

RICERCA DI SISTEMA ELETTRICO

Simulation of the Thermo-Hydraulic Behaviour of Liquid Metal
Reactors Using a Three Dimensional Finite Element Model

Doc. CIRTEN RL 1301/2010

S. Bnà, S. Manservisi, O. Le Bot

Report RdS/2010/107

Agenzia Nazionale per le Nuove Tecnologie,
l’Energia e lo Sviluppo Economico Sostenibile

SIMULATION OF THE THERMO-HYDRAULIC BEHAVIOUR OF LIQUID METAL REACTORS USING A

THREE-DIMENSIONAL FINITE ELEMENT MODEL

S. Bnà, S. Manservisi, O. Le Bot (Università di Bologna)

Settembre 2010

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico – ENEA

Area: Produzione e fonti energetiche

Tema: Nuovo Nucleare da Fissione

Responsabile Tema: Stefano Monti, ENEA

Lavoro svolto in esecuzione della linea progettuale LP3 punto F1 - AdP ENEA MSE del 21/06/07
Tema 5.2.5.8 – “Nuovo Nucleare da Fissione”.

 CIRTEN

 CONSORZIO INTERUNIVERSITARIO

 PER LA RICERCA TECNOLOGICA NUCLEARE

ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

DIPARTIMENTO DI INGEGNERIA ENERGETICA,
NUCLEARE E DEL CONTROLLO AMBIENTALE

LABORATORIO DI MONTECUCCOLINO

SIMULATION OF THE THERMO-HYDRAULIC
BEHAVIOUR OF LIQUID METAL REACTORS USING A

THREE-DIMENSIONAL FINITE ELEMENT MODEL

CIRTEN-UNIBO RL 1301/2010

AUTORI

S. Bnà, S. Manservisi, O. Le Bot

PISA, LUGLIO 2010

Nuclear Engineering Laboratory of Montecuccolino

DIENCA - UNIVERSITY OF BOLOGNA
Via dei Colli 16, 40136 Bologna, Italy

SIMULATION OF THE THERMO-HYDRAULIC BEHAVIOUR OF
LIQUID METAL REACTORS USING A THREE-DIMENSIONAL

FINITE ELEMENT MODEL

September 1 2010

Authors: S. Bnà, S. Manservisi and O. Le Bot
sandro.manservisi@unibo.it

Abstract. A thermo-fluid model for a liquid metal reactor has been implemented on a
finite element code with the purpose of investigating three-dimensional profiles of pressure,
velocity and temperature fields. All the sub-channel details in the core are summarized in
parametric coefficients. The core fields are coupled with the upper and lower plenum where the
standard Navier-Stokes system with turbulence model equations is solved. Some preliminary
tests for generic geometries with open and closed assembly model are reported.

Contents

1 CFD reactor modeling 7
1.1 Reactor upper and lower plenum region model 7

1.1.1 Navier-Stokes system and its finite element approximation 7
Navier-Stokes system . 7
Variational form of the Navier-Stokes equations 10
Finite element Navier-stokes system 11
Finite element class for Navier-stokes and energy equation 12

1.1.2 κ− ϵ turbulence model . 12
Standard κ− ϵ turbulence model . 12
Finite element κ− ϵ turbulence model 13
Finite element class for the κ− ϵ system 13

1.1.3 κ− ω turbulence models . 13
Wilcox’s κ− ω turbulence model . 13
Finite element κ− ω turbulence model 14
Finite element class for the κ− ω system 14

1.1.4 LES . 15
Smagorinsky-Lilly model . 15
Implementation of the LES turbulence model 15

1.2 Reactor core region model . 15
1.2.1 Two-level finite element Navier-Stokes system 15

General model . 15
Reactor transfer operators . 18

1.2.2 Core model equations . 20
Model Equations . 20

2 CFD sub-assembly fuel channel modeling 22
2.1 Heat exchange modeling for sub-assembly fuel channels 22

2.1.1 Introduction . 22
2.1.2 Single rod experiment with LBE coolant 23

2.2 CFD results for the single rod configuration 26
2.2.1 Mesh and data setting . 26
2.2.2 Numerical results . 27

Simulation of the single rod experiment 27
Simulations with different codes . 27
Simulations for different turbulence models 28
Mesh and y+ . 29

CONTENTS

Computation of the heat transfer coefficient hdf 31
2.3 The ratio hdf/hteo for lead coolant. 32

3 Program user guide 33
3.1 Introduction . 33

3.1.1 The version 2.0 of the reactor module code 33
Installation. 33
Step 1. Preprocessing and mesh generation 34
Step 2. Running and compiling . 34
Step 3. Postprocessing and visualization. 35

3.1.2 Code structure . 35
Main directory and its structure . 35
The source code subdirectories src and include 36
The subdirectory config . 37
The data directories data in and fem 37
The subdirectory output . 38
The subdirectory contrib . 38

3.2 Step 1: Mesh generation and core factor files 38
3.2.1 Mesh generation . 38

Internal mesh generator . 40
GAMBIT generic mesh format . 40
SALOME mesh and MED Format . 41

3.2.2 Core power and pressure loss distribution 42
Core power distribution input file . 42
Program datagen for automatic power distribution 43

3.3 Step 2: Configuration, data and parameter setting 45
3.3.1 Configuration setting . 45

Global configuration . 45
Class parameter configuration . 47

3.3.2 Parameter setting . 48
3.3.3 Boundary and initial conditions . 50

Boundary conditions . 50
Initial conditions . 52

3.4 Step 3: Analysis of the CFD solution . 52
3.4.1 Output format in HDF5 and XDMF format 52

The HDF5 format . 52
The eXtensible Data Model (XDMF) Format 54

3.4.2 PARAVIEW . 57
Visualization with PARAVIEW . 57
Data post-processing . 57

4 CFD reactor simulation 59
4.1 Introduction . 59
4.2 Step 1. Preprocessing: mesh and data generation 63

Mesh generation . 63
Data generation . 66

4.3 Step 2: Configuration, data and parameter setting 70

3

CONTENTS

4.3.1 Configuration setting . 70
Global configuration . 70
Class parameter configuration . 71

4.3.2 Parameter setting . 71
4.3.3 Boundary and initial conditions . 72

Boundary conditions . 72
Initial conditions . 76

4.4 Step 3: Analysis of the CFD solution . 77
4.4.1 Test 1. Closed core model . 77

Temperature . 82
Pressure . 84
Velocity field . 86

4.4.2 Test 2. Partially closed core model . 91
4.4.3 Test 3. Open core model . 95

Temperature and pressure . 96
Velocity . 99

4.4.4 Test 4. Open core model with control assemblies 103
Temperature . 107
Pressure . 109
Velocity (w-component) . 111
Velocity (u-component) . 113
Velocity (v-component) . 115

4

CONTENTS

Introduction

Figure 1: Computational three-dimensional reactor model

In this report a full 3D CFD code with the purpose of analyzing the thermal hydraulic
behaviour of a liquid metal reactor core has been developed. The purpose of this code is to
investigate three-dimensional pressure, velocity and temperature fields inside nuclear reactors
at the coarse fuel assembly level. Due to the complexity of the geometry, approximate CFD
models have been developed for the core region, for the upper and lower plenum and for
sub-assembly computations.

Chapter 1 introduces the mathematical model for the core and the upper/lower plenum
region. The reactor upper and lower plenum region model is introduced by coupling the
Navier-Stokes and energy system with a turbulence model. The κ − ϵ, κ − ω and LES
turbulence models have been implemented in the finite element code. For the core region
a two-level finite element Navier-Stokes model is proposed. Boundary, initial and yielding
conditions are illustrated.

In Chapter 2 a CFD analysis is proposed for sub-assembly heat exchange investigation. Ex-
perimental results from a single fuel rod are reproduced with CFD tools and the computation
of the heat exchange coefficient is presented. This parameter may be used for temperature
computations inside the fuel pins starting from the average coolant field computed by the
code.

Chapter 3 is a brief User Guide for the finite element code which is provided with this re-
port. The User Guide is divided into three steps: code pre-processing, code running and code
post-processing. A brief description of the code structure and main compilation commands
is reported to allow a user to reproduce the results and manage the basic commands. A
description of the mesh tools available to design the reactor geometry, to configure the solver
class for Navier-Stokes, energy and turbulence models are included in the User Guide. The
distributions of the core power factors and pressure losses are introduced by using external
files which can be generated automatically by appropriate tools. We discuss how to view the

5

CONTENTS

results by using the PARAVIEW open source software in output files with HDF5 and XDMF
formats.

Chapter 4 is devoted to CFD computations. In this chapter some basic tests are performed
for different core geometries in order to compare this three-dimensional approach with the
standard mono-dimensional one. We use two different reactor geometries: the first geometry
does not include the control rod area which is included in the other geometry. This code has
been used, under the assumption of weakly correlated assemblies, for a preliminary assessment
of an open square lattice with three fuel radial zones at different levels of enrichment. With
the first geometry we study four cases of open and closed assembly models with and without
the control assembly region.

6

Chapter 1

CFD reactor modeling

1.1 Reactor upper and lower plenum region model

The purpose of the code discussed in this report is to compute the velocity, pressure and
temperature distributions in different regions of the reactor. In regions below and above
the core the coolant flows in an open three-dimensional domain and the coolant state can be
determined by using standard three-dimensional CFD tools. In this section, we briefly present
the equations implemented in the code that are available in the modeling of the lower and
upper plenum. In this region we can solve the three-dimensional equations of conservation of
mass, momentum and energy equation coupled with turbulence models. In particular we may
use turbulent models such as κ−ϵ, κ−ω and LES. Briefly in the next sections we summarize
the equation solvers in the finite element implementations. The parameters of the different
turbulence models and of the Navier-Stokes system and energy equation can be controlled
through appropriate configuration variables as discussed in Chapter 3.

1.1.1 Navier-Stokes system and its finite element approximation

Navier-Stokes system

Let Ω be the domain and Γ be the boundary of the system. We assume that the state of this
system is defined by velocity, pressure and temperature field (v, p, T) and that its evolution
is described by the solution of the following system
a) Incompressibility constraint

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.1)

b) Momentum equation

∂ρv
∂t

+ ∇ · (ρvv) = −∇p+ ∇ · τ̄ + ρg , (1.2)

c) Energy equation
∂ρe0
∂t

+ ∇ · (ρve0) = Φ + ∇ · q + Q̇ . (1.3)

For our purposes the system can be considered incompressible, while the density is assumed
only to be slightly variable as a function of the temperature, with ρ = ρ(T) given. The tensor

CFD reactor modeling

τ̄ is defined by

τ̄ = 2µD̄(v) , Dij(v) =
1
2
(
∂vi

∂xj
+
∂vj

∂xi
) (1.4)

with i, j = x, y, z. In a similar way the tensor vv is defined as vvij = vi vj . The heat flux, q,
is given by Fourier’s law

q = −λ∇T ≡ −Cp
µ

Pr
∇T . (1.5)

The Reynolds Re, the laminar Prandtl Pr and the Péclet Pe number are defined by

Re =
ρuD

µ
Pr ≡ Cpµ

λ
, Pe = RePr . (1.6)

In order to close these equations it is also necessary to specify some state equation. We
assume

ρ = a+ γT, e0 ≡ CvT +
v2

2
, (1.7)

where a,γ and Cv are constant. The quantity g denotes the gravity acceleration vector, Cv is
the volume specific heat and k the heat conductivity. Q̇ is the volume heat source and Φ the
dissipative heat term. Equations are supplemented with the constant data and appropriate
boundary conditions and they form a closed set of partial differential equations.

For high Reynolds numbers the numerical solution of the (1.1-1.3) cannot be computed
efficiently and therefore we need an approximate model. Mathematically, one may think of
separating the velocity vector into a resolved-scale field and a subgrid-scale field. The resolved
part of the field represents the average flow, while the subgrid part of the velocity represents
the ”small scales” whose effect on the resolved field is included through the subgrid-scale
model. In the following, we refer to ”filtering” as the convolution of a function with a filtering
kernel G

v(x⃗) =
∫
G(x⃗− ξ⃗)v(ξ⃗)dξ⃗, (1.8)

resulting in
v = v̄ + v̄′ , (1.9)

where v̄ is the resolved-scale field and v̄′ is the subgrid-scale field.
The filtered equations are developed from the incompressible Navier-Stokes equations of

motion. By substituting v = v̄ + v̄′ and p = p̄ + p′ in the decomposition and then filtering
the resulting equation we write the equations of motion for the average field v̄ and p̄ as

∂ρ v̄
∂t

+ ∇ · (ρv̄v̄) = −∇p̄+ ∇ · τ̄ + ρḡ . (1.10)

We have assumed that the filtering operation and the differentiation operation commute,
which is not generally the case but it may be thought that the errors associated with this
assumption are usually small. The extra term ∂τij/∂xj arises from the non-linear advection
terms, due to the fact that

vj
∂vi

∂xj
̸= v̄j

∂v̄i

∂xj
(1.11)

and hence
τij = v̄iv̄j − vivj . (1.12)

8

CFD reactor modeling

Similar equations can be derived for the subgrid-scale field. Subgrid-scale turbulence models
usually employ the Boussinesq hypothesis, and seek to calculate the deviatoric part of stress
using

τij −
1
3
τkkδij = −2µtS̄ij , (1.13)

where S̄ij is the rate-of-strain tensor for the resolved scale defined by

S̄ =
1
2

(
∇v + ∇vT

)
(1.14)

and µt is the subgrid-scale turbulent viscosity. Substituting into the filtered Navier-Stokes
equations, we then have

∂ρv
∂t

+ ∇ · (ρvv) = −∇p+ ∇ · [(ν + νt)∇v] + ρg , (1.15)

where we have used the incompressibility constraint to simplify the equation and the pressure
is now modified to include the trace term τkkδij/3. In the rest of the paper we drop the
average notation v̄ and p̄ to use the standard notation v and p. With this notation these
approximation models result in the same equations as (1.1-1.2) for the average fields (ū, p̄, T̄)
and a modified viscous stress tensor as

τ̄ = 2(µ+ ρνt)D̄(ū) , (1.16)

with a modified heat flux q as

q =≡ −Cp(
µ

Pr
+
ρνt

Prt
)∇T . (1.17)

The functions νt and Prt are called turbulent viscosity and turbulent Prandtl numbers and
must be computed by solving other transport equations. For many fluids Prt is assumed to
be constant.

In order to complete the system (1.1-1.3) we need to specify the physical constants. We
focused only on liquid lead as coolant. It is well known that lead-bismuth eutectic (LBE)
is sometimes preferred between lead and bismuth because of its better properties like cross
section, radiation damage, activation and in particular because of the fact that it has a lower
melting point and it is liquid in a wider range of temperatures, which is an obvious advantage
for heat removal and safety. On the other hand, lead cooled fast reactors with nitride fuel
assemblies are currently being studied in the world because of the lower price of the coolant.
It is also to be said that, from the point of view of density and viscosity, which are our con-
cern presently, there is no remarkable difference between lead and lead-bismuth eutectic [4].
Below we report the state equations that are implemented in the code for lead liquid metal
coolant. These state equations can be modified easily in the configuration files of the code
(see Chapter 3).

Density The lead density is assumed to be a function of temperature as

ρ = (11367 − 1.1944 × T)
Kg

m3
(1.18)

for lead in the range 600K < T < 1700K.

9

CFD reactor modeling

Dynamic Viscosity The following correlation has been used for the viscosity µ

µ = 4.55 × 10−04 e(1069/T) Pa · s , (1.19)

for lead in the range 600K < T < 1500K.

Thermal Expansion For the mean coefficient of thermal expansion (AISI 316L) we assume

αv = 14.77 × 10−6 + 12.20−9(T − 273.16) + 12.18−12(T − 273.16)2
m3

K
. (1.20)

Thermal conductivity The lead thermal conductivity κ is

κ = 15.8 + 108 × 10−4 (T − 600.4)
W

m ·K
. (1.21)

Specific heat capacity at constant pressure The constant pressure specific heat capacity
for lead is assumed not to depend on temperature, with a value of

Cp = 147.3
J

Kg ·K
. (1.22)

Variational form of the Navier-Stokes equations

Now we consider the variational form of the Navier-Stokes system. In the rest of the paper we
denote the spaces of all possible solutions in pressure, velocity and temperature with P (Ω),
V(Ω) and H(Ω), respectively.

a) Incompressibility constraint. By multiplying (1.1) by a scalar test function ψ in the
space P (Ω) and integrating over the domain Ω we have the following variational form of the
incompressibility constraint∫

Ω

(
ψ
∂ρ

∂t
+ ψ∇ · (ρv)

)
dx = 0 ∀ψ ∈ P (Ω) . (1.23)

b) Momentum equation. If one multiplies (1.2) for the three-dimensional test vector
function ϕ in the space V(Ω) and integrates over the domain Ω one has, after integration by
parts, the following variational momentum equation∫

Ω

∂ ρv
∂t

· ϕdx +
∫

Ω
(∇ · ρvv) · ϕdx =∫

Ω
p∇ · ϕdx −

∫
Ω
τ̄ : ∇ϕdx +

∫
Ω
ρg · ϕdx − ∀ϕ ∈ V(Ω) (1.24)∫

Γ
(pn⃗− τ̄ · n⃗) · ϕds .

The surface integrals must be computed by using the boundary conditions and they are zero
if appropriate boundary conditions are imposed. We remark that if we set ϕ = δv where δv
is a variation of the velocity field v then (1.24) is the evolution equation for the rate of virtual
work.

10

CFD reactor modeling

c) Energy equation. Finally for the energy equation, if we multiply for the scalar test
function φ in the space H(Ω) and integrate over the domain Ω we have, after integration by
parts, the following variational energy equation∫

Ω

∂ ρCp T

∂t
φ dx +

∫
Ω
∇ · (ρvCp T)φdx =∫

Ω
Φφdx −

∫
Ω
k∇T · ∇φdx +

∫
Ω
Q̇φ dx + ∀φ ∈ H(Ω) (1.25)∫

Γ
(k∇T · n⃗)φds .

Again, the surface term must be computed by imposing the appropriate boundary conditions.

Finite element Navier-stokes system

The pressure space P (Ω), the velocity space V(Ω) and the energy space H(Ω) in (1.23-1.25)
are in general infinite-dimensional spaces. If the spaces P (Ω), V(Ω) and H(Ω) are finite-
dimensional then the solution (v, p, T) will be denoted by (vh, ph, Th) and the corresponding
spaces by Ph(Ω), Vh(Ω) and Hh(Ω). In order to solve the pressure,velocity and energy fields
we use the finite-dimensional space of piecewise-linear polynomials for Ph(Ω) and the finite
space of piecewise-quadratic polynomials for Vh(Ω) and Hh(Ω). In this report the domain Ω
is always discretized by Lagrangian finite element families with parameter h.

The finite element Navier-Stokes system becomes

a) FEM incompressibility constraint∫
Ω

(
ψh

∂ρ

∂t
+ ψh ∇ · (ρvh)

)
dx = 0 ∀ψh ∈ Ph(Ω) , (1.26)

b) FEM momentum equation∫
Ω

∂ ρvh

∂t
· ϕh dx +

∫
Ω

(∇ · ρvhvh) · ϕh dx =∫
Ω
ph ∇ · ϕh dx −

∫
Ω
τ̄h : ∇ϕh dx +

∫
Ω
ρg · ϕh dx − ∀ϕh ∈ Vh(Ω) (1.27)∫

Γ
(phn⃗− τ̄h · n⃗) · ϕh ds ,

c) FEM energy equation∫
Ω

∂ρCp Th

∂t
φh dx +

∫
Ω
∇ · (ρvhCp Th)φh dx = ∀φh ∈ Hh(Ω) (1.28)∫

Ω
Φh φh dx −

∫
Ω

qh · ∇φh dx +
∫

Ω
Q̇h φh dx +

∫
Γ
k ∇Th · n⃗ φh dx .

Since the solution spaces are finite-dimensional we can consider the basis functions {ψh(i)}i,
{ϕh(i)}i and {φh(i)}i for Ph(Ω), Vh(Ω) and Hh(Ω), respectively. Therefore the finite element
problem (1.26-1.28) yields a system of equations which has one equation for each FEM basis
element.

11

CFD reactor modeling

For a Newtonian fluid the viscous stress is given by

τhij = 2(µ+ ρ νt)Shij , (1.29)

where the viscous strain-rate tensor is defined by

Shij ≡
1
2

(
∂vhi

∂xj
+
∂vhj

∂xi

)
− 1

3
∂vhk

∂xk
δij . (1.30)

The heat flux becomes
qh =≡ −Cp(

µ

Pr
+
ρνt

Prt
)∇Th . (1.31)

Finite element class for Navier-stokes and energy equation

The Navier-Stokes solver is implemented in the class MGSolverNS which consists of the decla-
ration file MGSolverNS.h and implementation files MGSolverNS.C, MGSolverNS3D.C. The pa-
rameters can be set in the file /config/MGSNSconf.h. The energy solver is implemented in the
class MGSolverT which is defined in the files MGSolverT.C, MGSolverT3D.C and MGSolverT.h.
The parameters can be set in the file /config/MGSTconf.h.

1.1.2 κ − ϵ turbulence model

Standard κ− ϵ turbulence model

In the standard κ− ϵ turbulence model the turbulent viscosity is modelled as

µt = ρνtρCµ
k2

ϵ
. (1.32)

The turbulent kinetic energy k satisfies the following equation

∂

∂t
k + ∇ · (k v) = ∇ ·

[(
ν +

νt

σk

)
∇k

]
+ Pk + Pb − ϵ , (1.33)

where Pk is the production term of k and Pb the buoyancy term. For the turbulent dissipation
energy ϵ we have

∂

∂t
ϵ+ ∇ · (ϵv) = ∇ ·

[(
ν +

νt

σϵ

)
∇ϵ

]
+ C1ϵ

ϵ

k
(Pk + C3ϵPb) − C2ϵ

ϵ2

k
(1.34)

where the model constants are

C1ϵ = 1.44, C2ϵ = 1.92, Cµ = 0.09, σk = 1.0, σϵ = 1.3 . (1.35)

The production Pk of k is defined as

Pk = −v′iv′j
∂vj

∂xi
= νtS

2 , (1.36)

where S is the modulus of the mean rate-of-strain tensor, defined as

S ≡
√

2SijSij =
1
2
∥∇v + ∇vT ∥ . (1.37)

12

CFD reactor modeling

The effect of buoyancy term Pb is given by

Pb = αt
µt

Prt
g · ∇T , (1.38)

where Prt is the turbulent Prandtl number for energy and gi is the component of the gravity
vector in the i-th direction. For the standard and realizable models, the default value of Prt
is 0.85. The coefficient of thermal expansion, αt, is defined as

αt = −1
ρ

(
∂ρ

∂T

)
p

. (1.39)

Finite element κ− ϵ turbulence model

We consider the turbulent kinetic energy space K(Ω) and the turbulent dissipation energy
space E(Ω). If the spaces K(Ω) and E(Ω) are finite-dimensional then the solution (κ, ϵ) will
be denoted by (κh, ϵh) and the corresponding spaces by Kh(Ω) and Eh(Ω). In order to solve
the turbulent kinetic and turbulent dissipation energy fields we use the finite-dimensional
space of piecewise-quadratic polynomials for Kh(Ω) and Eh(Ω). In this report the domain Ω
is always discretized by Lagrangian finite element families with parameter h.

d) Turbulent kinetic energy equation∫
Ω

∂ κh

∂t
φh dx +

∫
Ω
∇ · (vh κh)φh dx +

∫
Ω

(
ν +

νt

σk

)
∇κh · ∇φh dx = (1.40)∫

Ω
(Pkh + Pbh)φh dx −

∫
Ω
ϵh φh dx ∀φh ∈ Kh(Ω) .

e) Turbulent dissipation energy equation∫
Ω

∂ ϵh
∂t

φh dx +
∫

Ω
∇ · (vh ϵh)φh dx +

∫
Ω

(
ν +

νt

σϵ

)
∇ϵh · ∇φh dx = (1.41)∫

Ω
C1ϵ

ϵ

k
(Pkh + C3ϵPbh)φh dx −

∫
Ω
C2ϵ

ϵ2

k
φh dx ∀φh ∈ Eh(Ω) ,

with all the constants defined as above.

Finite element class for the κ− ϵ system

The κ − ϵ turbulence solver is implemented in the class MGSolverKE which consists of the
declaration file MGSolverKE.h and the implementation files MGSolverKE.C, MGSolverKE3D.C.
The parameters can be set in the file /config/MGSKEconf.h.

1.1.3 κ − ω turbulence models

Wilcox’s κ− ω turbulence model

The κ − ω model is one of the most common turbulence models. It still consists of two
transport equations to represent the turbulent properties of the flow. This two equation
model takes into account effects like convection and diffusion of turbulent energy. As in the
κ − ϵ model the first transported variable is the turbulent kinetic energy k. The second

13

CFD reactor modeling

transported variable is the specific dissipation rate ω which is the variable that determines
the scale of the turbulence. There are many κ − ω turbulence models. The most used are:
Wilcox’s κ− ω model, Wilcox’s modified κ− ω model and SST κ− ω model. In the code we
have implemented the standard κ− ω model (Wilcox’s κ− ω model). In the standard κ− ω
turbulence model the turbulent viscosity is modelled as

µt = ρ
k

ω
. (1.42)

The turbulent kinetic energy k satisfies the following equation [6]

∂k

∂t
+ ∇ · (kv) = Pk − β∗kω + ∇ · [(ν + σ∗νT)∇k] (1.43)

and the specific dissipation rate ω satisfies

∂ω

∂t
+ ∇ · (ωv) = α

ω

k
Pk − βω2 + ∇ · [(ν + σνT)∇ω] (1.44)

where we have the closure coefficients and auxiliary relations defined by

α =
5
9

β =
3
40

β∗ =
9

100
σ =

1
2

σ∗ =
1
2

ε = β∗ωk . (1.45)

Finite element κ− ω turbulence model

We consider the turbulent kinetic energy space in K(Ω) and turbulent specific dissipation rate
space W (Ω). If the spaces K(Ω) and W (Ω) are finite-dimensional then the solution (κ, ω) will
be denoted by (κh, ωh) and the corresponding spaces by Kh(Ω) and Wh(Ω). In order to solve
the turbulent kinetic energy and specific dissipation rate fields we use the finite-dimensional
space of piecewise-quadratic polynomials for Kh(Ω) and Wh(Ω). In this report the domain Ω
is always discretized by Lagrangian finite element families with parameter h.

d) Turbulent kinetic energy equation∫
Ω

∂ κh

∂t
φh dx +

∫
Ω
∇ · (vh κh)φh dx +

∫
Ω

(µ+ νt ∗ σ∗) ∇κh · ∇φh dx = (1.46)∫
Ω
Pkh φh dx −

∫
Ω
β∗κh ωh φh dx ∀φh ∈ Kh(Ω) .

e) Turbulent specific dissipation rate equation∫
Ω

∂ ωh

∂t
φh dx +

∫
Ω
∇ · (vh ωh)φh dx +

∫
Ω

(ν + νtσ) ∇ωh · ∇φh dx = (1.47)∫
Ω
α
ω

κ
Pkh φh dx −

∫
Ω
βω2 φh dx ∀φh ∈Wh(Ω) .

with all the constants defined as above.

Finite element class for the κ− ω system

The κ−ω turbulence model solver is implemented in the class MGSolverKW which consists of the
declaration file MGSolverKW.h and the implementation files MGSolverKW.C, MGSolverKW3D.C.
The parameters can be set in the file /config/MGSKWconf.h.

14

CFD reactor modeling

1.1.4 LES

Large eddy simulation (LES) is a popular technique for simulating turbulent flows. An im-
plication of Kolmogorov’s theory of self similarity (1941) is that the large eddies of the flow
are dependent on the geometry while the smaller eddies are not. This feature allows one to
explicitly solve for the large eddies in a calculation and implicitly account for the small eddies
by using a subgrid-scale model (SGS model).

Smagorinsky-Lilly model

The Smagorinsky model could be summarized as:

τij −
1
3
τkkδij = −2 (Cs∆)2

∣∣S̄∣∣Sij . (1.48)

In the Smagorinsky-Lilly model, the eddy viscosity is modeled by

µsgs = ρ (Cs∆)2
∣∣S̄∣∣ , (1.49)

where the filter width is usually taken to be

∆ = (Volume)
1
3 (1.50)

and
S̄ =

√
2SijSij . (1.51)

The effective viscosity is calculated from µeff = µmol + µsgs. The Smagorinsky constant
usually has the value Cs ranging from 0.1 to 0.2.

Implementation of the LES turbulence model

The LES turbulence model is implemented in the class MGSolverNS in the file MGSolverNS.C
The parameters can be set in the file /config/MGSNSconf.h.

1.2 Reactor core region model

In the core region the geometry is so detailed that a direct simulation with the purpose
of computing the velocity, pressure and temperature distributions is not possible and an
approximation is necessary. The approximation is presented in [3] and in this section we
briefly recall the equations.

1.2.1 Two-level finite element Navier-Stokes system

General model

Let us consider a two level solution scheme where a fine level and a coarse level solution can
be defined. At the fine level the fluid motion is exactly resolved by the pressure, velocity and
temperature solution fields. We denote by {ψh(i)}i, {ϕh(i)}i and {φh(i)}i the basis functions
for Ph(Ω), Vh(Ω) and Hh(Ω). Different from the fine level is the coarse level which takes into
account only large geometrical structures and solves only for average fields. The equations for
these average fields (coarse level) should take into account the fine level by using information

15

CFD reactor modeling

from the finer grid through level transfer operators. The definition of these transfer operators
is still an open problem. We use the hat label for all the quantities at the coarse level. In
particular we denote the solution at the coarse level by (p̂h, v̂h, T̂h) and the solution spaces
by P̂h(Ω), V̂h(Ω) and Ĥh(Ω) respectively.

a) Incompressibility constraint. Let (ph,vh) ∈ Ph(Ω) × Vh(Ω) be the solution of the
problem at the fine level obtained by solving the Navier-Stokes system and therefore∫

Ω
(
∂ρ

∂t
+ ∇ · (ρv̂))ψh(k) dx = 0 . (1.52)

Now let (p̂h, v̂h) be the solution at the coarse level (fuel assembly level). It is clear that
(p̂h, v̂h) is different from (ph,vh) and should satisfy the Navier-Stokes equation with test
functions ϕ̂h large enough to describe only the assembly details and satisfy the boundary
conditions at the coarse level. Therefore if we substitute the coarse solution (p̂h, v̂h) in (1.1)
we have [3] ∫

Ω
(
∂ρ

∂t
+ ∇ · (ρv̂)) ψ̂h(k) dx =

∫
Ω
P c

ef (v̂h − vh) dx , (1.53)

with the total mass fine-coarse transfer operator Rc
ef defined by

Rc
ef (v̂h,vh) = Rc

ef (v̂h,vh) =
∫

Ω
∇ · ρ(v̂h − v) ψ̂h(k) dx . (1.54)

a) Momentum equation. in a similar way let (ph,vh) ∈ Ph(Ω) ×Vh(Ω) be the solution of
the problem at the fine level obtained by solving the equation∫

Ω

∂ ρvh

∂t
· ϕh(i) dx +

∫
Ω

(∇ · ρvhvh) · ϕh(i) dx −∫
Γ

(τ̄h · n⃗− phn⃗) · ϕh(i) ds − (1.55)∫
Ω
ph ∇ · ϕh(i) dx +

∫
Ω
τ̄h : ∇ϕh(i) dx −

∫
Ω
ρg · ϕh(i) dx = 0

for all the elements of the basis {ϕh(i)}i in Vh(Ω). Now consider the solution (p̂h, v̂h) at
the coarse level (fuel assembly level). It is clear that (p̂h, v̂h) is different from (ph,vh) and
should satisfy the Navier-Stokes equation with test functions ϕ̂h large enough to describe only
the assembly details and satisfy the boundary conditions at the coarse level. Therefore if we
substitute the coarse solution (p̂h, v̂h) in (1.55) we have [3]∫

Ω

∂ ρ v̂h

∂t
· ϕ̂h(k) dx +

∫
Ω

(∇ · ρ v̂hv̂h) · ϕ̂h(k) dx −∫
Ω
p̂h ∇ · ϕ̂h(k) dx +

∫
Ω

¯̂τh : ∇ϕ̂h(k) dx −
∫

Ω
ρg · ϕ̂h(k) dx = (1.56)∫

Ω
Rm

cf (ph,vh, p̂h, v̂h) · ϕ̂h(k) dx ,

16

CFD reactor modeling

where the fine-coarse transfer operator Rm
cf (ph,vh, p̂h, v̂h) is defined by∫

Ω
Rm

cf (ph,vh, p̂h, v̂h) · ϕ̂h(k) dx = (1.57)∫
Ω
Pm

cf (p̂h − ph, v̂h − vh) · ϕ̂h(k) dx +
∫

Ω
Tm

cf (vh, v̂h) · ϕ̂h(k) dx +∫
Ω
Sm

cf (ph) · ϕ̂h(k) dx +
∫

Ω
Km

cf (vh) · ϕ̂h(k) dx .

The momentum fine-coarse transfer operator Pcf (ph − p̂h,vh − v̂h) defines the difference
between the rate of virtual work in the fine and in the coarse scale [3] and the turbulent
transfer operator Tm

cf (vh, v̂h) by

Tm
cf (vh, v̂h) = −∇ · ρvhvh + ∇ · ρ v̂hv̂h −∇ · ρ (v̂h − vh)(v̂h − vh) . (1.58)

The turbulent transfer operator Tm
cf (vh, v̂h) gives the turbulent contribution from the fine to

the coarse level. The operator Sm
cf (p̂h) is defined by∫

Ω
Sm

cf (ph) · ϕ̂h(k) dx = −
∫

Γ
ph n⃗ · ϕ̂h(k) ds (1.59)

and the operator Km
cf (vh)∫

Ω
Km

cf (vh) · ϕ̂h(k) dx =
∫

Γ
(τ̄h · n⃗) · ϕ̂h(k) ds . (1.60)

The operator Sm
cf (ph) denotes a non symmetric pressure correction from the sub-grid to the

pressure distributions of the assembly fuel elements. If the sub-level pressure distribution is
symmetric then this term is exactly zero. The operator Km

cf (vh) determines the friction energy
that is dissipated at the fine level inside the assembly. The operator Tm

cf (vh, v̂h) defines the
turbulent energy transfer from the fine to the coarse level. The equation on the coarse level
is similar to the equation on the fine level with the exception of the transfer operator.

b) Energy equation. We can apply the same procedure for the energy equation [3]. Let
(Th,vh) ∈ Hh(Ω)×Vh(Ω) be the solution of the problem at the fine level obtained by solving∫

Ω

∂ρCp Th

∂t
φh(i) dx +

∫
Ω
∇ · (ρvhCp Th)φh(i) dx − (1.61)∫

Γ
k (∇Th · n⃗)φh(i) ds −

∫
Ω

Φh φh(i) dx +
∫

Ω
k∇Th · ∇φh(i) dx −

∫
Ω
Qh φh(i) dx = 0

for all basis element φh(i) in Hh(Ω).
If we introduce the coarse level solution T̂h in (1.61) we have [3]∫

Ω

∂ ρCp T̂h

∂t
φ̂h(k) dx +

∫
Ω
∇ · (ρCpv̂h T̂h) φ̂h(k) dx −∫

Ω
Φh φ̂h(k) dx +

∫
Ω
k∇T̂h · ∇φ̂h(k) dx −

∫
Ω
Qh φ̂h(k) dx = (1.62)∫

Ω
Re

cf (T̂h, Th, v̂h.vh) φ̂h(k) dx ,

17

CFD reactor modeling

where the global fine-case transfer energy operator Re
cf is defined by∫

Ω
Re

cf (T̂h, Th, v̂h.vh) φ̂h(k) dx =
∫

Ω
Se

cf (Th) φ̂h(k) dx + (1.63)∫
Ω
P e

cf (T̂h − Th, v̂h − vh) φ̂h(k) dx +
∫

Ω
T e

cf (T̂h, Th, v̂h,vh) φ̂h(k) dx .

where
P e

cf (T̂h − Th, v̂h − vh) (1.64)

is the energy fine-coarse transfer operator [3] and

T e
cf (v̂h,vh) = ∇ · (ρCp v̂h T̂h) −∇ · (ρCp vh Th) −∇ · (ρCp (v̂h − vh) (T̂h − Th)) . (1.65)

is the energy fine-coarse transfer turbulent operator. The operator Se
cf (Th) is defined by∫

Ω
Se

cf (Th) φ̂h(k) dx =
∫

Γ
k (∇Th · n⃗) φ̂h(k) dx . (1.66)

Reactor transfer operators

In order to complete the equations in Section 1.1 we must define the reactor transfer operators
in working conditions.

a) Incompressibility transfer operators

• P c
ef . In the reactor model we assume incompressibility on both the coarse and the fine

level and therefore
P c

ef = 0 . (1.67)

The assumption is exact since

P c
ef (v̂h − vh) = ∇ · ρ(v̂h − vh) (1.68)

is different from zero only if mass is generated at the fine level. The total mass transfer
operator P c

ef may be different from zero if there is a phase change.

b) Momentum transfer operators

• Tm
cf . It is usual to compute the term Tm

cf (vh, v̂h) by using the Reynolds hypothesis,
namely

Tcf (vh, v̂h) = ∇ · ¯̂τ τ
h (1.69)

where the turbulent tensor ¯̂τ τ
h is defined as

¯̂τ τ
h = 2µτD(v̂h) (1.70)

with µτ the turbulent viscosity.

18

CFD reactor modeling

• Pm
cf . The operator Pcf (p̂h − ph, v̂h − vh) defines the momentum transfer from fine to

coarse level due to the sub-grid fluctuations and boundary conditions. This can be
defined in a similar way by

Pcf (p̂h − ph, v̂h − vh) = (1.71)

ζ(x)
(∂ ρ v̂h

∂t
· ϕ̂h(k) +

∫
Ω

(∇ · ρ v̂hv̂h) · ϕ̂h(k) dx −

p̂h ∇ · ϕ̂h(k) dx + ¯̂τh : ∇ϕ̂h(k) − ρg · ϕ̂h(k) −∇ · ¯̂τ eff
)

where ζ(x) is the fraction of fuel and structural material in the total volume. The tensor
¯̂τ eff is defined as

¯̂τ eff
h = 2µeffD(v̂h) . (1.72)

The values of µeff depends on the assembly geometry and can be determined only with
direct simulation of the channel or sub-channel configuration or by experiment.

• Sm
cf . The operator Sm

cf (ph) indicates a non symmetric pressure correction from the
subgrid to the pressure distributions of the assembly fuel elements. If the sub-level
pressure distribution is symmetric then this term is exactly zero. Therefore we may
assume in working conditions

Sm
cf (ph) = 0 . (1.73)

• Km
cf (vh). The operator Km

cf (vh) determines the friction energy that is dissipated at the
fine level inside the assembly. We assume that the assembly is composed by a certain
number of channel and that the loss of pressure in this channel can be compute with
classical engineering formulas. In working conditions for forced motion in equivalent
channels we may set

Km
cf (vh) = ζ(x)

ρ2v̂h|v̂h|
Deq

λ (1.74)

where Deq is the equivalent diameter of the channel and λ is a friction coefficient.

c) Energy transfer operators

• T e
cf . It is usual to compute the term T e

cf (Th, T̂h, v̂h,vh), following Reynolds analogy for
the turbulent Prandtl number Prt, as

T e
cf (T̂h, Th, v̂h,vh) = ∇ · (µt

Prt
∇T̂h) , (1.75)

with µt the turbulent viscosity previously defined.

• P e
cf . The operator P e

cf (vh − v̂h) defines the energy exchange from fine to coarse level
due to the sub-grid fluctuation and boundary conditions. This can be defined as

P e
cf (Th − T̂h) = (1.76)

ζ(x)
(∂ ρCp T̂h

∂t
+ ∇ · (ρCpv̂h T̂h) − Φh − Qh −∇ · (keff∇T̂h)

)
where ζ(x) is the fraction of fuel and structural material in the volume. The values of
keff depends on the assembly geometry and can be determined with direct simulations
of the channel or sub-channel configurations or by experiment.

19

CFD reactor modeling

• Se
cf . The operator Se

cf (ph) is the heat source that is generated through the fuel pin
surfaces. For the heat production in the core we may assume

Se
cf (ph) = W0 cos

(
π(z − (Hin +Hout)/2)

Hout −Hin

)
. (1.77)

where Hinand Hout are the heights where the heat generation starts and ends. The
quantity W0 is assumed to be a known function of space which is defined by the power
distribution factor (see Section 3.2.2)

1.2.2 Core model equations

Model Equations

We can assume the density as a weakly dependent function of temperature and almost inde-
pendent of pressure. We assume

ρ(T, P) = ρ0(T) exp(βp) (1.78)

with β ≈ 0 and define ρin = ρ0(Tin). For the reactor model, with vertical forced motion in
working conditions, the state variables (v̂, p̂, T̂) are the solution of the following finite element
system

a) FEM incompressibility equation∫
Ω

(
β
∂ph

∂t
+ (∇ · ρ v̂h)

)
ψ̂h(k) dx = 0 . (1.79)

b) FEM momentum equation∫
Ω

∂ ρ v̂h

∂t
· ϕ̂h(k) dx +

∫
Ω

(∇ · ρ v̂hv̂h) · ϕ̂h(k) dx −∫
Ω
p̂h ∇ · ϕ̂h(k) dx +

∫
Ω

(¯̂τh + ¯̂τ τ
h + ¯̂τ eff

h) : ∇ϕ̂h(k) dx + (1.80)∫
Ω

2ρ v̂h|v̂h|
Deq

λ · ϕ̂h(k) dx −
∫

Ω
ρg · ϕ̂h(k) dx = 0

b) FEM energy equation∫
Ω

∂ ρCp T̂h

∂t
φ̂h(k) dx +

∫
Ω
∇ · (ρCpv̂h T̂h) φ̂h(k) dx −∫

Ω
Φh φ̂h(k) dx +

∫
Ω

(k + keff +
µt

Prt
) ∇T̂h · ∇φ̂h(k) dx − (1.81)∫

Ω
Qh φ̂h(k) dx −

∫
Ω
Wmax r(x) cos

(
π(z − (Hin +Hout)/2)

Hout −Hin

)
φ̂h(k) dx = 0 .

for all ψ̂h(k), ϕ̂h(k) and φ̂h(k) basis functions. r(x) = 1/(1− ζ(x)) is the coolant occupation
ratio.

20

CFD reactor modeling

Equations in strong form The variational FEM system (1.79-1.81) is equivalent to

β
∂ph

∂t
+ ∇ · (ρ v̂h) = 0 (1.82)

∂ρ v̂h

∂t
+ (∇ · ρ v̂hv̂h) = −∇p̂h + ∇ · (¯̂τh + ¯̂τ τ

h + ¯̂τ eff
h) − 2ρ v̂h|vh|

Deq
λ+ ρg (1.83)

∂ ρCp T̂h

∂t
+ ∇ · (ρCpv̂h T̂h) = Φh + ∇ · (k + keff +

µt

Prt
)∇T̂h + (1.84)

Qh φ̂h(k) +W0 r cos
(
π(z − (Hin +Hout)/2)

Hout −Hin

)
.

The equations (1.82-1.84) must be completed with the appropriate boundary conditions.

21

Chapter 2

CFD sub-assembly fuel channel
modeling

2.1 Heat exchange modeling for sub-assembly fuel channels

2.1.1 Introduction

Figure 2.1: Temperature distribution in an assembly channel

The simulation of the core introduced in the previous chapter of this report takes into
account average quantities over the assemblies and computes average coolant temperatures.
When the coolant average temperatures are known then temperature profiles inside the fuel
rod and the cladding can be computed by using standard assumptions and standard heat
transfer correlations. In the liquid metal case and in three-dimensional configurations the
heat exchange coefficient may not be constant along the vertical coordinate and standard
heat exchange models cannot be appropriate. In this chapter we investigate the heat transfer

CFD sub-assembly fuel channel modeling

model between the liquid metal coolant and the fuel rod with CFD three-dimensional codes.
In order to assess the validity of the standard heat transfer computational model we consider
a very simple test which consists of the heat transfer flow around a rod in a single channel.
For these CFD computations we use commercial and open source software available on the
ENEA-GRID platform on CRESCO [2]. The computational results are then compared with
experimental results from the KALLA facilities reported in [5].

The core computations previously proposed are able to define only average assembly tem-
peratures. For temperatures inside the fuel rod we can use the average assembly coolant
temperature Tf and standard analytical formulas. Let Tc be the temperature on the fuel rod
axis and Td the cladding temperature. We assume

Tc = Tf +∆T1 +∆T2 +∆T3 +∆4 = Tf +(Tc −Tb)+ (Tb −Ta)+ (Ta −Td)+ (Td −Tf) . (2.1)

Let ql be the constant linear heat flux of the fuel rod. We have that

∆T1 = (Tc − Tb) =
ql

4πK̄f
(2.2)

where K̄f =
∫ Tc

Tb
KfdT/(Tc − Tb),

∆T2 = (Tb − Ta) =
qlRc

2πRi
(2.3)

where Rc and Ri are the fuel and the internal cladding radius,

∆T3 = (Ta − Td) =
ql s

2πKc
(2.4)

with s the cladding thickness, Kc the conductivity of the cladding material and

∆T4 = (Td − Tf) =
ql

2πRehdf
(2.5)

with Re the external cladding radius. The physical quantities Kf and Kc are well known
but hdf must be determined. The heat transfer coefficient hdf is usually defined through the
Nusselt number as

hdf =
Nuk

Deq
=

q′′

(Td − Tf)
. (2.6)

Close to the channel inlet the ratio hdf between the wall heat flux and Td − Tf may not
be uniform and a brief analysis by using three-dimensional CFD tools is proposed in next
section. The computation of hdf should be done in an appropriate bundle channel but, in
order to simplify the computations, we proceed to obtain information on hdf by the single rod
experiment. The computational method remains valid but we plan in the future to use the
correct bundle geometry. With this in mind we compute the temperature jump ∆T1, ∆T2,
∆T3 with data from literature and use the experimental and computational values of hdf for
∆T4.

2.1.2 Single rod experiment with LBE coolant

In [5] three experiments are presented: a turbulent lead bismuth flow in a circular tube
and two experiments in a 19-pin hexagonal rod bundle assembly in turbulent water. In the

23

CFD sub-assembly fuel channel modeling

Figure 2.2: Scheme of the experiment

Figure 2.3: Long rod section of the experiment

24

CFD sub-assembly fuel channel modeling

Parameter Experiment
Total power 8 kW

Number of rods 1
Rod diameter 8.2 × 10−3m
Rod length 1.200m

Heated length 0.860m
Mean velocity 0 − 1.6m/s

Table 2.1: Data for the single rod experiment

Figure 2.4: Experimental temperature (left) and velocity (right) profiles in the radial direction

first case the lead bismuth coolant flows vertically, heated by a rod placed concentrically
in an circular pipe. This experiment essentially describes the thermal development of the
temperature boundary layer on the fuel rod surface. The flow is studied experimentally by
means of rakes consisting of several thermocouples combined with velocity sensors based on
a Pitot tube. The attainable heat flux is 0.01W/m2 with Reynolds numbers ranging from
6 × 104 to 6 × 105.

The single rod experimental setup is shown in Figure 2.2. A pump pushes a liquid metal
flow through the test section which consists of an electrically heated cylindrical rod placed
vertically in a circular tube. A detailed view of the test section setup is given in Figure
2.3. The axial location of the rod is fixed by three spacers placed at equidistant positions of
0.370m. The lower two spacers contain three wings and the upper spacer is built of four wings
that are equipped with several calibrated thermocouples. The thermocouples are located to
minimize the heat transfer through the wing distorting the temperature measurements. The
wing tip thickness is in flow facing direction and spreads up to house all the thermocouples
and wiring. The developing length of the tube flow is about 30 hydraulic diameters which is
sufficient to obtain a hydrodynamic fully developed flow.

The heated rod test section is illustrated in Figure 2.3. In the experiment the temperature
is measured by thermocouples mounted on the spacer and on the Pitot tube. The velocity is
also measured by means of a Pitot tube. Measurements and numerical calculations are shown
for a configuration with a mean velocity ū of 0.77m/s, an inlet temperature of 300 ℃and a
heating power of 8 kW generating a heat flux of 0.0040W/m2 over the inner cylinder. This
corresponds to a Reynolds number of Re = 2.7×105 based on the annular tube diameter and
a corresponding Prandtl number of Pr = 0.021. The physical and geometrical data for the
experiment are summarized in Figure 2.1. For this case the axial temperature profiles are as

25

CFD sub-assembly fuel channel modeling

the one reported on the left of Figure 2.4. In Figure 2.4 on the right there is a velocity profile
as a function of the radius r∗ at z∗ = 67.6. The non-dimensional axial position z∗ is set as
z∗ = z/dr with the heated rod diameter dr = 8.2 × 10−3m and the non-dimensional radial
position r∗ is defined as r∗ = y − (dr/2)/(D/2) − (dr/2) with the diameter of test section
D = 60.5 × 10−3m. In Figure 2.4 on the left there is an experimental temperature profile as
a function of the radius r∗ at z∗ = 67.6.

2.2 CFD results for the single rod configuration

2.2.1 Mesh and data setting

Figure 2.5: Coarse mesh: top view.

Figure 2.6: Coarse mesh: longitudinal section view.

The geometry used for the numerical simulations is given in Figures 2.5 and 2.6. First
we generate a coarse mesh and then we refine it in order to obtain an accurate solution.

26

CFD sub-assembly fuel channel modeling

Concerning the mesh, the priority has been given to hexahedral elements since they have the
advantage of little or no distortion with parallel segments that are perpendicular to the inlet
plane. The procedure to construct hexahedral elements is long and tedious but the results are
much more accurate. The choice of the ideal number of cells is done by iteration. We start
with a sufficiently fine mesh and add cells until the precision of the results does not change
significantly. The number of cells is a problem which interests the CPU time and memory
storage and it can be considered optimal around few hundreds of thousands of cells. In order
to limit the number of cells the mesh has been refined only in the boundary layer to obtain
an optimal value of the non-dimensional distance from the wall y+ for the turbulence models.
This adaptive refinement can be obtained by using the appropriate function in SALOME or
the boundary layer refinement tool in GAMBIT-FLUENT. This mesh has a fine boundary
layer on the rod surface which gives a y+ value of 12. This mesh is refined several times. This
mesh is used by FLUENT, but also by SATURNE via a converter tool from FLUENT5/6
mesh format to the MED format. The MED format can be used in the SALOME platform
and also in SATURNE [9].

2.2.2 Numerical results

Simulation of the single rod experiment

density ρ 10340 kg/m3

viscosity µ 0.0018Pa s
heat capacity Cp 145 J/(kgK)

thermal conductivity λ 11.7W/(mK)

Table 2.2: Data for the experiment [4]

The thermophysical properties of the LBE used in all simulations are reported in Table
2.2. In this case we have an LBE, turbulent, steady flow with heat transfer in a circular
tube with a length of 1.076m and a diameter of 0.605m. The average speed of the flow at
the inlet is 0.773m/s corresponding to a mass flow of 8m3/h for average Reynolds number
of 36411 with temperature of 300 ℃. The thermal power is 9 kW corresponding to a heat
flux of 4.064MW/m2 over the surface of the inner cylinder with a diameter of 4.1 × 10−3m
and a length of 0.86m. Actually the domain is not a simple annulus but contains various
instrumentation and spacers needed to hold the heated rod. After various tests on the influ-
ence of the spacers we neglect them and consider only the simple geometry described before.
By using the coarse mesh and κ − ω turbulence model the solution is reported in Figures
2.7-2.8. In Figure 2.7 we plot the temperature profile over a horizontal (top) and a vertical
plane (bottom). In Figure 2.8 we show the pressure and the turbulent viscosity over the same
vertical plane.

Simulations with different codes

We refine the mesh shown in Figure 2.5-2.6 to obtain a mesh with y+ of the order of 6
and solve the state fields with both SATURNE and FLUENT codes [8, 10, 7]. We set the
parameters as in Table 2.2 and use the κ−ω turbulence model. In Figure 2.9 temperature and
velocity profiles for these computations are reported. On the left one can see the temperature

27

CFD sub-assembly fuel channel modeling

Figure 2.7: Temperature top (left) and section view (right)

solution along the radius at z = 0.592 for SATURNE (A) and FLUENT (B) together with the
experimental data (Exp). The results match the experiment very closely and both SATURNE
(A) and FLUENT give comparable results. These codes are Finite Volume Codes and the
solution is computed at the center of the cell. The extrapolation from the center values to the
cell side can give some important differences at the point closest to the wall. On the right we
can see the velocity profile. Both SATURNE (A) and FLUENT (B) give comparable results
which match the experimental results in the range where these are available.

Simulations for different turbulence models

In this paragraph we use different turbulence models to understand the influence of the model
approximation. In Figure 2.10 we use κ− ϵ (A), κ− ω (B), LES (C) turbulence models and
compare these results with the experimental data (Exp). With standard parameters and
standard wall functions the κ−ω turbulence model results in the more accurate model while
the LES is the less accurate one. However all these models give very promising results. On
the left of the Figure 2.10 we have the temperature distribution and on the right the velocity

28

CFD sub-assembly fuel channel modeling

Figure 2.8: Pressure (left) and turbulent viscosity (right)

profile (at z = 0.592m).

Mesh and y+

One of the most important parameters in CFD computations is the mesh size. For this reason
we compute the temperature and velocity profiles for different meshes. Since the mesh is fine
enough in the center of the domain and the temperature gradient is high close to the heated
surface we refine only the boundary layer previously constructed to obtain smaller values of
y+. In Figures 2.11-2.12 we plot different profiles for the different values of y+ = 12 (A), 6

29

CFD sub-assembly fuel channel modeling

0 0.01 0.02 0.03
r (m)

570

580

590

600

610

620

630

T
 (

K
)

A
B
Exp

0 0.01 0.02 0.03
r (m)

0

0.2

0.4

0.6

0.8

v
(m

/s
)

A
B
exp

Figure 2.9: Temperature and velocity profile at z = 0.592 for (A) SATURNE, (B) FLUENT
and (Exp) experimental data

0 0.01 0.02 0.03
r (m)

570

580

590

600

610

620

630

v
(m

/s
)

A
B
C
Exp

0 0.01 0.02 0.03
r (m)

0

0.2

0.4

0.6

0.8

v
(m

/s
)

A
B
C
Exp

Figure 2.10: Temperature and velocity radial profiles at z = 0.592m for different turbulent
models: κ− ϵ (A), κ− ω (B), LES (C) and experimental results (Exp)

0 0.01 0.02 0.03
r (m)

570

580

590

600

610

620

630

T
 (

K
)

exp
y+ 12
y+ 6
y+ 2

Figure 2.11: Temperature radial profile at z = 0.592m for different y+ values.

(B) and 2 (C) over the radius from the inner cylinder to the external wall. In Figure 2.11
we report the temperature profile while in Figure 2.12 we have the velocity along the radius

30

CFD sub-assembly fuel channel modeling

0 0.01 0.02 0.03
r (m)

0

0.2

0.4

0.6

0.8

v
(m

/s
)

y+ 6
y+ 12
y+ 2
exp

Figure 2.12: Velocity radial profile at z = 0.592m for different y+

over the plane z = 0.592m. The solution becomes better and better with more points on the
boundary layer, i.e. when y+ becomes smaller.

Computation of the heat transfer coefficient hdf

0 0.2 0.4 0.6 0.8
z(m)

0

1

2

3

4

5

h/
hf

 (
W

/m
2

K
)

Figure 2.13: hdf/hteo ratio value as a function of z along the heated wall.

Now we can compute the heat exchange coefficient hdf along the z-axis by the ratio

hdf =
ql

∆T (z)
. (2.7)

where ∆T (z) = Tw(z) − Tf (z) is the difference between the wall temperature and the fluid
bulk temperature at the plane z. Since the linear heat flux ql is constant and ∆T is not
uniform over the z-axis we expect a variation of hcd along the heated surface. If we suppose
that hteo is the value reached at the end of the channel then we can compute the ratio hdf/hteo

between the coefficient and the end value. The behaviour of hdf/hteo is reported in Figure

31

CFD sub-assembly fuel channel modeling

2.13. For sufficiently long rod the value hteo should approach the value taken from liquid
metal standard correlations.

2.3 The ratio hdf/hteo for lead coolant.

If we substitute the LBE coolant with lead coolant we have the properties in Table 2.3.

density ρ 10562 kg/m3

viscosity µ 0.0022Pa s
heat capacity Cp 147.3J/(kgK)

thermal conductivity λ 16.58W/(mK)

Table 2.3: Data for lead

By following the procedure discussed in the previous section we can obtain the ratio
hdf/hteo for the lead along the channel. Figure 2.14 shows the results for two different inlet
velocities equal to 0.773m/s (A) and 1.m/s (B). In this case the ratio hdf/hteo is independent
of the inlet velocity.

0 0.2 0.4 0.6 0.8
z (m)

0

1

2

3

4

h/
hf

 (
W

/m
2

K
)

B
A

Figure 2.14: hdf/hteo ratio value as a function of z in the heated wall.

In the computation proposed at the beginning of the chapter we can use the ratio hdf/hteo

to evaluate hdf along the channel assuming hteo as the value obtained from standard corre-
lations (from Nu = Nu(Pe, Prt)). One should use the ratio hdf/hteo with extreme caution
since different simulations may lead to different hdf/hteo.

32

Chapter 3

Program user guide

3.1 Introduction

3.1.1 The version 2.0 of the reactor module code

This reactor code is a module of a more complex and wider CFD finite element code devel-
oped at the Laboratory of Montecuccolino at the University of Bologna. This code, called
LIBMESH-unibo, is based on the open source LIBMESH library and therefore an extensive
documentation on the basic classes can be found at http://www.libmesh.org [12]. In this
User Guide we introduce a general and brief guide to some aspects which are relevant to
this module. This program consists of the basic three-dimensional modules for solving the
Navier-Stokes, the energy and the turbulent model equations. A special treatment of the
Navier-Stokes equations is considered in the core region where some additional terms are
considered. When the program is installed then its execution consists of three steps:

• Pre-processing: mesh and data generation.

• Running: solution of the discretized Finite Element approximation.

• Post-processing: visualization of the results.

This user guide (UG) refers to the version 2.0 of the code. The version 1.0 is discussed briefly
in the document [3]. The version 1.0 and 2.0 are very different but a mesh reactor input file
generated with GAMBIT mesh generator for version 1.0 runs on this version 2.0 and vice
versa.

Installation.

There are two different installations of the code: the installation that includes the LIBMESH
library and a simpler one where the LIBMESH library is not installed. The LIBMESH library
is used to generate the multigrid mesh starting from the basic mesh generated by a mesh
generator and therefore in the simple version, since the LIBMESH library is not installed,
the multigrid mesh must be given as input file together with all restriction and prolongation
matrices. Those can be easily generated by the code which has a complete installation or
from any other machine with the same operating system. These mesh files can be found in
the data in directory after any execution of the code with the same geometry. In the simple

Program user guide

installation it is possible to change physical properties, boundary and initial conditions but
not the geometry.

In order to install the package without the LIBMESH library one can use the package
RMCFD-2.0.tar.gz. In this case one must choose a directory and run the following commands

• uncompress: tar xzvf RMCFD-2.0.tar.gz;

• go to the directory: cd RMCFD-2.0;

• run the configuration script: ./configure;

• compile the program: make ex13.

In order to install the package with the LIBMESH library (and eventually the PETSC
library for parallel computations) one must first install the LIBMESH library. The instruction
for the LIBMESH installation can be found at http://libmesh.org. Once the LIBMESH is
installed one can proceed to the installation of the reactor code from the package RMCFD-
2.0.tar.gz as described above.

Step 1. Preprocessing and mesh generation

The mesh at the coarse level is generated by a mesh generator program such as GAMBIT (see
for example http://www.FLUENT.com) or SALOME (see http://www.salome.org). Since the
core is made of rectangular assemblies only HEX27 elements should be used. The multigrid
mesh is generated starting from the coarse level mesh by the LIBMESH library. Some meshes
at different levels are enclosed with this package. The basic coarse mesh from the GAMBIT
mesh generator must be saved in generic format which is basically a text file. The basic
coarse mesh from the SALOME mesh generator must be saved in MED format. The multilevel
meshes, generated by the LIBMESH library, are in HDF5 storage format. Detailed informa-
tion on MED and HDF5 formats can be found at http://www.salome-platform.org/ and
http://www.HDF5.org/.

Step 2. Running and compiling

Make. Before running the code the program must be compiled. The code can be compiled
by using the make command. The make command executes a chain of commands which are
written inside the file Makefile. The following options are available

• make ex13: compile the program;

• make clean: remove the object files for the specified METHOD;

• make clobber: remove all object and executable files;

• make distclean: remove all object, executable files and dynamic libraries;

• make contrib: generate dynamic libraries needed for execution.

Run. In order to run the program one must execute the following commands

34

Program user guide

make ex13
ex13

We remark that the make command is necessary after any change in the configuration files
(config.h) and in the source files (*.h and *.C with the exception of the file parameters.in).
After changes in the parameters.in file the code does not need to be compiled and can run
with the command ex13.
Restart the code. In order to restart the program from the iteration n at the time t it is
necessary so set the following parameters in the config.h file

#define RESTART n
#define RESTARTIME t

and then execute

make ex13
ex13

Method. It is possible to run the code in two different modes by specifying the shell param-
eter METHOD before compilation. You can set this to optimized (opt) or to debug mode (dbg)
using the command

export METHOD=opt

for optimized mode and similarly for debugging mode. The default mode is set to opt.

Step 3. Postprocessing and visualization.

The output is in XDMF format with the use of HDF5 storage format and detailed information
can be found at http://www.xdmf.org/ and http://www.hdf5.org/. Both the XDMF files
(with extension .xmf) and HDF5 files (with extension h5) are saved in the output directory.
The open source PARAVIEW software is used to see the output files [13]. For tutorials and
manuals one can see http://www.paraview.org and http://www.vtk.org/.

3.1.2 Code structure

Main directory and its structure

Once one opens the main directory it appears to be divided into some subdirectories. The
program consists of a main directory where the source code is stored and seven additional
subdirectories. The seven subdirectories are: src, include, config, data in, contrib, fem
and output.

The code is written in C++. The main file is ex13.C which can be found at the main
directory. In the main directory there are also the files ex13.h, gmsh.C and gmsh.h.

The file ex13.C calls the mesh reader and initializes all the classes. By using the class
functions the file ex13.C reads the core power distribution, solves the equations and prints
all the results. The file ex13.h reads the mesh and generates all the necessary files for

35

Program user guide

different multigrid levels. This file is the only interface to the LIBMESH library. In the
simple installation this file is not used and therefore the LIBMESH library is not used.

The files gmsh.C and gmsh.h are necessary for reading GAMBIT generic and SALOME
MED files. They contain a table to read different elements created by the mesh generator
and translate them into a different format.

The source code subdirectories src and include

The subdirectory src is the source directory where all the source files are stored. Here is the
list of the main classes:

• the class MGCase, written in the files MGCase.C and MGCase.h, defines input and output
data flow;

• the class MGGauss, written in the files MGGauss.C and MGGauss.h, defines Gaussian
integration;

• the class MGMesh, written in the files MGMesh.C and MGMesh.h, defines the geometrical
mesh;

• the class MGSolBase, written in the files MGSolverBase.C and MGSolverBase.h, defines
the basic equation solver;

• the class MGSolDA, written in the files MGSolverDA.C, MGSolverDA2D.C, MGSolverDA3D.C
and MGSolverDA.h, defines the basic equation solver on linear and quadratic elements;

• the class MGSol, written in the files MGSolverNS3D.C and MGSolver.h, defines the
Navier-Stokes equation solver;

• the class MGSolKE, written in the files MGSolverKE3D.C and MGSolverKE.h, defines the
κ− ϵ turbulence equation solver;

• the class MGSolKW, written in the files MGSolverKW3D.C and MGSolverKW.h, defines the
κ− ω turbulence equation solver;

• the class MGSolT, written in the files MGSolverT.C MGSolverT3D.C and MGSolverT.h,
defines the energy equation solver.

In order to set the initial and boundary condition functions one needs to open the correspond-
ing source file. The initial and boundary condition functions for Navier-Stokes equations are
the first two functions ic read and bc read in the file MGSolNS3D.C. In a similar way the
initial and boundary condition functions for the energy equation are the first two functions
in the file MGSolverT3D.C. The parameters of each class are defined in the /config/class
directory in the corresponding configuration file. The turbulence model and classes are under
development and in some versions the κ− ϵ and κ−ω can be found in a unique file. The LES
model is implemented inside the Navier-Stokes class.

The directory include is the source directory where all the include files are stored. For
example the Navier-Stokes solver class are defined in the file MGSolverNS.h, the energy equa-
tion in MGSolverT.h, the κ−ϵ turbulence model in MGSolverKE.h, etc... This file contains the
constructor and destructor definitions and all the prototype functions of the corresponding
class.

36

Program user guide

The subdirectory config

The subdirectory config consists of a directory class, and two configuration files: config.h
with the configuration variables (solution of Navier-Stokes system, solution of energy system,
boundary integration, etc ...) and parameters.in with constant material properties and nu-
merical parameters. The subdirectory class contains all the local configuration files relative
to each class, The use of the energy equation or the use of the turbulence model is configured
by config.h. However all the parameters relative to the particular system must be changed
in the /config/class and not in the main configuration file config.h. We note that the
data.h file does not exist anymore and all the values in it are now in the file parameters.in
that is read at runtime.

The data directories data in and fem

The subdirectory data in is the data directory. All the data necessary for the simulation must
be stored here. The mesh, the matrices and all the prolongation and restriction operators are
stored in this directory.

The partial differential equations governing the system must be discretized in matrices
and vectors. The structures of these matrices and vectors are stored in files in the data in
directory. Each geometry requires a new set of files. The LIBMESH library is needed for this
generation. In this directory you should find the files as

• mesh.msh. The mesh file from the mesh generator

• mesh.h5. The mesh file in HDF5 storage format

• (S)matrix(l).in. The matrix file relative to the system of type (S) at level (l);

• (S)prol(l).in. The prolongation operator relative to the system of type (S) at level
(l);

• (S)rest(l).in. The restriction operator relative to the system of type (S) at level (l);

• mesh.data. The power distribution and pressure loss factor

If the mesh.data is not in this directory it will be generated from the program (with all values
1).

The subdirectory fem is the finite element directory where the finite element Gaussian
point values for integration are stored. Only the finite element HEX27, HEX8, QUAD9,
QUAD4, EDGE3 and EDGE2 are in this package. A program is designed to generate these
files by using the LIBMESH library. Only HEX27 elements are considered for a reactor core
and therefore the program is not included. This directory fem consists of several files with
Gaussian integration point values. The name of the files have the form

• shape(N)D (G)(F)0302.in

where (N) is the geometrical dimension (1,2 o 3), (G) is the order of the Gaussian integration
(09 or 27) and (F) is the type of the finite element (02 for Linear EDGE3 linear finite element,
04 for QUAD4 linear finite element, 09 for QUAD9 quadratic finite element, 08 for HEX8
linear finite element and 27 for HEX27 quadratic finite element)

37

Program user guide

The subdirectory output

The subdirectory output is the directory where the results are stored. Meshes, boundaries
and field values can be found there for each time step. The data are stored in XDMF and
HDF5 formats which can be read using the open-source software PARAVIEW. The file in
HDF5 format can be read by the hdfview software in its table form. In this directory one
can find different types of files: case, mesh and solution files. The case file stores boundary
and initial conditions and its name has the form

• case.(I).F

where (I) is the initial time-step number and (F) the extension (.xmf for XDMF format and
.h5 for HDF5 data format). The mesh file contains boundary and volume elements and it is
named

• meshxmf.F

where (F) is the extension (.xmf for XDMF format and .h5 for HDF5 data format). The
solution files store all field values for each time-step and their names have the form

• sol.(N).F

where (N) is the time-step number and (F) is the extension (.xmf for XDMF format and .h5
for HDF5 data format). Finally the time sequence collection file is named

• time.(I).F

where (I) is the initial time-step number and (F) is the extension (.xmf for XDMF format
and .h5 for HDF5 data format).

The subdirectory contrib

The subdirectory contrib is the contribution directory. This directory stores the LASPACK
library, the datagen executable and the matrix directory. The package LASPACK is a linear
algebra library for solving large sparse linear systems. For details see

http://www.mgnet.org/mgnet/Codes

The datagen directory contains the files to define the core heat generation and the pressure
drop factors. For details see Section 3.2.2 The matrix directory contains the interface im-
plementation of the linear algebra functions. The interface can be connected with different
linear algebra packages such as LASPACK and PETSC library [17, 11]. The interface for the
PETSC library is not implemented in this version.

3.2 Step 1: Mesh generation and core factor files

3.2.1 Mesh generation

The first step in the computation of the velocity, pressure and temperature distributions
inside the reactor is the generation of the mesh geometry. A typical reactor core geometry
is shown in Figure 3.1. The core consists of several assemblies with rectangular shape. In

38

Program user guide

Figure 3.1: Core design and reactor mesh

order to impose correctly the heat source inside the assembly we must use Cartesian finite
elements. The finite element for the reactor simulation must be HEX8, HEX20 and HEX27
the hexahedral finite element with 8,20 or 27 points. Once the coarse mesh is known the code
can generate multilevel mesh with HEX27 finite element or with HEX20 finite elements.

For cartesian geometries the code has an internal mesh generator which needs only very
simple settings. For more complex geometries one must convert the file to a compatible
format. The code can handle a limited number of mesh formats: the generic mesh GAMBIT
format and the SALOME mesh MED format. The generic mesh GAMBIT format must be
generated by using only HEX27 finite elements and the SALOME mesh MED format by using
HEX20 finite elements.

The final mesh for the code is stored using HDF5 storage and XDMF format. For details
about these formats see the post-processing Section 3.4.

39

Program user guide

Internal mesh generator

Figure 3.2: Mesh from the internal generator

Inside the code there is an internal mesh generator with HEX27 finite elements. This
generator is limited to regular cube and cartesian geometries. To obtain a reactor of dimension
[a, b]× [c, d]× [e, f] with Nx ×Ny ×Nz one must set the function inside the file ex13.h. The
command is written as

MeshTools::Generation::build_cube
(*msh[0],nintervx,nintervy,nintervz,0,1,0,1,0,1,HEX27);

in the form

MeshTools::Generation::build_cube
(*msh[0],N_x,N_y,N_z,a,b,c,d,e,f,HEX27);

An example of mesh is shown in Figure 3.2. The mesh is generated together with all the
multilevel meshes ready for multigrid solvers.

GAMBIT generic mesh format

The GAMBIT mesh generator is a commercial software. Tutorial and user guide can be found
at http://www.fluent.us. The GAMBIT software must be set to generic. The FLUENT5
option instead of generic does not produce a readable input file. The mesh must be generated
using the HEX27 option on volume elements, the QUAD9 option on surface elements and the
EDGE3 option on linear elements. In order to set the heat power generated in the reactor
correctly one must mesh the assembly of the core exactly and reproduce all the assemplies
which are not regularly distributed. Finally the mesh must be exported with the Export -->
Mesh command in the File menu.

40

Program user guide

X Y

Z

Figure 3.3: GAMBIT mesh

Figure 3.4: SALOME mesh

SALOME mesh and MED Format

SALOME is a free software that provides a generic platform for pre and post processing
for numerical simulation [9]. It is based on an open and flexible architecture made of
reusable components. It is open source, released under the GNU Lesser General Public
License and both its source code and executables may be downloaded from its official web-
site http://www.salome.org. Universal binaries are also provided for 32 and 64 bits Linux
distributions as tgz archive files. SALOME has the following main modules:
a) KERNEL: a module for distributed component management, study management and gen-
eral services;
b) GUI: a module for graphical user interface;
c) GEOM: a module for creating, editing, importing and exporting CAD models;
d) MESH: a CAD program that uses a standard meshing algorithm or any external mesher;
e) MED: a module for MED data file management;
f) POST: a dedicated viewer to analyse the results of solver computations;

41

Program user guide

g) YACS: a module involving multi-solver coupling codes;

For mesh generation one must set the module GEOM, see Figure 3.4, and use its mesh
capability. SALOME meshing plug-in modules are used to generate 2D/3D meshes in SA-
LOME Mesh modules. Inside SALOME the following meshing plug-in modules are available:
a) Free: NETGEN
b) Commercial: GHS3D, GHS3D parallel, BLSURF, Hexotic.
In addition, SALOME distribution allows to export the mesh MED and UNV formats.

The reactor mesh can be generated by the SALOME MESH module. The MESH module
must use Hexahedron mesh capability to have a final mesh with only Hexahedral HEX8 finite
elements. Then the elements must be converted to quadratic elements (from HEX8 to HEX20
elements). The HEX8 elements are not allowed as input of the program and therefore the
conversion to HEX20 is necessary. After the mesh is generated one can save the mesh in MED
format.

The MED data model defines in a logical way the data structures exchanged by codes. The
modeled data concern meshes (structured and unstructured) and the resulting fields that can
be defined on nodes, elements or Gauss points of meshes. MED supports nine element shapes:
point, line, triangle, quadrangle, tetrahedron, pyramid, hexahedron, polygon and polyhedron.
Each element may have a different number of nodes, depending on whether linear or quadratic
interpolation is used. Since the nodes inside each element could be ordered in multiple ways,
MED defines numbering conventions, which are detailed in the MED documentation.

3.2.2 Core power and pressure loss distribution

Core power distribution input file

Figure 3.5: Typical core power distribution

42

Program user guide

The power distribution and the pressure loss distribution are set in the data in/mesh.data
file. A tipical power distribution is reported in Figure 3.5. In order to have a consistent power
distribution inside the assembly core the finite element discretization cannot cut the assembly
geometry and therefore the coarse mesh must contain the geometrical pattern defined by the
assemblies. The input file for the power distribution looks like this

Level 0 64
0 0.375 0.375 0.375 1.03 1
1 0.875 0.375 0.375 0.91 1
2 1.375 0.375 0.375 1.02 1
3 1.875 0.375 0.375 1.12 1
4 0.375 0.875 0.375 1.04 1
5 0.875 0.875 0.375 0.78 1
6 1.375 0.875 0.375 1.02 1
7 1.875 0.875 0.375 1.1 1
........
........

The file shows for each element: the element number, the x, y and z coordinates of its center
point, the value of the power distribution factor and the value of the pressure loss factor.
Since the direct editing is not very long then the file can be generated by a program that is
enclosed in the directory contrib/datagen. The file should be completed for all mesh levels.

Program datagen for automatic power distribution

The procedure to have a new power distribution is as follows:

• delete the file data in/mesh.data

• run the code with no data in/mesh.data file. Then a new data in/mesh.data is
generated and the code stops.

• copy the file data in/mesh.data in contrib/datagen/data.in

• edit contrib/datagen/datagen.H inserting power distribution factors as in Figure 3.5.

• run datagen program in the directory contrib/datagen.

• copy the file contrib/datagen/data.in in data in/mesh.data

The power distribution in Figure 3.5 is enclosed with the provided package. The pressure loss
distribution enclosed in the code is constant and equal to 1.

The file contrib/datagen/datagen.H has the following parameters: NLEV (number of
multigrid levels), NZC (number of elements in the vertical core section), HR (total core
height), HIN (heat core height), HOUT (outlet height). A setting can be as follows

// level
#define NLEV 1

// number of elements in the core section
#define NZC 9

43

Program user guide

// Geometry
// half fuel assembly length
#define HR 0.147
#define HIN 0.95
#define HOUT 1.85

The power distribution of Figure 3.5 over a plane must be reported in the double-indexed
array mat pf for a reactor that has assemblies only in the square 8 × 8. The area is divided
in INNER, INTER and OUTER zone. The zone with no fuel CTRLR and the reflector area with
DUMMY are written in the matrix mat zone.

// ---------------------------
// zone
// --------------------------

#define INNER 0
#define INTER 1
#define OUTER 2
#define CTRLR 3
#define DUMMY 4

int mat_zone[8][8]={
{INNER,INNER,INNER,INNER,INNER,INTER,OUTER,DUMMY},//A1_1-A1_7
{INNER,INNER,INNER,INNER,INTER,INTER,OUTER,OUTER},//A2_1-A2_8
{INNER,INNER,INNER,INTER,CTRLR,INTER,OUTER,DUMMY},//A3_1-A3_7
{INNER,INNER,INNER,INNER,INTER,INTER,OUTER,DUMMY},//A4_1-A4_7
{INNER,INTER,INTER,INTER,OUTER,OUTER,DUMMY,DUMMY},//A5_1-A5_6
{INNER,INTER,CTRLR,INTER,OUTER,OUTER,DUMMY,DUMMY},//A6_1-A6_6
{INTER,OUTER,OUTER,OUTER,DUMMY,DUMMY,DUMMY,DUMMY},//A7_1-A7_4
{OUTER,OUTER,OUTER,DUMMY,DUMMY,DUMMY,DUMMY,DUMMY} //A8_1-A8_3

};

The power factor over a plane is reported in the matrix mat pf

#define CTL_R 0.
double mat_pf[8][8]={
{0.941,0.962,0.989,1.017,1.045,1.178,1.097,0. },//A1_1-A1_7
{0.949,0.958,0.978,0.996,1.114,1.123,1.193,0.857},//A2_1-A2_8
{0.963,0.975,0.992,1.087,CTL_R,1.011,0.925,0. },//A3_1-A3_7
{0.967,0.973,0.989,1.008,1.108,1.028,0.931,0. },//A4_1-A4_7
{0.961,1.060,1.078,1.137,1.198,0.943,0., 0. },//A5_1-A5_6
{0.954,1.029,CTL_R,0.990,1.068,0.850,0., 0. },//A6_1-A6_6
{1.019,1.066,0.966,0.842,0., 0., 0., 0. },//A7_1-A7_4
{0.878,0.853,0.757,0., 0., 0., 0., 0. } //A8_1-A8_3
};

The power factor over the z axis can be assumed to have a cosine distribution. This profile
is reported in axpf as

44

Program user guide

double axpf[10][3]={
{8.60089E-01,8.48697E-01,8.33685E-01},
{9.32998E-01,9.63034E-01,9.52704E-01},
{1.03749E-0,1.06399E-0,1.06801E-0},
{1.10010E-0,1.12959E-0,1.14484E-0},
{1.14410E-0,1.16319E-0,1.17922E-0},
{1.13892E-0,1.15623E-0,1.16983E-0},
{1.09049E-0,1.10313E-0,1.10469E-0},
{1.01844E-0,1.00872E-0,1.00793E-0},
{9.05869E-01,8.55509E-01,8.63532E-01},
{7.71503E-01,7.07905E-01,6.75547E-01}
};

In a similar way the power distribution for the pressure loss must be reported in the matrix
axlpf and vector axllf.

3.3 Step 2: Configuration, data and parameter setting

3.3.1 Configuration setting

Global configuration

In order to run a complete computation the following steps are necessary :
a) generate a hexahedral mesh with GAMBIT in the file data in/mesh.msh;
b) generate the core power factor in the file data in/mesh.data ;
c) Set the configuration file config/config.h and, if necessary, the additional class param-
eters for the active classes (for energy and Navier-Stokes the additional class parameters are
in the files config/class/MGSNSconf.h and config/class/MGSTconf.h);
d) Set the physical and numerical properties in config/parameters.in;
e) Set the boundary and initial conditions in the files of the active classes (for energy and
Navier-Stokes the files are src/MGSolverNS3D.C and src/MGSolverT3D.C).

Standard configuration is provided with the code and only few changes are necessary. In
order to rerun a computation (mesh is provided) with different parameters only the steps c),
d) and e) are necessary. Explanation of steps a) and b) can be found in the previous section.

The configuration file is config/config.h. The standard configuration for solving energy
and Navier-Stokes equations is

// =============================
// BASIC SETTINGS
// =============================
// DIM2=TWO-DIM (UNDEF 3D) =====
//#define DIM2 1

// ==============================
// EQUATIONS: NS_EQUATIONS
// T_EQUATIONS TURBULENCE

45

Program user guide

// TWO_PHASE TWO_EQUATIONS
// ==============================
// NAVIER-STOKES EQUATIONS =====
#define NS_EQUATIONS 1
//#define KE_EQUATIONS 1
//#define KW_EQUATIONS 1
..........

// ==============================
// ENERGY EQUATION ==============
//#define T_EQUATIONS 1
...........

// ==============================
// RESTART GENERATION PRINT
// ==============================
// RESTART OPTIONS =============
//#define RESTARTIME 0.1
//#define RESTART 100
// MESH GENERATION OPTIONS ======
#define GENCASE 1
#define LIBMESHF 1
#define PRINT_INFO 1

// PRINT OPTIONS ================
//#define OUTGMV 1
#define XDMF 1

//#define Vtk 1
#define HDF5
.............

Options are set via the #define command in C or C++. The option is not active when the
corresponding #define is commented. For example if one sees in the file config/config.h
a definition as
define NS EQUATIONS 1
then the Navier Stokes solver is active. If the #define option is with a comment (// is the
comment operator in C++) as
// # define NS EQUATIONS 1
then the Navier Stokes solver is not active and the Navier Stokes will not be solved. The
number after the #define is necessary and sometimes such a number is used in the program
for further options.

Many of the options in the file config/config.h are not important for our problems.
They remain in the configuration file for compatibility with the CFD multipurpose code. The
following options are important for this code:

• DIM2. With this option one can set the spatial dimension of the problem. For reactor
problems one can use always 3D option, so the 2D option should be commented, i.e.
// # define DIM2 1

• NS EQUATIONS, T EQUATIONS. If the system has the (p,v) state then you must solve
only the Navier-Stokes equations. If the system has the (p,v, T) state then you must

46

Program user guide

solve the Navier-Stokes equations and the energy equation. For the reactor we must set
define NS EQUATIONS 1
define T EQUATIONS 1

• RESTARTIME, RESTART. In order to restart your program from the solution at t = 1.1
written in the file Out.10.vtu one must set the restart option and the restart time, i.e.
#define RESTARTIME 1.1
#define RESTART 10
In order to start from zero (t = 0.) one must set
#define RESTARTIME 0.
// #define RESTART 10

• GENCASE, LIBMESHF. In order to avoid the use of the LIBMESH library functions all
the necessary files are given to you. In this case you must set
// #define GENCASE 1
// #define LIBMESHF 1 .
In order to generate a new geometry and therefore a new case of files one must set
#define GENCASE 1
#define LIBMESHF 1 .
This option needs the LIBMESH library (see http://libmesh.sourceforge.net for
details).

• GMV, XDMF, VTK, HDF5. This sets all the output files in the desired format [15, 14,
16, 13]. For GMV format see http://laws.lanl.gov/XCM/gmv/GMVHome.html, for
XDMF format see http://www.xdmf.org, for VTK format see http://www.vtk.org
and for HDF5 format see http://www.hdfgroup.org/HDF5/. For visualization with
PARAVIEW one must set only the XDMF and the HDF5 options
//#define OUTGMV 1
#define XDMF 1
//#define Vtk 1
#define HDF5

• PRINT INFO. With this option the program prints a message from each routine. It is
useful for debugging. Let set
#define PRINT INFO 1
for printing only messages from routines.

Class parameter configuration

In the directory config/class there is a configuration file for each class (Navier-Stokes equa-
tion, energy equation, κ− ϵ turbulence equation). All the parameters that are needed in the
class model can be changed in these files. The most important ones are the dependence of the
physical properties on the temperature, the turbulence parameters and the numerical solver
algorithm.

Dependence of the physical properties on the temperature. The code can run with
lead properties that can be considered as a function of temperature. These functions are

47

Program user guide

defined directly in the files where they are used. If the property law must be modified it is
necessary to change the inline functions at the top of the followings:
- config/class/MGSNSconf.h for the momentum equations; here the functions ρ = ρ(T) and
ν = ν(T) are defined.
- config/class/MGSTconf.C for the energy equation; here the functions ρ = ρ(T), κ = κ(T)
and Cp = Cp(T) are defined.
Furthermore, you have to set
// #define CONST 1
in the same files in order to activate the temperature dependence.

Turbulence parameters. The parameters for the κ−ϵ and κ−ω turbulence model are in the
relative class configuration files config/class/MGSKEconf.h and config/class/MGSKWconf.h.
The turbulence parameters of the LES model are in the config/class/MGSNSconf.h file.

Numerical solver parameters. For each equation one can choose the solution algorithm.
Among the solution methods one can choose one of the following:
1. Jacobi = JacobiIter
2. SOR forward = SORForwIter
3. SOR backward = SORBackwIter
4. SOR symmetric = SSORIter
5. Chebyshev = ChebyshevIter
6. CG = CGIter
7. CGN = CGNIter
8. GMRES(10) = GMRESIte
9. BiCG = BiCGIter
10. QMR = QMRIter
11. CGS = CGSIter
12. Bi-CGSTAB = BiCGSTABIter
13. Test = TestIter .

Among the preconditioner matrices we can have
0. none = (PrecondProcType)NULL
1. Jacobi = JacobiPrecond
2. SSOR = SSORPrecond
3. ILU/ICH = ILUPrecond.
Standard configuration uses GMRES and ILU preconditioner.

3.3.2 Parameter setting

The parameter file is config/parameters.in. An example is

NonDimensionalTimeStep
dt .2
itime 0.0
nsteps 100
printstep 1

48

Program user guide

Reference ValueForNon-dimensionalization
Uref 1.
Lref 1.
Tref 1.

FluidProperties
rho0 10562.99
mu0 0.0022
kappa0 16.58
cp0 148.77
komp0 0.

HeatSource
qheat 1.14591e+8

Gravity
dirgx 0.
dirgy 0.
dirgz 0.

The data values are defined by setting the value on the right of each item. For example if we
see in the file config/parameters.in a definition such as
rho0 10000
then the quantity rho0 takes the value of 10000. The units are always in agreement with the
International System.

parameter value description
dt 0.2 Time step ∆t
itime .0 Initial time t
nsteps 100 Number of time steps
printstep 5 print every 5 time steps
Uref 1. Reference velocity
Lref 1. Reference length
Tref 1. Reference temperature

rho0 10562.99 density
mu0 .0022 viscosity
kappa0 16.58 conductivity
cp0 147.3 heat capacity
komp0 0. compressibility
qheat 1.14591e+8 heat volume density source
dirgx 0. gravity x-direction
dirgy 0. gravity y-direction

dirgz 0. gravity z-direction

Table 3.1: Parameters in config/parameters.in file

49

Program user guide

The parameters to set from this file are as follows:

• dt,itime,nsteps,printstep. These are the values of the time step, the initial time,
the number of time steps and the print timestep interval. In order to start at t = 0,
perform 100 time steps of length ∆t = 0.01 and print every time step one must set
dt 0.01
itime 0.0
nsteps 100
printstep 1.

• Uref,Lref,Tref. These are the reference values of velocity, length and temperature.

• rho0,mu0,kappa0,cp0. Those are the reference values of the lead density, viscosity,
thermal conductivity and of the constant-pressure specific heat, respectively. In our
case we set
rho0 10562.99
mu0 .0022
kappa0 15.8
cp0 147.3
The temperature dependence is set inside the single files: config/MGSTconf.h (energy
equation) and config/MGSolNSconf.h (Navier-Stokes system). For details see Section
3.3.1.

• qheat. The average volumetric heat source for the reactor is set by this parameter as
qheat 1.15e+8.
The sinusoidal shape and other source factors are set directly inside the file MGSTconf.h.
The power factor distribution of the assemblies is in the file mesh data in the directory
data in. See Section 3.2.2.

• dirgx, dirgy, dirgz. Gravity can be set by using these parameters. If one wants
gravity (ρg) along the z-axis one must set
dirgx 0.
dirgy 0.
dirgz -1.
All the value are in g = 9.81m/s2 units.

3.3.3 Boundary and initial conditions

Boundary conditions

The boundary conditions are already set for the reactor. In order to change the boundary
conditions, it is necessary to edit the user part in the appropriate function. For pressure and
velocity boundary conditions one must edit the function
void MGSolNS::bc read(double xp[],double normal [],int bc flag[])
in the file src/MGSolverNS3D.C. If you open the mentioned file you may find

void MGSolNS::bc_read(double xp[],double normal [],int bc_flag[]) {
#ifdef DIM2
#else

50

Program user guide

// xp[]=(xp,yp) bc_flag[u,v,p]=0-Dirichlet 1-Neumann
// box boundary conditions
if (xp[0] < 0.001) { // side 1
bc_flag[0]=0;bc_flag[1]=0;bc_flag[2]=0;

}
if (xp[0] > 1.-0.001) { // side 3
bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

}
if (xp[1] < 0.001) { // side2
bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

}
if (xp[1] > 1.-0.001) { // side4
bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

}
if (xp[2] < 1.-0.001) { // top

bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;
}
if (xp[2] > -0.001) { // bottom

bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;
}

#endif
return;

}

This function sets Dirichlet boundary conditions over a box of dimension [0, 1]× [0, 1]× [0, 1]
The node coordinates (xp[0],xp[1],xp[2]) can be used to set all the necessary boundary
conditions. The value bc flag[0] is the flag for the boundary condition on the x-component
of the velocity field. If the flag is not set the point has Neumann conditions by default.
By setting bc flag[0]=0 one imposes a Dirichlet boundary condition. The bc flag[1]
and bc flag[2] are the flags for the y and z-component respectively. The pressure flag
is bc flag[3].

For the boundary conditions of the energy equation one must edit the function
void MGSolT::bc read(double xp[],double normal [],int bc flag[])
in the file src/MGSolverT3D.C. If you open the mentioned file you may find

void MGSolT::bc_read(double xp[],double normal [],int bc_flag[]) {
#ifdef DIM2
#else
// xp[]=(xp,yp) bc_flag[T]=0-Dirichlet 1-Neumann
// boundary conditions box
if (xp[0] < 0.0001) bc_flag[0]=0;
if (xp[0] > .1-0.0001) bc_flag[0]=0;
if (xp[1] < 0.0001) bc_flag[0]=0;
if (xp[1] > .1-0.0001) bc_flag[0]=0;
if (xp[2] < 0.0001) bc_flag[0]=0;
if (xp[2] > 1.-0.0001) bc_flag[0]=0;
#endif
return;

51

Program user guide

}

The same points are provided also for this equation.

Initial conditions

Initial pressure velocity solution. If one wants to set the initial solution in pressure and
velocity it is necessary to edit the function
void MGSol::ic read(double xp[],double u value[])
inside the file src/MGSolverNS3D.C. If you open the mentioned file you may find the initial
solution v = 0 and p which changes linearly from 1. to 0 over the z-axis. Therefore in the
appropriate part of the function you have

void MGSolNS::ic_read(double xp[],double u_value[]) {
#ifdef DIM2
#else
// xp[]=(xp,yp,zp) u_value[]=(u,v,w,p)
u_value[0] =0.;
u_value[1] =0.;
u_value[2]=0.;
u_value[3]=1.-xp[2].;

Initial Energy solution. If one wants to set the initial temperature one must edit the
function
void MGSolT::ic read(double xp[],double u value[])
inside the file MGSolverT3D.C. In the user area of the file MGSolverT3D.C you will find

void MGSolNT::ic_read(double xp[],double u_value[]) {
#ifdef DIM2
#else
// xp[]=(xp,yp,zp) u_value[]=(u,v,w,p)
u_value[0] =400.;

In this case we set uniform temperature to 400 for t = 0.

3.4 Step 3: Analysis of the CFD solution

The results can be analyzed by using the PARAVIEW software. The solution at each time
step is read by using the XDMF format and the data are stored in HDF5 format.

3.4.1 Output format in HDF5 and XDMF format

The HDF5 format

HDF5 is a data model, library, and file format for storing and managing data. It supports
an unlimited variety of datatypes, and is designed for flexible and efficient I/O and for high vol-
ume and complex data. For detailed information one can see http://www.hdfgroup.org/HDF5/.
HDF5 format supports all types of data stored digitally, regardless of origin or size. The
HDF5 technology is designed to organize, store, discover, access, analyze, share, and pre-
serve diverse, complex data in continuously evolving heterogeneous computing and storage

52

Program user guide

Figure 3.6: HDF5View for raw HDF5 data

environments. The HDF5 Technology suite includes tools and applications for managing,
manipulating, viewing and analyzing data in the HDF5 format.

In our code we have the following HDF5 files:

• mesh.h5 and meshxmf.h5, with mesh points and connectivity;

• sol.*.h5, with field data over points and cells;

• case.*.h5, with boundary and initial conditions.

Inside these files the data are organized in directories or datasets. The mesh.h5 file has the
following datasets:

• CONNl the connectivity of the mesh at the level l for quadratic finite elements (e.g.
HEX27);

• X the x-coordinates of the mesh;

• Y the y-coordinates of the mesh;

• Z the z-coordinates of the mesh;

The meshxmf.h5 file has the following datasets:

• CONN the connectivity of the mesh at the top level for elements that can be visualized
by PARAVIEW;

The connectivity for parabolic finite elements cannot be visualized directly inside PARAVIEW
and therefore two connectivities must be used. For example the HEX27 cannot be seen in
PARAVIEW and therefore must be converted to HEX8. The sol.*.h5 file for the reactor
code has the following datasets:

• u1 the x-component of the velocity field;;

• u2 the y-component of the velocity field;

53

Program user guide

• u3 the z-component of the velocity field;

• u4 the pressure field;

• T temperature field;

If other fields are solved these variables appear in the sol.*.h5 files. The case.*.h5 file for
the reactor code has the following datasets:

• u1 initial condition for the x-component of the velocity field;;

• u2 initial condition for the y-component of the velocity field;

• u3 initial condition for the z-component of the velocity field;

• u4 initial condition for the pressure field;

• T initial condition for the temperature field;

• u1bd boundary condition for the x-component of the velocity field;;

• u2bd boundary condition for the y-component of the velocity field;

• u3bd boundary condition for the z-component of the velocity field;

• u4bd boundary condition for the pressure field;

• Tbd boundary condition for temperature field;

The raw data in HDF5 format can be seen by the HDFView software (see Figure 3.6). HD-
FView can be downloaded free of charge from
http://www.hdfgroup.org/HDF5/.
The command hdf5view starts the GUI of the viewer. The user guide can be found at
http://www.hdfgroup.org/hdf-java-html/hdfview/UsersGuide/.

The eXtensible Data Model (XDMF) Format

The need for a standardized method to exchange scientific data between High Performance
Computing codes and tools lead to the development of the eXtensible Data Model and Format
(XDMF). The XDMF format categorizes data by two main attributes: size and function. Data
can be Light (typically less than about a thousand values) or Heavy (megabytes, terabytes,
etc.). In addition to raw values, data can refer to Format (rank and dimensions of an array)
or Model (how that data is to be used, i.e. XYZ coordinates vs. Vector components). XDMF
uses XML to store Light data and to choose the Model. HDF5 is used to store Heavy data.
The data Format is stored redundantly in both XML and HDF5. This allows tools to parse
XML to determine the resources that will be required to access the Heavy data.

The eXtensible Markup Language (XML) format is widely used for many purposes and is
well documented in many sites. See for example http://www.xdmf.org. There are numerous
open source parsers available for XML. The XDMF API takes advantage of the libxml2
parser to provide the necessary functionality. Without going into too much detail, XDMF
views XML as a ”personalized HTML” with some special rules. It it case sensitive and is
made of three major components : elements, entities, and processing information. In the
XDMF format we are primarily concerned with the elements. These elements follow the basic
form:

54

Program user guide

Attribute (XdmfAttribute)
Name (no default)

AttributeType Scalar, Vector, Tensor, Tensor6, Matrix, GlobalID
Center Node, Cell, Grid, Face, Edge

DataItem (XdmfDataItem)
Name (no default)

ItemType Uniform, Collection, tree, HyperSlab, coordinates
— Function

Dimensions (no default) in KJI Order
NumberType Float, Int, UInt, Char, UChar

Precision 1, 4, 8
Format XML, HDF

Domain (XdmfDomain)
Name (no default)

Geometry (XdmfGeometry)
GeometryType XYZ, XY, X Y Z, VxVyVz, Origin DxDyDz

Grid (XdmfGrid)
Name (no default)

GridType Uniform, Collection, Tree, Subset
CollectionType Spatial, Temporal (if GridType=”Collection”)

Section DataItem, All (if GridType=”Subset”)
Topology (XdmfTopology)

Name (no default)
TopologyType Polyvertex Polyline , Polygon ,

Triangle , Quadrilateral , Tetrahedron, Pyramid, Wedge,
Edge 3, Triagle 6, Quadrilateral 8, Tetrahedron 10,

Wedge 15, Hexahedron 20, Hexahedron, Pyramid 13,
Mixed,

2DSMesh, 2DRectMesh, 2DCoRectMesh,
3DSMesh, 3DRectMesh

NodesPerElement (no default)
NumberOfElement (no default)

OR
Dimensions (no default)

Order each cell type has its own default
BaseOffset 0, #

Time
TimeType Single, HyperSlab, List, Range

Value (no default, Only valid for TimeType=”Single”)

Table 3.2: XML Element (Xdmf ClassName) and Default XML Attributes

55

Program user guide

<ElementTag
AttributeName="AttributeValue"
AttributeName="AttributeValue"
... >
CData

</ElementTag>

Each element begins with a <tag> and ends with a </tag>. Optionally there can be several
"Name=Value" pairs which convey additional information. Between the <tag> and the </tag>
there can be other <tag></tag> pairs and/or character data (CData). CData is typically
where the values are stored; like the actual text in an HTML document. The XML parser
in the XDMF API parses the XML file and builds a tree structure in memory to describe
its contents. This tree can be queried, modified, and then ”serialized” back into XML. The
organization of XDMF begins with the XDMF element. So that parsers can distinguish from
previous versions of XDMF , there exists a Version attribute (currently at 2.0). Any element
in XDMF can have a Name attribute or have a Reference attribute. The Name attribute
becomes important for grids while the Reference attribute is used to take advantage of the
XPath facility (more detail on this later).

Some of the most important XDMF elements are the following:

• Domain. A Domain can have one or more Grid elements. Each Grid contains a Topology,
Geometry, and zero or more Attribute elements. Topology specifies the connectivity of
the grid while Geometry specifies the location of the grid nodes. Attribute elements are
used to specify values such as scalars and vectors that are located at the node, edge,
face, cell center, or grid center. To specify actual values for connectivity, geometry or
attributes, XDMF defines a DataItem element. A DataItem can provide the actual
values or provide the physical storage (which is typically an HDF5 file).

• Grid. The DataItem element is used to define the data format portion of XDMF. It
is sufficient to specify fairly complex data structures in a portable manner. The data
model portion of XDMF begins with the Grid element. A Grid is a container for
information related to 2D and 3D points, structured or unstructured connectivity, and
assigned values.

• Topology. The Topology element describes the general organization of the data. This
is the part of the computational grid that is invariant with rotation, translation, and
scale. For structured grids, the connectivity is implicit. For unstructured grids, if the
connectivity differs from the standard, an Order may be specified.

• Geometry. The Geometry element describes the XYZ values of the mesh. The important
attribute here is the organization of the points. The default is XYZ; an X,Y, and Z for
each point starting at parametric index 0. Possible organizations are: interlaced arrays
(XY Z) or separate arrays (X Y Z).

• Attribute. The Attribute element defines values associated with the mesh. Currently
the supported types of values are: Scalar, Vector and Tensor (9 values expected). These
values can be centered on Node, Edge, Face or Cell.

A more detailed explanation of the XDMF elements can be found in Table 3.2. In the
output files we have the following XDMF files:

56

Program user guide

• mesh.xmf for reading mesh points and connectivity;

• sol.*.xmf for reading field data over points and cells;

• case.*.xmf for reading initial and boundary conditions.

The heavy data for the XDMF files are the files in HDF5 format discussed in the previous
section.

3.4.2 PARAVIEW

Visualization with PARAVIEW

Figure 3.7: PARAVIEW

PARAVIEW is an open-source, multi-platform data analysis and visualization application.
The PARAVIEW software can be downloaded from http://www.paraview.org. PARAVIEW
can build visualizations to analyze data using qualitative and quantitative techniques. The
data exploration can be done interactively in 3D or programmatically using PARAVIEW
batch processing capabilities. The PARAVIEW code base is designed in such a way that all
of its components can be reused to quickly develop other applications.

The program starts with the command paraview as in Figure 3.7. PARAVIEW can read
two types of files produced by the reactor code

• files with extension xmf that contain single time solution;

• files with extention pvd that contain long time solution.

Data post-processing

PARAVIEW can manage the results through functions that use the stored data. Very useful
are the calculator function, the integration and the differentiation functions.

Using the calculator. In order to compute quantities such as temperature on the fuel
cladding we can use analytical expressions. The function calculator can be found in the menu
path
Filters -> Alphabetical -> Calculator.
The analytical expression can be written in the line as shown in Figure 3.8 by using the

57

Program user guide

Figure 3.8: PARAVIEW calculator

Vectors and Scalars read from the data files.

Integration and differentiation of post-processing data. Integration and differentiation
of of all scalar and vector solution variables can be done by following the menu paths
Filters -> Alphabetical -> Compute Derivatives
and Filters -> Alphabetical -> Integrate Variables
respectively.

58

Chapter 4

CFD reactor simulation

4.1 Introduction

Figure 4.1: Vertical section of the reactor.

The design of the reactor starts from the horizontal quarter section of the core shown
in Figure 4.2. Each fuel assembly consists of a 17 × 17 pin lattice. The distribution of the

CFD reactor simulation

Figure 4.2: Horizontal section of the reactor with fuel power factors.

170 assemblies results in an approximately circular arrangement fitting the required core area.
The model design distributes the fuel assemblies in three radial zones: 56 fuel assemblies in the
inner zone, 62 fuel assemblies in the intermediate zone and the remaining 44 fuel assemblies
in the outer one. The power distribution factors, i.e. the power of a fuel assembly over the
average fuel assembly power, are mapped in Figure 4.2. The maximum power factor is 1.17,
while the minimum is 0.74.

We label the assemblies as in Figure 4.2; the first row is labeled A1 i for i= 1, . . . , 8, the
second row A2 i for i= 1, . . . , 7 and so on. We remark that the fuel assembly configuration is
not based on a Cartesian grid but rather on a staggered grid. The side of a square assembly
(LFA) is 0.294m in working conditions at the temperature of 673.15K (400 ℃). We are
interested in the active (upper) and non-active (lower) core sections and in the upper and
lower plena. In our computational description we consider the core region from 0m to 1.85m
where the active core (upper core) ranges between Hin = 0.95m and Hout = 1.85m. Below
the core we have the lower plenum with the inlet between −0.9m and 0m. The lower plenum
has an approximate hemispherical form with the lowest region at −1.2m. Above the core
for a total height of 1.2m there is the upper plenum with the coolant outlet. The heat
generation zone or the active core zone for the reactor starts at Hin = 0.95m and ends at
Hout = 1.85m. The reactor is cooled by lead that enters at the temperature of 400 ℃. Since
our model describes the reactor at the assembly level the sub-assembly composition is seen
as a homogeneous medium. Data about this model composition are reported in Table 4.1.
In particular we note that the coolant/assembly ratio is 0.5408. Each assembly has a square
section with the side length of L = 0.294m, as shown in Table 4.2 and this completely defines
the horizontal core structure. For the vertical geometry we refer to Figure 4.1. In Table 4.3
we report the physical properties (at 400 ℃) inserted in the code.

60

CFD reactor simulation

area (m2)
Pin area 370.606 × 10−4

Corner box area 5.717 × 10−4

Central box beam 2.092 × 10−4

Channel central box beam area 12.340 × 10−4

Coolant area 473.605 × 10−4

Assembly area 864.360 × 10−4

Coolant/Assembly ratio 0.5408

Table 4.1: Coolant assembly area ratio data

value
Mass flow rate ṁ 124539Kg/s
Heat Power Q̇tot 1482.235MW

Number of Assemblies 170
Assembly length L 0.294m

Channel Equivalent Diameter Deq 0.0129

Table 4.2: Core characteristic values at working temperature

properties value
Density ρ (11367 − 1.1944 × 673.15) = 10562

Viscosity µ 0.0022
Thermal conductivity κ 15.8 + 108 × 10−4 (673.15 − 600.4) = 16.58

Heat capacity Cp 147.3

Table 4.3: Lead properties at T=400 ℃

Let us consider the core region only. In steady working conditions with constant properties
(see Table 4.3) and constant velocity the (1.79-1.81) become
a) Incompressibility constraint

∂ŵh

∂z
= 0 (4.1)

b) Momentum equation
∂p̂h

∂z
=

2ρŵ2

Deq
λ (4.2)

b) Energy equation

ρCpŵh
∂T̂h

∂z
= κ

∂2T̂h

∂z2
+ q̇

′′′
r . (4.3)

These equations can be solved and therefore this solution can be used to check the order of
magnitude of the numerical solution.

The problem (4.1-4.3) can be further simplified for some velocity ranges for which the
thermal conductivity κ can be neglected. If we assume κ = 0 the system, after integration

61

CFD reactor simulation

along the z-axis, yields

ŵh = const (4.4)

p̂in − p̂out =
2ρŵ2

Deq
λ(ŵh)H (4.5)

ρCpŵh (T̂out − T̂in) = Q̇ r (Hout −Hin) , (4.6)

where H is the total height of the reactor, Hin and Hout are the starting and ending point
of the heat generation. In order to compute (ŵh, p̂h, T̂h) we set each property to be constant
(see Table 4.3).

Velocity. The velocity can be solved as

ŵh =
ṁ

ρ r AN
=

124539
10562 × 0.5408 × 0.294 × 0.294 × 170

= 1.484m/s . (4.7)

The volumetric flow rate for assembly

V̇ =
ṁ

ρN
=

124539
10562 × 170

= 0.069360m3/s . (4.8)

The volumetric flow rate for assembly per unit surface is

V̇ =
ṁ

ρAN
=

124539
10562 × 0.294 × 0.294 × 170

= 0.8024m/s . (4.9)

The Reynolds number is

Re =
ρ ŵhDeq

µ
= 10562 × 1.484 × 0.0129/0.0022 = 91906 (4.10)

Pressure. The friction coefficient is

λ =
0.079
Re0.25 =

0.079
919060.25 = 0.004537 . (4.11)

Then the pressure jump can be computed as

p̂hin − p̂hout =
2ρŵ2H λ(ŵh)

Deq
=

2 × 10562 × 1.484 × 1.484 × 1.945 × 0.004537
0.0129

= 32000Pa

Temperature. The temperature jump can be computed as

T̂hout − T̂hin =
Q̇

ṁ cP (Hout −Hin)
=

1.482 × 109

124539 × 124539 × 147.3 × 0.9
= 89.7K

At the top of the reactor we obtain a constant temperature distribution with value

T̂hout = T̂hin + 89.7 = 762.85K

These values obtained with many assumptions can be considered as first benchmarks for the
computational results. The simulation of the reactor follows step by step the User Guide in
3. The process consists of three steps:

• Pre-processing: mesh and data generation.

• Running: solution of the discretized Finite Element approximation.

• Post-processing: visualization of the results.

62

CFD reactor simulation

4.2 Step 1. Preprocessing: mesh and data generation

Mesh generation

X
Y

Z

Figure 4.3: Reactor lower plenum

The mesh is generated by using the GAMBIT mesh generator with geometrical dimensions
taken by Figures4.1 and 4.2. The mesh should match the assembly geometry in the core. In
order to obtain this, we first project the core assembly structure on the top of the reactor
lower plenum obtaining Figure 4.3. The top of the lower plenum is set over the plane z = 0.
The inlet is distributed over all the perimeter of the reactor with a height of 0.9m. The lower
point is set at 1.2m below the top of the lower plenum. A simple projection over the core
assembly structure gives Figure 4.4. The axial length of the core is 1.8m. The core consists of
two parts with equal length: the top and bottom parts. The top part is the nuclear core where
the heat is generated. The upper plenum and the complete reactor are shown in Figures 4.5-
4.6. The GAMBIT general option should be set to Generic and the mesh export should be

63

CFD reactor simulation

X
Y

Z

Figure 4.4: Reactor core and lower plenum

64

CFD reactor simulation

X
Y

Z

Figure 4.5: Reactor design

65

CFD reactor simulation

Figure 4.6: Reactor mesh

performed under the Mesh option. We rename this file mesh.msh and copy it in the directory
data in.

Data generation

In this case we consider the heat power in the form

Q̇(x, y, z) = W0(x, y) cos
(

2π(z −Hin)
Hout −Hin

)
(4.12)

where W0(x, y) is the two-dimensional distribution at (Hout−Hin)/2. In the numerical model
we assume constant value within each element. We assume a (x, y)-distribution of the type
shown on the top of Figure 4.7. The procedure needed to load this power distribution in the
code is as follows:

• delete the file data in/mesh.data

• run the code with no data in/mesh.data file. Then a new data in/mesh.data is
generated and the code stops.

66

CFD reactor simulation

Figure 4.7: Horizontal power generation profile: code model (bottom) and desired (top)

• copy the file data in/mesh.data in contrib/datagen/data.in

• edit contrib/datagen/datagen.H inserting power distribution factors as in Figure 3.5.

• run the datagen executable in the directory contrib/datagen.

• copy the file data in/data.in in data in/mesh.data

The pressure loss distribution is set to a constant value of 1.
The file contrib/datagen/datagen.H has the following parameters: NLEV (number of

multigrid levels), NZC (number of elements in the vertical core section), HR (total core

67

CFD reactor simulation

height), HIN (heat core height), HOUT (outlet height). A setting can be as follows (see
Section 3.2.2)

// level
#define NLEV 1

// number of elements in the core section
#define NZC 9

// Geometry
// half fuel assembly length
#define HR 0.147
#define HIN 0.95
#define HOUT 1.85

The power distribution of Figure 3.5 over a plane must be reported in the double-indexed
array mat pf for a reactor that has assemblies only in the square 8 × 8. The area is divided
into INNER, INTER and OUTER zone. The zone with no fuel CTRLR and the reflector area with
DUMMY are written in the matrix mat zone.

// ---------------------------
// zone
// --------------------------

#define INNER 0
#define INTER 1
#define OUTER 2
#define CTRLR 3
#define DUMMY 4

int mat_zone[8][8]={
{INNER,INNER,INNER,INNER,INNER,INTER,OUTER,DUMMY},//A1_1-A1_7
{INNER,INNER,INNER,INNER,INTER,INTER,OUTER,OUTER},//A2_1-A2_8
{INNER,INNER,INNER,INTER,CTRLR,INTER,OUTER,DUMMY},//A3_1-A3_7
{INNER,INNER,INNER,INNER,INTER,INTER,OUTER,DUMMY},//A4_1-A4_7
{INNER,INTER,INTER,INTER,OUTER,OUTER,DUMMY,DUMMY},//A5_1-A5_6
{INNER,INTER,CTRLR,INTER,OUTER,OUTER,DUMMY,DUMMY},//A6_1-A6_6
{INTER,OUTER,OUTER,OUTER,DUMMY,DUMMY,DUMMY,DUMMY},//A7_1-A7_4
{OUTER,OUTER,OUTER,DUMMY,DUMMY,DUMMY,DUMMY,DUMMY} //A8_1-A8_3

};

The power factor over a plane is reported in mat pf

#define CTL_R 1.
double mat_pf[8][8]={
{0.941,0.962,0.989,1.017,1.045,1.178,1.097,0. },//A1_1-A1_7
{0.949,0.958,0.978,0.996,1.114,1.123,1.193,0.857},//A2_1-A2_8
{0.963,0.975,0.992,1.087,CTL_R,1.011,0.925,0. },//A3_1-A3_7
{0.967,0.973,0.989,1.008,1.108,1.028,0.931,0. },//A4_1-A4_7

68

CFD reactor simulation

Figure 4.8: Vertical power generation profile in the code model

{0.961,1.060,1.078,1.137,1.198,0.943,0., 0. },//A5_1-A5_6
{0.954,1.029,CTL_R,0.990,1.068,0.850,0., 0. },//A6_1-A6_6
{1.019,1.066,0.966,0.842,0., 0., 0., 0. },//A7_1-A7_4
{0.878,0.853,0.757,0., 0., 0., 0., 0. } //A8_1-A8_3
};

We note that in this case the CTRLR is set to 1 and not to zero as in Figure 4.7. The power
factor over the z- axis can be assumed to have a cosine distribution. This profile is reported
in axpf as

double axpf[10][3]={
{8.60089E-01,8.48697E-01,8.33685E-01},
{9.32998E-01,9.63034E-01,9.52704E-01},
{1.03749E-0,1.06399E-0,1.06801E-0},
{1.10010E-0,1.12959E-0,1.14484E-0},
{1.14410E-0,1.16319E-0,1.17922E-0},
{1.13892E-0,1.15623E-0,1.16983E-0},
{1.09049E-0,1.10313E-0,1.10469E-0},
{1.01844E-0,1.00872E-0,1.00793E-0},
{9.05869E-01,8.55509E-01,8.63532E-01},
{7.71503E-01,7.07905E-01,6.75547E-01}
};

The power distribution can be seen from the file case0.xmf (once the code is run) by using
PARAVIEW. Once the file case0.xmf is open under PARAVIEW, the following path Filters

69

CFD reactor simulation

-> Clip
generates a slice and the selection
Select data1
shows the bottom of Figure 4.7. The Figure 4.7 shows the horizontal profile and Figure 4.8
the vertical profile of the reactor where the cosine approximation can be seen.

4.3 Step 2: Configuration, data and parameter setting

4.3.1 Configuration setting

Global configuration

Standard configuration is provided with the code and only few changes are necessary. We
follow the steps defined in 3.3.

The configuration file is config/config.h. The standard configuration for solving energy
and Navier-Stokes equations is

// =============================
// BASIC SETTINGS
// =============================
// DIM2=TWO-DIM (UNDEF 3D) =====
//#define DIM2 1

// ==============================
// EQUATIONS: NS_EQUATIONS
// T_EQUATIONS TURBULENCE
// TWO_PHASE TWO_EQUATIONS
// ==============================
// NAVIER-STOKES EQUATIONS =====
#define NS_EQUATIONS 1
..........

// ==============================
// ENERGY EQUATION ==============
#define T_EQUATIONS 1
...........

// ==============================
// RESTART GENERATION PRINT
// ==============================
// RESTART OPTIONS =============
//#define RESTARTIME 0.1
//#define RESTART 100
// MESH GENERATION OPTIONS ======
#define GENCASE 1
#define LIBMESHF 1
#define PRINT_INFO 1

// PRINT OPTIONS ================
//#define OUTGMV 1
#define XDMF 1

70

CFD reactor simulation

//#define Vtk 1
#define HDF5
.............

In this case we use the Navier-Stokes equations and the energy equation but not the κ− ϵ or
κ − ω system. A simple LES turbulence model is used in this computation. The LIBMESH
library is used to generate the operators and the output files are in XDMF and HDF5 formats.

Class parameter configuration

In the directory config/class there is a configuration file for each class (Navier-Stokes equa-
tions, energy equation, κ−ϵ turbulence equation). We need to consider the parameters inside
the files config/MGSNSconf.h and config/MGSTconf.h.

MGSNSconf.h. We set the parameter #define CONST 1 in order to neglect the temperature
dependence of density and viscosity. The results do not change too much as already seen in
[3]. We set the LES option with α = 1 (#define ALPHA 1). This option sets a simple
Smagorinsky LES turbulence model. Under the standard setting the system will be solved
by using GMRES method with an ILU preconditioner.
MGSTconf.h. We set #define CONST 1 in order to neglect the temperature dependence
of density and viscosity. This option is acceptable for a first computation [3]. We set the
LES option with Prt = 0.9 (#define PRT 0.9). This sets the standard heat exchange model.
Under the standard setting the system will be solved by using GMRES method with an ILU
preconditioner.

4.3.2 Parameter setting

The parameter file is config/parameters.in. We set the data file as below

NonDimensionalTimeStep
dt .002
itime 0.0
nsteps 10000
printstep 50

Reference ValueForNon-dimensionalization
Uref 1.
Lref 1.
Tref 1.

FluidProperties
rho0 10562.99
mu0 0.0022
kappa0 16.58
cp0 148.77
komp0 0.

HeatSource

71

CFD reactor simulation

qheat 1.14591e+8

Gravity
dirgx 0.
dirgy 0.
dirgz 0.

The non-dimensional time step is set to .002 and the simulation stops after 10000 steps. The
solution is printed every 50 time steps. Following Table 4.3, the physical quantities are set
as: density rho0 = 10562.99, viscosity mu0 = 0.0022, thermal conductivity kappa0 = 16.58
and heat capacity cp0 = 148.77. The average heat source per assembly is computed as

qv =
Q̇

170
=

1.482 × 109

170 × 0.294 × 0.294 × 0.9
= 0.11206 × 108 (4.13)

and therefore we set qheat = 0.11206 × 108. In this case we considered 170 fuel assemblies
neglecting the control rod assemblies.

4.3.3 Boundary and initial conditions

Boundary conditions

The boundary conditions are rather complex due to the reactor geometry. In order to change
the boundary conditions, it is necessary to edit the user part in the appropriate function. For
pressure and velocity boundary conditions one must edit the function
void MGSolNS::bc read(double xp[],double normal [],int bc flag[])
in the file src/MGSolverNS3D.C. We write

#define TOL 0.0001
void MGSolNS::bc_read(double xp[],double normal [],int bc_flag[]) {
#ifdef DIM2
#else
// xp[]=(xp,yp) bc_flag[u,v,p]=0-Dirichlet 1-Neumann

if(xp[1]<TOL) bc_flag[1]=0; // symmetry y
if(xp[0]<TOL) bc_flag[0]=0; // symmetry x
if(xp[2]<1.945+TOL && xp[2]>-TOL && xp[0]>TOL && xp[1]>TOL){

bc_flag[1]=0; bc_flag[0]=0;// core
}
if(xp[2]<1.945+TOL && xp[2]>-TOL && xp[0]>2.058-TOL && xp[1]>-TOL){

bc_flag[0]=0; bc_flag[1]=0;// edge
}
if(xp[2]<1.945+TOL && xp[2]>-TOL && xp[1]>2.205-TOL && xp[0]>-TOL){

bc_flag[0]=0; bc_flag[1]=0;// edge
}
if(xp[2]<1.945+TOL && xp[2]>1.945-TOL && xp[0]<1.47+TOL &&

xp[0]>1.176-TOL && xp[1]<0.735+TOL && xp[1]>0.441-TOL) {
bc_flag[0]=1; bc_flag[1]=1; bc_flag[2]=1;// control rod

72

CFD reactor simulation

Figure 4.9: Boundary condition for the variables T and u: Dirichlet (0) and Neumann (1).

}
if(xp[2]<TOL && xp[2]>-TOL && xp[0]<1.47+TOL && xp[0]>1.176-TOL

&& xp[1] < 0.735+TOL && xp[1] >0.441-TOL) {
bc_flag[0]=1; bc_flag[1]=1; bc_flag[2]=1;// control rod

}
if(xp[2]<1.945+TOL && xp[2]>1.945-TOL && xp[0]<1.47-TOL

&& xp[0]>1.176+TOL && xp[1]<0.735-TOL && xp[1]>0.441+TOL){
bc_flag[2]=0; // control rod

}
if(xp[2]<TOL && xp[2]>-TOL && xp[0]<1.47-TOL && xp[0]>1.176+TOL

73

CFD reactor simulation

Figure 4.10: Boundary condition for the variables v and w: Dirichlet (0) and Neumann (1).

&& xp[1]<0.735-TOL && xp[1]>0.441+TOL) {
bc_flag[2]=0; bc_flag[2]=0; // control rod

}
if(xp[2]<1.945+TOL && xp[2]>1.945-TOL && xp[0]<.735+TOL
&& xp[0]>0.441-TOL && xp[1]<1.617+0.00001 && xp[1]>1.323-0.0001){
bc_flag[0]=1; bc_flag[1]=1; bc_flag[2]=1; // control rod

}
if(xp[2]<TOL && xp[2]>-TOL && xp[0]<.735+TOL && xp[0]>0.441-TOL

&& xp[1]<1.617+TOL && xp[1]>1.323-TOL) {
bc_flag[0]=1; bc_flag[1]=1; bc_flag[2]=1; // control rod

74

CFD reactor simulation

}
if(xp[2]<1.945+TOL && xp[2]>1.945-TOL && xp[0]<.735-TOL

&& xp[0]>0.441+TOL && xp[1]<1.617-TOL && xp[1]>1.323+TOL){
bc_flag[2]=0; // control rod

}
if(xp[2]<TOL && xp[2]>-TOL && xp[0]<.735-TOL && xp[0]>0.441+TOL

&& xp[1]<1.617-TOL && xp[1]>1.323+TOL) {
bc_flag[2]=0; // control rod

}
#endif
return;

}

This file sets Dirichlet boundary condition over the inlet and symmetry conditions for x = 0
and y = 0. The inlet will have an assigned velocity profile in agreement with the initial
conditions. The outlet will have Neumann boundary conditions. Over the reactor walls we
assume slip boundary conditions. The node point (x, y, z) = (xp[0], xp[1], xp[2]) is used to
set all the necessary boundary conditions. The vector bc flag is the flag for the boundary
conditions on the x − y − z components of the velocity field. The boundary conditions are
rather complex since the reactor surface is not aligned with the axes. The boundary conditions
for velocity and temperature are shown in Figures 4.10-4.9. The flag of the component u is
shown on the bottom of Figure 4.9. The flags for v, w are shown on the top and bottom
of Figure 4.10. In the area corresponding to a 0 value Dirichlet boundary conditions are
enforced. The rest has Neumann boundary conditions.

For boundary conditions of the energy equation one must edit the function
void MGSolT::bc read(double xp[],double normal [],int bc flag[])
in the file src/MGSolverT3D.C. We write

void MGSolT::bc_read(double xp[],double normal [],int bc_flag[]) {
#ifdef DIM2
#else
// xp[]=(xp,yp) bc_flag[T]=0-Dirichlet 1-Neumann
// boundary conditions box
if (xp[0] < 0.0001) bc_flag[0]=0;
if (xp[0] > .1-0.0001) bc_flag[0]=0;
if (xp[1] < 0.0001) bc_flag[0]=0;
if (xp[1] > .1-0.0001) bc_flag[0]=0;
if (xp[2] < 0.0001) bc_flag[0]=0;
if (xp[2] > 1.-0.0001) bc_flag[0]=0;
#endif
return;

}

We set Dirichlet conditions at the inlet with temperature 400 ℃. Over all the rest of the
surface we set homogeneous boundary conditions, namely zero heat flux.

75

CFD reactor simulation

Initial conditions

Initial pressure and velocity solution. We want to set the inlet velocity 0.82m/s to be
perpendicular to the inlet surface with zero initial pressure. We set this velocity distribution
in the function
void MGSol::ic read(double xp[],double u value[])
inside the file src/MGSolverNS3D.C. The initial condition function is

#define TOL 0.0001
void MGSolNS::ic_read(double xp[],double u_value[]) {
#ifdef DIM2
#else
// xp[]=(xp,yp,zp) u_value[]=(u,v,w,p)
u_value[0] =0.;
u_value[1] =0.;
u_value[2]=0.;
u_value[3]=0.;

double val=0.82;
double dx=xp[0]; double dy=xp[1];
double mm=sqrt(dx*dx+dy*dy); dx /=mm; dy /=mm;

if((xp[2]<0.-TOL) && (xp[2]>-0.9+TOL) && (xp[1]>-2*xp[0]+5.733-0.001)){
u_value[0]=-dx*val; u_value[1]=-dy*val; u_value[2]=-0.05*val;

}
if((xp[2]<-TOL) && (xp[2]>-0.9+TOL) && (xp[1]>-0.5*xp[0]+2.793-TOL)){

u_value[0]=-dx*val; u_value[1]=-dy*val; u_value[2]=-0.05*val;
}
if((xp[2]<-TOL) && (xp[2]>-0.9+TOL) && (xp[1]>-1.*xp[0]+3.528-TOL)){
u_value[0]=-dx*val; u_value[1]=-dy*val; u_value[2]=-0.05*val;

}
if((xp[2]<-TOL) && (xp[2]>-0.9+TOL) && (xp[0]>2.646-TOL)){
u_value[0]=-dx*val; u_value[1]=-dy*val; u_value[2]=-0.05*val;

}
if((xp[2]<-TOL) && (xp[2]>-0.9+TOL) && (xp[1] > 2.499-TOL)){
u_value[0]=-dx*val; u_value[1]=-dy*val; u_value[2]=-0.05*val;

}

Initial Energy solution. We initialize the temperature to the inlet value of 400 ℃.
Inside the file MGSolverT3D.C in the function
void MGSolT::ic read(double xp[],double u value[])
we set

void MGSolNT::ic_read(double xp[],double u_value[]) {
#ifdef DIM2
#else
// xp[]=(xp,yp,zp) u_value[]=(u,v,w,p)
u_value[0] =400.;

In this case we set a uniform temperature of 400 ℃for t = 0.

76

CFD reactor simulation

4.4 Step 3: Analysis of the CFD solution

Figure 4.11: Full reactor and computational domain.

If we consider a Cartesian reference frame located at the center of the reactor the domain
is not symmetric with respect to the central axis since the reactor assembly power distribution
and the geometry itself are different along the x and y directions. However there is symmetry
with respect to the x and y planes and therefore a quarter domain can be used. The fields
over the reactor shown in 4.11 on the left are restricted to the domain shown on the right. In
the rest of this section we consider four Tests:
a) Test 1: core with no assembly flow exchange (closed core model);
b) Test 2: core with upper core assembly flow exchange (partially closed assembly model)
c) Test 3: core with assembly flow exchange (open core model);
d) Test 4: core with control assemblies (open core model with control assemblies);

In Test 1 we consider closed assemblies. This is taken into account by imposing the velocity
fields on the lateral surface of each assembly to be parallel to the z-direction. The u and v
components on those surfaces are set to zero. In Test 2 we consider closed assemblies on the
lower core and open along the upper core. As before this is taken into account setting to
zero the x and y-components of the velocity fields on the lateral surface of each assembly in
the core region with z < Hin where there are no assembly cross flows. The open core model
is considered in Test 3 where the velocity is imposed to be parallel to the z-axis only at the
lower core inlet. Finally in Test 4 we consider an open core model with a different geometry
where special control rod assemblies are inserted inside the core of the reactor.

4.4.1 Test 1. Closed core model

In this test we consider the reactor to be divided into four regions: the lower plenum, the
lower core, the upper core and the upper plenum. Let Ωc be the core region and Ωlp, Ωup be
the lower and the upper plenum respectively. In the lower and upper plenum we solve the
three-dimensional Navier-Stokes and energy system while in the core we use the appropriate
model described in Section 1.2.1. The distribution of power in the upper core is assumed as
in Figures 4.12-4.13. In this test we do not reproduce the two control assemblies, eight in the

77

CFD reactor simulation

Figure 4.12: Test 1. The core horizontal power distribution factor over the 170 assemblies.

Figure 4.13: Test 1. Core view of power distribution factors.

full reactor (see Test 4 for the complete case) and for this reason the total reactor power is
divided among 170 assemblies to have the average volumetric and linear assembly power of

q̇v =
Q̇

A
=

1.482 × 109

0.294 × 0.294 × 170
= 1.0086 × 108 W

m2

and

ql =
q̇v

Hout −Hin
=

1.0086 × 108

0.9
= 1.1206 × 108 W

m
. (4.14)

In the lower and upper core we take into account the closed assembly hypothesis by imposing
the velocity fields on the assembly lateral surface to be parallel to the z-direction and therefore
setting the u and v components on those surfaces to zero. The reactor regions of the core
and the plena must be connected with appropriate yielding conditions which can be defined

78

CFD reactor simulation

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

-0.5

0

0.5

1

v*
 (

m
/s

)

Figure 4.14: Test 1. The x (circle), y (square) and z (triangle) components of the vector v∗

field along a z-line centered at x = 1.323 and y = 1.2495.

0 0.5 1 1.5 2
z (m)

0

0.5

1

1.5

v
(m

/s
)

Figure 4.15: Test 1. The x (circle), y (square) and z (triangle) components of the velocity
vector v in the core along a z-line centered at x = 1.323 and y = 1.2495.

by conservation of mass and momentum equations. Since the mass flow rate at the core inlet
must match the mass flow rate at the top of the lower plenum and the same holds for the
core outlet section, then the z-component of the velocity field cannot be continuous but must
take a value based on the occupation factor ratio r. The occupation factor ratio, which is
assumed to be 0.5408, is the ratio between the coolant and the total assembly cross section
areas. Since the volume coolant rate is continuous in all the reactor we define a new vector
field

v∗ =

{
v on Ωlp ∪ Ωup

v
r on Ωc

(4.15)

79

CFD reactor simulation

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

400

420

440

460

480

500

T
 (

C
)

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

10

20

30

40

50

60

p
(k

Pa
)

Figure 4.16: Test 1. The temperature and pressure along a z-line at x = 1.323 and y = 1.2495.

0 0.5 1 1.5 2 2.5
s (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

v
(m

/s
)

Figure 4.17: Test 1. The x (circle), y (square) and z (triangle) components of the velocity
vector v in the lower plenum (diagonal line at z = −0.5).

which is continuous across all the reactor. The distribution of the temperature, pressure,
vector v∗ and velocity fields in the reactor are reported in the next paragraphs. In Figures
4.14-4.16 we see the components of the vector v∗, the velocity, the temperature and the
pressure fields along a central line parallel to the z-axis. The line is placed at coordinates
x = 1.323 and y = 1.2495. In Figure 4.14 the x-component of v∗ is shown as a line with circles
and the y and z components as lines with squares and triangles respectively. The velocity
field in the upper and lower plena matches the vector v∗ but in the core the velocity is scaled
by the occupation factor. The velocity field in the core is shown in Figure 4.15. Since the
core assembly is closed the w component of the velocity field is constant and the u and v
components are zero across all the core. The temperature and pressure on the same vertical
line along all the reactor are shown in Figure 4.16 on the left and on the right respectively.
Temperatures start to increase inside the upper core region where the fuel assemblies generate
heat and reach the maximum value at the core outlet. In the upper plenum the coolant with

80

CFD reactor simulation

0 0.5 1 1.5 2 2.5
s (m)

0

0.5

1

1.5

v
(m

/s
)

0 0.5 1 1.5 2 2.5
s (m)

0

0.5

1

1.5

v
(m

/s
)

Figure 4.18: Test 1. The x (circle), y (square) and z (triangle) components of the velocity
vector v in the upper plenum for the diagonal line on the right outlet (on the left) and on
the left outlet (on the right).

0 0.5 1 1.5 2 2.5
s (m)

481

482

483

484

485

486

487

T
 (

C
)

0 0.5 1 1.5 2 2.5
s (m)

482

483

484

485

486

487

488

489

T
 (

C
)

Figure 4.19: Test 1. Temperature in the upper plenum along the diagonal line on the right
outlet (on the left) and on the left outlet (on the right).

different temperatures mixes before exiting the reactor. The pressure decreases mainly inside
the lower and upper core regions due to the friction factor inside the sub-assemblies. The
pressure drop inside the core is estimated to be approximately 0.32 bar (see Section 4.1). The
pressure drops due to grids and spacers are ignored but they can easily be taken into account
as in [3]. In Figure 4.17 the x (circle), y (square) and z (triangle) components of the velocity
vector v in the lower plenum along the diagonal line at z = −0.5 is reported. The u and v
components decrease inside the lower plenum while the vertical component w increases. In
Figures 4.18 and 4.19 the velocity and the temperature fields are shown in the upper plenum
using the same symbols as before. In Figure 4.18 the velocity components are reported along
two lines on the upper plenum middle plane. These lines connect the central point to the
middle of the exit window close to the y-axis (left) and to the x-axis (right) respectively.

81

CFD reactor simulation

Temperature

Figure 4.20: Test 1. Overview of the temperature distribution T over the reactor

Figure 4.21: Test 1. Temperature distribution over the plane z = 1. (lower core).

In Figure 4.20 there is an overview of the temperature distribution T over the reactor. In
Figures 4.21-4.24 we have the temperature distribution over the planes z = 1. (lower core),
z = 1.5 (upper core), z = 2 (upper plenum inlet) and z = 2.5 (upper plenum middle plane).
We note that the maximum temperature over the upper plenum inlet is higher than the

82

CFD reactor simulation

Figure 4.22: Test 1. Temperature distribution over the plane z = 1.5 (upper core).

Figure 4.23: Test 1. Temperature distribution over the plane z = 2. (upper plenum inlet).

Figure 4.24: Test 1. Temperature distribution over the plane z = 2.5 (upper plenum middle
plane).

maximum temperature over the upper plenum middle plane.

83

CFD reactor simulation

Pressure

Figure 4.25: Test 1. Overview of the pressure distribution p over the reactor

Figure 4.26: Test 1. Pressure distribution over the plane z = −0.5 (lower plenum).

In Figure 4.25 there is an overview of the pressure distribution p over the reactor. In
Figures 4.26-4.29 we have the pressure distribution over the planes z = −0.5 (lower plenum),
z = 0.5 (lower core), z = 1.5 (upper core) and z = 2.5 (upper plenum). The reference pressure
is set to zero at the upper plenum outlet.

84

CFD reactor simulation

Figure 4.27: Test 1. Pressure distribution over the plane z = 0.5 (lower core).

Figure 4.28: Test 1. Pressure distribution over the plane z = 1. (upper core).

Figure 4.29: Test 1. Pressure distribution over the plane z = 2.5 (upper plenum).

85

CFD reactor simulation

Velocity field

Figure 4.30: Test 1. Overview of the w∗ component of the vector field v∗ over the reactor

Figure 4.31: Test 1. The velocity component w over the plane z = −0.5 (lower plenum).

86

CFD reactor simulation

Figure 4.32: Test 1. The velocity component w over the plane z = 0.5 (lower core).

Figure 4.33: Test 1. The velocity component w over the plane z = 1. (upper core).

Figure 4.34: Test 1. The velocity component w over the plane z = 2.5 (upper plenum).

87

CFD reactor simulation

In Figure 4.30 there is an overview of the w∗ component distribution of the vector field
v∗ over the reactor. In Figures 4.31-4.34 we show the w velocity component distribution over
the planes z = −0.5 (lower plenum), z = 0.5 (lower core), z = 1.5 (upper core) and z = 2.5
(upper plenum). We note that the w∗ component is continuous but the w component of the
velocity field scales with the occupation ratio r.

Figure 4.35: Test 1. Overview of the u∗ component of the vector field v∗ over the reactor

Figure 4.36: Test 1. The velocity component u over the plane z = −0.5 (lower plenum).

88

CFD reactor simulation

Figure 4.37: Test 1. The velocity component u over the plane z = 2.5 (upper plenum).

In Figure 4.35 there is an overview of the u∗ component distribution of the vector field v∗

over the reactor. In Figures 4.36-4.37 we show the u velocity component distribution over the
planes z = −0.5 (lower plenum) and z = 2.5 (upper plenum). We note that the u component
is zero across the core (closed assembly model).

Figure 4.38: Test 1. Overview of the v∗ component of the vector field v∗ over the reactor

In Figure 4.38 there is an overview of the v∗ component distribution of the vector field

89

CFD reactor simulation

Figure 4.39: Test 1. The velocity component v over the plane z = −0.5 (lower plenum).

Figure 4.40: Test 1. The velocity component v over the plane z = 2.5 (upper plenum).

v∗ over the reactor. In Figures 4.39-4.40 we show the v velocity component distribution over
the planes z = −0.5 (lower plenum) and z = 2.5 (upper plenum). As the u component, the v
component is zero across all the core.

90

CFD reactor simulation

4.4.2 Test 2. Partially closed core model

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

-0.5

0

0.5

1

v*
 (

m
/s

)

0 0.5 1 1.5 2
z (m)

0

0.5

1

1.5

v
(m

/s
)

Figure 4.41: Test 2. On the left the x (circle), y (square) and z (triangle) components of the
vector field v∗ along a z-line centered at x = 1.323 and y = 1.2495 along all the reactor. On
the left the same profile but for the velocity field v in the core region.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

400

420

440

460

480

500

T
 (

C
)

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

10

20

30

40

50

60

p
(k

Pa
)

Figure 4.42: Test 2. The temperature and pressure along a z-line centered at x = 1.323 and
y = 1.2495.

The reactor consists of four regions as in Test 1. In the lower and upper plenum we
solve the three-dimensional Navier-Stokes and energy system with a simple turbulence LES
model. In the upper core we use the same power distribution as in Test 1 but we assume
open assemblies. This is obtained by imposing the velocity field on the lateral surfaces of
the assemblies to be parallel to the z direction in the lower core region, while the complete
three-dimensional system is solved over the top part of the core. As in Test 1 the mass flow
rate at the inlet of the lower core and at the outlet of the upper core must match the lower and
the upper plenum mass flow rates respectively. For this reason we can define the continuous
vector field v∗ as in 4.16. In Figures 4.41-4.42 we see the components of the vector field v∗,
the core velocity field v, the temperature and the pressure along a central line parallel to the
z-axis. The line is located at coordinates x = 1.323 and y = 1.2495. In Figures 4.41 the x,

91

CFD reactor simulation

Figure 4.43: Test 2. The velocity field v in the lower plenum.

0 0.5 1 1.5 2 2.5
s (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

v
(m

/s
)

Figure 4.44: Test 2. The x (circle), y (square) and z (triangle) components of the velocity
vector v in the lower plenum (diagonal line at z = −0.5).

y and z components of v∗ are shown as lines with circles, squares and triangles, respectively.
The velocity field in the upper and lower plenum matches the vector v∗ but in the core region

92

CFD reactor simulation

Figure 4.45: Test 2. The vector field v∗ in the upper plenum.

the velocity is scaled by the occupation ratio. The core velocity field is shown on the right
of Figure 4.41. Since the lower core assembly is closed the w component of the velocity field
is constant and the u and v components are zero across the lower core region. In the upper
core region the velocity field becomes three-dimensional. The temperature and pressure in
the same vertical line along all the reactor are shown in Figure 4.42 on the left and on the
right, respectively. The temperature starts to increase inside the upper core region where
the fuel assemblies generate heat and reaches the maximum value at the outlet of the core.
In the upper plenum the coolant with different temperatures mixes before exiting from the
reactor. The pressure decreases mainly inside the bottom and upper core regions due to the
friction factor inside the sub-assembly. Again the pressure drop inside the core is estimated
to be approximately 0.32 bar. The velocity field in the lower plenum can be seen in Figures

93

CFD reactor simulation

0 0.5 1 1.5 2 2.5
z (m)

0

0.5

1

1.5

v
(m

/s
)

0 0.5 1 1.5 2 2.5
s (m)

0

0.5

1

1.5

v
(m

/s
)

Figure 4.46: Test 2. The x (circle), y (square) and z (triangle) components of the velocity
vector v in the upper plenum horizontal middle plane for the diagonal line to the right outlet
(on the left) and to the left outlet (on the right).

Figure 4.47: Test 2. The vector v∗ and temperature fields in various sections of the reactor.

4.43-4.44. In Figure 4.44 the results are plotted along the diagonal line at z = −0.5. In
Figures 4.45-4.48 we can see the vector v∗, the velocity and the temperature fields in the
upper plenum region. As in Test 1 the fields are reported along two lines on the upper

94

CFD reactor simulation

0 0.5 1 1.5 2 2.5
s (m)

482

483

484

485

486

T
 (

C
)

0 0.5 1 1.5 2 2.5
s (m)

482

483

484

485

486

487

488

T
 (

C
)

Figure 4.48: Test 2. Temperature in the upper plenum horizontal middle plane along the
diagonal line to the right outlet (on the left) and to the left outlet (on the right).

plenum middle plane. These lines connect the axis point to the middle of the exit window
close to the y-axis (left) and to the x-axis (right) respectively.

4.4.3 Test 3. Open core model

-1 0 1 2 3
z (m)

-0.5

0

0.5

v*

0 0.5 1 1.5
z (m)

0

0.5

1

1.5

v
(m

/s
)

Figure 4.49: Test 3. On the left the x (circle), y (square) and z (triangle) components of the
vector field v∗ along the vertical line at x = 1.323 and y = 1.2495 along all the reactor. On
the right the same profile but for the velocity field v in the core region.

In this test we assume open assemblies. The open assembly model is obtained by imposing
the velocity fields to be parallel to the z-direction only at the core inlet and by solving the
complete three-dimensional core system over the rest of the core. As in Test 1 and Test
2 we can define the continuous vector field v∗ as in 4.16. In Figures 4.49-4.50 we see the
components of the vector field v∗, the core velocity field v, the temperature and the pressure
along a line parallel to the z-axis and located at coordinates x = 1.323 and y = 1.2495. In
Figures 4.49 the x, y and z components of v∗ are shown as lines with circles, squares and
triangles respectively. The velocity field in the upper and lower plena matches the vector

95

CFD reactor simulation

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

400

420

440

460

480

500

T
 (

C
)

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

10

20

30

40

50

60

p
(k

Pa
)

Figure 4.50: Test 3. The temperature and pressure along the vertical line at x = 1.323 and
y = 1.2495.

v∗ but in the core the velocity is scaled by the occupation ratio. The core velocity field is
shown on the right of Figure 4.49. Since the core assembly is open the velocity field becomes
three-dimensional over all the core region. The temperature and pressure on the same vertical
line along all the reactor are shown in Figure 4.50 on the left and on the right respectively.
The temperature starts to increase inside the upper core region where the fuel assemblies
generate heat and reaches the maximum value at the outlet of the core. In the upper plenum
the coolant with different temperatures mixes before exiting from the reactor. The pressure
decreases mainly inside the bottom and top core regions due to the friction factor inside the
sub-assemblies.

Temperature and pressure

Figure 4.51: Test 3. Temperature distribution over the plane z = 1. (upper core inlet).

In Figures 4.51-4.54 we have the temperature distribution over the planes z = 1. (upper
core inlet), z = 1.5 (upper core middle plane), z = 2. (upper plenum inlet) and z = 2.5 (upper
plenum middle plane). We note that the maximum temperature over the upper plenum inlet
is higher than the maximum temperature over the upper plenum middle plane. In Figures

96

CFD reactor simulation

Figure 4.52: Test 3. Temperature distribution over the plane z = 1.5 (upper core middle
plane).

Figure 4.53: Test 3. Temperature distribution over the plane z = 2. (upper plenum inlet).

Figure 4.54: Test 3. Temperature distribution over the plane z = 2.5 (upper plenum middle
plane).

97

CFD reactor simulation

Figure 4.55: Test 3. Pressure distribution over the plane z = 0.5 (lower core).

Figure 4.56: Test 3. Pressure distribution over the plane z = 1. (upper core inlet).

Figure 4.57: Test 3. Pressure distribution over the plane z = 2.5 (upper plenum).

4.55-4.57 we have the pressure distribution over the planes z = 0.5 (lower core), z = 1 (upper
core inlet) and z = 2.5 (upper plenum). The reference pressure is set to zero outside the

98

CFD reactor simulation

reactor upper plenum.

Velocity

Figure 4.58: Test 3. The velocity component w over the plane z = −0.5 (lower plenum).

Figure 4.59: Test 3. The velocity component w over the plane z = 0.5 (lower core).

In Figures 4.58-4.61 we show the w-component distribution over the planes z = −0.5
(lower plenum), z = 0.5 (lower core), z = 1 (upper core inlet) and z = 2.5 (upper plenum).
We note that the w∗ component is continuous but the w component of the velocity field scales
with the occupation ratio r. In Figures 4.62-4.65 we show the u component distribution over
the planes z = −0.5 (lower plenum), z = 1 (upper core inlet), z = 1.5 (upper core) and
z = 2.5 (upper plenum). In Figures 4.66-4.68 we show the v component distribution over the
planes z = −0.5 (lower plenum), z = 1. (upper core inlet) and z = 1.5 (upper core). We
remark that the u and v components do not vanish across the core and the motion is fully
three-dimensional.

99

CFD reactor simulation

Figure 4.60: Test 3. The velocity component w over the plane z = 1. (upper core inlet).

Figure 4.61: Test 3. The velocity component w over the plane z = 2.5 (upper plenum).

Figure 4.62: Test 3. The velocity component u over the plane z = −0.5 (lower plenum).

100

CFD reactor simulation

Figure 4.63: Test 3. The velocity component u over the plane z = 1. (upper core inlet).

Figure 4.64: Test 3. The velocity component u over the plane z = 1.5 (upper core).

Figure 4.65: Test 3. The velocity component u over the plane z = 2.5 (upper plenum).

101

CFD reactor simulation

Figure 4.66: Test 3. The velocity component v over the plane z = −0.5 (lower plenum).

Figure 4.67: Test 3. The velocity component v over the plane z = 1. (upper core inlet).

Figure 4.68: Test 3. The velocity component v over the plane z = 1.5 (upper core).

102

CFD reactor simulation

4.4.4 Test 4. Open core model with control assemblies

Figure 4.69: Test 4. The core horizontal power distribution factor over the 170 assemblies.

Figure 4.70: Test 4. Core view of power distribution factors.

In this test we study the power distribution shown in Figures 4.69 and 4.70. In this case
there are eight control assemblies inside the core which are used to house special control rods
(see [1]). In the lower and upper plena we solve the three-dimensional Navier-Stokes and

103

CFD reactor simulation

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

-0.5

0

0.5

1

v*

0 0.5 1 1.5 2
z (m)

0

0.5

1

1.5

v
(m

/s
)

Figure 4.71: Test 4. On the left the x (circle), y (square) and z (triangle) components of the
vector v∗ along a vertical line at x = 1.323 and y = 1.2495. On the right the same profile but
for the velocity field in the core region.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
z (m)

400

420

440

460

480

500

T
 (

C
)

-1 0 1 2 3
z (m)

10

20

30

40

50

60

70

p
(k

Pa
)

Figure 4.72: Test 4. The temperature and pressure along a vertical line at x = 1.323 and
y = 1.2495.

energy system while in the core we use the usual appropriate model. The total core power is
divided over 162 assemblies to have the average specific and linear assembly heat power of

q̇v =
Q̇

A
=

1.482 × 109

0.294 × 0.294 × 162
= 1.0584 × 108 W

m2

and

ql =
q̇v

Hout −Hin
=

1.0086 × 108

0.9
= 1.176 × 108W

m
.

In this test we assume open assemblies. This enforces the velocity field to be parallel to the
z-direction only at the core inlet. The u and v velocity components are set to zero only at
the core inlet level on the assembly lateral surfaces. As in the other tests, the z component
of the velocity field cannot be continuous and therefore we define v∗ as

v∗ =

{
v on Ωlp ∪ Ωup

v
r on Ωc

(4.16)

104

CFD reactor simulation

Figure 4.73: Test 4. The w velocity component around the control assemblies.

Figure 4.74: Test 4. The velocity field at the upper plenum outlet.

with r = 0.5408. In Figures 4.71-4.72 we see the components of the vector v∗, velocity,

105

CFD reactor simulation

0 0.5 1 1.5 2 2.5
s (m)

0

0.5

1

1.5

v
(m

/s
)

0 0.5 1 1.5 2 2.5
s (m)

0

0.5

1

1.5

v
(m

/s
)

Figure 4.75: Test 4. The x (circle), y (square) and z (triangle) components of the velocity
vector v in the upper plenum for the diagonal line on the right outlet (on the left) and on
the left outlet (on the right).

0 0.5 1 1.5 2 2.5
s (m)

483

484

485

486

487

488

489

T
 (

C
)

0 0.5 1 1.5 2 2.5
s (m)

484

486

488

490

T
 (

C
)

Figure 4.76: Test 4. Temperature in the upper plenum along the diagonal line on the right
outlet (on the left) and on the left outlet (on the right).

temperature and pressure fields along a line parallel to the z-axis. The line is located at
coordinates x = 1.323 and y = 1.2495. In Figures 4.71 the x, y and z components of v∗

are shown as lines with circles, squares and triangles respectively. The velocity field in the
upper and lower plena matches the vector v∗ but in the core the velocity is scaled by the
occupation ratio. The velocity field in the core is shown on the right. Since the core assembly
is open none of the three velocity components vanishes. The temperature and pressure on
the same vertical line along all the reactor are shown in Figure 4.72 on the left and on the
right respectively. The temperature starts to increase inside the upper core region where
the fuel assemblies generate heat and reaches the maximum value at the outlet of the core.
In the upper plenum the coolant with different temperatures mixes before exiting from the
reactor. The pressure decreases mainly inside the lower and upper core regions due to the
friction factor inside the sub-assemblies. Figure 4.73 shows the w velocity component around
the control assemblies. In Figures 4.74-4.76 we can see the velocity and temperature in the

106

CFD reactor simulation

upper plenum. As in all the other tests the fields are reported along two lines on the upper
plenum middle plane which connect the axis point to the middle of the exit window close to
the y-axis (left) and to the x-axis (right) respectively.

Temperature

Figure 4.77: Test 4. Overview of the temperature T over the reactor

Figure 4.78: Test 4. Temperature distribution over the plane z = 1. (upper core inlet).

In Figure 4.77 there is an overview of the temperature distribution T over the reactor.
In Figures 4.78-4.81 we have the temperature distribution over the planes z = 1. (upper core
inlet), z = 1.5 (upper core), z = 2 (upper plenum inlet) and z = 2.5 (upper plenum). We

107

CFD reactor simulation

Figure 4.79: Test 4. Temperature distribution over the plane z = 1.5 (upper core).

Figure 4.80: Test 4. Temperature distribution over the plane z = 2. (upper plenum inlet).

Figure 4.81: Test 4. Temperature distribution over the plane z = 2.5 (upper plenum).

note that the maximum temperature over the upper plenum inlet is higher than the maximum
temperature over the upper plenum middle horizontal plane.

108

CFD reactor simulation

Pressure

Figure 4.82: Test 4. Overview of the pressure p over the reactor

Figure 4.83: Test 4. Pressure distribution over the plane z = −0.5 (lower plenum).

In Figure 4.82 there is an overview of the pressure distribution p over the reactor. In
Figures 4.83-4.86 we have the pressure distribution over the planes z = −0.5 (lower plenum),
z = 0.5 (lower core), z = 1 (upper core inlet) and z = 2.5 (upper plenum). The reference
pressure is set to zero outside the reactor upper plenum.

109

CFD reactor simulation

Figure 4.84: Test 4. Pressure distribution over the plane z = 0.5 (lower core).

Figure 4.85: Test 4. Pressure distribution over the plane z = 1. (upper core inlet).

Figure 4.86: Test 4. Pressure distribution over the plane z = 2.5 (upper plenum).

110

CFD reactor simulation

Velocity (w-component)

Figure 4.87: Test 4. Overview of the w∗ component of the vector v∗ (non-dimensional velocity)
over the reactor

Figure 4.88: Test 4. The velocity component w over the plane z = −0.5 (lower plenum).

In Figure 4.87 there is an overview of the w∗-component distribution of the vector field v∗

over the reactor. In Figures 4.88-4.91 we show the w-component distribution over the planes
z = −0.5 (lower plenum), z = 0.5 (lower core), z = 1 (upper core inlet) and z = 2.5 (upper

111

CFD reactor simulation

Figure 4.89: Test 4. The velocity component w over the plane z = 0.5 (lower core).

Figure 4.90: Test 4. The velocity component w over the plane z = 1. (upper core inlet).

Figure 4.91: Test 4. The velocity component w over the plane z = 2.5 (upper plenum).

plenum). We note that the w∗-component is continuous but the w-component of the velocity
field scales with the occupation ratio r.

112

CFD reactor simulation

Velocity (u-component)

Figure 4.92: Test 4. Overview of the u∗ component of the vector v∗ (non-dimensional velocity)
over the reactor

Figure 4.93: Test 4. The velocity component u over the plane z = −0.5 (lower plenum).

In Figure 4.92 there is an overview of the u∗-component distribution of the vector field v∗

over the reactor. In Figures 4.93-4.96 we show the u-component distribution over the planes
z = −0.5 (lower plenum), z = 1 (upper core inlet), z = 1.5 (upper core) and z = 2.5 (upper

113

CFD reactor simulation

Figure 4.94: Test 4. The velocity component u over the plane z = 1. (upper core inlet).

Figure 4.95: Test 4. The velocity component u over the plane z = 1.5 (upper core).

Figure 4.96: Test 4. The velocity component u over the plane z = 2.5 (upper plenum).

plenum). We note that the u-component does not vanish in the core.

114

CFD reactor simulation

Velocity (v-component)

Figure 4.97: Test 4. Overview of the velocity component v∗ over the reactor

Figure 4.98: Test 4. The velocity component v over the plane z = −0.5 (lower plenum).

In Figure 4.97 there is an overview of the v∗-component distribution of the vector field v∗

over the reactor. In Figures 4.98-4.101 we show the v-component distribution over the plane
z = −0.5 (lower plenum), z = 1. (upper core inlet), z = 1.5 (upper core) and z = 2.5 (upper
plenum). As the u-component, we note that the v-component is not zero in the core and the
motion is fully three-dimensional.

115

CFD reactor simulation

Figure 4.99: Test 4. The velocity component v over the plane z = 1. (upper core inlet).

Figure 4.100: Test 4. The velocity component v over the plane z = 1.5 (upper core).

Figure 4.101: Test 4. The velocity component v over the plane z = 2.5 (upper plenum).

116

Bibliography

[1] ELSY Work Program. European Lead-cooled SYstem (ELSY) Project. Technical report,
EURATOM, Management of Radioactive Waste, 2006. 103

[2] F.Bassenghi, G.Bornia, A. Cervone and S. Manservisi, The ENEA-CRESCO platform
for simulating liquid metal reactors, Technical report LIN-THRG 210, (2010) 23

[3] A. Cervone and S. Manservisi, A three-dimensional CFD program for the simulation of
the thermo-hydraulic behaviour of an open core liquid metal reactor, Technical report
lin-thrg 108, (2008) 15, 16, 17, 18, 33, 71, 81

[4] Handbook on Lead-Bismuth eutectic alloy and lead, properties, materials, compatibility,
thermalhydraulics and technologies, Chapter 2, OECD-AEN/NEA Report No. 6195,
ISBN 978-92-64-99002-9, 2007. 9, 27

[5] K.Litfin, Final report on the fuel bundle in KALLA. Karlsruhe Institute of Technology,
Karlsruhe, Germany, 2009. 23

[6] David C. Wilcox, Turbulence Modeling for CFD. DCWIndustries,Inc. LaCanada. Cali-
fornia, USA. 14

[7] Namane Mechitoua, Marc Zakiz, Code SATURNE : A Finite Volume Code For The
Computation Of Turbulent Incompressible Flow – Industrial Application. Frederic Ar-
chambeau, EDF R&D. 27

[8] Code SATURNE 1.3.2 documentation : Theory and Programmer’s Guide. 2008,
http://www.code-saturne.org. 27

[9] SALOME Documentation, CEA/DEN, EDF R&D, OPEN CASCADE, 2007-2008,
http://www.salome-platform.org. 27, 41

[10] FLUENT 2007, FLUENT 6.3 User’s Guide, FLUENT Inc., USA,
http://www.fluent.com. 27

[11] LASPACK (Linear Algebra Sparse Matrix Package):
http://www.mgnet.org/mgnet/Codes/laspack/html/laspack.html. 38

[12] LIBMESH package: http://libmesh.sourceforge.net/. 33

[13] PARAVIEW visualization software: http://www.paraview.org. 35, 47

[14] VTK library: http://www.vtk.org. 47

BIBLIOGRAPHY

[15] XDMF library: http://www.xdmf.org. 47

[16] HDF5 library: http://www.hdfgroup.org/HDF5/. 47

[17] PETSC library: http://www.mcs.anl.gov/petsc/petsc-as/. 38

118

