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Introduzione e sommario del lavoro 

 
 
Lo sviluppo di un modello computazionale per il calcolo neutronico di 

un sistema innovativo richiede la messa a punto di un algoritmo per la 
soluzione delle equazioni di bilancio in geometria pluridimensionale. Nel 
primo anno di questa attività di ricerca è stato sviluppato un modulo di 
calcolo per la soluzione delle equazioni della diffusione multigruppi in 
geometria cartesiana multidimensionale. Sono stati adottati diversi approcci 
numerici per studiarne l’efficienza e le prestazioni. In particolare, accanto ad 
un approccio alle differenze finite classico, da utilizzare principalmente 
come riferimento perché computazionalmente troppo costoso, si è voluto 
sviluppare sia un metodo nodale adatto a calcoli parametrici veloci ma 
accurati che un nuovo metodo agli elementi di contorno. 

 
Nel corso dell’attività di ricerca del secondo anno, il lavoro si è 

sviluppato allo scopo di conseguire principalmente due obiettivi. In una 
prima fase il modulo numerico sviluppato nell’anno precedente è stato 
sottoposto a verifiche mediante confronti con vari benchmark analitici e 
numerici. Ciò ha permesso di studiare i vari aspetti connessi alle limitazioni 
degli approcci computazionali adottati. E’ stata inoltre sviluppata un’analisi 
comparativa dei costi di calcolo. 

 
E’ noto che i metodi a maglia larga, quali quelli nodali e agli elementi 

di contorno, possono presentare diversi problemi di instabilità e di non 
convergenza quando applicati con discretizzazioni spaziali non consistenti. 
Si è pertanto voluto approfondire tale aspetto nel corso di questa parte 
dell’attività di ricerca. Questo lavoro ha permesso di arrivare ad interessanti 
valutazioni che hanno portato a un lavoro scientifico pubblicato e 
recentemente presentato alla conferenza annuale dell’American Nuclear 
Society. Questa analisi ha messo chiaramente in luce la necessità di una 
strutturazione consistente della discretizzazione spaziale per evitare 
problemi numerici che possono generare soluzioni non fisiche o produrre 
risultati insoddisfacenti. 

 
In un secondo campo di attività si è dato inizio allo studio della 

possibilità di estendere il modulo computazionale a problemi dipendenti dal 
tempo. Questo era stato fissato come uno degli obiettivi iniziali del lavoro. In 
questa fase si è studiata a fondo la possibilità di accoppiare un modulo di 
calcolo statico ad un modulo di cinetica puntiforme nell’ambito di una 
procedura quasi-statica, utilizzando il modulo statico per l’aggiornamento 
della forma della popolazione neutronica, in uno schema fattorizzato forma-
ampiezza. Questo lavoro è stato svolto anche nell’ambito di collaborazioni 
internazionali avviate con ricercatori sia dell’Université Libre de Bruxelles 
che dell’Ecole Polytechnique de Montréal. In questa fase del lavoro è stato 
messo a punto uno strumento informatico di accoppiamento fra il modulo di 
calcolo di forma e quello per la valutazione delle ampiezze. I risultati sono 
stati particolarmente promettenti e hanno portato alla pubblicazione di un 
lavoro su rivista scientifica. 

 



Il rapporto che segue comprende una prima parte in cui viene 
sommariamente descritto il modulo statico di neutronica pluridimensionale 
nelle sue varie articolazioni numeriche come sviluppato nella prima parte di 
questa attività. Successivamente viene discusso in dettaglio il problema 
della validazione e lo studio delle prestazioni. Sono presentati i risultati 
dell’analisi comparativa dei costi computazionali. Una parte consistente è 
dedicata allo studio del problema di stabilità e di convergenza degli algoritmi 
a maglia larga. Vengono illustrati gli aspetti connessi alla necessità di 
adottare una discretizzazione spaziale coerente, soprattutto quando venga 
scelto l’algoritmo a elementi di contorno. La parte finale del rapporto è 
dedicata allo studio dello schema quasistatico e alla possibilità di 
accoppiamento di un modulo statico con un modulo di cinetica. 

 
L’attività di ricerca che si sta ora avviando riguarda la messa a punto 

e la validazione di un modulo completo di dinamica. Questo prevede quindi 
lo sviluppo completo di uno schema quasi-statico e l’accoppiamento con un 
modulo di calcolo termoidraulico. Ciò permetterà la simulazione completa 
del comportamento dinamico di un sistema, tenendo conto in modo 
consistente degli effetti di controreazione termica. 

 
Quest’ultima attività è stata recentemente discussa in due incontri di 

lavoro che si sono svolti presso il Politecnico di Torino e presso la sede 
ENEA di Bologna. 

 
 
Torino, settembre 2010 
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Chapter 1

Boundary elements method for

neutron diffusion problems and

convergence

Contributors: Song Han, Sandra Dulla, Piero Ravetto (Politecnico di Torino)

1.1 Introduction

Boundary Elements Methods (BEM) applied for neutron diffusion problems has been investigated
for some time recently. However, this technique has some difficulties to display its excellent features
which are shown in other fields due to some special reasons of the diffusion model. Firstly, numerical
integrations on the boundary element has to be applied because they cannot normally be performed
analytically. A significant error can be introduced by such approach because the integrand is singular in
the domain. Secondly, volume integral of neutron external source term in the neutron diffusion bound-
ary integrated equations is hard to be evaluated accurately. This requires some proper approximation
on the spatial distribution. In particular for critical calculations in multi-group diffusion problems for
reactor systems, the fission source brings forward another problem once it is considered as a given
source in the iterative process. The advantage of being assimilated to an external source is that the
response matrix is calculated only once before the critical iteration process, while the drawback is the
problem of the volume integral and its spatial distribution.

1.2 Algorithm

Owing to these difficulties, an algorithm for the spatial treatment of the fission source as an ex-
ternal source is developed and investigated. It is based on the multi-group diffusion equations in
two-dimensional (2D) Cartesian geometry:

−∇Dg∇φg(r) + Σgrφg(r) =
G∑

g′=1,g′ 6=g

Σg
′→g
s φg′(r) +

1
k
χg

G∑

g′=1

νΣg
′

f φg′(r), g = 1, 2, . . . , G , (1.1)

where
Dg, diffusion coefficient of gth group;
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Σgr ≡ Σga + Σgs − Σg→g
′

s , removal cross section of gth group ;
Σg→g

′

s , scattering cross section from gth group to g′th group ;
νΣg

′

f , neutron number per fission times fission cross section of g′th group;
χg, neutron spectrum of gth group;
φg(r), neutron flux density of gth group;
sg(r), neutron independent source density of gth group;
keff, effective multiplication constant.

Equation (1.1) can be cast into matrix form as

(
∇2I + Q

)
φ(r) + q(r) = 0, (1.2)

where φ and q are G-dimensional vectors of the neutron group fluxes and group external sources,
respectively. At first, we need to define the removal cross-section operator, R, assuming there is no
neutron scattering from a lower energy group to a higher one, as:

R =



















−
Σ1
r

D1
0 . . . 0

Σ1→2
s

D2
−

Σ2
r

D2
. . . 0

...
...

. . .
...

Σ1→G
s

DG
Σ2→G
s

DG
. . . −

ΣGr
DG



















and the fission operator, F, as

F =



















χ1

D1
νΣ1
f

χ1

D1
νΣ2
f . . .

χ1

D1
νΣfG

χ2

D2
νΣ1
f

χ2

D2
νΣ2
f . . .

χ2

D2
νΣGf

...
...

. . .
...

χG

DG
νΣ1
f

χG

DG
νΣ2
f . . .

χG

DG
νΣGf



















. (1.3)

Then, Q and q can be defined according to different options for critical problems. In a previous model,
they are defined as:

Q = R +
1
k

F, q = 0. (1.4)

The advantage is that the fission operator is included in Q, so that the BEM algorithm is naturally
adopted on the fission source term. However, the drawback is that Q has to be updated at each step
of the iteration procedure because the multiplication constant, k, is included in the matrix.

As an alternative option, we define:

Q = R, q =
1
k

Fφ. (1.5)
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The advantage of this option is connected to the fact that the fission operator is excluded from Q, so
that the matrix is only calculated once before starting the iteration procedure, but the drawback is
that fission source term as an external source has to be evaluated by some special treatment which
might be complicated and not very efficient.

Table 1.1: Two options on the construction of Q and q for critical problems

Previous model New model

Model Q = R + 1

k
F; q = 0. Q = R; q = 1

k
Fφ.

Fission source approxi-
mation

Fission x-section is included in
RM so that BEM algorithm is
well adopted on fission source
term.

Fission x-section is excluded
from RM so that volume ap-
proximation has to be treated
specially.

Response Matrix (RM)
reconstruction

RM is reconstructed during it-
eration procedure so that a
large amount of CPU time is
need to calculate RM.

RM is constructed before iter-
ation procedure so that RM is
calculated once.

Actually, in the case of a critical problem, Eq. (1.2) becomes an eigenvalue equation,

Qσ = λσ,

where S is defined as the matrix which has the normalized eigenvectors σh as its columns. Thus, the
following equality is verified, by left multiplication by S−1, where S is defined as

S−1QS = Λ,

and Λ = diag[λ1, ..., λG]. Equation (??) becomes

∇2ψ(r) + Λψ(r) + η(r) = 0

where

φ(r) = Sψ(r),q(r) = Sη(r).

In the diagonal matrix, Λ = diag[λ1, ..., λG], λh are the G real and distinct eigenvalues of Q. Such
treatment allows us to have G uncoupled equations as separate single group equations. The corre-
sponding Green′s fundamental solutions of the following equations:

∇2ψ̃h(r, r′)− γ2
hψ̃h(r, r

′) + δ(r− r′) = 0, h = 1, 2, . . . , G,

are easily found out as:

ψ̃h(r, r′) =
1

2π
K0(γh|r− r′|) ,

together with their derivatives,

∂ψ̃h(r′Γ)
∂n′

=
γh
2π
K1(γh|r− r′|)

(r− r′) · n′

|r− r′|
, (1.6)

where the functions K0(x) and K1(x) are the modified Bessel functions of second the kind, 0th and
1st order. Here, γ2

h = −λ is always negative due to the special feature of Λ. Boundary integrated
equations can be generated, obtaining

c(r)ψh(r) +
∫

Γ

[
ψ̃h(r, r′Γ)
∂n′Γ

ψh(r′Γ)− ψ̃h(r, r′Γ)
∂ψh(r′Γ)
∂n′Γ

]dΓ′ =
∫

Ω

ψ̃h(r, r′)ηh(r′)dΩ′ . (1.7)
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By left multiplying Eq. (1.7) written in matrix form by S, and taking r on the boundary as r = rΓ,
one gets the multi-group boundary integrated equations that can be explicitly written down as:

1
2
c(rΓ)J+

g (rΓ) +
G∑

g′=1

∫

Γ

J̃+
gg′(rΓ, r

′
Γ)J+
g′ (r

′
Γ)dΓ′

= −
1
2
c(rΓ)J−g (rΓ) +

G∑

g′=1

∫

Γ

J̃−gg′(rΓ, r
′
Γ)J−g′ (r

′
Γ)dΓ′ +

1
4

G∑

g′=1

∫

Ω

Ψ̃gg′(rΓ, r
′)qg′(r′)dΩ′ ,

g = 1, 2, . . . , G , (1.8)

where

Ψ̃gg′(r, r′Γ) =
G∑

h=1

σghψ̃h(r, r′Γ)σ∗hg′ (1.9)

and

J±g (rΓ) =
1
4
φ(rΓ)∓

1
2
Dg

∂φ(rΓ)
∂nΓ

,

J̃±gg′(rΓ, r
′
Γ) =

1
4Dg′

Ψ̃(rΓ, r
′
Γ)±

1
2
∂Ψ̃(rΓ, r

′
Γ)

∂n′Γ
. (1.10)

Here, J±g (rΓ) takes the definition of neutron partial currents related to fluxes. Therefore, they
have the physical meaning of incoming or outgoing currents. Thus, in principle, Equation (1.8) can
be solved if the incoming currents J−g (rΓ) and the source term qg(r) are supposed to be given. The
outgoing currents, J+

g (rΓ), can be consequently determined on the boundary.
Till now the entire theoretical derivation of the boundary integrated equations has been illustrated.

In order to implement Equation (1.8) numerically, a special treatment on the volume integrals of the
source term has to be introduced and then the boundary has to be discretized following the BEM
algorithm. These numerical treatments play a key role in the BEM application on the neutron diffusion
critical problems as far as the behaviors of convergence and precision are concerned.

1.2.1 Reduction of the volume integrals of the source term

In principle, it is normally impossible to obtain the distribution of the neutron source containing
fission contribution in the domain analytically, because it is unavoidably determined by the spatial
flux distribution which is actually the unknown of our problem. However, one may firstly reduce the
integrals involving qg′(r′) in Equation (1.8) into a boundary integrated form,

∫

Ω

Ψ̃gg′(rΓ, r
′)qg′(r′)dΩ′ =−

G∑

h=1

σghσhg′

B2
h

{

c(rΓ)qg′(rΓ) +
∫

Ω

ψ̃h(rΓ, r
′)∇2qg′(r′)dΩ′

+
∫

Γ

[
ψ̃h(rΓ, r

′
Γ)

∂n′Γ
qg′(r′Γ)− ψ̃h(rΓ, r

′
Γ)
∂qg′(r′Γ)
∂n′Γ

]dΓ′
}

,

h = 1, 2, . . . , G. (1.11)

At the right-hand side of Equation (1.11), a new domain integral in which the integrand contains
the term, ∇2qg(r), is still to be handled. Fortunately, if ∇2qg′(r′) ≡ 0 is satisfied, which implies qg(r)
can be either spatially constant or 1st-order polynomials in the domain, the integral vanishes. Then,
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Equation (1.11) becomes a pure boundary integrated equation

∫

Ω

Ψ̃gg′(rΓ, r
′)qg′(r′)dΩ′ =−

G∑

h=1

σghσhg′

B2
h

{

c(rΓ)qg′(rΓ) +
∫

Γ

[
ψ̃h(rΓ, r

′
Γ)

∂n′Γ
qg′(r′Γ)− ψ̃h(rΓ, r

′
Γ)
∂qg′(r′Γ)
∂n′Γ

]

dΓ′
}

,

h = 1, 2, . . . , G, (1.12)

Similarly, if we set∇2q̂g′(r′) = ∇4qg′(r′) ≡ 0, the domain integral at the right-hand side of Equation
(1.11) can be further reduced to another boundary integrated form,

∫

Ω

ψ̃gg′(rΓ, r
′)∇2qg′(r′)dΩ′ = −

1
B2
h

{

c(rΓ)q̂g′(rΓ) +
∫

Γ

[
ψ̃h(rΓ, r

′
Γ)

∂n′Γ
q̂g′(r′Γ)− ψ̃h(rΓ, r

′
Γ)
∂q̂g′(r′Γ)
∂n′Γ

]

dΓ′
}

,

h = 1, 2, . . . , G,
(1.13)

Theoretically, the reduction can be continued further, which provides the possibility of higher order
approximations on the source term qg(r), if necessary.

1.2.2 Boundary discretization of the boundary integrated equations

In this section the discretization of the boundary leading to boundary elemented equations is described.
It is assumed that the domain is rectangular in 2D geometry. As shown in Figure (1.1), each side is
taken as orthogonal to either the x- or the y-axis. Thus, The boundary Γ can be divided into I straight
line segments each of length di. After denoting the two extremes, rΓ,i− 1

2

and rΓ,i+ 1

2

, and the middle
point, rΓ,i, of the ith boundary element, a local dimensionless coordinate τ is introduced to identify
each point r along Γi as

rΓi(τ) = rΓ,i +
τ

2
(rΓ,i+ 1

2

− rΓ,i− 1

2

), −1 ≤ τ ≤ 1. (1.14)

i
d

,1
r

,2
r

,Ir

, 1Ir

,ir
, 1/2ir

, 1/2ir

Figure 1.1: Boundary element discretization in 2D geometry.

6



Thus, it is assumed within each boundary element that






J±g [rΓi(τ)] = J±g,i

qg [rΓi(τ)] = qg,i

∂qg
∂nΓ

[rΓi(τ)] =
[
∂qg
∂nΓ

]

i

q̂g [rΓi(τ)] = q̂g,i

∂q̂g
∂nΓ

[rΓi(τ)] =
[
∂q̂g
∂nΓ

]

i

, rΓ ∈ Γi

The expressions denote that all terms above within each boundary element take constant values.
Therefore, the boundary integrals are approximated by finite sums as







∫

Γ

J̃±gg′(rΓ,i, r
′
Γ)J±g′ (r

′
Γ)dΓ′ ∼=

I∑

j=1

{

J±g′,j
dj
2

∫ 1

−1

J̃±gg′
[
rΓ,i, rΓj (τ)

]
dτ

}

∫

Γ

∂ψ̃h(rΓ, r
′
Γ)

∂n′Γ
qg′(r′Γ)dΓ′ ∼=

I∑

j=1

{

qg′,j
dj
2

∫ 1

−1

∂ψ̃h
∂n′Γ

[
rΓ,i, rΓj (τ)

]
dτ

}

∫

Γ

ψ̃h(rΓ, r
′
Γ)
∂qg′(r′Γ)
∂n′Γ

dΓ′ ∼=
I∑

j=1

{[
∂qg′

∂nΓ

]

j

dj
2

∫ 1

−1

ψ̃h
[
rΓ,i, rΓj (τ)

]
dτ

}

∫

Γ

∂ψ̃h(rΓ, r
′
Γ)

∂n′Γ
q̂g′(r′Γ)dΓ′ ∼=

I∑

j=1

{

q̂g′,j
dj
2

∫ 1

−1

∂ψ̃h
∂n′Γ

[
rΓ,i, rΓj (τ)

]
dτ

}

∫

Γ

ψ̃h(rΓ, r
′
Γ)
∂q̂g′(r′Γ)
∂n′Γ

dΓ′ ∼=
I∑

j=1

{[
∂q̂g′

∂nΓ

]

j

dj
2

∫ 1

−1

ψ̃h
[
rΓ,i, rΓj (τ)

]
dτ

}

(1.15)

The integrals herewith appearing involves the fundamental solutions of the Green′s function. Ow-
ing to no explicit expression available, they are obtained by application of a numerical integration
formula, namely:

∫ 1

−1

f(τ)dτ '
K∑

k=1

ωkf(τk), (1.16)

where ωk and τk are the quadrature weights and abscissas, respectively. A standard Gauss-Legendre

formula is used in the work.
At last, the problem is cast into the following algebraic matrix-response form:

G∑

g′=1

I∑

j=1

Mgg
′

ij J
+
g′,j =

G∑

g′=1

I∑

j=1

{

Ngg
′

ij J
−
g′,j +Ogg

′

ij qg′,j + P gg
′

ij

(
∂qg′

∂nΓ

)

j

+Qgg
′

ij q̂g′,j +Rgg
′

ij

(
∂q̂g′

∂nΓ

)

j

}

,

i = 1, 2, . . . , I, g = 1, 2, . . . , G,
(1.17)
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where

Mgg
′

ij =
c(r)

2
δijδgg′ +

dj
2

∫ 1

−1

J̃−gg′
[
rΓ,i, rΓj (τ)

]
dτ,

Ngg
′

ij = −
c(r)

2
δijδgg′ +

dj
2

∫ 1

−1

J̃+
gg′

[
rΓ,i, rΓj (τ)

]
dτ,

Ogg
′

ij = −
G∑

h=1

σghσ
∗
hg′

4B2
h

{

c(r)δij +
dj
2

∫ 1

−1

∂ψ̃h
∂n′Γ

[
rΓ,i, rΓj (τ)

]
dτ

}

,

P gg
′

ij =
G∑

h=1

σghσ
∗
hg′

4B2
h

dj
2

∫ 1

−1

ψ̃h
[
rΓ,i, rΓj (τ)

]
dτ,

Qgg
′

ij =
G∑

h=1

σghσ
∗
hg′

4B4
h

{

c(r)δij +
dj
2

∫ 1

−1

∂ψ̃h
∂n′Γ

[
rΓ,i, rΓj (τ)

]
dτ

}

,

Rgg
′

ij = −
G∑

h=1

σghσ
∗
hg′

4B4
h

dj
2

∫ 1

−1

ψ̃h
[
rΓ,i, rΓj (τ)

]
dτ.

(1.18)

1.2.3 The problem of the volume source distribution in rectangular domain

The reduction of the source volume integral gives us an approach to implement the BEM algorithm.
However, one has to collect some information to build up the approximated spatial distribution. Actu-
ally, pointwise partial currents on boundary elements are known from the latest power outer iteration.
By using the relationship between currents and fluxes, one can immediately generate the fission source
for the next neutron fission generation. Therefore, fitting to the fission source distribution by generated
pointwise source is a way to approximate the distribution which is necessary for Equation (1.12) or
(1.13). In this work, the domain of the core is subdivided into a number of rectangular nodes in a 2D
Cartesian coordinate system. In addition, it is necessary to construct a formula for the source term,
as well as the boundary integrals, under the application of the zero-th, first, second and third-order
approximations, in order to investigate the different corresponding behaviors. Thus, the derivation of
the fitting of the source volume distribution for four approximations is outlined in this section.

Zero-th order

The zero-order fitting qg(x, y) in the 2D (x,y) node n can be easily constructed as:

qg(x, y) ' q̄g,

where q̄g, obviously, is the average neutron source in the domain x ∈

[

−
A

2
,
A

2

]

, y ∈

[

−
B

2
,
B

2

]

. It

may be determined by the neutron conservation equation over the domain. Then, we have:

qg,i = q̄g,

[
∂qg
∂xΓ

]

i

=
[
∂qg
∂yΓ

]

i

= 0. (1.19)

First order

For first-order approximations qg(x, y) is defined as a linear function:

qg(x, y) = l0,0 + l1,0x+ l0,1y.
(1.20)
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Thus, we have:

qg,i = l0,0 + l1,0xi + l0,1yi,

[
∂qg
∂xΓ

]

i

= l1,0,

[
∂qg
∂yΓ

]

i

= l0,1. (1.21)

To determine l0,0, l1,0 and l0,1, by firstly integrating qg(x, y) over the domain and dividing by the
domain area, we have:

1
AB

∫ B
2

−B
2

∫ A
2

−A
2

qg(x, y)dxdy =
1
AB

∫ B
2

−B
2

∫ A
2

−A
2

(l0,0 + l1,0x+ l0,1y) dxdy = l0,0. (1.22)

The average neutron source q̄g is defined as above. Thus, the coefficient l0,0 may be eliminated from
Equation (1.21) as:

qg(x, y) = l1,0x+ l0,1y + q̄g. (1.23)

Consequently, l1,0 and l0,1 can be evaluated by using a standard least-square fitting approach. The
problem can be nicely written in a matrix form:

Ml = k, (1.24)

where

M =








x1 y1

x2 y2

...
...

xN yN







, l =

[
l1,0
l0,1

]

, k =








qg,1 − q̄g
qg,2 − q̄g

...
qg,N − q̄g







. (1.25)

The coordinates (xn, yn) identify the N locations at which the source takes the value of qg,n. By left
multiplication of Equation (1.24) by MT , the normal equations are obtained for the problem, as:

l = (MTM)−1MTk = Gk,

The system of equations above yields the value of l1,0 and l0,1. Actually, the I middle points rΓ,i

of the boundary elements on the boundary are selected.

Second and third order

For the second-order and the third-order fitting approach, the derivation follows in the same way. We
increase the order as:

qg(x, y) = l0,0 + l1,0x+ l0,1y + l2,0x
2 + l1,1xy + l0,2y

2. (1.26)

for the second order, and

qg(x, y) = l0,0 + l1,0x+ l0,1y + l2,0x
2 + l1,1xy + l0,2y

2 + l3,0x
3

+l2,1x2y + l1,2xy
2 + l0,3y

3.
(1.27)

for the third order. Correspondingly, the changes of parameters related to the boundary integrals,
as compared with those in formula (1.21), are listed in Table (1.2), and the matrix M as well as the
vector l are shown in Table (1.3).
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Table 1.2: Formula of the source nodal distribution with different order polynomials

Order qg,i

[
∂qg

∂xΓ

]

i

[
∂qg

∂yΓ

]

i

0 q̄g 0 0

1 l1,0xi + l0,1yi + q̄g l1,0 l0,1

2 l1,0xi+ l0,1yi+ l2,0x
2
i + l1,1xiyi+ l0,2y

2
i + q̄g−

l2,0A
2/12− l0,2B

2/12
l1,0 + 2l2,0xi + l1,1yi l0,1 + l1,1xi + 2l0,2yi

3 l1,0xi + l0,1yi + l2,0x
2
i + l1,1xiyi + l0,2y

2
i +

l3,0x
3
i + l2,1x

2
i yi + l1,2xiy

2
i + l0,3y

3
i + q̄g −

l2,0A
2/12− l0,2B

2/12

l1,0 +2l2,0xi+l1,1yi+3l3,0x
2
i +

2l2,1xiyi + l1,2y
2
i

l0,1 + l1,1xi+ 2l0,2yi+ l2,1x
2
i +

2l1,2xiyi + 3l0,3y
2
i

q̂g

[
∂q̂g

∂xΓ

]

i

[
∂q̂g

∂yΓ

]

i

0 0 0 0

1 0 0 0

2 2l2,0 + 2l0,2 0 0

3 2l2,0 +2l0,2 +6l3,0xi+2l2,1yi+2l1,2xi+6l0,3yi 6l3,0 + 2l1,2 2l2,1 + 6l0,3

Table 1.3: Column n of M and vector l with different orders

Order Size

Column n of M

1 2 [xn, yn]

2 5 [xn, yn, x
2
n −A

2/12, xnyn, y
2
n −B

2/12]

3 9 [xn, yn, x
2
n −A

2/12, xnyn, y
2
n −B

2/12, x3
n, x

2
nyn, xny

2
n, y

3
n]

Order Size

Vector l

1 2 [l1,0, l0,1]T

2 5 [l1,0, l0,1, l2,0, l1,1, l0,2]T

3 9 [l1,0, l0,1, l2,0, l1,1, l0,2, l3,0, l2,1, l1,2, l0,3]T

When the second and the third order polynomials are applied, the problem becomes more compli-
cated. As well known as Runge′s phenomenon, higher order polynomials lead to the instability of the
iterated procedure, because they can be highly oscillatory. Thus, the non-convergence is investigated
based on the variety of calculated examples. Higher order polynomials also allow us to introduce the
coordinate cross terms. They may play a role on the precision of the fitting. The influence from this
factor is explored as well.

1.2.4 Full core calculation

For the full core calculation, the system is subdivided into sub regions, numbered by n = 1, 2, . . . , N .
These regions are considered as nodes on which BEM will be based and a response matrix for each of
them is constructed. As well known, full core calculation is divided into two level of iterations, spatial
inner iteration and power outer iteration. In the sections above, the numerical solution of BEM in one
node is described. This procedure can be embedded into the global iteration for full core calculation.
The procedure, for instance for the third-order source approximation model, is described in algorithm
(1).
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Algorithm 1 Global iteration
calculate: N,O,P,Q,R,G
i← 0
initialize: ki, φi
repeat

i← i+ 1

refresh: qi, q̄i, li,
∂qi

∂xΓ

,
∂qi

∂yΓ
, q̂i,
∂q̂i

∂xΓ

,
∂q̂i

∂yΓ
repeat

calculate: J+

calculate: φ
until error(φ) ≤ εin
refresh : J

+

i
, φi

calculate: ki
until error(ki) ≤ εout

At the beginning, the response matrix elements are prepared before the iteration process starts
up, as well as the matrix, G, for least-square fitting. At the same time, initial guesses of fluxes
and multiplication constant are generated. Then, the power outer iteration begins with the neutron
source distribution approximation for each node. Given by source term, spatial inner iteration is
used to compute outgoing currents J+

i as well as the fluxes. It continues till the converged criterion,
εin, is satisfied by judging the error of fluxes of each nodes between two successive iteration steps.
New fluxes and multiplication constant are obtained for the next loop of power outer iteration. The
entire iteration is terminated by checking the relative difference between ki and ki−1 to satisfy another
converged criterion εout.

1.3 Evaluation of the Gauss-Legendre quadrature approach

for the integration of function K0(x)

In the BEM algorithm, integrals of modified Bessel functions of second kind (zero order), K0(x), is
impossible to be given an analytical solution. Gauss-Legendre Quadrature (GLQ) approach is applied
for practical calculations. Errors always exist when the GLQ approach is applied for calculating
integrals of K0(x). On the other hand, the error may be also caused by round-off errors of computers.
In this section, the contributions to error are estimated by practical computations, in order to give
conclusions on how and to what extent the errors will impact on the BEM algorithm.

1.3.1 GLQ approach on integral of K0(x)

The problem to be solved is normally the integration of K0(x) over domain [a, b]. Below the expression
of modified Bessel function of second kind, Kα, is given:

Kα(x) =
π

2
I−α(x)− Iα(x)

sin(απ)
=
π

2
iα+1H(1)

α (ix). (1.28)

In particular,

K0(x) ≈







− ln
x

2
− γ if 0 < x� 1,

√
π

2x
e−x if x�

1
4
.

(1.29)

K0 is regular if [a, b] does not approach the origin. In particular, it is singular at x = 0 so that the
integral over (0, b] has to be carefully studied, to establish if the GLQ approach can be applied properly
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for the integration of the singular function. For convenience, we only take the first formula which is
for 0 < x � 1 in Equation (1.29) to evaluate the integration because only this formula contains the

singular term ln
x

2
. It appears that ln

x

2
is a log-type function, so that the integral over (0, b] must be

convergent. Also, using the function expansion, one can write:

K0(x) = −
(

γ + ln
x

2

)

I0(x) +
x2

4
+

3x4

128
+ · · ·

= − ln
x

2
− γ − (γ + ln

x

2
)(I0(x)− 1) + (

x2

4
+

3x4

128
+ · · · ) (1.30)

only if the argument x is a sufficiently small value. It can be proved that K0(x) is the sum of a singular
part and a regular part by the following derivations:

lim
x→0

(

γ + ln
x

2

)

(I0(x)− 1) = lim
x→0

(

γ + ln
x

2

)(x2

4
+
x4

64
+

x6

2304
+ · · ·

)

≤ lim
x→0

(

γ + ln
x

2

)(x2 + x4 + x6 + · · ·
4

)

= lim
x→0

γ + ln x2
4
x2 − 4

= 0

and

lim
x→0

(
x2

4
+

3x4

128
+ · · ·

)

≤ lim
x→0

1
4

(
x2 + x4 + x6 + · · ·

)

= lim
x→0

x2

4(1− x2)
= 0.

Then, observing the special expression of K0(x) with a singular term and a regular term

K0(x) = − ln
x

2
− γ

︸ ︷︷ ︸

singular

+K0(x) + ln
x

2
+ γ

︸ ︷︷ ︸

regular

, (1.31)

we are able to perform the integration of K0(x) through evaluating the integral of the singular term
analytically and calculating the integral of the regular term by GLQ approach. The singular part is
integrated as:

∫ b

0

− ln
x

2
− γdx =

(

−x ln
x

2
− γx+ x

)∣
∣
∣

b

0
= b

(

− ln
b

2
+ 1− γ

)

. (1.32)

In fact, the regular term K0(x) + ln
x

2
+ γ converges to zero when x→ 0 which implies the regular

term is the difference of two singular terms, K0(x) and − ln
x

2
−γ. Noted that in order to avoid round-

off errors from computers due to the subtraction of two large numerical values from two singular terms,
− ln

x

2
− γ is selected to be the analytical term instead of − ln

x

2
.

1.3.2 Full numerical GLQ and semi-analytical GLQ approaches

Table (1.4) shows the values of K0(x), − ln
x

2
−γ and their differences over a large range, [10−50, 1050].

At first, it seems to grow slowly when x approaches the origin. Therefore, it is not affirmative that
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Table 1.4: K0(x), − ln
x

2
and their difference

x K0(x) − ln
x

2
− γ Difference

10−50 115.245 115.245 0.000
10−20 46.168 46.168 0.000
10−10 23.142 23.142 0.000
10−5 11.629 11.629 3.158 · 10−10

10−2 4.721 4.721 1.430 · 10−4

10−1 2.427 2.419 8.552 · 10−3

1 0.421 0.116 0.3051
101 1.778 · 10−5 −2.187 2.187
102 4.657 · 10−45 −4.489 4.489
105 0.000 −11.397 11.400

1010 0.000 −22.910 22.910
1050 0.000 −115.013 115.000

evaluating integrals by directly using GLQ will give enough accuracy. Secondly, the difference grows
up when x increases from 1 to much larger values. For both reasons, two approaches, which are
Full-Numerical GLQ (FNQ) and Semi-Analytical GLQ (SAQ), are evaluated and compared with each
other. FNQ approach is given by the formula

∫ b

0

K0(x)dx =
P∑

p=1

ωpK0(xp), (1.33)

and SAQ approach reduces to the formula

∫ b

0

K0(x)dx = b

(

− ln
b

2
+ 1− γ

)

+
P∑

p=1

ωp

[

K0(xp) + ln
xp
2

+ γ
]

. (1.34)

In three cases, integrations with different numbers of abscissas (called by An) over three different
domains, (0, 0.001], (0, 1] and (0, 1000], are calculated, as can be seen in Figure (1.2,1.3 and 1.4). At

last, with the purpose of comparison, the integral of − ln
x

2
− γ is also calculated, since it is almost

equivalent to K0(x) when x is less than 1 and there an analytical solution is possible.
Firstly, the integral of K0(x) over (0, 0.001] is calculated by FNQ and SAQ, and the integral of

− ln
x

2
− γ by FNQ. As shown in Figure (1.2), the value of the integral of − ln

x

2
− γ given by FNQ

is quite precise when the number of abscissas increases. So, it implies that FNQ is applicable for
integration of such log- type singular function in (0,0.001]. In addition, the value of the integral of

K0(x) and − ln
x

2
− γ are quite close in the domain. Therefore, one can say FNQ is applicable for the

integration of K0 as well. Compared with the results on the integration of − ln
x

2
− γ by SAQ, it gives

the same amount of error. Note that the reference value for K0 is from the value by SAQ with A2048

because the integrals by SAQ converge rapidly when the number of abscissas increases in this case.
Therefore, SAQ is superior to FNQ at least when b is small.

Secondly, the same integrals as in the first case are calculated by just changing the domain to (0, 1].

Figure (1.3) shows FNQ still gives the same level of estimation on − ln
x

2
− γ, as well as on K0(x), as

compared with the first case. However, SAQ illustrates lower precision and worse convergence than
in the first case. The reason is that larger differences appear when x become large, as can be seen in
Table (1.4).

13



2 4 8 16 32 64 128 256 512 1024
10

−15

10
−10

10
−5

10
0

Number of GLQ abscissas, Nγ

E
rr

or
of

in
te

gr
at

io
n

− log x

2
− γ FNQ SAQ

Figure 1.2: Error of integration over (0, 0.001]
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Figure 1.3: Error of integration over (0, 1]

At last, the right limit of the domain, b, becomes even larger, up to to 1000, in the third case. From
Figure (1.4), the integration of − ln

x

2
− γ over (0, 1000] by FNQ keeps the convergence and precision

as above. On the contrary, precision of the integral of K0(x) by both FNQ and SAQ deteriorates. SAQ
shows even worse convergence and precision than FNQ. The inaccuracy is even larger in the third case.
It implies that SAQ will be less suitable for the integration of K0 when the domain becomes large.
The reference value is also given by the average of the integrals by FNQ and SAQ with A2048.

1.3.3 Error from the FNQ approach over various integration domains

Clearly, increasing the number of abscissas will improve the accuracy of integration over the same
domain. However, we may also be interested in the integration over different domains with the same
number of abscissas because the domain over which integration is carried out changes when the global
iteration is performed with various number of nodes. The increase of the number of nodes, with a
corresponding reduction of the nodal size, will not only cause a higher accuracy from the perspective of
refining the meshes but also will lead to higher accuracy of the integral of K0(x), therefore improving
the precision of the response matrix as a by-product. At a first glance, it should be reasonable that the
integration by FNQ or SAQ will be more precise with a small node size. However, in some results of
practical calculations, such characteristics cannot be seen clearly. Therefore, it is necessary to evaluate
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Figure 1.4: Error of integration over (0, 1000]

the feature on such issue.
Based on this thought, the integrals of K0(x) over different domains are tested by DA approach.

Figure (1.5) shows the errors on integrals of K0(x) over (0, b] versus the right end of the domain, b,
by FNQ approach with A4, A32, A256, A2048. Curves indicate that the error of the integral evaluation
decreases by a rather low rate, while b decreases. For instance, the error with A256 decreases from
about the level of 10−5 to 10−6 while b decreases from 1 to 10−5. In addition, the curves of the error
illustrate nearly linear decreases. Unfortunately, by a simple refinement of the nodal size, it is hard to
reduce the error, while increasing the number of FNQ abscissas is rather efficient.
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Figure 1.5: Error on integrals of K0(x) over (0, b]

Let us go back to the final BEM matrix-response equations. For convenience, we write the model
as

MJ+ = NJ− + Oq (1.35)

The physical significance of matrix M, N and O is connected to the neutronic response of the
physical and geometrical characteristics for the corresponding node. That is why it is called response-
matrix. Therefore, only the physical and geometrical information is included in the matrix. From the
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Boundary Elements approach, they are formulated as:

Mgg
′

ij =
c(r)

2
δijδgg′ +

dj
2

∫ 1

−1

J̃−gg′
[
rΓ,i, rΓj (τ)

]
dτ. (1.36)

Ideally, there would not be any approximation if the integral on the RHS in Formula (1.36) is carried
out exactly. It that case it would truly account for the response to the physical and geometrical
characteristics. However, it is calculated practically by the FNQ approach introduced above and
therefore some error is generated. This error can be considered as a distortion of the physical and
geometrical characteristics, as the diffusion property, absorption or fission, of the corresponding node.
It will lead to the shift of neutron diffusion behavior such as the variation of flux, current and finally
the multiplication factor, k. Therefore, this shift is entirely different from the error caused by the
numerical discretization from like Finite-Difference and Coarse-Mesh approaches. In other words, the
error is inside the kernel of each node and it is hard to be reduced simply by refining the size of the
nodes.

According to such interpretation, in the results for practical calculations by BEM, this may justify
why k is not converging to the analytical reference value when the number of nodes increases.

1.3.4 Summary and conclusions

High accuracy of the FNQ approach on the integration of − ln
x

2
− γ proves that FNQ is suitable for

estimating the integrals of log type singular functions over (0, b]. By comparison of FNQ and SAQ
approaches, the latter is more efficient when the right limit of the domain, b, is small enough. The
convergence and precision of both approaches are similar when b becomes larger. Results do not show
any computational instability to worry about when the difference of K0(x) and − ln

x

2
−γ is numerically

calculated by computers.
Errors on the integration of K0(x) by the FNQ approach are studied with different sizes of the

domain. Results show a low rate of reduction which implies that increasing the number of nodes and
therefore decreasing their size is not an efficient way to cut the FNQ-caused error.

1.4 Numerical results on homogeneous model

Two homogeneous models, a 1D single group diffusion with external plane source and a 2D three
groups critical problem, were calculated in order to verify the performance of the BEM approach.
Their analytical solutions are easy to be obtained so that they can be considered as benchmarks.
Moreover, the comparison with other numerical approaches is also important in order to evaluate
the features of the BEM applied to neutron diffusion problems, so corresponding results from Finite-
different (FD) and Nodal method (NM) approaches are introduced. The identification of the different
schemes and parameters is given in Table (2.1).

1.4.1 1D one-group homogeneous model with external plane source

The purpose of the first model is to assess the BEM approach under the variation of the number of
GLQ within each element, the number of elements within each node and the number of nodes along
the x- and y-axis. Due to the absence of the fission source, there is no need for a volume source
approximation.

The system analysed is shown in Figure (1.6): a finite rectangular (aex = 10cm and h = 10cm)
homogeneous medium (one group constants: D = 0.16cm and Σa = 0.02cm−1) with an external
inward current (surface source), J+

in = 1 neutron per cm2 per second, located at x = 0. The boundary
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Table 1.5: Identification on different schemes and parameters

ID Denotation

FD Finite-difference approach
NM Nodal method approach
BEMn Boundary element method approach with nth-

order source approximation
Nα N nodes along each dimension
Nβ N boundary elements used for the discretiza-

tion of each edge in a node
Nγ N GLQ abscissas

conditions are zero current at y = 0 and y = h, and zero flux at x = aex. So, it can be considered as a
fully 1D problem along the x-axis.

in
J

out
J

ex
a

h

symmetry

symmetry

z
e

ro
flu

x

x

y

Figure 1.6: Configuration of 1D one group homogeneous model

The analytical solution for flux can be written as

φ(x) =
2J+
in(0) sinh aex−x

L

sinh aex
L

+ cosh aex
L

(1.37)

and the left edge outgoing partial current at x = aex is

J+
out =

DJ+(0)
L
(
sinh aex

L
+ cosh aex

L

) = 5.9281262 · 10−3, (1.38)

where L =
√

D/Σa is the diffusion length. Then, the outgoing current J+
out is the main quantity

investigated in this section.
Nγ is the basic factor dominating the accuracy of the boundary integrals. Thus, by increasing Nγ ,

a lower error on J+
out is obtained, as seen in Figure (2.1), although the efficiency decreases when Nγ

takes on very high values.
The influence of Nβ on the accuracy of J+

out can be seen in Figure (2.2). The decreasing rate of
error is almost constant throughout the full range of values. The fact that the curves from different
values of Nγ are very close implies that Nγ is less important for the accuracy of J+

out. Furthermore,
observing the profile of the outgoing current on the right surface in Figure (1.9), we realize that the
error is caused by the inaccurate values at the elements close to the corners connecting to the other
two surfaces. Such phenomena occur because the sharp angle of the corners do not allow to satisfy
the requirement of smooth surface needed for the BEM. Besides, constant approximation of currents
on boundary elements also does not take this fact into account sufficiently.
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Figure 1.7: Outgoing current versus number of GLQ abscissas.
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Figure 1.8: Error of outgoing current versus number of meshes in each element

All the cases above are performed just for a single node. Although it is not necessary to refer
to a multi-node problem for the calculation of homogeneous configurations without volume external
source, it is still highly helpful to evaluate the impact of multi-nodes in the BEM algorithm because
of the presence in this case of volume external sources. For this reason, we divide the rectangle into
several nodes with the same size (∆x = aex/Nα, ∆y = h/Nα). Figure (1.10) shows there is no
significant contribution for the improvement of the accuracy, although the smaller size of the nodes
leads to finer boundary elements with the benefit of a higher accuracy on the boundary integrals and
on currents. Such benefit contributes slightly at the left part of the second curve from Nβ = 16. Then,
the error grows very slowly as Nα becomes higher for both curves. The reason is that multi-nodes
introduce internal currents which contains approximation from the discretization. Thois explains why
multi-nodes is not always necessary for homogeneous systems using BEM.

Above all, the conclusion from the results of 1D homogeneous diffusion model is that high values
of Nγ and Nβ are positive but high values of Nα is do not affect accuracy significantly.

1.4.2 2D multi-group homogeneous model

In order to verify the performance of the BEM approach, critical calculations for a homogeneous
rectangular system with geometric dimensions 160 × 140cm2, with a fast reactor neutron spectrum
profile, as shown in Table (2.2), is now performed. It can be considered as a benchmark because
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Figure 1.10: Error of outgoing current versus number of nodes along aex, Nγ = 512

the analytical solution is available. From another point of view, the comparison with other numerical
approaches is also important to evaluate the features of the BEM applied for neutron diffusion problems,
so that corresponding results from Finite-Difference (FD) and Nodal Method (NM) approaches are
introduced as well. The calculation mainly illustrates the behavior of the multiplication factor k,
under the variation of different approaches and parameters. The model is used to evaluate the BEM
algorithm applied for critical calculations. These calculations introduce the fission source as a volume
external source in the iteration process. Therefore, the importance of the approximation of the source
term is evidenced.

Table 1.6: Material data for the homogeneous core

g Σgr νΣg
f

Dg Σg→2
s Σg→3

s χg

[10−2cm−1] [10−2cm−1] [cm] [10−2cm−1] [10−3cm−1]
1 3.0460 1.0760 2.11 2.5780 0.5164 0.7737
2 0.7060 0.3309 1.29 0.0000 4.7050 0.2193
3 0.6316 0.4366 0.86 0.0000 0.0000 0.0070
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Effects from number of GLQ abscissas and boundary elements

Firstly, it is necessary to investigate what aspects influence the accuracy of the boundary integrals and
then affect the response matrix which directly determines the accuracy of the applied BEM approach.
Of course, Nα and Nβ determine the size of each boundary element. However, apart from these factors,
Nγ is the key factor which gives the accuracy of boundary element integrations and then the response
matrix, as discussed above. For this reason, the effects of Nγ are investigated at the very beginning.

Figure (1.11) shows the variation of k and its error when Nγ changes from 16 to 512 in the case
of Nα = 2, Nβ = 4. It is evident that k shows a converging behavior. However, it does not converge
to the analytical value, kana, owing to the low value of Nα = 2 and Nβ = 4. The curves also show an
asymptotic trend, which means that a lower value for Nγ leads to an overestimation of k.
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Figure 1.11: k and the error versus number of GLQ abscissas, Nα = 2, Nβ = 4

Secondly, given the size of a node, the size of each element is determined by Nβ . This parameter
affects partly the accuracy of the boundary integration because the same Nγ gives different accuracies
over different sizes of the domain as shown in Section 1.3. However, if Nγ is quite large, such as 512,
this influence can be ignored if other aspects are significant. Therefore, cases with different Nβ under
high value of Nγ might give have an effect of boundary discretization and constant approximation of
partial currents on the boundary. Figure (1.12) shows k and its error versus Nβ from 4 to 64 with the
high value Nγ = 512. Curves simply converge to the asymptotes as well. The behavior is quite the
same as that in Figure (1.11). Similarly, it implies that a lower Nβ will give higher value of k.

Effects of the number of nodes

Theoretically, the BEM approach can converge to the analytical solution if there is no approximation on
the volume integrals of the source term. However, the fission source in the algorithm is approximated
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Figure 1.12: k and the error versus the number of meshes on each edge, Nα = 2, Nγ = 512

as finite order polynomials. Thus, Nα affects the accuracy even if the boundary integrals are highly
accurate. Different order approximations give various rates of convergence.

At first, we can ignore the inaccuracy from the two factors above when Nα is rather small and
Nβ and Nγ are quite large, because the error is dominated by the inaccuracy of the source term. As
well known in nodal methods, k is underestimated, because a finite number of nodes normally leads to
more leakage out of the boundary. This may explain the curves in Figure (1.12), as they converge to a
value lower than the analytical solution, kana. The value can be considered as the analytical solution
with a finite number of nodes.

By fixing Nβ = 32 and Nγ = 64 and increasing Nα the critical calculation approaches kana, as seen
in Table (1.7) and Figure (1.13). We also add the results from FD and NM approach for comparison.

Table 1.7: k − kana with different Nα. Nβ = 32, Nγ = 64

Nα BEM0 BEM1 BEM2 BEM3 NM FD

4 -7.950·10−02 -4.487·10−03 -1.546·10−03 -6.648·10−05 -1.675·10−04 8.371·10−03

8 -2.248·10−02 -2.967·10−04 -6.165·10−05 -4.818·10−06 -1.077·10−05 2.119·10−03

12 -1.031·10−02 -4.322·10−05 1.991·10−05 -4.448·10−06 -2.148·10−06 9.271·10−04

16 -5.919·10−03 1.602·10−06 3.191·10−05 -4.628·10−06 -6.882·10−07 5.151·10−04

20 -3.862·10−03 1.450·10−05 3.436·10−05 -4.808·10−06 -2.982·10−07 3.265·10−04

24 -2.737·10−03 1.947·10−05 3.481·10−05 -4.988·10−06 -1.482·10−07 2.262·10−04

28 -2.057·10−03 2.182·10−05 3.477·10−05 -5.178·10−06 -8.818·10−08 1.626·10−04

32 -1.614·10−03 2.311·10−05 3.460·10−05 — -5.818·10−08 1.209·10−04

36 -1.310·10−03 2.390·10−05 3.443·10−05 — -4.817·10−08 9.234·10−05

40 -1.092·10−03 2.443·10−05 3.427·10−05 — -3.818·10−08 7.187·10−05

At first, FD, NM and BEM0 show a monotonic behavior, while BEM1, BEM2 and BEM3 have a
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Figure 1.13: k and the error versus Nα. Nβ = 32, Nγ = 64

non-linear behavior. Certainly, curves for FD and NM converge to the dashed line of kana when Nα
becomes large. On the contrary, the relative errors of BEM1, BEM2 reach the degree of E − 5 and
E − 6 for BEM3. It is worth to notice that k of BEM1 and BEM2 goes across the dash line when
Nα becomes large. It seems to converge to some asymptotes, instead of kana. The phenomenon is
reasonable, because a large Nα significantly eliminates the error from the approximation on the source
to a level lower than that associated to the factors, Nβ and Nγ . The gaps between the asymptotes and
kana can be considered as a BEM algorithm error. As analyzed in Section 1.3, the error partly from
the BEM algorithm cannot vanish just by increasing Nα, so that gaps still exist when Nα becomes
larger. The reason why the behavior does not appear on the curve of BEM0 might be that the error
caused by the approximation of volume source term is still too large to be ignored. In addition, k of
BEM3 remains under the dash line, differently from BEM1 and BEM2.

From the point of view of different order approximation for the volume source term, BEM0 is the
worst, even compared with FD. BEM3 is the best at the rate of convergence at the beginning when Nα
is larger than 12. BEM2 performs even worse than BEM2 when the curves reach saturation, although
the former shows a higher rate of convergence.

Non-convergence behavior of BEM3

As mentioned above, Runge’s phenomenon might lead to the oscillation of higher ordered polynomials.
It actually occurs when BEM3 is used. Table (2.4) shows that k sometimes does not converge in the
iteration procedure with different choices of Nα and Nβ . A general conclusion is that the iteration
process becomes non-convergent when Nα is larger than Nβ .

Figure (1.14) shows the iteration procedure for k when it is non-converging. Larger differences
between Nα and Nβ lead to more serious disturbances, because large nodes with few boundary elements
might give incorrect approximations of the volume source terms by Least-Square fitting, as seen in
Figure (1.15). Comparing the case Nα = 8 and Nβ = 16 with the case Nα = 8 and Nβ = 4, it is
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Table 1.8: k with different Nα for BEM3. The figures underlined denote that the outer iterations are
terminated at the 50-th cycle.

Nβ
k

Nα = 2 Nα = 4 Nα = 8 Nα = 16 Nα = 32

4 0.900559 0.901057 1.337382 5.435735 21.128255
8 0.898827 0.901364 0.901389 1.895122 7.131109

16 0.898219 0.901391 0.901438 0.901434 2.788162
32 0.898003 0.901389 0.901448 0.901448 0.901448
64 0.897926 0.901385 0.901452 0.901452 0.901452

possible to observe that high oscillations produce large negative values on the second group neutron
source term in the node whose center is at x = 61.25cm,y = 35cm.
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Figure 1.14: Non-convergence behavior of k in iterations. Nγ=64

CPU times

There are two contributions on the CPU time when a full core calculation is carried out. The first
part is for the preparation of RM. It can be expressed by

Tpre ∝ nmat ·N
2
β ·Nγ (1.39)
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Figure 1.15: Least-Square fitting in the node whose center is at x = 61.25cm, y = 35cm. Nγ = 64

where nmat denotes the number of materials. Formula (1.39) implies that the CPU time consumed
by the preparation of RM is proportional to Nγ for integrations time: the dimension of the matrix
times N2

β because Nγ decides the time for each integration, N2
β decides the dimension of matrix, and

nmat decides the total number of matrices. As shown in Figure (1.16), Tpre increases linearly when
Nγ becomes larger with a fixed N2

β = 8 for BEM3, so that Equation (1.39) is well proved. Actually, it
is also satisfied by results from other BEMn and different choices of Nα and Nβ . On the other side,
Tpre is also well proportional to N2

β when Nγ = 16 is fixed, as seen in Figure (1.17). However, large
values of Nγ = 16 and N2

β lead to significant CPU times for the RM preparation. Non-homogeneous
systems involve an increase of nmat and, hence, time Tpre. At last, Tpre keeps constant if N2

β when Nγ
are fixed even N2

α is changing in Figure (1.18), because the same size and material of nodes does not
need any more calculations for RM.

The other part is for the iteration procedure. In particular, for critical calculations, the CPU time
of the iteration procedure is

Tit ≈ ncyc · tc (1.40)

where ncyc and tc denotes the total cycle number of inner iterations and CPU time consumed by each
cycle of inner iteration, respectively. tc can be written as

tc ∝ N
2
α ·N

2
β (1.41)

In practical cases, it is hard to evaluate ncyc, because they are influenced by the initial guess of the
multiplication constant, k, convergence criteria and acceleration methods. tc is proportional to the
number of RM related to N2

α times the square of dimension of RM related to N2
β . The chart in Figure
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Figure 1.17: CPU times consumed by different Nβ for BEM3. Nα = 2, Nγ = 16

(1.17) and (1.18) shows these relationships. From Figure (1.18) one sees that Tit is relatively non-linear
versus N2

α, because ncyc changes from 1876 to 5144 corresponding to Nα from 4 to 28.
Therefore, the total CUP time is the sum of Tpre and Tit. From Formula (1.39) - (1.41), it is clear

how Nα, Nβ and Nγ , which are certainly known before a calculation, act on the total CPU time. Thus,
it is advisable to choose them properly from the view point of saving CPU time.

At last, Tit of BEMn with Nβ = 16 and Nγ = 64 is shown in Figure (1.19), as compared with FD
and NM algorithms. From the errors on k, it is clear that BEM3 is the best and BEM0 is the worst.
BEM2 does not give a better accuracy than BEM1. In addition, all BEMn are not competitive with
NM but superior to FD.

1.4.3 Summary

From the calculation of a homogeneous core configuration, the factorsNα, Nβ andNγ show complicated
features on the accuracy of the k calculation and the corresponding CPU time. On one hand, Nα and
Nβ directly influence the accuracy of RM for each node and therefore dominate the CPU time for the
preparation of RM. One the other hand, Nβ and Nγ dominate the accuracy of the critical iteration in
multi-nodes calculations. Different order approximations of volume source term give various behaviors.
The higher the order, the higher accuracy but the more unstable the iteration process. Above all, BEM3

is superior to all other models.
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Chapter 2

Performance and convergence issue

of coarse-mesh methods for

diffusion calculations

Contributors: Song Han, Sandra Dulla, Piero Ravetto (Politecnico di Torino)

2.1 Introduction

Neutronic calculations for full-core applications are usually based on a coarse-mesh approach to the
solution of the multidimensional neutron balance equations. In particular, the nodal method is widely
used for full-core evaluation, due to its capability to deal with a geometrically large problem with
a reduced computational effort. However, it has been evidenced in past works that the peculiar
characteristics of coarse mesh methods can lead in some cases to problems in the convergence of the
calculations [1].

The objective of this work is the comparative analysis of coarse-mesh methods for the application
to multigroup diffusion [2], starting from standard schemes such as the nodal approach and moving to
more innovative options, namely the boundary element method, in order to study the computational
performances of these techniques and evidence the possible appearance of non-monotonic convergence
problems.

2.2 Coarse-mesh methods

The application of coarse-mesh methods for the solution of the balance equation for neutrons is based
on the subdivision of the geometrical domain (i.e. the reactor core) in computational volumes with
large dimensions with respect to the spatial scale of the model. This approach allows the reduction of
the number of unknowns to deal with in the solution of the neutronic problem; on the other side, some
hypotheses on the distribution of the neutron population inside the node have to be made. Material
characteristics inside the node are supposed homogeneous and the neutron source due to fission and
scattering is expanded in polynomials of a certain order, thus influencing the accuracy of the results
obtained.
In the nodal method, the balance equations for neutrons are integrated on the node volume, adopting a
polynomial expansion of the internal source, and obtaining numerical relations connecting the incoming
current entering the node volume to the corresponding exiting currents. Such relations can be recast
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into a response-matrix form, with relevant benefit for the subsequent solution process of the problem.
The quality of the results obtained is mainly influenced by the node dimension and by the order of
expansion of the source inside the node.

The boundary element method is based on the same coarse-mesh subdivision and response-matrix
formulation, but with a different treatment of the neutron balance equation [2, 3]. Quantities defined
on the node volume are projected on its boundary and relations for entering and exiting currents are
obtained by integration of the corresponding Green function of the problem. This approach allows to
reduce the dimensionality of the problem, moving from the node volume to its surface, and the obtained
relations can be recast into a response-matrix form . Various parameters influence the accuracy of the
numerical evaluation, besides the node dimension and the expansion order of the source as for the
nodal method, the number of points defined on the boundary and the algorithm adopted for the
integration of the Green function. In particular, this aspect is of crucial importance, since the singular
behavior of the diffusion kernel (e.g. Bessel function K0 in 2D) constitutes a challenging problem for
numerical quadrature. This integral may be approached in two ways, by a totally-numerical Gauss-
Legendre Quadrature (GLQ) and by a decomposition of the function K0 in a singular, log-type, portion
summed to the regular part of the function. The first one is integrated analytically, while the latter
by means of GLQ. Parametric tests show that the semi-analytical approach, even if very accurate on
small dimensions, can lack in accuracy for larger nodes, while the numerical approach has stable and
more predictable behavior, and is adopted for the following calculations.

The current work is focused on the analysis of the performances of coarse-mesh approaches to the
solution of multigroup diffusion problems, with a particular attention to the issue of the convergence
of such numerical schemes. In Table 2.1 the methods adopted in the calculations here presented are
summarized, together with the most relevant parameters playing a role in the definition of the accuracy
of BEM calculations.

Table 2.1: Identification of different numerical methods and characteristic parameters.

ID Denotation
FD Finite-Differences
NM Nodal Method
BEMn Boundary Element Method with an nth-order

source approximation
Nα number of nodes along each geometrical di-

mension
Nβ number of boundary elements used for the dis-

cretization of each edge in a node
Nγ number of Gauss-Legendre Quadrature (GLQ)

abscissae

2.3 Selected results

Calculations are performed for one-node and multi-node configurations, using one or three energy
groups, and considering system characteristics that allow to obtain an analytical solution to the prob-
lem, for benchmark purposes. A numerical solution with a finite-difference code is also provided, in
order to compare the performances of coarse-mesh and fine-mesh methods. The finite-difference results
can also serve as benchmark reference in most general cases, when no analytical solution is available.
As a first step, the case of a two-dimensional single node with 10 × 10 cm dimensions, in one group
diffusion, with reflective boundary conditions on two opposite edges and an incoming current on one
edge is considered. The corresponding outgoing current on the opposite edge is the object of the
analysis. The medium is considered as purely diffusive and material data are the following: D = 1.16
cm and L2 = 8 cm2. As a consequence no volume source is present and no approximation for its
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Figure 2.1: One-node calculation with BEM: outgoing current as a function of the number of GLQ
abscissae.

integration is introduced. In Fig. 2.1 BEM results are shown, illustrating the behavior of the error
on the outgoing current as a function of the number of abscissae adopted for the integral quadrature.
Two different discretizations of the boundary (plotted Nβ) are considered. It is clearly visible that
the refinement of the quadrature formula is providing little improvement to the quality of the results,
while the proper discretization of the boundary of the node can serve to reduce the numerical error.
The same comments apply to Fig. 2.2, where the same error is depicted as a function of the boundary
discretization mesh, for two values of the number of GLQ abscissae.

1 2 4 8 16 32 64
10

−4

10
−3

10
−2

10
−1

10
0

Number of elements along each edge, Nβ

E
rr

or
of

J
+ o
u

t

Nγ = 64 Nγ = 512

Figure 2.2: One-node calculation with BEM: error on the outgoing current as a function of the number
of boundary elements adopted.

A two-dimensional multi-node system, with 160 × 140 cm dimensions, in three-group diffusion is
then considered. Material data are given in Table 2.2. The analytical value of the multiplication
constant is keff = 0.901454. The domain is still homogeneous, to allow for analytical comparison,
and the keff of this multiplying structure is evaluated with FD, NM with a third-order expansion
within the node and BEM adopting different orders of expansion of the fission source inside the nodes.
Comparative results among the different numerical schemes are presented in Table 2.3, where non-
monotonic behaviors can be observed. One can see from Table 2.4 the trend of convergence of BEM
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Table 2.2: Material data for the homogeneous core

g Σgr νΣg
f

Dg Σg→2
s Σg→3

s χg

[cm−1] [cm−1] [cm] [cm−1] [cm−1]
1 0.03046 0.01076 2.11 0.02578 0.000516 0.7737
2 0.00706 0.00331 1.29 0.0000 0.004705 0.2193
3 0.00632 0.00437 0.86 0.0000 0.0000 0.0070

Table 2.3: Relative error on criticality eigenvalue with different schemes for the homogeneous, two-
dimensional system in three-group diffusion (Nβ = 32, Nγ = 64).

Nα BEM1 FD NM
4 4.97719e− 3 9.28692e− 3 1.85412e− 4
8 3.28824e− 4 2.35108e− 3 1.15813e− 5
16 2.14099e− 6 5.71732e− 4 3.99355e− 7
32 2.60024e− 5 1.34449e− 4 2.99516e− 7

for increasing orders of approximation. For high values of Nα and low Nβ no convergence is reached, at
least after 50 cycles. These problems were already observed in past analyses [1] and are characteristics
of the coarse-mesh approach. This fact may constitute a serious problem for realistic applications.
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Table 2.4: Values of keff adopting different Nα for BEM3. Missing values indicate non-converged
calculations after 50 iterations with values very far from the correct ones.

Nβ
k

Nα = 2 Nα = 4 Nα = 8 Nα = 16 Nα = 32
4 0.900559 0.901057 - - -
8 0.898827 0.901364 0.901389 - -

16 0.898219 0.901391 0.901438 0.901434 -
32 0.898003 0.901389 0.901448 0.901448 0.901448
64 0.897926 0.901385 0.901452 0.901452 0.901452

2.4 Conclusions

The performance of different coarse-mesh approaches is studied at various levels of discretization
and for different schemes, including the innovative boundary element technique, within the diffusion
model. Problems of convergence may appear in criticality calculations, affecting especially more finely
nodalized systems. These irregularities need further investigations to explain mathematical motivations
in order to assess the limits of coarse-mesh schemes. In particular, for BEM the interaction between
the spatial and boundary discretizations has to be clarified, to establish a consistent scheme for the
generation of the mesh.
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Chapter 3

Development of dynamic models for

neutron transport calculations

Contributors: Fabio Alcaro, Sandra Dulla, Piero Ravetto (Politecnico di Torino), Guy Marleau (Ecole
Polytechnique de Montréal), Ernest Mund (Université Libre de Bruxelles)

3.1 Introduction

For several applications in the physics of nuclear systems an accurate transport model may be needed
to adequately describe the evolution of the neutron population in perturbed conditions. This may be
the case especially when treating advanced systems, such as source-driven subcritical assemblies or
some of the Generation IV reactor configurations. In such systems, the use of diffusion models cannot
fully account for important physical phenomena.

A direct approach involves the inversion of the transport operator on a very short time scale,
thus implying a huge computational effort. To overcome this problem, the quasi-static method can
be very appropriate, allowing to obtain high-quality time-dependent predictions with a reasonable
computational effort.

In this work, a computational tool coupling the existing transport code DRAGON to a kinetic
module is described. The transport code is used for the generation of the shapes needed to evaluate
the kinetic parameters of the amplitude model, which is solved on a fast time scale. Two possible im-
plementations of the quasi-static scheme are considered: the Improved Quasi-static Method (IQM) and
the Predictor-Corrector Quasi-static Method (PCQM). Some test results are presented and discussed.

3.2 Quasi-static approaches to the time-dependent transport

problem

The time-dependent analysis of nuclear systems requires the solution of the balance equations for
neutrons and delayed neutron precursors:







1
v

∂ϕ

∂t
= L (t)ϕ(t) +

1
4π

I∑

i=1

χi(E)λiCi(r , t) + S(r , E,Ω, t),

χi(E)
4π

∂Ci
∂t

= −
χi(E)

4π
λiCi(r , t) + F di (t)ϕ(t), i = 1, 2, . . . , I,

(3.1)
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where ϕ(t) ≡ ϕ(r , E,Ω, t) and Ci ≡ Ci(r , t) denote the neutron angular flux and the delayed neutron
precursors concentrations, respectively. The general definitions of the operators appearing in Eqs.
(3.1) is well-known and can be found in ref. [1].

Since the complete solution of system (3.1) is highly computer-time consuming, various approximate
models for neutron kinetics have been developed during the past years [2, 3, 4, 5, 6]. In particular, the
quasi-static approach is based on the factorization of the neutron flux in the product of an amplitude
function A, only depending on time, and a shape function ψ, depending on the phase space variables
and, on a slower time scale, on time:

ϕ(r , E,Ω, t) = A(t)ψ(r , E,Ω; t). (3.2)

The introduction of the factorization formula (3.2) into the balance equations (3.1) leads to what is
referred to as shape model:







1
v

∂ψ

∂t
A+

1
v

dA

dt
ψ = L (t)ψ(t)A(t) +

1
4π

I∑

i=1

χi(E)λiCi(r , t) + S(r , E,Ω, t),

χi(E)
4π

∂Ci
∂t

= −
χi(E)

4π
λiCi(r , t) + F di (t)ψ(t)A(t), i = 1, 2, . . . , I.

(3.3)

The factorization introduced, Eq. (3.2), is general and thus non-unique. A normalization constraint is
introduced requiring the integral of the neutron density, weighted on the adjoint function associated
to a reference initial configuration, to be constant:

〈

ψ†0,
1
v
ψ

〉

:=
∫

dr

∫

dE

∮

dΩψ†0(r , E,Ω)
1
v
ψ(r , E,Ω, t) = γ0 ≡

〈

ψ†0,
1
v
ϕ0

〉

, (3.4)

where ϕ0 is the neutron flux in the initial configuration. This choice is convenient, since the following
step consists in the projection of the shape model over the same weighting function, taking advantage
of the simplification introduced by condition (3.4), obtaining the amplitude model:







dA

dt
=
ρ(t)− β̃(t)

Λ(t)
A(t) +

I∑

i=1

λic̃i(t) + S̃(t)

dc̃i
dt

= −λic̃i(t) +
β̃(t)
Λ(t)

A(t), i = 1, 2, . . . , I.

(3.5)

When the shape function is equal to the steady-state initial neutron flux ϕ0, the point kinetic equations
(PK) are derived.

Both the shape and amplitude models are non-linear, since the kinetics parameters in (3.5) depend
on the shape and the product of the two unknowns appears explicitly in (3.3). The Improved Quasi-
static Method (IQM) takes advantage of the different time scales appearing in the transient evolution.
First, the amplitude equations are solved over a large time interval ∆t, using a finer time mesh δt.
Then, the shape model is solved on the same ∆t, updating the kinetic parameters and iterating the
solution by modifying the derivative of the amplitude function. This allows to reduce the error on the
normalization condition (3.4), defined as:

εγ =
|γ − γ0|

γ0
, γ =

〈

ψ†0,
1
v
ψ

〉

. (3.6)

The block diagram for IQM is sketched in Fig. 3.1a, enlightening the presence of the normalization
iterations. The non-linearity of IQM can represent a relevant problem, since the convergence of the γ
parameter is a critical aspect. For this reason, a different approach to quasi-statics has been recently
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Figure 3.1: Block diagram of the quasi-static algorithms for a single ∆t computation. Bold-edged
boxes identify tasks demanded to the DRAGON code.

proposed to overcome this issue, the Predictor-Corrector Quasi-static Method (PCQM) [1, 7]. The
two time-scale approach to the time-dependent problem is still used, but the shape update procedure
is carried out first to obtain improved kinetic parameters. To do so, the neutron balance equations
(3.1) are solved on the coarse time step ∆t and the obtained predicted flux is renormalized in order
to obtain a shape fulfilling condition (3.4). The kinetic parameters evaluated with the new shape are
then used for the solution of Eqs. (3.5), to provide the power evolution on the fine mesh δt. The block
diagrams for PCQM is given in Fig. 3.1b.

3.3 Description of the work

The quasi-static algorithms described in the previous section require the solution of a time-dependent
balance equation for neutrons and precursors. Once the time derivative is approximated by a suitable
numerical scheme, both the neutron balance equations (3.1) and the shape model (3.3) can be recast
into a pseudo-stationary form. In this work, a first-order Implicit-Euler scheme is adopted. The shape
model for IQM can be written as:

[

L (t)−
1
v∆t
−

1
vA(t)

dA

dt

]

ψ(r , E,Ω, t) + Q̃(r , E,Ω, t) = 0, (3.7)

where the generalized source Q̃, including the contribution of precursors, takes the form:

Q̃(r , E,Ω, t) =
S(r , E,Ω, t)

A(t)
+
ψ(r , E,Ω, t−∆t)

v∆t
+
∑

i

λi
χi
4π

1
A(t)

·

[

Ci,0(r)e−λi∆t +
∫ t

t−∆t

dτF di (τ)ϕ(r , E,Ω, τ)e−λi
(
t−τ
)
]

, (3.8)

and a time-absorption term, depending on the value of the amplitude and its derivative, appears on
the left-hand-side of (3.7).
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In PCQM, the form of the pseudo-stationary equation is:
[

L (t)−
1
v∆t

+
∆t
2

∑

i

λiF
d
i (t)

]

ϕ̃(r , E,Ω, t) + Q̃(r , E,Ω, t) = 0, (3.9)

where the generalized source Q̃ is now defined as:

Q̃(r , E,Ω, t) = S(r , E,Ω, t) +
ψ(r , E,Ω, t−∆t)

v∆t

+
∑

i

λi

[

χi
4π
Ci,0(r)e−λi∆t +

∆t
2

F
d
i (t)ϕ̃(r , E,Ω, t)

]

. (3.10)

This feature of both approaches is well suited for the use of a steady-state solver instead of a full
dedicated time-dependent code. This possibility allows to use well-assessed and optimized flux solvers
to be coupled to an external module dealing with the quasi-static algorithms [8].

In this work, the open-source stand-alone steady-state neutron transport solver DRA-GON, devel-
oped by the École Polytechnique de Montréal, is used [9]. The code is coupled to a kinetic module,
implementing the quasi-static schemes described before, through an interface module which manages
the Input/Output data. Equations (3.7) and (3.9) are solved introducing virtual cross-sections and
sources in the transport solver. The quasi-static procedure is established through linked computational
modules.

3.4 Results

In this section some test calculations are presented in order to demonstrate the feasibility of the
procedure and the efficiency of the computational tool in the prediction of the reactor power evolution,
induced by source and cross-section perturbations inserted into the system. However, it must be
highlighted that, in order to obtain a fully consistent model with Eqs. (3.8) and (3.10), the steady-
state transport solver must accept angular-dependent sources and provide angular fluxes as output,
for the computation of the kinetic parameters. In this work, the DRAGON code solves the transport
equation using the collision probability method, with a 10−6 maximum tolerance on the error on the
eigenvalue and the flux. This module provides as output the scalar fluxes and accepts as input only
isotropic source distributions. These aspects constitute an inconsistency in the formulation of the
quasi-static algorithm and could introduce relevant errors when problems with a high anisotropy are
concerned (e.g. high-energy neutrons). However, the results in the current section show that for some
cases accurate power predictions can be obtained.
The dynamic code takes into account the presence of delayed neutrons. The choice of macro ∆t
and micro δt time-step sizes is provided by the user. In the following calculations δt = 10−6 s, while
parametric studies on the value of ∆t are performed. In Fig. 3.2, a picture of the two systems analyzed
is presented. They are adopted for one-group and three-group calculations, respectively.

As a preliminary assessment, a transient induced by doubling the external neutron source intensity
is considered for the system in Figure 3.2a. The transport problem being linear, the final value of
the power must be consequently doubled. Results are presented in Fig. 3.3. The presence of delayed
neutrons is taken into account by considering one family of precursors only, with β = 500 pcm and
λ = 100 s−1. This value of the decay constant, even if not realistic, allows to analyze whether the
code is treating correctly the presence of precursors and the consequent different time scales, adopting
a reduced transient duration. The convergence to the asymptotic solution can be clearly seen.

The study of test transients involving delayed neutron precursors points out a main difference
between IQM and PCQM: the presence of delayed neutrons requires to adapt the macro time-step along
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Figure 3.2: Representation of one quarter of the two reactor domains. The shaded areas identify
the regions where cross-section perturbations are introduced. The neutron transport calculations are
performed by imposing reflective boundary conditions on the dashed edges, while vacuum boundary
conditions are imposed on the solid edges.

the evolution of the transient to capture the change of the neutron shape. If an adaptive technique is
considered, it can be assumed that, once the spatial transient is extinguished, the following evolution up
to equilibrium with the delayed neutron precursors (last ∆t) could be well retraced by a PK calculation
with the last available kinetic parameters. In IQM this is automatically fulfilled, since the amplitude
calculation is performed before the shape update. On the other hand, PCQM requires as a first step
the solution of the flux problem, which can lead to significant errors when the last ∆t is too large.
To overcome this problem, the PCQM should be hybridized with a PK module that performs the
calculation along the last ∆t.

A second test calculation carried out for the system in Fig. 3.2a is a transient induced by a step-
wise fission cross section perturbation, leaving the reactor in a subcritical state. The same data for
precursors as in the previous case are assumed. Since after a transient the system settles on a new
steady-state, an asymptotic transport calculation is carried out to determine the exact value of the
flux and of the power at the end of the transient. It is clear from Figs. 3.4 and 3.5 that a correct
evaluation of the power evolution requires the analysis up to the time when delayed neutrons reach
equilibrium. Moreover, a full PK treatment is not sufficient to predict the power level at the end of
the transient, while both IQM and PCQM can provide accurate results.

In Fig. 3.6 a test calculation for the system in Fig. 3.2b is presented. For the sake of simplicity, no
delayed neutrons are considered, in order to reduce the time interval on which the analysis is carried
out. It can be observed that IQM requires a certain number of shape updates to provide a satisfactory
power prediction. This is due to the error introduced in the shape recomputation process. On the
other hand, PCQM can produce reliable results even considering just one macro time-step, provided
it is short enough. Nevertheless, in most calculations, the shape recomputation error introduced in
the IQM does not affect dramatically the power prediction, as it is usually of the order of the relative
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Figure 3.3: Doubling of the external source. The values in the table refer to the power levels at the end
of the transient, in the case without delayed neutrons. The macro time-steps and the micro time-steps
are uniform.

error on the power itself.
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Figure 3.4: Power evolution induced by a uniform fission cross-section perturbation (δνΣf/νΣf =
+10%). The initial multiplication factor is 0.96884. The reactivity insertion is ∆ρ = +574 pcm. The
graph is zoomed in the region [0, 5 ms], to evidence the prompt-jump.
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Figure 3.5: Power evolution for the full transient. The time interval is subdivided in uniform macro
time-steps, the same for both IQM and PCQM.
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Figure 3.6: Power evolution induced by a uniform capture cross-section perturbation (δΣc/Σc =
+20%). The initial multiplication factor is 0.97240. The reactivity insertion is ∆ρ = −371 pcm. The
view is zoomed in the region [0, 5 ms], where only the prompt neutron equilibrium is reached.
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3.5 Conclusions

A computational tool that can perform time-dependent neutronic transport calculations using a quasi-
static approach is developed. The DRAGON code is used as a transport solver to generate direct and
adjoint fluxes, to be used for the calculation of the kinetic parameters introduced into the amplitude
model. A coupling module provides the input information for the DRAGON code by suitable modifi-
cations of cross sections and sources as needed, in order to take into account the evolution of neutron
and precursor concentrations.

Test calculations show the feasibility of the procedure and the accuracy of the results, both for
the classical IQM and for the innovative PCQM. Some considerations are highlighted concerning the
possibility to hybridize the two algorithms when dealing with a long transient analysis. The results
presented show that both algorithms can reproduce the power level at the end of the transient rather
accurately: it must be reminded that PCQM is computationally more advantageous than IQM.

Further development should be directed towards handling angular distributions for sources and
fluxes. This step will lead to a fully consistent computational tool for transport nuclear reactor kinetics.
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