c} + \mathbf{s}_{c} = 0$$
(A.38)

$$m_{(p)}(n,c|p) = \langle c_{f}, S n \rangle - W = 0$$
, (A.39)

dove *B* rappresenta l'operatore in diffusione o trasporto (dipendente da **c** e ρ), *E* la matrice di evoluzione dei nuclidi (che dipende da **n**), mentre **s**_n (generalmente dipendente da ρ in un sistema sottocritico controllato dalla sorgente) ed **s**_c sono termini di sorgente. *S* è la matrice

¹ Per maggiore semplicità nella derivazione della metodologia, viene qui considerata la densità dei neutroni (**n**) piuttosto che il flusso ϕ ($\equiv V$ **n**, *V* essendo la matrice diagonale delle velocità). Gli operatori che reggono la densità **n** saranno quindi quelli considerati per il flusso moltiplicati per la matrice V^1 . Essi verranno nel seguito scritti in corsivo anziché in grassetto.

$$S = \gamma \begin{vmatrix} \sigma_{f1}^{1} & \sigma_{f2}^{1} & \dots & \sigma_{fG}^{1} \\ \sigma_{f1}^{2} & \sigma_{f2}^{2} & \dots & \sigma_{fG}^{2} \\ \vdots \vdots & \vdots \vdots & \vdots \vdots & \vdots \\ \sigma_{f1}^{M} & \sigma_{f2}^{M} & \dots & \sigma_{fG}^{M} \end{vmatrix} V$$
(A.40)

dove γ rappresenta la quantità di energia per fissione $e\sigma_{fg}^m$ la sezione d'urto microscopica di fissione dell'isotopo m nel gruppo g. V è la matrice diagonale delle velocità dei neutroni. Le quantità γ , V, W e σ_{fg}^m sono genericamente rappresentate come parametri di sistema (p_j). I termini di sorgente **s**_n and **s**_c sono pure rappresentati da tali parametri.

Nel seguito prenderemo in considerazione il caso generale di sistemi critici moltiplicanti, così come quelli sottocritici (alimentati da acceleratore). Se i sistemi considerati sono critici, la sorgente neutroni **s**_n svanirebbe, salvo un termine di tipo delta per rappresentare la densità iniziale.

La sorgente \mathbf{s}_c contiene un termine di tipo delta per rappresentare condizioni iniziali. Per t>t_o esso sarebbe diverso da zero solo in caso di studi evoluzione del nocciolo. In tal caso esso sarebbe generalmente dato da una somma di funzioni delta definite in momenti specifici per tenere conto di caricamento di combustibile e di operazioni di shuffling.

In problemi quasi-statici, quali quelli che qui interessano, la derivata $\frac{\partial \mathbf{n}}{\partial t}$ risulta trascurabile.

Consideriamo ora l'intervallo di tempo considerato suddiviso in intervalli Δt_i come mostrato di seguito:

Nel metodo quasi-statico la densità di neutroni viene ricalcolata a tempi t_i specifici (i = 0,1,2, ..., I).

Le equazioni che regolano il campo delle funzioni in studio all'interno di ciascun intervallo Δt_{i+1} (= t_{i+1} - t_i), saranno quindi

$$\mathbf{m}_{n,i+1} \equiv B(\mathbf{c}_i, \rho_i)\mathbf{n}_i + \mathbf{s}_{n,i} = 0 \tag{A.41}$$

$$\mathbf{m}_{c,i+1} = -\frac{d\mathbf{c}}{dt} + E(\mathbf{n}_i)\mathbf{c} + \mathbf{s}_c$$
(A.42)

$$\mathbf{m}_{\boldsymbol{\rho},i+1} \equiv < \mathbf{c}_{f,i}^{\mathrm{T}} \ S \, \mathbf{n}_{i} >_{\mathrm{V}} - \mathbf{W}_{i} = 0 \tag{A.43}$$

essendo le quantità \mathbf{c}_i , ρ_i , \mathbf{n}_i e $\mathbf{s}_{n,i}$ definite al tempo t_i .

Una forma generale di una risposta Q (lineare, o linearizzata) può essere scritta nella forma

$$Q = \sum_{i=0}^{1} \left(< \mathbf{h}_{n,i}^{+T} \mathbf{n}_{i} >_{V} + < \mathbf{h}_{c,i}^{+T} \mathbf{c}_{i} >_{V} + \mathbf{h}_{\rho,i}^{+} \rho_{i} \right)$$
(A.44)

con $\boldsymbol{h}_{ni}^{+},\boldsymbol{h}_{ci}^{+},\boldsymbol{h}_{\rho i}^{+}$ quantità date.

Seguendo la metodologia HGPT, per la funzione importanza può essere ottenuto uno schema ricorrente di calcolo iterativo, procedendo all'indietro a partire da t_F (\equiv t_l), .

L'equazione che governa l'importanza neutronica \boldsymbol{n}_{i}^{*} diventa:

$$B^* \mathbf{n}_i^* + \langle \Omega_c^* \mathbf{c}^* \rangle_{i+1} + S^T \mathbf{c}_{f,i} \rho_i^* + \mathbf{h}_{n,i}^+ = 0$$
(A.45)

dove Ω_c^* è l'aggiunto dell'operatore di accoppiamento $\Omega_c \equiv \frac{\overline{\partial}(E \mathbf{c})}{\partial \mathbf{n}}$. La function \mathbf{n}_i^* risulta soddisfare la condizione

$$<\mathbf{n}_{i}^{*T}, \frac{\partial(B\,\mathbf{n}_{i}+\mathbf{s}_{n,i})}{\partial\rho}>_{V}+\mathbf{h}_{\rho,i}^{+}=0$$
 (A.46)

L'equazione che governa la funzione importanza dei nuclidi nell'intervallo i-esimo diventa:

$$-\frac{\overline{\partial}\mathbf{c}^{*}}{\partial t} = E^{\mathrm{T}}\mathbf{c}^{*} + (\Omega_{\mathrm{n,i}}^{*}\mathbf{n}_{\mathrm{i}}^{*} + \mathbf{h}_{\mathrm{c,i}}^{+})\delta(t - t_{\mathrm{i}})$$
(A.47)

dove $\Omega_{n,i}^*$ è l'aggiunto dell'operatore di accoppiamento $\Omega_{n,i} \equiv \frac{\overline{\partial}(B \mathbf{n}_i)}{\partial \mathbf{c}}$. Il termine $(\Omega_{ni}^* \mathbf{n}_i^* + \mathbf{h}_{ci}^+)$ rappresenta una quantità vettoriale da aggiungere a $\mathbf{c}_p^*(\mathbf{t}_i)$ per ottenere il valore "iniziale", in questo caso definito nel limite superiore dell'intervallo $\Delta \mathbf{t}_i$, necessario per procedere all'integrazione nell'intervallo stesso.

Moltiplicando l'Eq. (A.45) a sinistra da \mathbf{n}_i , integrando sullo spazio, e ricordando che $\langle \mathbf{n}^* S^T \mathbf{c} \rangle_V = W$, si ha

$$\rho_{i}^{*} = \frac{-\langle \mathbf{s}_{n,i}^{T} \mathbf{n}_{i}^{*} \rangle_{V} + \langle \langle \mathbf{n}_{i}^{T} \Omega_{c}^{*} \mathbf{c}_{i}^{*} \rangle_{i+1} \rangle_{V} + \langle \mathbf{n}_{i}^{T} \mathbf{h}_{n,i}^{+} \rangle_{V}}{W_{i}}$$
(A.48)

dove $<(\cdot)>_i \equiv \int_{\Delta t_i} (\cdot) dt$.

Una volta che nell'intervallo i-esimo le importanze $\mathbf{n}^* \in \mathbf{c}^*$ (associate con $\mathbf{n} \in \mathbf{c}$, rispettivamente) sono note, l'Eq. (A.45) può essere risolta con tecniche HGPT standard.

L'espressione perturbazione (limitandoci a considerare gli effetti diretti, che cioè non influenzano i parametri che definiscono i termini di sorgente $\mathbf{h}_{n,i}^+$, $\mathbf{h}_{c,i}^+$ and $\mathbf{h}_{\rho,i}^+$) può essere scritta

$$\delta \mathbf{Q} = \sum_{i=0}^{I-1} \sum_{j=1}^{J} \delta \mathbf{p}_{j} \left(< \mathbf{n}_{i}^{*T} \frac{\partial \mathbf{m}_{n}(\mathbf{t}_{i})}{\partial \mathbf{p}_{j}} >_{V} + << \mathbf{c}_{i}^{*T} \frac{\partial \mathbf{m}_{c}(\mathbf{t}_{i})}{\partial \mathbf{p}_{j}} >_{i+1} >_{V} + < \mathbf{p}_{i}^{*} \frac{\partial \mathbf{m}_{p}(\mathbf{t}_{i})}{\partial \mathbf{p}_{j}} >_{V} \right)$$
(A.49)

A.2.1. Specifici casi d'Interesse

Una volta che la metodologia generale ricorrente è stata definita, il problema consiste nell'individuare le condizioni 'finali' al tempo t_F , dal quale iniziare il processo di calcolo. Queste condizioni finali sono specifiche per ogni singolo problema, e possono essere definite partendo dall'espressione della risposta in studio, Eq. (A.44).

Di seguito illustriamo come possiamo definire queste condizioni di partenza per una serie di risposte di interesse.

Caso 1. Sono considerate risposte in cui \mathbf{h}_{ni}^+ (i = 0,1, ..., I-1) è una funzione definita delle coordinate spaziali, mentre tutti gli altri termini di sorgente $\mathbf{h}_{n,I}^+$, \mathbf{h}_{ci}^+ and $\mathbf{h}_{\rho i}^+$ sono eguali a zero. Queste risposte possono corrispondere, per esempio, a valori di fluenza in punti definiti.

In questo caso nell'ultimo intervallo l'importanza di neutroni è posto eguale a zero. La funzione obbedisce l'equazione

$$B^{*}(\mathbf{c}_{I-1})\mathbf{n}_{I-1}^{*} + S^{T}\mathbf{c}_{f}\rho_{I-1}^{*} + \mathbf{h}_{n,I-1}^{+} = 0$$
(A.50)

dove

$$\rho_{I-1}^{*} = \frac{-\langle \mathbf{s}_{n,I-1}^{T} \mathbf{n}_{I-1}^{*} \rangle_{V} + \langle \mathbf{n}_{I-1}^{T} \mathbf{h}_{n,I-1}^{+} \rangle_{V}}{W_{I-1}} .$$
(A.51)

Per i sistemi critici, il termine sorgente di neutroni svanisce. Quindi, il valore riduce a $\frac{\langle \mathbf{n}_{I-1}^{T} \mathbf{h}_{n,I-1}^{+} \rangle_{V}}{W_{I-1}}$. Avendo posto nell'intervallo I-esimo $\mathbf{c}^{*} = 0$, l'Eq. (A.21)50 può essere risolta e, successivamente, anche l'Eq. (A.47) per \mathbf{c}^{*} nell'(I-1)-esimo intervallo.

Un calcolo ricorrente può quindi essere stabilito fino al tempo to.

Per i sistemi sottocritici il semplice calcolo ricorrente sopra descritto non può essere seguito, a causa del termine supplementare sul lato destro dell'Eq. (A.51) [così come nell'Eq. (A.48)]. All'interno di ciascun intervallo di tempo, una procedura iterativa dovrebbe quindi essere stabilita, fino a raggiungere un criterio di convergenza fissato. Per avviare tale procedura, nell'espressione (A.48) per ρ_i^* , potrebbe essere inizialmente utilizzato il valore \mathbf{n}_{i+1}^* , piuttosto che \mathbf{n}_i^* . Ricordando che $\mathbf{n}_I^* = 0$, può essere stabilita una procedura iterativo/ricorrente.

Caso 2. Sono considerate risposte in cui è definita una funzione delle coordinate spaziali soltanto per i = I, tutti gli altri termini sorgente essendo posti eguali a zero. Una risposta di questo tipo può corrispondere, per esempio, ad un tasso di reazione definito a t_F .

In questo caso a t_I (=t_F) \mathbf{c}_I^* =0 mentre la funzione \mathbf{n}_I^* soddisfa l'equazione

$$B^*(\mathbf{c}_I)\mathbf{n}_I^* + S^T \mathbf{c}_f \rho_I^* + \mathbf{h}_{n,I}^+ = 0$$
(A.52)

dove

$$\rho_{\rm I}^* = \frac{-\langle \mathbf{s}_{\rm n, \rm I}^{\rm T} \mathbf{n}_{\rm I}^* \rangle_{\rm V} + \langle \mathbf{n}_{\rm I}^{\rm T} \mathbf{h}_{\rm n, \rm I}^+ \rangle_{\rm V}}{W_{\rm I}}.$$
(A.53)

Come nel caso precedente, una procedura di calcolo può essere seguita sia per sistemi critici che sottocritici.

Caso 3. Sono considerate risposte in cui \mathbf{h}_{ci}^+ è una data funzione delle variabili spaziali soltanto per i=I, tutti gli altri termini sorgente essendo eguali a zero. Una risposta di questo tipo può corrispondere, per esempio, all'accumulo di un materiale al tempo t_F.

In questo caso a t₁ $\mathbf{n}_{I}^{*} = 0$, mentre la funzione \mathbf{c}^{*} nell'ultimo intervallo Δt_{I} soddisfa l'equazione

$$-\frac{\overline{\partial}\mathbf{c}^*}{\partial t} = E^T \mathbf{c}^* + \mathbf{h}_{c,I}^+ \delta(t - t_F).$$
(A.54)

Una procedura di calcolo ricorrente può essere quindi stabilita come nei casi precedenti.

Caso 4. Sono considerate risposte in cui $h_{\rho i}^+ = 1$ è definita solo per i = I, tutti gli altri termini sorgente essendo eguali a zero. Una risposta di questo tipo può corrispondere, per esempio, al controllo residuo a t_F. L'analisi di questa quantità può essere di particolare interesse in studi volti ad estendere il ciclo di vita reattore.

In questo caso al tempo t_{F} il vincolo su \boldsymbol{n}_{I}^{*} risulta

$$<\mathbf{n}_{\mathrm{I}}^{*\mathrm{T}}, \frac{\partial \mathrm{B}}{\partial \rho}\mathbf{n}_{\mathrm{I}}>_{\mathrm{V}}+1=0$$
 (A.55)

Questa corrisponde ad una condizione di normalizzazione che è soddisfatta se $\mathbf{n}_{I}^{*} = -\phi^{*}$, $\mathbb{P} \phi^{*}$ corrispondendo alla prima autofunzione aggiunta normalizzata di modo ρ (cioè, il flusso aggiunto).

L'equazione che governa \mathbf{c}^* nell'ultimo intervallo Δt_l può essere scritta

$$-\frac{\overline{\partial}\mathbf{c}^*}{\partial t} = E^{\mathrm{T}} \mathbf{c}^* + \Omega_{\mathrm{n,I}}^* \mathbf{n}_{\mathrm{I}}^* \delta(t - t_{\mathrm{F}}).$$
(A.56)

Una procedura di calcolo ricorrente può quindi essere seguita come nei casi precedenti.

In tutti i casi su indicati quando si tratta di sistemi critici l'importanza di neutroni, per i <1, obbedisce la condizione

$$<\mathbf{n}_{i}^{*\mathrm{T}}, \frac{\partial(B\,\mathbf{n}_{i})}{\partial\rho}>_{\mathrm{V}}=0$$
, (A.57)

che corrisponde ad una condizione di ortogonalità.

Metodi standard HGPT possono quindi essere adottati per la soluzione delle Eq. (A.45) che governa la funzione importanza dei neutroni.

Appendice B. Procedure ERANOS

B.1. Costruzione del termine di Sorgente per l'equazione della Funzione Importanza Generalizzata ed Analisi di Sensibilità in GPT per un rapporto di tassi di reazione

La procedura prevista per il calcolo con il codice ERANOS del termine di sorgente che appare nell'equazione della funzione importanza è illustrata nel seguito, tratta dalla documentazione inserita nel manuale del codice.

B.1.1. Procedura prevista

The IMPORTANCE_CALCULATION_SOURCE_CREATION module is used to create such sources. These sources are combinations of cross-section (microscopic or macroscopic) and flux distributions.

In the RESPONSE_CROSS_SECTION directives, the cross-sections can be given directly or extracted from micro or macro SETs.

Three types of sources can be modelled according to the keywords used:

NUMERATOR and DOSE	S
NUMERATOR alone	$\frac{S}{\langle S, \Phi \rangle}$
NUMERATOR and DENOMINATOR	$\frac{S_1}{\langle S_1, \Phi \rangle} - \frac{S_2}{\langle S_2, \Phi \rangle}$

The keywords NUMERATOR and DENOMINATOR are followed each by one or several RESPONSE_FUNCTION directives used to define the geometrical domains where the already given response cross sections values will be made discrete. When a mesh point is specified more than once, only the last value given is kept for it ("covering principle").

The sources stored are the source densities (n/cm³/s) multiplied by the volume elements (cm³), and so the values stored are expressed in n/s.

$\$ importance_calculation_source_creation

-> edl_source_importance		the edl in output for each energy group associates to
geometry (edl geometry)	flux (edl flux)	each mesh point the corresponding σ (defined in the
		'edl' directory) or value (defined in the 'value'
	!! value	directory) multiplied by the volume of the mesh.
<pre><< response_cross_section </pre>	on 'respname' !! >>1	
pumerator << response	!! edl	creates a source as: $S(r,E) = \frac{\sigma(r,E)dV}{\langle \sigma(r,E)\Phi(r,E) \rangle}$
! numerator << response	function >>1 dose 4	creates a source as: $S(r,E) = \sigma(r,E)dV$
<pre>! numerator << response_</pre>	<pre>function >>1 denominator 4 { response_function >>1 }</pre>	creates a source as: $S(r,E) = \frac{\sigma_1(r,E)dV}{\langle \sigma_1(r,E)\Phi(r,E) \rangle} - \frac{\sigma_2(r,E)dV}{\langle \sigma_2(r,E)\Phi(r,E) \rangle}$
<< functional ->function	hal >> ;	
		gives the integral over space and energy of the source multiplied by the flux given in 'edl_flux': $(S(r,E)\Phi(r,E))$
L set data 1		
	set datan are exclusive: one a	nd only one must exist;
! set data 2		
!! set data 1		
!! set data 2	set datan are optional: they n	nay exist all together and at least one must exist;
<< set data >>0 🔺	set data may be given 0 or n	times;
<< set data >>1 🔺	set data may be given l or n	times;
<< set data >> 🔸	set data may be given 0 or 1	time.

Adjoint importance function determination

2.000449E-04

B.1.2. Esempio di output

-1.745045E-04

Esempio di output del modulo "Sensitivity_Analysis" in teoria del trasporto per l'indice spettrale σ_{fiss} U-238 / σ_{fiss} U-235 in cui il sistema viene perturbato mediante diminuzione del 10% della densità del refrigerante (piombo) solo nel combustibile.

Scomposizione dei coefficienti di sensibilità viene effettuata per gruppo/reazione e nuclide.

L'effetto globale viene messo in evidenza (vedi anche tabella 1).

```
=== SENSITIVITY REACTION RATE TRANSPORT:FISS U238-FISS U235 ===
REACTOR
   TOTAL OF THE ISOTOPES
  GROUP
          CAPTURE
                                                                   INELASTIC
                                                                                                TRANSPORT
                        FISSION
                                       NU
                                                     ELASTIC
                                                                                 N, XN
                                                                                                                       SUM
                                                                   2.400407E-04
                                                                                 0.000000E+00 -3.277289E-07
0.000000E+00 -5.768132E-06
          1.219578E-07
                        0 000000E+00
                                       0.000000E+00 -5.140229E-09
                                                                                                             2 398298E-04
           7.115334E-07
                        0.000000E+00
                                                     6.130682E-06
                                                                   1.995233E-03
                                       0.000000E+00
                                                                                                              1.996307E-03
          1 696184E-06
                        0 000000E+00
                                       0 00000E+00 -7 425462E-05
                                                                   5 765051E-03
                                                                                 0 00000E+00 -2 669042E-05
                                                                                                              5 665802E-03
          9.201399E-06
                         0.000000E+00
                                       0.000000E+00
                                                     4.039294E-04
                                                                   1.186724E-02
                                                                                 0.000000E+00 -1.834747E-04
                                                                                                              1.209689E-02
          3.927727E-06
                        0.000000E+00
                                       0.000000E+00
                                                     1.144987E-03
                                                                   8.380546E-03
                                                                                 0.00000E+00 -1.517902E-04
                                                                                                              9.377671E-03
         -2.486728E-05
                                       0.000000E+00
                                                     5.410259E-04
                                                                   6.626085E-04
                                                                                 0.000000E+00
                                                                                                1.657241E-04
                         0.00000E+00
                                                                                                               .344491E-03
         -1.685822E-04
                        0.000000E+00
                                       0.000000E+00
                                                     6.331506E-04
                                                                   6.303750E-05
                                                                                 0.000000E+00
                                                                                                4.673523E-04
                                                                                                              9.949583E-04
         -1.723470E-04
                        0.000000E+00
                                       0.000000E+00
                                                     3.870044E-04 -2.010248E-11
                                                                                 0.000000E+00
                                                                                                3 1123558-04
                                                                                                              5 258928F-04
                        0.00000E+00
                                       0.000000E+00
                                                     3.795261E-04
                                                                                 0.00000E+00
         -1.202346E-04
                                                                  -1.205894E-11
                                                                                                4.132062E-04
                                                                                                              6.724977E-04
    10
         -2.884553E-04
                        0.000000E+00
                                       0.000000E+00
                                                     3.245125E-04 -2.533185E-12
                                                                                 0.000000E+00
                                                                                                4.119603E-04
                                                                                                              4.480175E-04
         -1.497558E-04
                        0.000000E+00
                                       0.000000E+00
                                                     2.185842E-04
                                                                   4.384760E-16
                                                                                 0.000000E+00
                                                                                                3.261278E-04
                                                                                                              3.949562E-04
     1:
         -1.631776E-04
    12
                        0.000000E+00
                                       0.000000E+00
                                                     1.739537E-04
                                                                  0.000000E+00
                                                                                 0.000000E+00
                                                                                               2.319860E-04
                                                                                                              2.427621E-04
```

0.000000E+00 0.000000E+00 2.260993E-04 0.000000E+00 0.000000E+00 1.484501E-04

14	-2.388891E-04	0.000000E+00	0.00000E+00	3.442598E-04	0.00000E+00	0.000000E+00	2.595064E-04	3.648770E-04
15	-1.746636E-04	0.000000E+00	0.00000E+00	1.571233E-04	0.00000E+00	0.00000E+00	1.049533E-04	8.741296E-05
16	-5.359866E-05	0.000000E+00	0.000000E+00	1.276277E-04	0.000000E+00	0.000000E+00	4.833718E-05	1.223662E-04
17	-1.411631E-04	0.000000E+00	0.000000E+00	3.291233E-05	0.000000E+00	0.000000E+00	5.546470E-05	-5.278606E-05
18	-6.830812E-05	0.000000E+00	0.000000E+00	3.610396E-05	0.000000E+00	0.000000E+00	1.270427E-05	-1.949989E-05
19	-1.069349E-04	0.000000E+00	0.000000E+00	9.665895E-07	0.000000E+00	0.000000E+00	1.483775E-05	-9.113052E-05
20	-2.957430E-06	0.000000E+00	0.000000E+00	8.712061E-05	0.000000E+00	0.000000E+00	4.226528E-06	8.838971E-05
21	-4.368355E-06	0.000000E+00	0.000000E+00	-1.054449E-05	0.000000E+00	0.000000E+00	-1.720709E-06	-1.663355E-05
22	-1.036360E-06	0.000000E+00	0.000000E+00	-9.048748E-06	0.000000E+00	0.000000E+00	-2.684471E-06	-1.276958E-05
23	-9.327522E-07	0.00000E+00	0.000000E+00	-1.468406E-05	0.000000E+00	0.00000E+00	-1.079441E-05	-2.641123E-05
24	-2.360528E-07	0.000000E+00	0.000000E+00	-5.357828E-06	0.000000E+00	0.000000E+00	-5.011582E-06	-1.060546E-05
25	-6.450736E-08	0.000000E+00	0.000000E+00	-3.842896E-06	0.000000E+00	0.000000E+00	-2.791147E-06	-6.698550E-06
26	-3.936907E-08	0.000000E+00	0.000000E+00	-3.475714E-06	0.000000E+00	0.000000E+00	-3.176633E-06	-6.691717E-06
27	-1.388884E-08	0.000000E+00	0.000000E+00	-4.953019E-07	0.000000E+00	0.00000E+00	-6.344954E-07	-1.143686E-06
28	-1.169426E-08	0.000000E+00	0.000000E+00	-8.025684E-07	0.000000E+00	0.00000E+00	-9.213341E-07	-1.735597E-06
29	-3.316738E-08	0.000000E+00	0.000000E+00	-1.299488E-06	0.000000E+00	0.00000E+00	-1.107969E-06	-2.440624E-06
30	-6.125666E-09	0.000000E+00	0.000000E+00	-3.719954E-07	0.000000E+00	0.00000E+00	-3.739523E-07	-7.520734E-07
31	5.791493E-07	0.000000E+00	0.000000E+00	1.100561E-07	9.296462E-14	0.000000E+00	-2.700209E-08	6.622034E-07
32	6.178899E-08	0.000000E+00	0.000000E+00	-1.003770E-07	0.000000E+00	0.00000E+00	-1.016978E-07	-1.402858E-07
33	-4.469811E-09	0.000000E+00	0.00000E+00	-7.724848E-09	0.00000E+00	0.00000E+00	-7.724848E-09	-1.991951E-08
>0	1.629974E-05	0.000000E+00	0.000000E+00	5.225128E-03	2.897375E-02	0.00000E+00	2.976072E-03	3.719125E-02
< 0	-2.055186E-03	0.000000E+00	0.00000E+00	-1.242909E-04	-3.469461E-11	0.00000E+00	-3.974043E-04	-2.576881E-03
SUM	-2.038886E-03	0.00000E+00	0.000000E+00	5.100837E-03	2.897375E-02	0.00000E+00	2.578668E-03	3.461437E-02
	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >0 <0 SUM	14 -2.388891E-04 15 -1.746636E-04 16 -5.359866E-05 17 -1.411631E-04 18 -6.830812E-05 19 -1.069349E-04 20 -2.957430E-06 21 -4.36835E-06 22 -1.036360E-06 23 -9.327522E-07 24 -2.360528E-07 25 -6.450736E-08 26 -3.936907E-08 27 -1.388884E-08 28 -1.169426E-08 29 -3.316738E-08 30 -6.125666E-09 31 5.791493E-07 32 6.178899E-08 33 -4.469811E-09 >0 1.629974E-05 <0 -2.055186E-03 SUM -2.038886E-03	14 -2.388891E-04 0.00000E+00 15 -1.746636E-04 0.00000E+00 16 -5.359866E-05 0.00000E+00 17 -1.411631E-04 0.00000E+00 18 -6.830812E-05 0.00000E+00 19 -1.069349E-04 0.00000E+00 20 -2.957430E-06 0.00000E+00 21 -4.36835E-06 0.00000E+00 22 -1.036360E-06 0.00000E+00 23 -9.327522E-07 0.00000E+00 25 -6.450736E-08 0.00000E+00 25 -6.450736E-08 0.00000E+00 26 -3.936907E-08 0.00000E+00 27 -1.388884E-08 0.00000E+00 28 -1.169426E-08 0.00000E+00 29 -3.316738E-07 0.00000E+00 30 -4.469811E-09 0.00000E+00 32 -6.178899E-08 0.00000E+00 33 -4.469811E-09 0.00000E+00 <0	14 -2.388891E-04 0.00000E+00 0.00000E+00 15 -1.74663E-04 0.00000E+00 0.00000E+00 16 -5.359866E-05 0.00000E+00 0.00000E+00 17 -1.411631E-04 0.00000E+00 0.00000E+00 18 -6.830812E-05 0.00000E+00 0.00000E+00 19 -1.069349E-04 0.00000E+00 0.00000E+00 20 -2.957430E-06 0.00000E+00 0.00000E+00 21 -4.36835E-06 0.00000E+00 0.00000E+00 22 -1.035360E-06 0.00000E+00 0.00000E+00 23 -9.327522E-07 0.00000E+00 0.00000E+00 24 -2.36052B=-07 0.00000E+00 0.00000E+00 25 -6.450736E-08 0.00000E+00 0.00000E+00 26 -3.36507E-08 0.00000E+00 0.00000E+00 27 -1.388884E-08 0.00000E+00 0.00000E+00 28 -1.169426E-08 0.00000E+00 0.00000E+00 29 -3.316738E-08 0.000000E+00 0.00000E+00 <td>14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 16 -5.359866E-05 0.00000E+00 0.00000E+00 1.271233E-04 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 18 -6.830812E-05 0.00000E+00 0.00000E+00 3.61396E-05 19 -1.069349E-04 0.00000E+00 0.00000E+00 9.65895E-07 20 -2.957430E-06 0.00000E+00 0.00000E+00 -1.054449E-05 21 -4.368355E-06 0.00000E+00 0.00000E+00 -1.468406E-05 21 -4.36352E-07 0.00000E+00 0.00000E+00 -1.468406E-05 23 -9.32752E-07 0.00000E+00 0.00000E+00 -3.47574E-06 24 -2.360528E-07 0.00000E+00 0.00000E+00 -3.47574E-06 25 -6.450736E-08 0.00000E+00 0.00000E+00 -3.42986E-06 26 -1.59426E-08 0.00000E+00 0.00000E+00 -1.29488E-06</td> <td>14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 0.00000E+00 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 0.00000E+00 16 -5.35986E-02 0.00000E+00 0.00000E+00 1.271233E-05 0.00000E+00 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 18 -6.830812E-05 0.00000E+00 0.00000E+00 3.61396E-05 0.00000E+00 20 -2.957430E-06 0.00000E+00 0.00000E+00 8.712061E-05 0.00000E+00 21 -4.36835E-06 0.00000E+00 0.00000E+00 -1.054494E-05 0.00000E+00 22 -1.33630E-06 0.00000E+00 0.00000E+00 -1.4684748E-06 0.00000E+00 23 -9.327522E-07 0.00000E+00 0.00000E+00 -3.48286E-06 0.00000E+00 24 -2.360528E-07 0.00000E+00 0.00000E+00 -3.45734E-06 0.00000E+00 25 -6.450736E-08 0.00000E+00 0.00000E+00 -3.45734E-06 0.00000E+00<td>14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 0.00000E+00 0.00000E+00 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 0.00000E+00 0.00000E+00 16 -5.359866E-05 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 18 -6.830812E-05 0.00000E+00 0.00000E+00 3.610396E-05 0.00000E+00 0.00000E+00 20 -2.957430E-06 0.00000E+00 0.00000E+00 8.712061E-05 0.00000E+00 0.00000E+00 21 -4.368355E-06 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 0.00000E+00 23 -9.32752E-07 0.00000E+00 0.00000E+00 -1.468406E-05 0.00000E+00 0.00000E+00 24 -2.360528E-07 0.00000E+00 0.00000E+00 -3.475714E-06 0.00000E+00 0.00000E+00 25 -6.450735E-08 0.00000E+00 0.00000E+00 -3.475714E-06 0.00000E+00 0.00000E+00</td><td>14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 0.00000E+00 0.00000E+00 1.571233E-04 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 0.00000E+00 0.00000E+00 1.049533E-04 16 -5.35986E-04 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 4.833718E-05 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 1.270427E-05 18 -6.830812E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.277427E-05 20 -2.957430E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.270427E-05 21 -4.368355E-06 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 -1.20709E-06 22 -1.036360E-07 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 -1.079441E-05 23 -9.32752E-07 0.00000E+00 0.00000E+00 -1.684748E-06 0.00000E+00 -1.079441E-05 24 -2.360528E-07 0.000000E+00 -3.37</td></td>	14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 16 -5.359866E-05 0.00000E+00 0.00000E+00 1.271233E-04 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 18 -6.830812E-05 0.00000E+00 0.00000E+00 3.61396E-05 19 -1.069349E-04 0.00000E+00 0.00000E+00 9.65895E-07 20 -2.957430E-06 0.00000E+00 0.00000E+00 -1.054449E-05 21 -4.368355E-06 0.00000E+00 0.00000E+00 -1.468406E-05 21 -4.36352E-07 0.00000E+00 0.00000E+00 -1.468406E-05 23 -9.32752E-07 0.00000E+00 0.00000E+00 -3.47574E-06 24 -2.360528E-07 0.00000E+00 0.00000E+00 -3.47574E-06 25 -6.450736E-08 0.00000E+00 0.00000E+00 -3.42986E-06 26 -1.59426E-08 0.00000E+00 0.00000E+00 -1.29488E-06	14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 0.00000E+00 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 0.00000E+00 16 -5.35986E-02 0.00000E+00 0.00000E+00 1.271233E-05 0.00000E+00 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 18 -6.830812E-05 0.00000E+00 0.00000E+00 3.61396E-05 0.00000E+00 20 -2.957430E-06 0.00000E+00 0.00000E+00 8.712061E-05 0.00000E+00 21 -4.36835E-06 0.00000E+00 0.00000E+00 -1.054494E-05 0.00000E+00 22 -1.33630E-06 0.00000E+00 0.00000E+00 -1.4684748E-06 0.00000E+00 23 -9.327522E-07 0.00000E+00 0.00000E+00 -3.48286E-06 0.00000E+00 24 -2.360528E-07 0.00000E+00 0.00000E+00 -3.45734E-06 0.00000E+00 25 -6.450736E-08 0.00000E+00 0.00000E+00 -3.45734E-06 0.00000E+00 <td>14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 0.00000E+00 0.00000E+00 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 0.00000E+00 0.00000E+00 16 -5.359866E-05 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 18 -6.830812E-05 0.00000E+00 0.00000E+00 3.610396E-05 0.00000E+00 0.00000E+00 20 -2.957430E-06 0.00000E+00 0.00000E+00 8.712061E-05 0.00000E+00 0.00000E+00 21 -4.368355E-06 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 0.00000E+00 23 -9.32752E-07 0.00000E+00 0.00000E+00 -1.468406E-05 0.00000E+00 0.00000E+00 24 -2.360528E-07 0.00000E+00 0.00000E+00 -3.475714E-06 0.00000E+00 0.00000E+00 25 -6.450735E-08 0.00000E+00 0.00000E+00 -3.475714E-06 0.00000E+00 0.00000E+00</td> <td>14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 0.00000E+00 0.00000E+00 1.571233E-04 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 0.00000E+00 0.00000E+00 1.049533E-04 16 -5.35986E-04 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 4.833718E-05 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 1.270427E-05 18 -6.830812E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.277427E-05 20 -2.957430E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.270427E-05 21 -4.368355E-06 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 -1.20709E-06 22 -1.036360E-07 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 -1.079441E-05 23 -9.32752E-07 0.00000E+00 0.00000E+00 -1.684748E-06 0.00000E+00 -1.079441E-05 24 -2.360528E-07 0.000000E+00 -3.37</td>	14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 0.00000E+00 0.00000E+00 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 0.00000E+00 0.00000E+00 16 -5.359866E-05 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 18 -6.830812E-05 0.00000E+00 0.00000E+00 3.610396E-05 0.00000E+00 0.00000E+00 20 -2.957430E-06 0.00000E+00 0.00000E+00 8.712061E-05 0.00000E+00 0.00000E+00 21 -4.368355E-06 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 0.00000E+00 23 -9.32752E-07 0.00000E+00 0.00000E+00 -1.468406E-05 0.00000E+00 0.00000E+00 24 -2.360528E-07 0.00000E+00 0.00000E+00 -3.475714E-06 0.00000E+00 0.00000E+00 25 -6.450735E-08 0.00000E+00 0.00000E+00 -3.475714E-06 0.00000E+00 0.00000E+00	14 -2.388891E-04 0.00000E+00 0.00000E+00 3.442598E-04 0.00000E+00 0.00000E+00 1.571233E-04 15 -1.746636E-04 0.00000E+00 0.00000E+00 1.571233E-04 0.00000E+00 0.00000E+00 1.049533E-04 16 -5.35986E-04 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 4.833718E-05 17 -1.411631E-04 0.00000E+00 0.00000E+00 3.291233E-05 0.00000E+00 0.00000E+00 1.270427E-05 18 -6.830812E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.277427E-05 20 -2.957430E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.270427E-05 21 -4.368355E-06 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 -1.20709E-06 22 -1.036360E-07 0.00000E+00 0.00000E+00 -1.054449E-05 0.00000E+00 -1.079441E-05 23 -9.32752E-07 0.00000E+00 0.00000E+00 -1.684748E-06 0.00000E+00 -1.079441E-05 24 -2.360528E-07 0.000000E+00 -3.37

=== SENSITIVITY REACTION RATE TRANSPORT:FISS U238-FISS U235 ===

REACTOR

TOTAL OF THE GROUPS

ISOTOPE	E CAPTURE	FISSION	NU	ELASTIC	INELASTIC	N,XN	TRANSPORT	SUM
PB204	-4.255814E-04	0.000000E+00	0.00000E+00	7.649030E-05	8.576839E-04	0.00000E+00	4.321389E-05	5.518067E-04
PB206	-9.959182E-04	0.000000E+00	0.00000E+00	1.126275E-03	1.287406E-02	0.00000E+00	5.911629E-04	1.359558E-02
PB207	-4.956313E-04	0.000000E+00	0.00000E+00	1.136074E-03	7.756845E-03	0.00000E+00	5.808760E-04	8.978164E-03
PB208	-1.217552E-04	0.000000E+00	0.000000E+00	2.761998E-03	7.485168E-03	0.00000E+00	1.363415E-03	1.148883E-02
PART	>0 0.00000E+00	0.000000E+00	0.000000E+00	5.100837E-03	2.897375E-02	0.000000E+00	2.578668E-03	3.665326E-02
PART	<0 -2.038886E-03	0.000000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	-2.038886E-03
SUM	-2.038886E-03	0.00000E+00	0.000000E+00	5.100837E-03	2.897375E-02	0.00000E+00	2.578668E-03	3.461437E-02

B.2. Calcolo della Perturbazione per una Variazione del Coefficiente di Reattività $\delta(\Delta \rho)$ con la metodologia EGPT

La procedura consiste nell'effettuare, in diffusione o in trasporto, due calcoli perturbativi classici (CPT) con gli operatori opportunamente modificati, e di farne la differenza.

Partendo da due set di sezioni d'urto (macroscopiche) relative al sistema di riferimento (MACRO_REF) e a quello modificato (MACRO_MODIF), si ottengono i corrispondenti due set di sezioni d'urto (macroscopiche) perturbate utilizzando i seguenti moduli (in esempio raddoppio della sezione d'urto di cattura per l'U-238):

	CROSS_SECTION_M SECTION SET	ODIFICATION 'FUEL INN'	(REACTION) COEFFICIENT	(ISOT)	(COEFF)
	SECTION SET	'FUEL INT'	COEFFICIENT	(ISOT)	(COEFF)
	SECTION SET	'FUEL OUT'	COEFFICIENT	(ISOT)	(COEFF)
;				(,	(,
CALCU	JL_MACRO ->MACRO	_PERT			
1	AICRO (MICRO_PE	RT)			
ľ	AILIEU (MILIEU_R	EF);			
* '===					===';
* '	PERTURBAZIO	NE su SISTEM	A MODIFICATO		';
* '	U23	8 Cattura =	+100%		';
* '===					===';
MTCDO	EDI CUANCINC N	MICRO MODIE	רפסת		
MICRO_	_EDL_CHANGING ->1	MICRO_MODIF_	PERT		
MICRO_	_EDL_CHANGING -> MEDIUM (MILIEU_)	MICRO_MODIF_ MODIF) (MICRO_MODIF	PERT		
MICRO_	_EDL_CHANGING -> MEDIUM (MILIEU_) INITIALIZATION FULL	MICRO_MODIF_ MODIF) (MICRO_MODIF	pert		
MICRO_	_EDL_CHANGING ->1 MEDIUM (MILIEU_) INITIALIZATION FULL CROSS SECTION M	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION	PERT) (REACTION)		
MICRO_	_EDL_CHANGING ->I MEDIUM (MILIEU_) INITIALIZATION FULL CROSS_SECTION_M SECTION SET	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION 'FUEL INN'	PERT) (REACTION) COEFFICIENT	(ISOT)	(COEFF)
MICRO	_EDL_CHANGING ->I MEDIUM (MILIEU_) INITIALIZATION FULL CROSS_SECTION_M SECTION_SET SECTION_SET	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION 'FUEL_INN' 'FUEL_INT'	PERT) (REACTION) COEFFICIENT COEFFICIENT	(ISOT) (ISOT)	(COEFF) (COEFF)
MICRO_	_EDL_CHANGING ->I MEDIUM (MILIEU_) INITIALIZATION FULL CROSS_SECTION_M SECTION_SET SECTION_SET SECTION_SET	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION 'FUEL_INN' 'FUEL_INT' 'FUEL_OUT'	PERT) (REACTION) COEFFICIENT COEFFICIENT COEFFICIENT	(ISOT) (ISOT) (ISOT)	(COEFF) (COEFF) (COEFF)
MICRO_	EDL_CHANGING -> MEDIUM (MILIEU_I INITIALIZATION FULL CROSS_SECTION_M SECTION_SET SECTION_SET SECTION_SET	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION 'FUEL_INN' 'FUEL_INT' 'FUEL_OUT'	PERT) (REACTION) COEFFICIENT COEFFICIENT COEFFICIENT	(ISOT) (ISOT) (ISOT)	(COEFF) (COEFF) (COEFF)
MICRO_	_EDL_CHANGING -> MEDIUM (MILIEU_] INITIALIZATION FULL CROSS_SECTION_M SECTION_SET SECTION_SET SECTION_SET	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION 'FUEL_INN' 'FUEL_INT' 'FUEL_OUT'	PERT) (REACTION) COEFFICIENT COEFFICIENT COEFFICIENT	(ISOT) (ISOT) (ISOT)	(COEFF) (COEFF) (COEFF)
MICRO_ ; CALCU	_EDL_CHANGING -> MEDIUM (MILIEU_I INITIALIZATION FULL CROSS_SECTION_M SECTION_SET SECTION_SET SECTION_SET JL_MACRO ->MACRO	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION 'FUEL_INN' 'FUEL_INT' 'FUEL_OUT' _MODIF_PERT	PERT (REACTION) COEFFICIENT COEFFICIENT COEFFICIENT	(ISOT) (ISOT) (ISOT)	(COEFF) (COEFF) (COEFF)
MICRO_ ; CALCU	_EDL_CHANGING -> MEDIUM (MILIEU_J INITIALIZATION FULL CROSS_SECTION_MA SECTION_SET SECTION_SET SECTION_SET JUL_MACRO ->MACRO MICRO (MICRO_MO	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION 'FUEL_INN' 'FUEL_OUT' _MODIF_PERT DIF_PERT)	PERT (REACTION) COEFFICIENT COEFFICIENT COEFFICIENT	(ISOT) (ISOT) (ISOT)	(COEFF) (COEFF) (COEFF)
MICRO_ ; CALCU N	_EDL_CHANGING ->/ MEDIUM (MILIEU_) INITIALIZATION FULL CROSS_SECTION_M SECTION_SET SECTION_SET SECTION_SET JUL_MACRO ->MACRO MICRO (MICRO_MO MILIEU (MILIEU M	MICRO_MODIF_ MODIF) (MICRO_MODIF ODIFICATION 'FUEL_INN' 'FUEL_OUT' 'FUEL_OUT' _MODIF_PERT DIF_PERT) ODIF) ;	PERT) (REACTION) COEFFICIENT COEFFICIENT COEFFICIENT	(ISOT) (ISOT) (ISOT)	(COEFF) (COEFF) (COEFF)

Con la diffusione o con il trasporto, si determinano i flussi reali ed aggiunti delle configurazioni di riferimento e del sistema modificato al fine di poter calcolare i due integrali perturbativi al primo ordine con il modulo (esempio in trasporto):

```
INTEGRALE_PERTURBATION_TRANSPORT ->INTEGR_MODIF
    FLUX_SCALAIRE (FLUX_MODIF_TRASP) (FLUX_ADJ_MODIF_TRASP)
    FLUX_ANGULAIRE (ANG_FLUX_MODIF) (ANG_FLUX_ADJ_MODIF)
    MACRO (MACRO_MODIF)
    GEOMETRY (GEO_RZ)
    FULL ;

INTEGRALE_PERTURBATION_TRANSPORT ->INTEGR_REF
    FLUX_SCALAIRE (FLUX_REF_TRASP) (FLUX_ADJ_REF_TRASP)
    FLUX_ANGULAIRE (ANG_FLUX_REF) (ANG_FLUX_ADJ_REF)
    MACRO (MACRO_REF)
    GEOMETRY (GEO_RZ)
    FULL ;
```

La variazione degli operatori avviene perturbando, in egual misura, il sistema di riferimento e quello modificato. Per tale scopo il modulo che determina la perturbazione, variandone gli operatori, è:

```
* '______ Calcolo CPT PERTURBAZIONE dBpm = Bpm-Bm ';;
* '_______ CROSS_SECTION_VARIATION_CREATION ->XSEC_VAR_dBpm
TITLE '*** MACRO VARIATION XS(pert-mod) - XS(mod) ***'
MACRO (MACRO_MODIF_PERT) (MACRO_MODIF)
FULL;
* '_______ Calcolo CPT PERTURBATIVO dBp = Bp-B(ref) ';;
* '_______ Calcolo CPT PERTURBATIVO dBp = Bp-B(ref) ';;
```

```
CROSS_SECTION_VARIATION_CREATION ->XSEC_VAR_dBp
TITLE '*** MACRO VARIATION XS(pert) - XS(ref) ***'
MACRO (MACRO_PERT) (MACRO_REF)
FULL ;
```

Il calcolo, in teoria CPT al primo ordine, dei coefficienti di reattività Δρ, avviene per ciascuna delle due configurazioni, con il modulo:

```
PERTURBATION ->PERTURBATION_dBpm
  VARIATION (XSEC_VAR_dBpm)
  INTEGRAL
              (INTEGR_MODIF)
   DIFFUSION
   TITLE '*** REACTIVITY WORTHS XS(pert-mod) - XS(mod) ***'
  DIFFUSION_COEFFICIENT_VARIATION EXACT
                                 CALCULATED VALUE
  NORMALIZATION INTEGRAL
  CALCULATIONAL_DOMAIN
                                 FULL
                                       ;
PERTURBATION ->PERTURBATION_dBp
   VARIATION (XSEC_VAR_dBp)
  INTEGRAL
              (INTEGR_REF)
   DIFFUSION
   TITLE '*** REACTIVITY WORTHS XS(pert) - XS(ref) ***'
  DIFFUSION_COEFFICIENT_VARIATION EXACT
  NORMALIZATION_INTEGRAL
                                 CALCULATED_VALUE
  CALCULATIONAL DOMAIN
                                 FULL ;
```

A questo punto per ottenere la variazione dei coefficienti di reattività $\delta(\Delta \rho)$ alla perturbazione considerata, occorre utilizzare un metodo avanzato nell'uso del sistema Eranos, il linguaggio LU o "User Language", nel quale ogni set di dati (EDL) è costituito da insiemi di dati disposti in una struttura ad arborescenza definiti da puntatori. Dalla conoscenza della sua struttura dell'EDL ("Ensemble Données Logique") é possibile recuperare qualsiasi grandezza costituente l'EDL ed utilizzarla per lo scopo voluto. Bisogna quindi recuperare i coefficienti di reattività relativi alle due perturbazioni, sommarle su tutte le regioni geometriche del sistema e farne infine la differenza.

Tutto ciò viene descritto dall'equazione A.36 in appendice A1.3.1 (Metodo EGPT).

Ovviamente questo utilizzo, che prevede una conoscenza non standard del codice, viene intrapreso quando non sono disponibili direttamente dei moduli del sistema dedicati allo scopo.

```
(PERTURBATION_dBpm) ON_PERTZ SUM_COMPONENT ->SUM_COMP1 ;
->SUM_d_Bpm SOMME(SUM_COMP1) ;
(PERTURBATION_dBp) ON_PERTZ SUM_COMPONENT ->SUM_COMP2 ;
->SUM_d_Bp SOMME(SUM_COMP2) ;
->SUM_EGPT ((SUM_d_Bpm-SUM_d_Bp)*1E5) ;
```

Dalla medesima appendice, si può ottenere il terzo membro dell'equazione A.35 mediante classici calcoli di reattività da confrontare con la variazione dei coefficienti di reattività in EGPT ottenuti al primo ordine.

Esempio di output (in teoria del trasporto) relativi ai due moduli perturbativi e loro differenza,

corrispondenti all'aumento del 100% della sezione di cattura dell'U-238.

L'effetto totale dei coefficienti di reattività EGPT viene messo in evidenza.

			* * * * * * * * * *	* * * * * * * * * * *	*******			
			* * P E R T	URBAT	TONS*			
			*	0 11 2 11 1	*			
דדדד -	• *** DFAC	TTUITY WOD	********* THC VC(nort-	+********* -mod) - VS	*********** (mod) ***			
11100	, NEAC	, IIVIII WOR	IIIS V2(berc	11100) 7.5	(111001)			
	BY DOMAI	N SUMMARY						
	******	******						
					PERTURBATI	ON COMPONE	NTS ****	
DOMAIN	BUCK DELTA	FISSION SPECT.	DISAPPEARANCE	PRODUCTION	AX.LEAKAGE	RAD.LEAKAGE	SLOW.DOWN(SRCE)	SUM
FUEL_INN FUEL_INT FUEL_OUT SUM	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	-1.524571E-01 -6.542199E-02 -2.657066E-02 -2.444497E-01	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	2.809216E-15 -3.284051E-15 -6.131235E-16 -1.087959E-15	0.000000E+00 -1.5 0.000000E+00 -6.5 0.000000E+00 -2.6 0.000000E+00 -2.6	524571E-01 542199E-02 557066E-02 144497E-01
	BY GROUF ******	<pre>> SUMMARY ********</pre>						
					PERTURBATI	ON COMPONE	NTS	
					********	*******	* * * *	
GROUP	BUCK DELTA	FISSION SPECT.	DISAPPEARANCE	PRODUCTION	AX.LEAKAGE	RAD.LEAKAGE	SLOW.DOWN(SRCE)	SUM
1	0.000000E+00	0.000000E+00	-4.646535E-07	0.000000E+00	0.000000E+00	-4.002067E-18	0.000000E+00 -4.6	546535E-07
3	0.000000E+00	0.000000E+00	-2.649906E-05	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00 -2.6	549906E-05
4 5	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-4.457509E-04 -2.303871E-03	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-2.519529E-16 -3.974980E-16	0.000000E+00 -4.4 0.000000E+00 -2.3	157509E-04 303871E-03
6	0.00000E+00	0.00000E+00	-5.537333E-03	0.00000E+00	0.00000E+00	-1.209632E-15	0.000000E+00 -5.5	537333E-03
7	0.000000E+00	0.000000E+00	-1.326713E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00 -1.3	326713E-02
9	0.000000E+00	0.000000E+00	-1.247103E-02	0.000000E+00	0.000000E+00	2.062902E-15	0.000000E+00 -1.2	247103E-02
10	0.00000E+00	0.00000E+00	-1.575293E-02	0.00000E+00	0.00000E+00	-1.300530E-15	0.000000E+00 -1.5	575293E-02
11	0.000000E+00 0.000000E+00	0.000000E+00	-1.860068E-02	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 -1.8 0.000000E+00 -1.9	360068E-02 337092E-02
13	0.000000E+00	0.00000E+00	-2.255251E-02	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00 -2.2	255251E-02
14	0.000000E+00	0.000000E+00	-3.286948E-02	0.000000E+00	0.000000E+00	-7.754812E-16	0.000000E+00 -3.2	286948E-02
16	0.000000E+00	0.000000E+00	-1.690065E-02	0.000000E+00	0.000000E+00	1.390831E-16	0.000000E+00 -1.6	590065E-02
17	0.000000E+00	0.000000E+00	-1.949107E-02	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00 -1.9	949107E-02
18	0.000000E+00	0.000000E+00	-6.642009E-03	0.000000E+00	0.000000E+00	-1.626244E-17	0.000000E+00 -6.6	542009E-03
20	0.000000E+00	0.000000E+00	-8.533130E-03	0.000000E+00	0.000000E+00	3.257399E-17	0.000000E+00 -8.5	533130E-03
21	0.00000E+00	0.00000E+00	-5.485598E-03	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00 -5.4	185598E-03
22	0.000000E+00	0.000000E+00	-1.835560E-03	0.000000E+00	0.000000E+00	-1.534503E-17	0.000000E+00 -1.8	335560E-03
24	0.000000E+00	0.000000E+00	-5.268238E-04	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00 -5.2	268238E-04
25	0.000000E+00	0.000000E+00	-1.123102E-04	0.000000E+00	0.00000E+00	8.202533E-19	0.000000E+00 -1.1	L23102E-04
26	0.000000E+00	0.000000E+00	-1.420451E-04	0.000000E+00	0.000000E+00	-1.661339E-19	0.000000E+00 -1.4	120451E-04
28	0.000000E+00	0.000000E+00	-4.281340E-05	0.000000E+00	0.000000E+00	4.8010/0E-20 0.000000E+00	0.000000E+00 -4.2	01274E-05
29	0.00000E+00	0.00000E+00	-4.529919E-06	0.000000E+00	0.00000E+00	-5.131021E-20	0.000000E+00 -4.5	529919E-06
30 31	0.000000E+00	0.000000E+00	-2.042733E-05	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00 -2.0)42733E-05
32	0.000000E+00	0.000000E+00	-1.951684E-07	0.000000E+00	0.000000E+00	-1.239160E-21	0.000000E+00 -1.9	51684E-07
33	0.000000E+00	0.000000E+00	-2.189364E-07	0.000000E+00	0.000000E+00	1.462685E-22	0.000000E+00 -2.1	189364E-07
SUM	0.00000E+00	0.00000E+00	-2.444497E-01	0.00000E+00	0.00000E+00	-1.087959E-15	0.000000E+00 <mark>-2.4</mark>	144497E-01

TOTAL VARIATION-2.444497E-01 **********

END OF MODULE PERTURBATION

(EDL : PERTURBATION V2)	ON_PERTZ	SUM_COMPONENT	->SUM_COMP1

->SUM_D_BPM

TITLE : *** REACTIVITY WORTHS XS(pert) - XS(ref) ***

BY DOMAIN SUMMARY

PERTURBATION COMPONENTS **********

DOMAIN	BUCK DELTA	FISSION SPECT	. DISAPPEARANCE	PRODUCTION	AX.LEAKAGE	RAD.LEAKAGE	SLOW.DOWN(SRCE)	SUM
FUEL_INN	0.00000E+00	0.000000E+00	-1.542992E-01	0.00000E+00	0.00000E+00	-2.975850E-15	0.000000E+00 -	-1.542992E-01
FUEL_INT	0.000000E+00	0.000000E+00	-6.881916E-02	0.000000E+00	0.000000E+00	-2.633133E-17	0.000000E+00 -	-6.881916E-02
FUEL_OUT	0.00000E+00	0.000000E+00	-2.738073E-02	0.00000E+00	0.00000E+00	7.627417E-17	0.000000E+00 -	-2.738073E-02
SUM	0.00000E+00	0.00000E+00	-2.504991E-01	0.00000E+00	0.00000E+00	-2.925907E-15	0.000000E+00	-2.504991E-01

BY GROUP SUMMARY

PERTURBATION COMPONENTS

GROUP	BUCK DELTA	FISSION SPECT.	DISAPPEARANCE	PRODUCTION	AX.LEAKAGE	RAD.LEAKAGE	SLOW.DOWN(SRCH	E) SUM
1	0.000000E+00	0.00000E+00	-4.343503E-07	0.00000E+00	0.00000E+00	-7.956615E-18	0.000000E+00	-4.343503E-07
2	0.00000E+00	0.00000E+00	-3.022843E-06	0.00000E+00	0.00000E+00	9.349941E-18	0.00000E+00	-3.022843E-06
3	0.00000E+00	0.000000E+00	-2.447542E-05	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	-2.447542E-05
4	0.00000E+00	0.00000E+00	-4.200518E-04	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	-4.200518E-04
5	0.00000E+00	0.00000E+00	-2.248583E-03	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	-2.248583E-03
6	0.00000E+00	0.00000E+00	-5.466815E-03	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	-5.466815E-03
7	0.00000E+00	0.000000E+00	-1.334216E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	-1.334216E-02
8	0.00000E+00	0.000000E+00	-1.017251E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	-1.017251E-02
9	0.00000E+00	0.000000E+00	-1.244804E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	-1.244804E-02
10	0.00000E+00	0.000000E+00	-1.582206E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	-1.582206E-02
11	0.00000E+00	0.000000E+00	-1.873392E-02	0.00000E+00	0.00000E+00	-2.496507E-15	0.000000E+00	-1.873392E-02
12	0.00000E+00	0.00000E+00	-1.945330E-02	0.00000E+00	0.00000E+00	-3.105675E-16	0.00000E+00	-1.945330E-02
13	0.00000E+00	0.00000E+00	-2.265445E-02	0.00000E+00	0.00000E+00	-7.427767E-16	0.00000E+00	-2.265445E-02
14	0.00000E+00	0.000000E+00	-3.388575E-02	0.00000E+00	0.00000E+00	3.302752E-16	0.000000E+00	-3.388575E-02
15	0.00000E+00	0.00000E+00	-2.048469E-02	0.00000E+00	0.00000E+00	-2.012486E-16	0.00000E+00	-2.048469E-02
16	0.00000E+00	0.00000E+00	-1.762818E-02	0.00000E+00	0.00000E+00	3.943523E-16	0.00000E+00	-1.762818E-02
17	0.00000E+00	0.00000E+00	-2.039629E-02	0.00000E+00	0.00000E+00	1.585914E-16	0.00000E+00	-2.039629E-02
18	0.00000E+00	0.00000E+00	-6.956549E-03	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	-6.956549E-03
19	0.00000E+00	0.00000E+00	-9.849129E-03	0.00000E+00	0.00000E+00	2.503152E-17	0.00000E+00	-9.849129E-03
20	0.00000E+00	0.00000E+00	-9.159645E-03	0.00000E+00	0.00000E+00	-1.183846E-16	0.00000E+00	-9.159645E-03
21	0.00000E+00	0.00000E+00	-5.941971E-03	0.00000E+00	0.00000E+00	1.007814E-17	0.00000E+00	-5.941971E-03
22	0.00000E+00	0.00000E+00	-1.991024E-03	0.00000E+00	0.000000E+00	1.982110E-17	0.00000E+00	-1.991024E-03
23	0.00000E+00	0.00000E+00	-2.473150E-03	0.00000E+00	0.000000E+00	2.462729E-18	0.00000E+00	-2.473150E-03
24	0.00000E+00	0.00000E+00	-5.623500E-04	0.00000E+00	0.000000E+00	9.084433E-19	0.00000E+00	-5.623500E-04
25	0.00000E+00	0.00000E+00	-1.166742E-04	0.00000E+00	0.00000E+00	8.322738E-19	0.00000E+00	-1.166742E-04
26	0.00000E+00	0.00000E+00	-1.423635E-04	0.00000E+00	0.000000E+00	0.00000E+00	0.00000E+00	-1.423635E-04
27	0.00000E+00	0.00000E+00	-4.115045E-05	0.00000E+00	0.00000E+00	-4.114995E-20	0.00000E+00	-4.115045E-05
28	0.00000E+00	0.00000E+00	-5.756069E-05	0.00000E+00	0.000000E+00	0.00000E+00	0.00000E+00	-5.756069E-05
29	0.00000E+00	0.00000E+00	-4.186489E-06	0.00000E+00	0.00000E+00	-1.342338E-19	0.00000E+00	-4.186489E-06
30	0.00000E+00	0.00000E+00	-1.928263E-05	0.00000E+00	0.00000E+00	8.627041E-21	0.00000E+00	-1.928263E-05
31	0.00000E+00	0.000000E+00	1.042121E-06	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	1.042121E-06
32	0.00000E+00	0.00000E+00	-1.871358E-07	0.00000E+00	0.00000E+00	-2.552371E-21	0.00000E+00	-1.871358E-07
33	0.00000E+00	0.00000E+00	-2.136207E-07	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	-2.136207E-07
SUM	0.000000E+00	0.000000E+00	-2.504991E-01	0.000000E+00	0.000000E+00	-2.925907E-15	0.00000E+00	-2.504991E-01

TOTAL VARIATION-2.504991E-01 ******

END OF MODULE PERTURBATION

(EDL : PERTURBATIO	N V2)	ON_PERTZ	SUM_COMPONENT	->SUM_COMP2
->SUM_D_BP	-2.50499E-	·1		
->SUM_EGPT	604.94	2		

Appendice C. Calcolo di burn-up di riferimento

L'evoluzione dei nuclidi nel sistema ERANOS viene trattata risolvendo le equazioni d'evoluzione isotopiche utilizzando un flusso medio costante per regione geometrica durante un intervallo di tempo determinato, e un flusso nullo nel caso di raffreddamento.

La procedura prevista, con il codice ERANOS, per il calcolo dell'evoluzione del combustibile (burnup) è illustrata nel seguito ed è inserita nella documentazione del manuale del codice.

C.1. Procedura prevista

In funzione del grado di precisione dello studio in esame, i "Medium" (Milieu) che compongono gli elementi di combustibile e gli elementi fertili, vanno prioritariamente suddivisi in un certo numero di "Burnable zone" (Parcelle) rappresentative di tutta la regione. A sua volta il ciclo d'evoluzione viene suddiviso in un certo numero di passi d'evoluzione temporali a flusso costante.

- Radial distribution of burnable zones :
 - in RZ geometry, each radial zone
 - in HEX,Z geometry, each subassembly

 <u>Axial</u> distribution of burnable zones : the medium description may be refined by the BURNABLE_ZONE directive when describing subassemblies in CORE_CREATION :

	SUB_ASSEMBLY 'AFUEL'	FUEL 1	69 0.6	
	(MEDIUM 'SHIELD'	0.00	30.00	Heights of burnable zone
axial "medium" mesh	'LAB'	30.00	55.00	boundaries (subdivisions
	{ 'FUEL'	55.00	155.00	of the medium mesh)
	'UAB'	155.00	180.00	'
	'SHIELD'	180.00	210.00	
	ZONE 'ZFUEL'			
	BURNABLE_ZONE 40	.0 75.0	95.0 115.0 1	35.0 170.0

La catena d'evoluzione dei nuclidi (EDL DECAY_CHAIN) contiene la descrizione degli isotopi a seconda delle reazioni a cui sono soggetti. Delle semplificazioni sono possibili per evitare la presenza di nuclidi a vita molto breve.

I tassi di scomparsa degli isotopi considerati, corrispondono ai termini diagonali della matrice d'evoluzione, mentre quelli fuori diagonale costituiscono i tassi di formazione.

TAUX DE DISPARITION D'UN ISOTOPE I

Les taux de disparition des isotopes constituent les termes diagonaux de la matrice d'évolution appelée A.

 σ_f étant la section de fission, le taux de fission de l'isotope est : $a_f = n\sigma_f \phi$. Le taux total de disparition (termes a_{ii} de la matrice A) est :

 $D_i = a_c + a_{n,2n} + a_f + a_\alpha + a_{\beta^-} + a_{\beta^+}$

C'est-à-dire :

 $D_{i} = n \left[\left(\sigma_{c} + \sigma_{f} + \sigma_{n,2n} \right) \varphi + \left(\lambda_{\alpha} + \lambda_{\beta} - + \lambda_{\beta} + \right) \right]$

où : n nombre d'atomes/cm3 x 10-24

σ section microscopique en barns

 λ constante de désintégration en s⁻¹ x 10²⁴.

Les différentes filiations d'un isotope sont schématisées dans la Figure III.1.

Si seuls les trois premiers types sont pris en compte, on a :

 $D_{i} = n \left[\left(\sigma_{c} + \sigma_{f} \right) \phi + \lambda_{\beta^{-}} \right]$

TAUX DE FORMATION D'UN ISOTOPE

Les taux de formation des isotopes constituent les termes a _{ij} non diagonaux de la matrice d'évolution appelée A.

Pour l'isotope i dont le père est j (j est un indice générique qui diffère pour chaque type de réaction), le taux de formation est:

F_{ij} =

nj σcj φ	Туре 🛈
nj λβ⁻j	Type ②
n _j σ _{cj} φ	Type ③
n _j λ _{αj}	Type ④
n _j λ _β +j	Type 🕲
$n_j \sigma_{(n,2n)_j} \phi$	Type ©
	njσcjφ njλβ¯j njσcjφ njλ _{αj} njλβ+j njσ(n,2n) _j φ

C'est-à-dire F_{ij} = n_j a_{ij}

où a_{ij} est un terme non diagonal de la matrice A de la forme $\sigma \phi$ ou λ (s⁻¹ x 10⁺²⁴), suivant la réaction considérée.

Un même isotope peut être formé par plusieurs voies :

$$\mathsf{F}_{\mathsf{i}} = (\,\mathsf{n}_{\mathsf{j}}\,\sigma_{\mathsf{c}_{\mathsf{j}}}\,\phi\,)^{\textcircled{\text{\tiny 0}}} + (\,\mathsf{n}_{\mathsf{j}}\,\lambda_{\beta^{-}_{\mathsf{j}}}\,)^{\textcircled{\text{\tiny 0}}} + (\,\mathsf{n}_{\mathsf{j}}\,\lambda_{\alpha_{\mathsf{j}}}\,)^{\textcircled{\text{\tiny 0}}} + (\,\mathsf{n}_{\mathsf{j}}\,\lambda_{\beta^{+}_{\mathsf{j}}}\,)^{\textcircled{\text{\tiny 0}}} + (\,\mathsf{n}_{\mathsf{j}}\,\sigma_{\!\!(\mathbf{n},2\mathbf{n})_{\mathsf{j}}}\,\phi)^{\textcircled{\text{\tiny 0}}}$$

I prodotti di fissione sono generati dalle fissioni dei nuclei padri secondo determinati rendimenti. I rendimenti di fissione variano con il nuclide padre e con l'energia del neutrone che provoca la fissione. In ERANOS sono archiviati dati di oltre 200 prodotti di fissione e per 3 energie del neutrone incidente (termica, veloce e 14 Mev). Spesso, soprattutto in calcoli di progetto e di metodologia, la catena d'evoluzione viene semplificata con l'introduzione dei cosiddetti Pseudo prodotti di fissione. Il rendimento "apparente" di un prodotto di fissione è definito come il rapporto, ad un dato istante, tra la sua concentrazione e il numero totale di fissioni che hanno avuto luogo. Per mezzo di tutti questi rendimenti "apparenti" ottenuti da un calcolo di evoluzione completo del combustibile, viene generato il Pseudo prodotto di fissione rappresentativo di ciascun isotopo fissionabile. In ERANOS ogni nucleo pesante è rappresentato da 3 Pseudo prodotti di fissione corrispondenti ai PF solo solidi, solo gassosi e dalla somma dei due (pseudo totale).

Burn-up chain description

• Template of a burnup and decay chain creation:

DECAY_CHAIN_CREATION ->chain_set MEDIUM (medium_set) << HEAVY_ISOTOPE >> << FISSION_PRODUCT >> << FISSION_YIELD >> << ACTIVATION_PRODUCT >> ;

• Many reactions and decays can be modelled. Most often used (keywords) :

FIS fission NGF (n,γ) on ground state NGM (n,γ) on metastable N2N (n,xn)DBMF β - on ground state DBPF β + on ground state DG γ DAF α on ground state DFSP spontaneous fission

• Decay constants are stored in the MEDIUM SET and come from the ECCO reference library (can be checked at the end of a MEDIUM_EDITION).

• CAUTION : nuclides of the chain must be present (at least in traces) in the initial burnable compositions in order to perform the burnup and decay calculation !!!

Esempio di input di una catena d'evoluzione con 6 pseudo prodotti di fissione (solo solidi) presenti nella libreria di dati nucleari JEF2.2

Chaîne d'évolution avec 6 pseudo-produits de fission JEF2 (sans produits de

fission gazeux)										
ehain for burrup cale	anions									
including B10 consum	stion									
CREATION_CHAINE_EVOLUTION ->CHAIN										
MILIEU (MIL)										
NOYAU_LOURD	PRODUIT_FIS	SION								
NL 'U235' NGP 'U236'	PF 'sfpU235	*								
FIS	PF 'sfpU238	,								
DAF	PF isfoBu23	9.								
NL '0236' NOP	DE infoRead	<i>0</i> ·								
F15	PP ScpPuze									
NT (1238) NSF (No.238)	PF stpruze	1								
FIG FIG	PF 'sfpPu24	2.								
DAF										
NL 'Np239' NGF 'Pu240'	RENDEMENTS_	DE_FISSION								
F18	LISTE_DES_N	OYAUX_LOURDS	'U235'	'0236'	'0238'	'Np237'	'Pu238''			
DBMF 'Pu239'			'Pu239'	'Pu240'	'Pu241'	'Pu242'	'An241''			
NL 'Pu238' NGP 'Pu239'	RENDEMENTS	'sfpU235'	200.	200.	0.	0.	0.			
FIS			0	0	0 .	0	0			
DAF		'sfol1238'	0	0	200	0	200			
NL 'Pu239' NGF 'Pu240'		orborno	ň.	ő.		ă.				
FIS		(-/-D-000)	v.			200	v.			
NT. : P::240: NOF : P::241:		.sipPu239.	0.	0.	0.	200.	Q.			
FIS			200.	Q.	0.	Q.	Q.			
DAF		'sfpPu240'	0.	0.	0.	۵.	0.			
NL 'Pu241' NGF 'Pu242'			0.	200.	0.	0.	0.			
FIS		'sfpPu241'	0.	0.	0.	0.	0.			
DBMF 'Am241'			0.	0.	200.	0.	200.			
NL 'Pu242' NGF		'sfpPu242'	0.	0.	0.	0.	0.			
FIS		orbiosas	0	٥.	0.	200	0.			
DAF	I READULTE NO	PTUL PTON		*						
NL 'An241' NGF	PRODUIT_AC	INALIGN MOR INT								
F15	24	.B10. MON. B1	A .							
DAT.										

La parte principale del calcolo viene realizzata dal modulo EVOLUTION che necessita in input dei dati seguenti forniti da EDL e/o variabili LU (User Language):

- Le concentrazioni iniziali (EDL REACTOR_CONCENTRATION_CREATION)
- I flussi medi per "Burnable zone" (EDL AVEREGED_FLUX_CREATION)
- Le sezioni d'urto microscopiche (EDL MICRO)
- La catena d'evoluzione dei nuclidi (EDL DECAY_CHAIN)
- La durata in giorni (Variabile LU LENGHT)
- Il fattore di normalizzazione (Variabile LU)

The EVOLUTION module

• Compositions in each burnable zone are stored in a CONCENTRATION SET :

REACTOR_CONCENT	RATION_CREATION	->CONCENTRATION_SET
GEOMETRY	(GEOMETRY_SET)	
DECAY_CHAIN	(CHAIN_SET)	Creation at beginning of life
MEDIUM	(MEDIUM_SET) ;	5 5

• The MACRO SET used for flux calculations must account for each burnable zone :

MACRO_CALCULATION	I ->MACRO_SET		
MICRO	(MICRO_SET)		
MEDIUM	(MEDIUM_SET)		
CONCENTRATION	(CONCENTRATION SET)	;	Instead of medium

• The **EVOLUTION** module performs the burnup and decay calculation and stores updated concentrations in the input CONCENTRATION SET :

```
EVOLUTION

CONCENTRATION (CONCENTRATION_SET)

AVERAGED_FLUX (AVERAGED_FLUX_SET) GEOMETRY (GEOMETRY_SET)

MICRO (MICRO_SET)

DECAY_CHAIN (CHAIN_SET) If the average flux is normalized to

LENGTH number_of_days

NORMALIZATION_FACTOR 1.00; coefficient from reactor normalization
```

CAUTION : burnup performed over the burnup step with constant fluxes

Infine il modulo MATERIAL_BALANCE_CALCULATION permette di avere i bilanci dei materiali evoluenti (in peso o in atomi) per ogni regione geometrica. La sua edizione permette di conoscere il bilancio materiale ad un determinato passo temporale d'evoluzione e se si fornisce contemporaneamente anche il bilancio materiale ad inizio vita ad aesempio, l'edizione del modulo permette di conoscere anche la differenza (in atomi o in peso) tra i due passi d'evoluzione.

Material Balance

```
MATERIAL_BALANCE_CALCULATION ->MASS_BALANCE_SET
BASIS MEDIUM (MEDIUM_SET)
DATA CONCENTRATION (CONCENTRATION_SET)
GEOMETRY (GEOMETRY_SET)
EQUIVALENCE_COEFFICIENT (EQUIV_COEFF_SET)
OPTION MASS_BALANCE ;
```

```
MATERIAL_BALANCE_EDITION
DATA (MASS_BALANCE_SET) OPTION BY_MEDIUM ;
```

MATERIAL_BALANCE_CALCULATION

This function creates a MATERIAL BALANCE set, using atoms or masses balance with the corresponding option. This set contains the data for the medium list defined in "equivalence coefficients creation" (see before).

C.2. Esempio di output

Sempre sul reattore ELSY in geometria RZ é stato eseguito un calcolo di bruciamento del combustibile su un ciclo della durata di 5 anni alla potenza costante di 1500 MW-th. Il ciclo di evoluzione è stato suddiviso in 5 "passi d'evoluzione" della durata uniforme di 1 anno ciascuno. A ogni passo, a causa del cambiamento delle concentrazioni dei nuclidi evoluenti, vengono ricalcolate le sezione d'urto macroscopiche mentre quelle microscopiche rimangono invariate (i prodotti di fissione agiscono essenzialmente nella coda dello spettro per un sistema veloce).

Ouput del modulo di edizione della potenza (in watt) per ogni regione geometrica, ad inizio vita e dopo 5 anni, normalizzata a 1500 Mw-th. A seguire, andamento della reattività per i 5 passi d'evoluzione. La perdita di reattività del ciclo, della durata di 5 anni, è pari a circa 2900 pcm.

	REACTION RATES EDITION BY SECTION														
. SECTI	ON	. INTEGR	RATE		MAX RATE	\$\$\$\$.PO	\$\$\$ SIT	\$\$\$\$: ION.	\$\$\$\$\$\$\$\$\$\$\$\$ Z_AX	S\$\$\$\$\$\$\$ MIN RATE	.POSII	ION.	Z_AX		AVRGD RATE
								•	VOLUME .						
. PBEXT		6.716	51E+05		1.4542E-01	. 1	0	1.	. 342.00	8.5469E-05	. 6 0	88.	0.00		2.2010E-02
								•	3.0514E+07 .						
. BOT_FA	<u>۱</u>	3.909	94E+06	•	4.3412E-01	. 1	0	1.	167.24 1.6617E+07	5.6572E-02	. 5 0	80.	90.00	•	2.3526E-01
		•										•			
. UO2_IN	IS .	3.822	28E+06	•	1.9551E+01	. 1	0	1.	191.00 3.2906E+05 .	2.2696E+00	. 5 0	80.	312.00	•	1.1617E+01
•		•						•	•			•			
. FUEL_I	NN .	7.221	9E+08	•	1.2737E+02	. 1	0	1.	247.00 . 7.4313E+06 .	5.8484E+01	. 1 0	47.	307.00	•	9.7182E+01
		•			•			•	•			•	•		•
. TOP_FA	<u>.</u>	1.044	13E+06	•	4.2702E-01	. 1	0	1.	318.80 . 4.7714E+06 .	1.0355E-02	. 5 0	74.	336.20	•	2.1887E-01
		•			•			•	• • • •			•			•
. FUEL_I	NT .	4.232	23E+08	·	1.0882E+02	. 2	0	48.	247.00 . 5.2767E+06 .	3.9724E+01	. 2 0	61.	307.00	•	8.0208E+01
•		•			•			•	• • • • •	•		•	•		•
. FUEL_C	OUT .	3.405	55E+08	•	9.1984E+01	. 3	0	62. ·	247.00 . 7.0356E+06 .	1.3638E+01	.50	79.	307.00	•	4.8404E+01
			0			4	0	•	• • •		4	•	•		
. BOT_CR	ι.	1.429	90E+06	•	2.1//2E-01	• 4	0	69. ·	242.00 . 1.6622E+07 .	4.8499E-03	. 4 0	/3.	0.00	•	8.59/2E-02
•			0		•	6	0	•	• • •	•	c 0	•	•		•
. REFL		1.425	98E+06	•	2.9099E-01	. 6	0	. 82.	242.00 . 8.7944E+06 .	1.9289E-02	. 6 0	88.	307.00	•	1.6212E-01
		E 160	000004		E 1264E 02	c	0	•		4 0102E 02	6 0	•			• 0 57075 00
. IOP_CR		J.403	79 <u>6</u> +04	•		. 0	U	•1•	2.1253E+06 .	4.9102E-03	. 8 0			•	2.3/3/E-02
. CROD		1.676	52E+06		6.3687E+00	. 4	0	69.	312.00 .	2.2340E-02	. 4 0	72.	373.67		8.4086E-01
								•	1.9934E+06 .						
		•						•••• •							
. TOI	AL .	1.500)0E+09												1.4777E+01
								•	1.0151E+08 .						
						REAC	TIO	N RA	TES EDITION BY	SECTION					
. SECTIO	ON	. INTEGR	RATE		MAX RATE	.PO	SIT	ION.	Z_AX VOLUME	MIN RATE	.POSII	ION.	Z_AX	•	AVRGD RATE
	• • • •				•••••	• • • • •	•••			•••••		••••			•••••
•		•			•			•	•	•		•	·		•
. PBEXT		7.065	59E+05	•	1.6773E-01	. 1	0	1.	342.00 . 3.0514E+07 .	8.4348E-05	. 6 0	88.	0.00	•	2.3157E-02
		•						• .	•			•			
. BOT_FA	<u>،</u>	4.044	13E+06	•	4.9097E-01	. 1	0	1.	167.24 . 1.6617E+07 .	5.5058E-02	.50	80.	90.00	•	2.4338E-01
•		•			•			•	•	•		•			•
. UO2_IN	IS .	1.514	16E+07	•	1.0282E+02	. 1	0	1.	191.00 . 3.2906E+05 .	3.0298E+00	. 5 0	74.	312.00	•	4.6029E+01
		•			•			•	•	•		•	•		•
. FUEL_I	NN .	7.870)8E+08	•	1.4781E+02	. 1	0	1.	247.00 . 7.4313E+06 .	5.9658E+01	. 1 0	47.	307.00	•	1.0591E+02
•		•			•		_	•	• •	•		•	•		•
. TOP_FA	<u>۱</u>	1.079)1E+06	•	4.8130E-01	. 1	0	1.	318.80 . 4.7714E+06 .	9.1463E-03	.50	74.	336.20	•	2.2615E-01
•		•			•			•	•	•		•	•		•

ACCORDO DI PROGRAMMA MSE-ENEA

. FUEL_INT . 3.9949E+08 . 1.0661E+02 . 2 0 48. 247.00 . 3.6579E+01 . 2 0 61. 307.00 . 7.5709E+01 5.2767E+06 . . • FUEL_OUT . 2.8828E+08 . 7.8730E+01 . 3 0 62. 247.00 . 1.1390E+01 . 5 0 79. 307.00 . 4.0975E+01 7.0356E+06 . . 242.00 . BOT_CR . 1.3320E+06 . 1.9509E-01 . 4 0 69. 4.8669E-03 . 4 0 73. 0.00 . 8.0137E-02 . 1.6622E+07 . • • REFL . 1.2553E+06 . 2.5539E-01 . 6 0 82. 242.00 . 8.7944E+06 . 1.6875E-02 . 6 0 88. 307.00 . 1.4274E-01 TOP_CR . 4.7923E+04 . 4.4980E-02 . 6 0 81. 313.00 . 4.3013E-03 . 6 0 88. 336.20 . 2.2548E-02 . . 2.1253E+06 CROD . 1.5414E+06 . 5.8030E+00 . 4 0 69. 312.00 . 1.9934E+06 . 2.0757E-02 . 4 0 72. 373.67 . 7.7324E-01 • TOTAL . 1.5000E+09 . . 1.4777E+01 . 1.0151E+08 .

Fig. C.1. pcm vs. days

Il gruppo di lavoro incaricato delle attività di ricerca previste nel PAR 2011 è costituito dal Antonio Naviglio del *Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica* dell'Università di Roma "La Sapienza" e dal Prof. Augusto Gandini.

Augusto Gandini, fisico. Dopo un'esperienza di ricerca sui reattori nucleari negli Stati Uniti presso l'Argonne National Laboratory, è stato direttore di laboratorio presso il CNEN e consigliere scientifico dell'ENEA. È docente di fisica del reattore nel Corso di Laurea in Ingegneria Energetica e Nucleare presso l'Università di Roma "La Sapienza". Svolge le seguenti attività di ricerca: sviluppo ed applicazione di metodi per l'analisi dei reattori nucleari; sviluppo ed applicazione di metodi per l'interpretazione e utilizzo di esperienze; sviluppo ed applicazione di metodi di simulazione statistica per l'analisi del rischio e del comportamento di impianti industriali.

Naviglio svolge attività di ricerca all'interno della stessa università, da più di 30 anni, essendosi occupato dello studio e lo sviluppo di aspetti innovativi connessi principalmente alla progettazione di impianti nucleari innovativi ed intrinsecamente sicuri, alla termoidraulica, alla sicurezza. Le numerose attività svolte in questi anni hanno portato alla pubblicazione di alcune monografie oltre a numerose pubblicazioni scientifiche sia in riviste internazionali che in convegni nazionali ed internazionali; inoltre è autore di diversi rapporti tecnici relativi alle attività svolte nelle precedenti annualità dei PAR.