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in the core where all the sub-channel assembly details are summarized in
parametric coefficients. Advances in turbulence modeling are reported. In
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Introduction

The FEM-LCORE code is a 3D finite element code for the simulation of the
thermo-hydraulic behavior of liquid metal nuclear reactors. This report illus-
trates the advances introduced in the code in order to improve the modeling
of the behavior of liquid metals and to increase the computational perfor-
mance. The code solves the three-dimensional Navier-Stokes, energy and

Figure 1: Boundary of the computational three-dimensional reactor model

turbulence equations by means of the finite element method. Some turbu-
lence models are implemented and briefly discussed. A two-level approach is
considered for the thermo-hydraulic modeling of the core region, in order to
describe the phenomena occurring at fine and coarse grid scales. A porous
medium approach is adopted for the description of the assembly geometric
details.

In Chapter 1 we illustrate the set of equations adopted for the thermo-
hydraulic reactor modeling together with their finite element approximation.
Then we overview the structure of the code and show the implementation of
the various classes.

Chapter 2 is devoted to the description of different turbulence models
that have been implemented or considered for the implementation in the code,
together with their comparison with experimental data. In particular, various
forms of the κ -ω model are considered and a discussion of the appropriate
boundary conditions is also given. A comparison of some results obtained
with FEM-LCORE and with other commercial software for the κ -ω model
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is discussed. Then, a new turbulence four parametric κ - ε-κθ - εθ model is
proposed, whose implementation will be described in a future report. The
goal of this model is to reproduce in an accurate manner the behavior of low
Prandtl number fluids such as liquid metals without the use of wall functions.

In Chapter 3 we describe the advances obtained in the parallelization
of the code. The use of PETSc libraries for the implementation of paral-
lel matrices and vectors is illustrated and some tests for the study of the
computational performances are examined.

In Chapter 4 we show some examples of simulation of a flow blockage
event occurring in the core. A flow blockage can be extremely dangerous
as the convection heat transfer strongly diminishes and higher temperatures
are expected, closer to the melting point of the core structural and nuclear
materials. We consider the cases of both open and closed assemblies and
show the results for some different configurations. We compare the results
in terms of velocity profiles and peak temperatures.



Chapter 1

Thermo-hydraulic reactor
model and FEM-LCORE
implementation

In this chapter we recall the basic thermo-hydraulic reactor model and its
finite element discretization as proposed in [3]. A discussion of more advanced
and new features can be found in Chapters 2 and 3 where turbulence models
and parallelization are introduced.

This version of the code presents new features due to parallelization and
modularization of the program. The code is split into some independent
programs: the mesh data manager gencase, the core power data handler
datagen and the solver program femlcore. The gencase executable reads
a coarse basic mesh, generates the multigrid structure and also divides the
domain in a desired number of sub-regions that can be used for parallel com-
putation. With the appropriate mesh, the code can solve not only different
reactor models but also assembly and subassembly problems. In order to
use different libraries for basic algebraic operations with sparse matrices, an
interface defined by object-oriented classes for matrices and vectors is intro-
duced. In the next section we overview the basic structure of the code and
its modules.

1.1 Plenum region model

1.1.1 Navier-Stokes and energy equation

The FEM-LCORE is a three-dimensional thermo-hydraulic code that allows
to compute the velocity, pressure and temperature distributions in differ-
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Figure 1.1: Boundary of the computational three-dimensional lower plenum
reactor model

Figure 1.2: Boundary of the computational three-dimensional upper plenum
reactor model

ent regions of the reactor. In the regions below and above the core, the
coolant flows in an open three-dimensional domain and the coolant state can
be determined by using standard three-dimensional CFD models. On the
other hand, inside the core the geometry is complex and therefore the three-
dimensional flow should be approximated and modeled. In this section, we
summarize the equations implemented in the code that are adopted in the
modeling of the lower and upper plenum. In these regions the code solves
the three-dimensional mass, momentum and energy equations coupled with
turbulence models. In particular we may use turbulence models such as κ - ε,
κ -ω and LES.
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Let (v, p, T ) be the state of this system defined by the velocity, pressure
and temperature fields and Ω be the domain with boundary Γ. We assume
that the evolution of the system is described by the solution of the following
equations

∂ρ

∂t
+∇ · (ρv) = 0 , (1.1)

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · τ̄ + ρg , (1.2)

∂ρe

∂t
+∇ · (ρve) = Φ +∇ · q + Q̇ . (1.3)

The fluid can be considered incompressible, while the density is assumed
only to be slightly variable as a function of temperature, with a given law
ρ = ρ(T ). The tensor τ̄ is defined by

τ̄ = 2µD̄(v) , Dij(v) =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

) (1.4)

with i, j = x, y, z. In a similar way the tensor vv is defined as vvij = vi vj.
The heat flux, q, is given by Fourier’s law

q = −λ∇T ≡ −Cp
µ

Pr
∇T . (1.5)

The Reynolds Re, the laminar Prandtl Pr and the Péclet Pe numbers are
defined by

Re =
ρuD

µ
Pr =

Cpµ

λ
, Pe = RePr . (1.6)

In order to solve these equations it is also necessary to specify some state
law. We assume

ρ = a+ γT, e ≡ CvT +
v2

2
, (1.7)

where a,γ and Cv are constant. The quantity g denotes the gravity accelera-
tion vector, Cv is the volume specific heat and λ the heat conductivity. The
quantity Q̇ is the volume heat source and Φ the dissipative heat term. The
equations are completed with these data and appropriate boundary condi-
tions.

For high Reynolds numbers the numerical solution of the (1.1-1.3) cannot
be computed efficiently and therefore we need an approximate model. Math-
ematically, one may think of separating the velocity vector into a resolved-
scale field and a subgrid-scale field. The resolved part of the field represents
the average flow, while the subgrid part of the velocity represents the ”small
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scales”, whose effect on the resolved field is included through the subgrid-
scale model. This decomposition results in

v = v̄ + v̄′ , (1.8)

where v̄ is the resolved-scale field and v̄′ is the subgrid-scale field.
The filtered equations are developed from the incompressible Navier-

Stokes equations of motion. By substituting v = v̄ + v̄′ and p = p̄ + p′

in the decomposition and then filtering the resulting equation we write the
equations of motion for the average fields v̄ and p̄ as

∂ρ v̄

∂t
+∇ · (ρv̄v̄) = −∇p̄+∇ · τ̄ + ρḡ . (1.9)

We have assumed that the filtering operation and the differentiation opera-
tion commute, which is not generally the case but it may be thought that
the errors associated with this assumption are usually small. The extra term
∂τij/∂xj arises from the non-linear advection terms and hence

τij = v̄iv̄j − vivj . (1.10)

Similar equations can be derived for the subgrid-scale field. Subgrid-scale
turbulence models usually employ the Boussinesq hypothesis, and seek to
calculate the deviatoric part of stress using

τij −
1

3
τkkδij = −2µtS̄ij , (1.11)

where S̄ij is the rate-of-strain tensor for the resolved scale and µt is the
subgrid-scale turbulent viscosity. Substituting into the filtered Navier-Stokes
equations, we then have

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · [(ν + νt)∇v] + ρg , (1.12)

where we have used the incompressibility constraint to simplify the equation
and the pressure is now modified to include the trace term τkkδij/3. In the
rest of this report we drop the average notation v̄ and p̄ to use the standard
notation v and p. With this notation these approximation models result in
the same equations as (1.1-1.2) for the average fields (ū, p̄, T̄ ) and a modified
viscous stress tensor as

τ̄ = 2(µ+ ρνt)D̄(ū) , (1.13)

with a modified heat flux q as

q = −Cp(
µ

Pr
+
ρνt
Prt

)∇T . (1.14)
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The functions νt and Prt are called turbulent viscosity and turbulent Prandtl
numbers and must be computed by solving other transport equations, re-
ferred to as turbulence models. We will postpone the discussion of various
turbulence models in Chapter 2. For many fluids Prt is assumed to be con-
stant.

1.1.2 FEM-LCORE implementation

In the implementation of the code we focus only on liquid lead as coolant.
Below we report the state equations that are implemented in the code for
liquid lead coolant [7, 10]. These state equations can be modified easily in the
configuration files of the code. The lead density is assumed to be a function
of temperature as

ρ = (11367− 1.1944× T )
Kg

m3
(1.15)

for lead in the range 600K < T < 1700K. The following correlation has
been used for the viscosity µ

µ = 4.55× 10−04 e(1069/T ) Pa · s , (1.16)

for lead in the range 600K < T < 1500K. For the mean coefficient of thermal
expansion (AISI 316L) we assume

αv = 14.77×10−6 +12.20−9(T −273.16)+12.18−12(T −273.16)2 m
3

K
. (1.17)

The lead thermal conductivity κ is

κ = 15.8 + 108× 10−4 (T − 600.4)
W

m ·K
. (1.18)

The constant pressure specific heat capacity for lead is assumed not to depend
on temperature, with a value of

Cp = 147.3
J

Kg ·K
. (1.19)

The equations (1.1-1.3) with the introduction of the turbulent viscosity are
implemented in the code. We use the finite element method and therefore
the variational form of the Navier-Stokes system. In the rest of the pa-
per we denote the spaces of all possible solutions for pressure, velocity and
temperature with P (Ω), V(Ω) and H(Ω), respectively. The pressure space
P (Ω), the velocity space V(Ω) and the energy space H(Ω) are in general
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infinite-dimensional spaces. If the spaces P (Ω), V(Ω) and H(Ω) are finite-
dimensional then the solution (v, p, T ) will be denoted by (vh, ph, Th) and
the corresponding spaces by Ph(Ω), Vh(Ω) and Hh(Ω). In order to solve
the pressure, velocity and energy fields we use the finite-dimensional space
of piecewise-linear polynomials for Ph(Ω) and the finite space of piecewise-
quadratic polynomials for Vh(Ω) and Hh(Ω). In this report the equations
are always discretized by Lagrangian finite element families with parameter
h.

The finite element Navier-Stokes system becomes∫
Ω

β
∂ρ

∂t
ψhdx +

∫
Ω

∇ · (ρvh)ψhdx = 0 ∀ψh ∈ Ph(Ω) , (1.20)

∫
Ω

∂ ρvh
∂t

· φh dx +

∫
Ω

(∇ · ρvhvh) · φh dx = ∀φh ∈ Vh(Ω)∫
Ω

ph∇ · φh dx−
∫

Ω

τ̄h : ∇φh dx +

∫
Ω

ρg · φh dx− (1.21)∫
Γ

(ph~n− τ̄h · ~n) · φh ds ,

∫
Ω

∂ρCp Th
∂t

ϕh dx +

∫
Ω

∇ · (ρvhCp Th)ϕh dx = ∀ϕh ∈ Hh(Ω) (1.22)∫
Ω

Φh ϕh dx−
∫

Ω

qh · ∇ϕh dx +

∫
Ω

Q̇h ϕh dx +

∫
Γ

k ∇Th · ~nϕh dx .

The constant β is set to zero for incompressible fluid. Since the solution
spaces are finite-dimensional we can consider the basis functions {ψh(i)}i,
{φh(i)}i and {ϕh(i)}i for Ph(Ω), Vh(Ω) and Hh(Ω), respectively. Therefore
the finite element problem (1.20-1.22) yields a system of equations which has
one equation for each FEM basis element. For a Newtonian fluid the viscous
stress is given by

τhij = 2(µ+ ρ νt)Shij , (1.23)

where the viscous strain-rate tensor is defined by

Shij ≡
1

2

(
∂vhi
∂xj

+
∂vhj
∂xi

)
− 1

3

∂vhk
∂xk

δij . (1.24)

The heat flux becomes

qh =≡ −Cp(
µ

Pr
+
ρνt
Prt

)∇Th . (1.25)

The Navier-Stokes solver is implemented in the class MGSolverNS which
consists of the header file MGSolverNS.h and class file MGSolverNS3D.C. The
parameters can be set in the file
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/config/class/MGSNSconf.h .

The physical properties can be define inside this file. All the class con-
figuration files are under a unique directory /config/class/. The energy
solver is implemented in the class MGSolverT which is defined in the files
MGSolverT3D.C and MGSolverT.h. The parameters can be set in the file

/config/class/MGSTconf.h .

In this version of the code each equation class has one one source file where
both two-dimensional and three-dimensional equations are written in a di-
mension independent manner.

1.2 Reactor core region model

1.2.1 Two-level finite element model

Figure 1.3: Boundary of the computational three-dimensional core reactor
model and core power distribution

In the core region the geometry is so complex and detailed that a direct
simulation with the purpose of computing the velocity, pressure and temper-
ature distributions is not possible and an approximation is in order. This
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approximation is presented in [4] and in this section we briefly recall the
equations.

Let us consider a two level solution scheme where all the equations are
formulated both at a fine and at a coarse level of space discretization. At the
fine level the fluid motion is exactly resolved by the pressure, velocity and
temperature solution fields. We denote by {ψh(i)}i, {φh(i)}i and {ϕh(i)}i the
basis functions for Ph(Ω), Vh(Ω) and Hh(Ω). Different from the fine level is
the coarse level which takes into account only large geometrical structures
and solves only for average fields. The equations for these average fields
(coarse level) should take into account the fine level by using information
from the finer grid through level transfer operators. The definition of these
transfer operators is still an open problem. We use the hat label for all the
quantities at the coarse level. In particular we denote the solution at the
coarse level by (p̂h, v̂h, T̂h) and the solution spaces by P̂h(Ω), V̂h(Ω) and

Ĥh(Ω) respectively.
Let (ph,vh) ∈ Ph(Ω) ×Vh(Ω) be the solution of the problem at the fine

level obtained by solving the Navier-Stokes system written as∫
Ω

(
∂ρ

∂t
+∇ · (ρv̂))ψh(k) dx = 0 . (1.26)

Now let (p̂h, v̂h) be the solution at the coarse level (fuel assembly level)

that satisfies the Navier-Stokes equation with test functions φ̂h. These test
functions are large enough to describe only the assembly details and satisfy
the boundary conditions at the coarse level. Therefore if we substitute the
coarse solution (p̂h, v̂h) the (1.1) becomes [4]∫

Ω

(
∂ρ

∂t
+∇ · (ρv̂h)) ψ̂h(k) dx =

∫
Ω

Rc
ef (v̂h,vh) dx , (1.27)

with the total mass fine-coarse transfer operator Rc
ef defined by

Rc
ef (v̂h,vh) =

∫
Ω

∇ · ρ(v̂h − v) ψ̂h(k) dx . (1.28)

In a similar way let (ph,vh) ∈ Ph(Ω) × Vh(Ω) be the solution of the
problem at the fine level obtained by solving the momentum equation with
the test basis {φh(i)}i in Vh(Ω). Now consider the solution (p̂h, v̂h) at the
coarse level (fuel assembly level). It is clear that (p̂h, v̂h) is different from

(ph,vh) and should satisfy the Navier-Stokes equation with test functions φ̂h
large enough to describe only the assembly details and satisfy the boundary
conditions at the coarse level. Therefore if we substitute the coarse solution
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(p̂h, v̂h) in the momentum equation we have [4]∫
Ω

∂ ρ v̂h
∂t

· φ̂h(k) dx +

∫
Ω

(∇ · ρ v̂hv̂h) · φ̂h(k) dx− (1.29)∫
Ω

p̂h∇ · φ̂h(k) dx +

∫
Ω

¯̂τh : ∇φ̂h(k) dx−
∫

Ω

ρg · φ̂h(k) dx =∫
Ω

Rm
cf (ph,vh, p̂h, v̂h) · φ̂h(k) dx ,

where the fine-coarse transfer operator Rm
cf (ph,vh, p̂h, v̂h) is defined by∫

Ω

Rm
cf (ph,vh, p̂h, v̂h) · φ̂h(k) dx = (1.30)∫

Ω

Pm
cf (p̂h − ph, v̂h − vh) · φ̂h(k) dx +

∫
Ω

Tmcf (vh, v̂h) · φ̂h(k) dx +∫
Ω

Smcf (ph) · φ̂h(k) dx +

∫
Ω

Km
cf (vh) · φ̂h(k) dx .

The momentum fine-coarse transfer operator Pcf (ph − p̂h,vh − v̂h) defines
the difference between the rate of virtual work in the fine and in the coarse
scale [4] and the turbulent transfer operator Tmcf (vh, v̂h) by

Tmcf (vh, v̂h) = −∇ · ρvhvh +∇ · ρ v̂hv̂h −∇ · ρ (v̂h − vh)(v̂h − vh) . (1.31)

The turbulent transfer operator Tmcf (vh, v̂h) gives the turbulent contribution
from the fine to the coarse level. The operator Smcf (p̂h) is defined by∫

Ω

Smcf (ph) · φ̂h(k) dx = −
∫

Γ

ph ~n · φ̂h(k) ds (1.32)

and the operator Km
cf (vh)∫

Ω

Km
cf (vh) · φ̂h(k) dx =

∫
Γ

(τ̄h · ~n) · φ̂h(k) ds . (1.33)

The operator Smcf (ph) denotes a non symmetric pressure correction from the
sub-grid to the pressure distributions of the assembly fuel elements. If the
sub-level pressure distribution is symmetric then this term is exactly zero.
The operator Km

cf (vh) determines the friction energy that is dissipated at the
fine level inside the assembly. The operator Tmcf (vh, v̂h) defines the turbulent
energy transfer from the fine to the coarse level. The equation on the coarse
level is similar to the equation on the fine level with the exception of the
transfer operators.
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We can apply the same procedure for the energy equation [4]. Let (Th,vh) ∈
Hh(Ω)×Vh(Ω) be the solution of the problem at the fine level and T̂h be the
coarse level solution. The energy equation becomes [4]∫

Ω

∂ ρCp T̂h
∂t

ϕ̂h(k) dx +

∫
Ω

∇ · (ρCpv̂h T̂h) ϕ̂h(k) dx− (1.34)∫
Ω

Φh ϕ̂h(k) dx +

∫
Ω

k∇T̂h · ∇ϕ̂h(k) dx−
∫

Ω

Qh ϕ̂h(k) dx =∫
Ω

Re
cf (T̂h, Th, v̂h.vh) ϕ̂h(k) dx ,

where the global fine-coarse transfer energy operator Re
cf is defined by∫

Ω

Re
cf (T̂h, Th, v̂h.vh) ϕ̂h(k) dx =

∫
Ω

Secf (Th) ϕ̂h(k) dx + (1.35)∫
Ω

P e
cf (T̂h − Th, v̂h − vh) ϕ̂h(k) dx +

∫
Ω

T ecf (T̂h, Th, v̂h,vh) ϕ̂h(k) dx .

where
P e
cf (T̂h − Th, v̂h − vh) (1.36)

is the energy fine-coarse transfer operator [4] and

T ecf (v̂h,vh) = ∇·(ρCp v̂h T̂h)−∇·(ρCp vh Th)−∇·(ρCp (v̂h−vh) (T̂h−Th)) .
(1.37)

is the energy fine-coarse transfer turbulent operator. The operator Secf (Th)
is defined by ∫

Ω

Secf (Th) ϕ̂h(k) dx =

∫
Γ

k (∇Th · ~n) ϕ̂h(k) dx . (1.38)

In order to complete the equations (1.27),(1.29) and (1.34) we must com-
pute or model the reactor transfer operators. It is very difficult to define
these fully three-dimensional operators in transient situations. Probably
these should be computed numerically but in working conditions and near
steady state configuration these may be modeled with strong assumptions.
The assumptions are as follows.

• P c
ef . In the reactor model we assume incompressibility on both the

coarse and the fine level and therefore

P c
ef = 0 . (1.39)
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The assumption is exact since

P c
ef (v̂h − vh) = ∇ · ρ(v̂h − vh) (1.40)

is different from zero only if mass is generated at the fine level. The
total mass transfer operator P c

ef may be different from zero if there is
a phase change.

• Tmcf . It is usual to compute the term Tmcf (vh, v̂h) by using the Reynolds
hypothesis, namely

Tcf (vh, v̂h) = ∇ · ¯̂τ τh (1.41)

where the turbulent tensor ¯̂τ
τ

h is defined as

¯̂τ
τ

h = 2µτD(v̂h) (1.42)

with µτ the turbulent viscosity.

• Pm
cf . The operator Pcf (p̂h−ph, v̂h−vh) defines the momentum transfer

from fine to coarse level due to the sub-grid fluctuations and boundary
conditions. This can be defined by

Pcf (p̂h − ph, v̂h − vh) = (1.43)

ζ(x)
(∂ ρ v̂h

∂t
· φ̂h(k) +

∫
Ω

(∇ · ρ v̂hv̂h) · φ̂h(k) dx−

p̂h∇ · φ̂h(k) dx + ¯̂τh : ∇φ̂h(k) − ρg · φ̂h(k)−∇ · ¯̂τ eff
)

where ζ(x) is the fraction of fuel and structural material in the total

volume. The tensor ¯̂τ
eff

is defined as

¯̂τ
eff

h = 2µeffD(v̂h) . (1.44)

The values of µeff depends on the assembly geometry and can be de-
termined only with direct simulation of the channel or sub-channel
configuration or by experiment.

• Smcf . The operator Smcf (ph) indicates a non symmetric pressure correc-
tion from the subgrid to the pressure distributions of the assembly fuel
elements. If the sub-level pressure distribution is symmetric then this
term is exactly zero. Therefore we may assume in working conditions

Smcf (ph) = 0 . (1.45)
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• Km
cf (vh). The operator Km

cf (vh) determines the friction energy that is
dissipated at the fine level inside the assembly. We assume that the
assembly is composed by a certain number of channels and that the
pressure drop in this channel can be computed with classical engineer-
ing formulas. In working conditions for forced motion in equivalent
channels we may set

Km
cf (vh) = ζ(x)

ρ2v̂h|v̂h|
Deq

fλ , (1.46)

where Deq is the equivalent diameter of the channel and fλ the friction
coefficient.

• T ecf . It is usual to compute the term T ecf (Th, T̂h, v̂h,vh), following
Reynolds analogy for the turbulent Prandtl number Prt, as

T ecf (T̂h, Th, v̂h,vh) = ∇ · ( µt
Prt
∇T̂h) , (1.47)

with µt the turbulent viscosity previously defined.

• P e
cf . The operator P e

cf (vh − v̂h) defines the energy exchange from fine
to coarse level due to the sub-grid fluctuation and boundary conditions.
This can be defined as

P e
cf (Th − T̂h) = (1.48)

ζ(x)
( ∂ ρCp T̂h

∂t
+∇ · (ρCpv̂h T̂h)− Φh − Qh −∇ · (keff∇T̂h)

)
where ζ(x) is the fraction of fuel and structural material in the vol-
ume. The values of keff depend on the assembly geometry and can
be determined with direct simulations of the channel or sub-channel
configurations or by experiment.

• Secf . The operator Secf (ph) is the heat source that is generated through
the fuel pin surfaces. For the heat production in the core we may
assume

Secf (ph) = W (x, y, z) , (1.49)

where W0 is assumed to be a known function of space which is defined
by the power distribution factor (see Section 1.3.3).
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1.2.2 FEM-LCORE implementation

We can assume the density as a weakly dependent function of temperature
and almost independent of pressure. We assume

ρ(T, P ) = ρ0(T ) exp(βp) (1.50)

with β ≈ 0 and define ρin = ρ0(Tin). For the reactor model, with vertical

forced motion in working conditions, the state variables (v̂, p̂, T̂ ) are the
solution of the following finite element system∫

Ω

β
∂ph
∂t

ψ̂h(k) dx +

∫
Ω

(∇ · ρ v̂h) ψ̂h(k) dx = 0 . (1.51)

∫
Ω

∂ ρ v̂h
∂t

· φ̂h(k) dx +

∫
Ω

(∇ · ρ v̂hv̂h) · φ̂h(k) dx− (1.52)∫
Ω

p̂h∇ · φ̂h(k) dx +

∫
Ω

(¯̂τh + ¯̂τ
τ

h + ¯̂τ
eff

h ) : ∇φ̂h(k) dx +∫
Ω

2ρ v̂h|v̂h|
Deq

λ · φ̂h(k) dx−
∫

Ω

ρg · φ̂h(k) dx = 0

∫
Ω

∂ ρCp T̂h
∂t

ϕ̂h(k) dx +

∫
Ω

∇ · (ρCpv̂h T̂h) ϕ̂h(k) dx− (1.53)∫
Ω

Φh ϕ̂h(k) dx +

∫
Ω

(k + keff +
µt
Prt

) ∇T̂h · ∇ϕ̂h(k) dx−∫
Ω

Qh ϕ̂h(k) dx−
∫

Ω

W0(x, y, z) r(x) dx = 0 .

for all ψ̂h(k), φ̂h(k) and ϕ̂h(k) basis functions. r(x) = 1/(1 − ζ(x)) is the
coolant occupation ratio. The equations (1.51-1.53) are implemented in the
code and must be completed with the appropriate boundary conditions.

1.3 The FEM-LCORE code structure

1.3.1 The version 3.0 of the reactor code

The FEM-LCORE code is a CFD code developed at the Laboratory of Mon-
tecuccolino at the University of Bologna with the purpose of modelling the
thermo-hydraulic behavior of a core of a lead cooled nuclear reactor. Given
the complexity of this problem, the main rules in the code development are
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the modularity of data structures, the optimization of memory requirements
and execution time. To meet these requirements the code is written in C++
and a number of advanced external tools, such as MPI, PETSc, LibMesh and
HDF5 libraries are used.

The FEM-LCORE code is nowadays an application of a broader code, called
FEMuS, developed at the Laboratory of Montecuccolino. The code FEMuS

was born as a sub-application of the LibMesh libraries. Currently FEMuS

can be installed as a standalone package, in which FEM-LCORE is one of its
applications. In this version the femlcore program of FEM-LCORE has no
more calls to the LibMesh library and links only with external libraries such
as Laspack and PETSc. Only the gencase application for treating mesh input
data needs the support of functions from the LibMesh library.

In this User Guide we introduce a general and brief guide to some aspects
which are relevant to this application. This application consists of the basic
three-dimensional modules for solving the Navier-Stokes, energy and turbu-
lence model equations. A special treatment of the Navier-Stokes equations is
considered in the core region where some additional terms are present. The
execution of FEM-LCORE consists of three steps:

• Pre-processing: mesh and data generation.

• Running: solution of the discretized Finite Element approximation.

• Post-processing: visualization of the results.

This user guide refers to the version 3.0 of the code. The versions 1.0 and
2.0 were discussed in the documents [4] and [3]. The version 1.0 and 2.0 are
very different but a mesh reactor input file generated with GAMBIT mesh
generator for version 1.0 and 2.0 runs on this version 3.0 and vice versa.

The parallel version of the code must be installed with the LibMesh li-
brary since the partitioning of the mesh must be regenerated by the gencase

program for each parallel configuration (i.e., for each number of processors
used). The gencase program is used to generate the multigrid mesh starting
from the basic mesh generated by a CAD mesh generator. If the LibMesh
library is not installed, the multigrid mesh files along with the files for re-
striction and prolongation operators cannot be generated and they should
be provided to the user separately. After every execution of the gencase

program the mesh files can be found in the input directory. Unless one
wants to change the geometry or the number of processors, these files do not
change. If one wishes to change other quantities such as physical properties,
the gencase program need not be run a second time.
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In order to install the complete version of the FEM-LCORE program one
must first install the LibMesh and PETSC libraries. The instructions for the
PETSc installation can be found at

http://www.mcs.anl.gov/petsc/petsc-as/

Concerning the LibMesh installation one can visit the website

http://libmesh.sourceforge.net

Once these libraries are installed one can proceed to the installation of the
reactor code from the package RMCFD-3.0.tar.gz (reactor model CFD ver-
sion 3.0) as described below. In order to install the package one must choose
a directory and run the following commands:

• uncompress tar xzvf RMCFD-3.0.tar.gz: the main directory femus

is generated ;

• enter the directory: cd femus;

• edit the configuration script configure femus.sh according to the lo-
cations of the external libraries in the current machine;

• run the configuration script: source configure femus.sh;

• go to the main directory: cd applications/femlcore/;

• compile the program: make.

The configuration script is as follows

#!/bin/sh

############# METHOD CONF #############

if test "$METHOD" = ""; then

export METHOD=opt

echo "METHOD is set to opt";

fi

############# MACHINE CONF #############

if test "$MYMACHINE" = ""; then

export MYMACHINE=grid

echo "MYMACHINE is set to grid"

fi

## MACHINE dependent: LibMesh, PETSC, MPI ##
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############# GRID CONF #############

if test "$MYMACHINE" = "grid"; then

#HDF5

export BASEPATH_TO_HDF5=$HOME/Software

export HDF5_FOLDER=hdf5-1.8.5-patch1-linux-x86_64-shared

export HDF5_INCLUDE=include

export HDF5_LIB=lib

#LIBMESH

export BASEPATH_TO_LM=$HOME/Software

export LM_FOLDER=libmesh-0.7.0.3

#PETSC

export BASEPATH_TO_PETSC=$HOME/Software

export PETSC_FOLDER=petsc-3.1-p7

export PETSC_ARCH=linux-$METHOD

#MPI

export BASEPATH_TO_MPI=/usr/lib64/mpi/gcc

export MPI_FOLDER=openmpi

export MPI_BIN=bin

export MPI_LIB=lib64

export MPI_MAN=share/man

make all

fi

############## END MACHINE DEPENDENT ##########

######### PETSC ##########

export PETSC_DIR=$BASEPATH_TO_PETSC/$PETSC_FOLDER

######### MPI ##########

export MPI_DIR=$BASEPATH_TO_MPI/$MPI_FOLDER

export PATH=$MPI_DIR/$MPI_BIN:$PATH

export LD_LIBRARY_PATH=$MPI_DIR/$MPI_LIB:$LD_LIBRARY_PATH

######## FEMUS #########

export FEMUS_DIR=$PWD

This script can be run once the shell variables MYMACHINE and METHOD are set.
The MYMACHINE variable designates a particular machine where the code is in-
stalled. In every machine the location of the external libraries used by FEMuS

can be different. Before running the script, the user has to indicate by hand
the paths where the external libraries used by FEMuS are installed. This can
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be done by appropriately filling the variables defined within the if state-
ment for each machine. In particular, in the variables BASEPATH TO HDF5,
BASEPATH TO LM, BASEPATH TO PETSC and BASEPATH TO MPI the user must
put the absolute paths (i.e. starting from the root / directory) where each
library package is installed. The names of the respective package folders are
set in the variables HDF5 FOLDER, LM FOLDER, PETSC FOLDER and MPI FOLDER.

The METHOD variable indicates the compiling mode to be used. By setting
METHOD=opt, the FEMuS code is compiled in optimized mode and the opti-
mized version of the external libraries is called by the program. Both the code
and the external libraries are used in debugging mode if one sets METHOD=dbg.
The use of debugging mode is recommended for the development of the code
as it helps the developer in finding errors in the implementation of the pro-
gram. The optimized mode is much faster as many debugging function calls
are excluded and it is used for performing the simulations.

In the script the MYMACHINE and METHOD variables are set by default to
grid and opt respectively. For instance, in the default configuration for the
machine denoted by grid the absolute paths of the LibMesh and PETSc
libraries are in the directories

$BASEPATH_TO_LM/$LM_FOLDER=$HOME/Software/libmesh-0.7.0.3

and

$BASEPATH_TO_PETSC/$PETSC_FOLDER=$HOME/Software/petsc-3.1-p7

respectively.

1.3.2 Directory structure

The main directory of the code is divided into different folders. We have
eight additional sub-directories:

• include that contains the header files;

• src that contains the source files;

• config that contains the configuration files;

• contrib that contains the external libraries;

• applications that contains the main programs;

• fem that contains the shape function values at the Gaussian points;

• input that contains the mesh files;
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• output that contains the output files.

Inside these directories there are different types of files. Following the C++

language, one may at first distinguish the source (.C) and header files (.h).
Source files contain implementations of functions and header files contain the
prototypes of functions and appropriate macro pre-compilation statements.
Often we use the word source to denote the set of all C++ files, including
headers. Inside the code there are other types of files: script (.sh) and data
(.in) files. The files with extension .in contain configuration data that are
read at run-time. Their modification does not require the recompilation of
the code. There are also some configuration scripts in Bash language that
allow the setting of the environment variables necessary to set the installa-
tion paths of the external libraries. Currently, the Makefile and the other
configuration scripts are modified manually depending on the characteristics
of the machine. In the future we plan to use advanced tools such as GNU

Autotools that allow the automatic generation of the configuration scripts
and the Makefile. The Makefile defines the rules for compilation and link-
ing and allows to perform various tasks automatically. Let us now turn to
the analysis of the sub-directories, giving a brief description of their content.

The include and src directories

The include directory contains the header files. To each class there corre-
sponds a different header file, that contains its declaration and the definition
of its prototypes. Each class is conceptually associated to a particular data
structure or computing entity. We list here the most important classes:

• MGMesh, defined in the file MGMesh.h, manages grid and its meshing;

• MGSolBase, defined in the file MGSolverBase.h, contains all the func-
tions which are in common to a class associated with a differential
equation. It is a basic common class that is used in specific equation,
through the concept of inheritance of object-oriented programming;

• MGSolDA, defined in the file MGSolverDA.h, is a specialization of the
generic equation MGSolBase for reactive-diffusive-convective equations;

• MGSolNS, defined in the file MGSolverNS.h, implements the Navier-
Stokes equations solved with all the variables coupled (monolithic solver);

• MGSolKE, defined in the file MGSolverKE.h, implements the κ - ε tur-
bulence model;
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• MGSolKW, defined in the file MGSolverKW.h, implements the κ ω tur-
bulence model;

• MGSolT, defined in the file MGSolverT.h, implements the energy equa-
tion.

These files contain the constructor and destructor definitions and all the
prototype functions of the corresponding classes.

The src directory has the source files that define the functions declared
by the headers of the include directory. For example, in each file devoted to
a single equation, like MGSolverNS3D.C for the Navier-Stokes equations, the
routines for the assembly of matrices and right-hand sides of that equation
are implemented. In each equation file one can also find the implementation
of the functions bc read an ic read, that contain the informations of the
boundary and initial conditions. In particular, through the bc array, each
node has a flag associated to it with value 1 to impose a Neumann condition
or value 0 to impose a Dirichlet condition.

The config directory

The config directory contains all the files related to the configuration of the
program. The header files with suffix conf.h must be set before compila-
tion since they contain pre-processor directives like #define : for example
we set the spatial dimension of the problem in Dim conf.h, or we activate
the equations to be solved in Equations conf.h. The files parameters.in,
param utils.in and param files.in contain the parameters that are used
at run-time. During its execution, the program reads certain informations
from these files, such as the number of time steps or some physical proper-
ties. The introduction of the files with suffix .in is very useful because one
can perform various simulations without having to recompile the source files.
In the class subfolder there is a specific header file for the configuration of
each class.

The contrib and fem directories

The contrib directory contains the contributions taken from external li-
braries that were possibly modified to meet our purposes. In particular, we
find the directories laspack, matrix, parallel, etc.

The laspack directory contains a linear algebra package for the solution
of sparse linear systems in scalar architectures [8]. The matrix and parallel

directories contain a common interface to various linear algebra libraries such
as Laspack or PETSc. In their files, common structures for dealing with
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matrices, vectors and solvers are implemented, taking inspiration from the
LibMesh library. Just by setting one preprocessor directive, the user can
switch between either Laspack or PETSc libraries.

The previous versions of femlcore were dependent on LibMesh functions.
Now the code is independent and modular. The linear algebra functions be-
longing to LibMesh that were called from our code are now replaced with sim-
pler functions independent of LibMesh, contained in the directories matrix

and parallel. A simplification in terms of reduction of function calls and
redundant operations has been obtained, which has led to an improvement
in performance of the program.

The fem directory consists of the files containing the values of the shape
functions and their derivatives at the Gaussian points for a given canoni-
cal element. The finite elements of type HEX27, HEX8, QUAD9, QUAD4,
EDGE3 and EDGE2 are supported in this package. Only HEX27 and HEX8
elements are considered for a three-dimensional reactor core. The names of
the files have the form

• shape(N)D (GG)(FF).in

In the name of each file, N is the spatial dimension. The first two digits
after the underscore “ ” sign (denoted as (GG)) correspond to the number
of Gaussian points, while the second two digits (denoted as (FF)) indicate
the number of element shape functions. These files are generated by the
Gengauss program.

The applications directory

The classes and functions defined and implemented in the files of the include/
and src/ directories can be used for writing different programs. Each pro-
gram is characterized by its own main() function and possibly other specific
routines. Inside the directory applications various programs can be found:
femlcore, gencase, gengauss and datagen.

Each program has a source file containing the main() function and a
Makefile for the compilation and linking.

The femlcore/ directory contains the reactor program. The class func-
tions written here have the priority over all the other functions. The main()

function in this directory solves the equation system which consists of mo-
mentum. energy and turbulence equations.

The gencase/ directory contains the gencase program that is used for
the grid generation in the pre-processing stage. It makes use of the LibMesh
functions for mesh generation. Furthermore, it generates the files for the
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sparse matrix structure of the global matrix and files for the prolongation
and restriction operators, when one adopts a multigrid solver.

The gengauss/ directory contains the Gengauss program that generates
files containing the values of shape functions at Gaussian points. These files
are read by the femlcore program at run-time.

The datagen/ directory contains the datagen program that is used for
the generation of the data files concerning the core power factors and core
pressure drop values per assembly. These data are required for the core
porous medium model. The datagen directory contains the files to define
the core heat generation and the pressure drop factors. For details see Section
1.3.3.

The input and output directories

Inside the input directory the input data files, needed for the simulation
program femlcore, are placed. These files are generated by the gencase

program. The generated files are

• mesh.h5, that contains information on the grid in HDF5 format;

• Matrix(l).h5, that contains the sparsity pattern for the system matrix
on level (l);

• Prol(l-1) (l).h5, where the prolongation operator from level (l-1)
to level (l) is stored;

• Rest(l) (l-1).h5, that contains the restriction operator from level
(l) to level (l-1).

In the output directory the output files obtained from the code execution
can be found. The data are stored in files with binary format HDF5 (with
extension .h5). In order to associate data files with the mesh points, it
is necessary to create a XDMF file (with extension .xmf), based on XML
language, which can define this association. The XDMF files can be read by
the ParaView software. For a given simulation, the files containing initial
and boundary conditions are defined as

case.(N).(F)

where (N) corresponds to each time step index of the simulation and (F) is
the file extension .XMF or .h5.

The files related to the solution containing the values of all the fields
obtained from the calculation are defined as
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sol.(N).(F)

where (N) indicates the time step index and (F) is as above. The sequence
of time steps starting from the time step index (B) can be viewed by opening
the file

time.(B).xmf

The file mesh.xmf is the XDMF file necessary to read the HDF5 mesh file.

1.3.3 The pre-processing files

The pre-processing stage generates the input files required for the execution
of the femlcore program. For this purpose we use the gencase and datagen

programs. The files generated by these auxiliary programs are placed in the
input directory.

Coarse mesh CAD input file

The geometry of the reactor is complex and therefore it can only be generated
by a CAD program. With the CAD program we define the coarse mesh that
contains all the geometrical details. Over this coarse grid a multigrid system
is constructed to define the final fine mesh. The core consists of several
assemblies with parallelepiped shapes. In order to impose the heat source
correctly, it is required that each assembly is discretized by entire hexahedral
cells and the assembly surfaces do not cut any mesh cell internally. This
requires some care as the cross sections of the assemblies form a staggered
pattern in the reactor design. The code can handle a limited number of mesh
formats obtained from CAD programs: the generic mesh format obtained
from GAMBIT (.neu extension) and the MED mesh format from SALOME
(.med extension). The generic mesh GAMBIT format must be generated by
using only HEX27 finite elements and the SALOME mesh MED format by
using HEX20 finite elements. These restrictions are necessary for a successful
execution of the gencase program.

In case the GAMBIT software is used, the Solver menu must be set
to generic. This is very important since FLUENT5 options different from
generic do not produce a readable input file. The mesh must be generated
using the HEX27 option on volume elements, the QUAD9 option on surface
elements and the EDGE3 option on linear elements. Finally the mesh must
be exported with the Export --> Mesh command in the File menu.

The other mesh generator for the coarse mesh file is SALOME. SALOME is
a free software that provides a generic platform for pre- and post-processing
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for numerical simulations. It is based on an open and flexible architecture
made of reusable components. It is open source, released under the GNU
Lesser General Public License and both its source code and executables may
be downloaded from its official website [23]. SALOME has the following
main modules: KERNEL (general services), GUI (graphical user interface),
GEOM (editing CAD models), MESH (standard meshing), MED (MED data
file management) and YACS (coupling codes and calculation). For mesh
generation one must use the GEOM module and its mesh capabilities. The
MESH module must use the Hexahedron mesh option to have a final mesh
with only Hexahedral HEX8 finite elements. Then the elements must be
converted to quadratic elements (from HEX8 to HEX20 elements). The
HEX8 elements are not allowed as input of the program and therefore the
conversion to HEX20 is necessary. After the mesh is generated one can save
the mesh in MED format.

The MED data model defines in a logical way the data structures ex-
changed by codes. The modeled data concern meshes (structured and un-
structured) and the resulting fields that can be defined on nodes, elements
or Gauss points of meshes. MED supports nine element shapes: point, line,
triangle, quadrangle, tetrahedron, pyramid, hexahedron, polygon and poly-
hedron. Each element may have a different number of nodes, depending on
whether linear or quadratic interpolation is used. Since the nodes inside
each element could be ordered in multiple ways, MED defines numbering
conventions, which are detailed in the MED documentation.

The gencase application: mesh and multigrid files

Given the coarse grid the gencase program generates the multilevel grid used
by femlcore. After reading the grid configuration values contained in the
configuration file config/param utils.in, gencase creates a mesh with the
required number of levels. The data of interest in the configuration file are:

• libmesh gen, that indicates whether the grid should be generated by
LibMesh functions or reading a mesh file obtained from a third party
software for generating grids;

• mesh refine that selects whether the grid should be refined;

• nolevels that determines the number of levels of the multigrid solver;

• nintervx that, in the case of rectangular domain, sets the number of
subdivisions of the grid along the direction x;
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• nintervy that, in the case of rectangular domain, sets the number of
subdivisions of the grid along the direction y;

• nintervz that, in the case of rectangular domain, sets the number of
subdivisions of the grid along the direction z.

Inside the gencase program there is also a simple internal coarse mesh
generator limited to regular Cartesian geometries. To obtain a parallelepiped
reactor of dimensions [a, b] × [c, d] × [e, f ] the command, which uses the
LibMesh library, is written as

MeshTools::Generation::build_cube

(*msh[0],nintervx,nintervy,nintervz,a,b,c,d,e,f,HEX27);

The geometries obtained with such calls are very simple. For this reason, the
need arises to interact with CAD-based mesh software as described before.

The gencase program has been extensively modified after the introduc-
tion of parallel computing. In particular, the parallel structure of PETSc
matrices requires that the degrees of freedom associated to each process are
contiguous to each other. Therefore the vector of global degrees of freedom
of the problem will be divided into as many blocks as processes and each
block will be assigned exactly to one process. For this reason it is necessary
to rerun the gencase program every time you want to change the number of
processors. In order to facilitate the operations of projection and restriction,
children elements are assigned to the same process as their father elements
and in this way a node that is restricted on a coarse grid is kept on the same
processor. This increases significantly the complexity of the generated mesh
files as the number of processors increases.

Once the configuration parameters for the gencase program are set, one
can compile and run it by reaching the gencase directory in a shell terminal
and typing on the command line:

make

./gencase-opt

for serial execution or

make

mpiexec -n N gencase-opt

for a parallel run, where N is the number of processors.
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Figure 1.4: Typical core power distribution

The datagen application: core power and pressure drop distribution
files

The power distribution and the pressure drop distribution are set in the file
input/mesh.data. A typical power distribution is reported in Figure 1.4.
The input file for the power distribution looks like this

Level 0 64

0 0.375 0.375 0.375 1.03 1

1 0.875 0.375 0.375 0.91 1

2 1.375 0.375 0.375 1.02 1

3 1.875 0.375 0.375 1.12 1

4 0.375 0.875 0.375 1.04 1

5 0.875 0.875 0.375 0.78 1

6 1.375 0.875 0.375 1.02 1

7 1.875 0.875 0.375 1.1 1

........

........

For each element belonging to each mesh level, the file reports the element
number, the x, y and z coordinates of its center point, the value of the
power distribution factor and the value of the pressure drop factor, respec-
tively. The file can hardly be edited by hand and it can be generated by the
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Figure 1.5: Horizontal core power distribution

datagen program, located in the directory applications/datagen/. In or-
der to load the desired power distribution as shown in Figures 1.5 and 1.6, the
file applications/datagen/datagen.H has the following parameters: NLEV

(number of multigrid levels), NZC (number of elements in the vertical core
section), HR (total core height), HIN (heat core height), HOUT (outlet height).
A setting can be as follows

#define NLEV 1 // level

#define NZC 9 // number of core elements

// Geometry

#define HR 0.147 // half fuel assembly length

#define HIN 0.95 // heated core start

#define HOUT 1.85 // heated core stops

The horizontal power distribution of Figure 1.4 must be reported in the
double-indexed array mat pf, in which every assembly in the quarter of re-
actor is denoted by two indices, both ranging from 0 to 7. The fuel area is
divided into three zones: INNER, INTER and OUTER. The zone with no fuel
CTRLR and the reflector area with DUMMY are written in the matrix mat zone.
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Figure 1.6: Vertical and horizontal core power distributions

#define INNER (0) // zone 0

#define INTER (1) // zone 1

#define OUTER (2) // zone 2

#define CTRLR (3) // zone 3

#define DUMMY (4) // zone 4

int mat_zone[8][8]={

{INNER,INNER,INNER,INNER,INNER,INTER,OUTER,DUMMY},//A1_1-A1_7

{INNER,INNER,INNER,INNER,INTER,INTER,OUTER,OUTER},//A2_1-A2_8

{INNER,INNER,INNER,INTER,CTRLR,INTER,OUTER,DUMMY},//A3_1-A3_7

{INNER,INNER,INNER,INNER,INTER,INTER,OUTER,DUMMY},//A4_1-A4_7

{INNER,INTER,INTER,INTER,OUTER,OUTER,DUMMY,DUMMY},//A5_1-A5_6

{INNER,INTER,CTRLR,INTER,OUTER,OUTER,DUMMY,DUMMY},//A6_1-A6_6

{INTER,OUTER,OUTER,OUTER,DUMMY,DUMMY,DUMMY,DUMMY},//A7_1-A7_4

{OUTER,OUTER,OUTER,DUMMY,DUMMY,DUMMY,DUMMY,DUMMY} //A8_1-A8_3

};

The horizontal power factor is reported in the matrix mat pf



Thermo-hydraulic reactor model and FEM-LCORE
implementation 35

#define CTL_R 0.

double mat_pf[8][8]={

{0.941,0.962,0.989,1.017,1.045,1.178,1.097,0. },//A1_1-A1_7

{0.949,0.958,0.978,0.996,1.114,1.123,1.193,0.857},//A2_1-A2_8

{0.963,0.975,0.992,1.087,CTL_R,1.011,0.925,0. },//A3_1-A3_7

{0.967,0.973,0.989,1.008,1.108,1.028,0.931,0. },//A4_1-A4_7

{0.961,1.060,1.078,1.137,1.198,0.943,0., 0. },//A5_1-A5_6

{0.954,1.029,CTL_R,0.990,1.068,0.850,0., 0. },//A6_1-A6_6

{1.019,1.066,0.966,0.842,0., 0., 0., 0. },//A7_1-A7_4

{0.878,0.853,0.757,0., 0., 0., 0., 0. } //A8_1-A8_3

};

The vertical power factor can be assumed to have a cosine-like distribution.
This profile is reported in axpf as

double axpf[10][3]={

{8.60089E-01,8.48697E-01,8.33685E-01},

{9.32998E-01,9.63034E-01,9.52704E-01},

{1.03749E-0,1.06399E-0,1.06801E-0},

{1.10010E-0,1.12959E-0,1.14484E-0},

{1.14410E-0,1.16319E-0,1.17922E-0},

{1.13892E-0,1.15623E-0,1.16983E-0},

{1.09049E-0,1.10313E-0,1.10469E-0},

{1.01844E-0,1.00872E-0,1.00793E-0},

{9.05869E-01,8.55509E-01,8.63532E-01},

{7.71503E-01,7.07905E-01,6.75547E-01}

};

In a similar way the pressure drop distribution must be reported in the matrix
axlpf and in the vector axllf.

The procedure to have a new power distribution is as follows:

• delete the file input/mesh.data;

• run the code with no input/mesh.data file. Then a new input/mesh.data

is generated and the code stops;

• copy the file input/mesh.data in applications/datagen/data.in;

• edit applications/datagen/datagen.H by inserting the desired power
distribution factors;

• run the datagen program in the directory applications/datagen;
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• copy the file applications/datagen/data.in in input/mesh.data.

The power distribution in Figure 1.4 is enclosed with the provided package.
The pressure drop distribution enclosed in the code is constant and equal to
1.

Once the datagen program is configured, one can compile and run it
by reaching the datagen directory in a shell terminal and typing on the
command line:

make

./datagen-opt

for serial execution or

make

mpiexec -n N datagen-opt

for a parallel run, where N is the number of processors.

1.3.4 The post-processing ParaView application

Figure 1.7: Paraview main view

The post-processing stage is the phase dedicated to display the results
obtained by the code. All the output files of the program are stored in
the output directory. The writing data formats are XDMF and HDF5. In
the HDF5 files the field values are stored in a hierarchical structure and a
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compressed storage format. The XDMF files are required for reading the
data contained in the HDF5 files. The XDMF format can be interpreted
by some visualization software such as ParaView. ParaView is open source
software for viewing scientific data [20]. Its main view is shown in Figure
1.7. This application is based on the VTK library that provides services for
data visualization [28]. ParaView is designed for viewing data obtained from
parallel architectures and distributed or shared memory computers, but it
can also be used for serial platforms.

1.3.5 Configuration and run

In order to run the code the following steps are necessary:
a) generate a coarse mesh file with either GAMBIT or SALOME (name it
as mesh.msh or mesh.med respectively) and copy it in the input directory;
b) set the configuration files in the config directory and, if necessary, the
additional class parameters for the active classes in the config/class direc-
tory;
c) set the physical and numerical properties in config/parameters.in and
config/param utils.in;
d) set the boundary and initial conditions in the files of the active classes
(for instance, for energy and Navier-Stokes equations the corresponding files
are src/MGSolverT3D.C and src/MGSolverNS3D.C);
e) generate the multigrid mesh with the gencase program;
f) generate the core power factor file mesh.data with the datagen program
and copy it in the input directory;
g) run the femlcore program.

The default reactor configuration is provided with the code and only few
changes are necessary. Explanation of steps a), e) and f) concerning the pre-
processing files has already been provided in Section 1.3.3. Steps b), c), d)
and g) will be described in the following.

Configuration

The code is configured mainly through the various files in the config direc-
tory.

In the files with suffix conf.h one can find the compile-time options
which are implemented through preprocessor directives like #define. Some
of these options can be seen in Table 1.1. An option is not activated if the
corresponding #define command is not written or commented (the comment
operator is //). For example, if we set

// #define NS_EQUATIONS 1
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Directive Val. Description

#define DIMENSION 2 2D simulation
#define DIMENSION 3 3D simulation
#define HAVE LASPACKM 1 serial solver
//#define HAVE PETSCM

//#define HAVE MPI

#define HAVE PETSCM 1 parallel solver
#define HAVE MPI

//#define HAVE LASPACKM

#define NS EQUATIONS 1 NS coupled solver
#define P1 EQUATIONS 1 NS projection solver
#define PRINT INFO 1 Print info

Table 1.1: Some options in the configuration header files

#define T_EQUATIONS 1

this means that the solver of the Navier-Stokes equations is not active
while the energy equation is solved. Thanks to a modular approach we can
introduce more options without effort.

In the config/class directory the numerical and physical parameters
for each particular equation class are defined. All the parameters that are
needed in the class model can be changed in these files. We briefly examine
the implementation of the dependence of the physical properties on temper-
ature, the turbulence parameters and the numerical solver algorithm.

Dependence of the physical properties on temperature. The code can run with
lead properties that can be considered as a function of temperature. If the
property law must be modified it is necessary to change the inline functions
in the following files:
- config/class/MGSNSconf.h for the momentum equations; here the func-
tions ρ = ρ(T ) and µ = µ(T ) are defined;
- config/class/MGSTconf.h for the energy equation; here the functions
κ = κ(T ) and Cp = Cp(T ) are defined;
Furthermore, you have to set

// #define CONST 1

in the same files. This commented line activates the temperature depen-
dence.
Turbulence parameters. The parameters for the κ - ε and κ -ω turbulence
models are in the relative class configuration files config/class/MGSKEconf.h
and config/class/MGSKWconf.h. The turbulence parameters of the LES
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model are in the config/class/MGSNSconf.h file as this model consists in
modifying one parameter in the Navier-Stokes configuration.

Numerical solver parameters. For each equation one can choose the solution
algorithm. Among the solution methods one can choose one of the following:
1. Jacobi = JacobiIter

2. SOR forward = SORForwIter

3. SOR backward = SORBackwIter

4. SOR symmetric = SSORIter

5. Chebyshev = ChebyshevIter

6. CG = CGIter

7. CGN = CGNIter

x number of elements 8. GMRES(10) = GMRESIte

9. BiCG = BiCGIter

10. QMR = QMRIter

11. CGS = CGSIter

12. Bi-CGSTAB = BiCGSTABIter

13. Test = TestIter .

Among the pre-conditioner matrices we can have
0. none = (PrecondProcType)NULL

1. Jacobi = JacobiPrecond

2. SSOR = SSORPrecond

3. ILU/ICH = ILUPrecond.

Default configuration uses the GMRES iterative solver with ILU precon-
ditioner.

The files with extension .in contain the run-time options. The pa-
rameters for the physical values of the problem are contained in the file
parameters.in. Through the file param utils.in we set numerical and
computational parameters. We also have the file param files.in, which
allows us to customize the folder names and input/output file names. Ta-
ble 1.2 shows the main items contained in the files parameters.in and
param utils.in. We can add new items in these files by simply adding
a new couple variable VALUE separated by a space.

In some cases the source files outside the config directory must be mod-
ified before running the code. This happens when one wants to set the
boundary and initial conditions.

Boundary conditions. The default boundary conditions for the reactor
simulation are set in the code package. In order to change them, it is nec-
essary to edit the appropriate function. For instance, pressure and velocity
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param utils.in

Parameter value (es.) description
dt 0.01 time step
itime 0 initial time
nsteps 100 number of time step
printstep 5 printing interval
restart 0 restart
libmesh gen 1 LibMesh active
mesh refine 1 mesh refinement
nolevels 4 number of levels
nodigits 4 number of printing digits
pi 3.12159265359 pi
nintervx 20 x number of elements
nintervy 20 y number of elements
nintervz 20 z number of elements

parameters.in

Parameter value (es.) description

Uref 1 reference velocity
Lref 1 reference length
Tref 1 reference temperature
rho0 10562.99 density
mu0 0.0022 viscosity
kappa0 16.58 conductibility
cp0 147.3 heat capacity
komp0 0. compressibility
qheat 1.14591e+8 heat density power
dirgx 0 x gravity
dirgy 0 y gravity
dirgz 0 z gravity

Table 1.2: Numerical and physical parameters in param utils.in and
parameters.in

boundary conditions can be edited in the function

void MGSolNS::bc_read(

double xp[], // xp[] node coordinates

int normal[], // normal

int bc_flag[] // boundary condition flag

)
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contained in the file src/MGSolverNS3D.C. In this function, a flag is associ-
ated to each boundary node indicating if a Dirichlet or Neumann condition
is to be enforced on that node. The corresponding boundary values are not
assigned here but in the function for the initial conditions. In fact, the ini-
tial condition also contains the boundary values because it must fulfill the
boundary conditions as well. For the sake of conciseness, we show here the
implementation of the boundary conditions for the case of a cubic reactor
with unit side. The implementation for the real geometry is similar.

void MGSolNS::bc_read(double xp[],

double normal [],int bc_flag[]) {

// xp[]=(xp,yp) bc_flag[u,v,p]=0-Dirichlet 1-Neumann

// box boundary conditions

if (xp[0] < 0.001) { // side 1

bc_flag[0]=0;bc_flag[1]=0;bc_flag[2]=0;

}

if (xp[0] > 1.-0.001) { // side 3

bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

}

if (xp[1] < 0.001) { // side2

bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

}

if (xp[1] > 1.-0.001) { // side4

bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

}

if (xp[2] < 1.-0.001) { // top

bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

}

if (xp[2] > -0.001) { // bottom

bc_flag[0]=0; bc_flag[1]=0; bc_flag[2]=0;

}

return;

}

The coordinates (xp[0],xp[1],xp[2]) are used to identify the node to
which the flags must be associated. The value bc flag[0] is the flag for
the boundary condition on the x-component of the velocity field. By setting
bc flag[0]=0 one imposes a Dirichlet boundary condition. If the flag is not
set it defaults to 1 which indicates a Neumann condition. The bc flag[1]



Thermo-hydraulic reactor model and FEM-LCORE
implementation 42

and bc flag[2] flags are for the y and z velocity components respectively.
The pressure flag is bc flag[3].

For the boundary conditions of the energy equation one must edit the
function

void MGSolT::bc_read(

double xp[], // xp[] node coordinates

int normal[], // normal

int bc_flag[] // boundary condition flag

)

in the file src/MGSolverT3D.C. Still considering a cubic reactor, the function
looks like

void MGSolT::bc_read(double xp[],double normal [],int bc_flag[])

{

#ifdef DIM2

#else

// xp[]=(xp,yp) bc_flag[T]=0-Dirichlet 1-Neumann

// boundary conditions box

if (xp[0] < 0.0001) bc_flag[0]=0;

if (xp[0] > 1.-0.0001) bc_flag[0]=0;

if (xp[1] < 0.0001) bc_flag[0]=0;

if (xp[1] > 1.-0.0001) bc_flag[0]=0;

if (xp[2] < 0.0001) bc_flag[0]=0;

if (xp[2] > 1.-0.0001) bc_flag[0]=0;

#endif

return;

}

The same considerations as before hold for the energy equation. The only
difference is that the unknown field is scalar and therefore only one flag per
node is to be assigned.
Initial field conditions. If one wants to set the initial solution in pressure and
velocity it is necessary to edit the function

void MGSolNS::ic_read(

double xp[],

double u_value[]

)

inside the file src/MGSolverNS3D.C. If you open the mentioned file you may
find the initial solution v = 0 and p which changes linearly from 1. to 0 along
the z-axis. Therefore in the appropriate part of the function you have
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void MGSolNS::ic_read(double xp[],double u_value[]) {

// xp[]=(xp,yp,zp) u_value[]=(u,v,w,p)

u_value[0] = 0.;

u_value[1] = 0.;

u_value[2] = 0.;

u_value[3] = 1.-xp[2];

}

If one wants to set the initial temperature one must edit the function

void MGSolT::ic_read(

double xp[],

double u_value[]

)

inside the file MGSolverT3D.C. The user can find

void MGSolT::ic_read(double xp[],double u_value[]) {

// xp[]=(xp,yp,zp) u_value[]=(u,v,w,p)

u_value[0] =400.;

}

In this example a uniform temperature of 400o C is enforced.

Run

In order to run the program one must execute the following commands. It is
recommended to run in optimized mode (METHOD=opt) for a faster execution.
Starting from the applications/ directory, in the serial mode case one must
type the following commands to a shell terminal:

cd gencase

make

./gencase-opt

cd ../datagen

make

./datagen-opt

cd ../femlcore

make

./femlcore-opt

For a parallel execution with N processors one must type instead
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cd gencase

make

mpiexec -n N gencase-opt

cd ../datagen

make

mpiexec -n N datagen-opt

cd ../femlcore

make

mpiexec -n N femlcore-opt

The commands ./exe-opt or mpiexec -n 1 exe-opt are totally equivalent.
It is important to remark that the number of processors must be the same for
the gencase, datagen and femlcore applications. Different numbers would
not allow to perform the desired simulations.

We remark that the make commands are necessary after any changes in
the header and source files (.h and .C). The applications do not need to be
recompiled after changing the .in files and they can be run multiple times.
Restart the code. In order to restart the simulation from the file associated
to time step n it is simply necessary to set the following parameter in the
param utils.in file:

restart n

and then launch again the femlcore-opt executable with the same number
of processors as before.



Chapter 2

Advances in implementation of
turbulence models

In order to predict velocity and temperature fields correctly the reactor model
needs a description of the turbulent exchange of momentum and heat energy.
This chapter is devoted to turbulence models and their implementations.
Numerous turbulence models exist in literature. In our code we have im-
plemented the LES turbulence model and two-equation turbulence models
(in particular κ -ω models). Since heat exchange models based on constant
turbulent Prandtl number do not agree with experimental data for liquid
metal turbulent flows we then illustrate a four parametric model proposed
by ENEA with some applications. In the future we are planning to implement
the four parametric model on the code.

2.1 LES

Large eddy simulation (LES) is a popular technique for simulating turbulent
flows. An implication of Kolmogorov theory of self-similarity is that the large
eddies of the flow are dependent on the geometry but the smaller eddies are
independent. This feature allows one to explicitly solve for the large eddies in
a calculation and implicitly account for the small eddies by using a subgrid-
scale model (SGS model).

The most simple and popular LES model is the Smagorinsky LES model.
The Smagorinsky model could be summarized as

τij −
1

3
τkkδij = −2 (Cs∆)2

∣∣S̄∣∣Sij . (2.1)

In the Smagorinsky-Lilly model, the eddy viscosity is modeled by

µsgs = ρ (Cs∆)2
∣∣S̄∣∣ , (2.2)
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where the filter width is usually taken to be

∆ = (Volume)
1
3 (2.3)

and
S̄ =

√
2SijSij . (2.4)

The effective viscosity is calculated from µeff = µmol+µsgs. The Smagorinsky
constant usually has the value Cs ranging from 0.1 to 0.2.

2.1.1 FEM-LCORE implementation of the LES turbu-
lence model

The LES turbulence model is implemented in the class MGSolverNS in the
file MGSolverNS3D.C. The parameters can be set in the file

/config/class/MGSNSconf.h

2.2 κ - ε turbulence model

2.2.1 Standard κ - ε turbulence model

In the standard κ - ε turbulence model the turbulent viscosity is modeled as

µt = ρνtρCµ
κ2

ε
. (2.5)

The turbulent kinetic energy κ and the turbulent dissipation energy ε satisfy
the following equations

∂ρκ

∂t
+∇ · ρuκ = ∇ ·

[
(
µt
σk

+ µ)∇κ
]
− ρβεkε+ ργεk S

2 + Pb , (2.6)

∂ρε

∂t
+∇ · ρuε = ∇ ·

[
(
µt
σε

+ µ)∇ε
]
− ρβeε2 + ργe S

2 +
ε

κ
C1εC3εPb , (2.7)

where γεk is the production coefficient of k and Pb the buoyancy term. The
coefficient βεk in the standard model can be assumed unitary. The γe =
CµC1εκ is the coefficient for the turbulent dissipation energy source and βe =
C2ε/κ the coefficient of the dissipation term for the same equation. We
remark that in this formulation γe and βe depend of turbulent kinetic energy
κ. The model constants are

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3 . (2.8)
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The production Pk of k is defined as

Pk = −v′iv′j
∂vj
∂xi

= νtS
2 , (2.9)

where S is the modulus of the mean rate-of-strain tensor, defined as

S ≡
√

2SijSij =
1

2
‖∇v +∇vT‖ . (2.10)

The effect of buoyancy Pb is given by

Pb = αt
µt
Prt

g · ∇T , (2.11)

where Prt is the turbulent Prandtl number for energy and gi is the component
of the gravity vector in the i-th direction. For the standard and realizable
models, the default value of Prt is 0.85. The coefficient αt is the thermal
expansion coefficient.

2.2.2 Boundary conditions for κ - ε model

We can subdivide the boundary into inlet, outlet and wall portions, which
will be denoted by Γi, Γo and Γw respectively.

For the inlet boundary conditions we set the velocity, κ and ε fields to
their given inlet value. On the boundary Γi we set the inlet velocity uΓi = u0

and for κ and ε we may enforce

κΓi = 1.5ū2I2 εΓi =
Cµ κ

3/2

l
(2.12)

where ū is the mean flow velocity, I the turbulence intensity and l the tur-
bulent length scale. For an inlet fully developed flow in a channel we have

I = 0.16 Re
− 1

8
D l = 0.07 D , (2.13)

where ReD is the Reynolds number based on the hydraulic diameter D. For
an inlet laminar flow we may set

I = 0.01 l = 0.07 D . (2.14)

The outlet boundary conditions are relatively simple and are taken on the
outlet boundary Γo as

∇u · n|Γo = 0 u× n|Γo = 0 p|Γo = 0 (2.15)
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and
∇κ · n|Γo = 0 ∇ε · n|Γo = 0 (2.16)

for the velocity, pressure, turbulent kinetic energy and specific dissipation
rate respectively, where n is the normal unit vector.

At the wall the boundary conditions for the κ - ε model can be imposed by
using the wall functions or the near-wall boundary conditions. We consider
a computational wall to be located inside the channel at a distance δ from
the real wall. The mesh size is very important as is the estimation of the
non-dimensional distance y+ from the wall. We define

y+ ≡ u∗ δ

ν
, (2.17)

where u∗ =
√

τw
ρ

is the friction velocity at the nearest wall, ρ is the fluid

density, δ is the distance to the nearest wall and ν is the local kinematic
viscosity of the fluid.

If δ is defined in the viscous laminar region then we define the velocity
boundary condition as

τn|δ = ρν
ut
δ

(2.18)

where ut is the tangential velocity and δ is the distance from the wall. The
turbulent kinetic energy κ is assumed to be

κ|δ≈0 = 0 (2.19)

and the derivative turbulent dissipation energy ε vanishing

∇ε · n|δ = 0 . (2.20)

If δ is not in the viscous layer the wall functions are used. In the logarithmic
layer (y+ > y+

c ) the velocity can be assessed by the logarithmic law

u+ =
1

kv
ln(y+) +B . (2.21)

The derivative of the turbulent kinetic energy κ is assumed to be zero

∇κ · n|δ = 0 , (2.22)

and the specific dissipation rate ε takes the following value

ε|δ =
C

3/4
µ κ3/2

kv δ
. (2.23)
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2.2.3 FEM-LCORE implementation of the κ - ε turbu-
lence model

We consider the turbulent kinetic energy space K(Ω) and the turbulent
dissipation energy space E(Ω). If the spaces K(Ω) and E(Ω) are finite-
dimensional then the solution (κ, ε) will be denoted by (κh, εh) and the cor-
responding spaces by Kh(Ω) and Eh(Ω). In order to solve the turbulent
kinetic and turbulent dissipation energy fields we use the finite-dimensional
space of piecewise-quadratic polynomials for Kh(Ω) and Eh(Ω). In this re-
port the domain Ω is always discretized by Lagrangian finite element families
with parameter h. The equations for the turbulent kinetic energy κh and for
turbulent dissipation energy εh, after discretization with FEM, can be written
as ∫

Ω

∂ κh
∂t

ϕh dx +

∫
Ω

∇ · (vh κh)ϕh dx +

∫
Ω

(
ν +

νt
σk

)
∇κh · ∇ϕh dx =∫

Ω

(Pkh + Pbh)ϕh dx−
∫

Ω

εh ϕh dx ∀ϕh ∈ Kh(Ω) . (2.24)

and ∫
Ω

∂ εh
∂t

ϕh dx +

∫
Ω

∇ · (vh εh)ϕh dx +

∫
Ω

(
ν +

νt
σε

)
∇εh · ∇ϕh dx =∫

Ω

C1ε
ε

k
(Pkh + C3εPbh)ϕh dx−

∫
Ω

C2ε
ε2

k
ϕh dx ∀ϕh ∈ Eh(Ω) ,

with all the constants defined as above.
The κ - ε turbulence solver is implemented in the class MGSolverKE which

consists of the declaration file

include/MGSolverKE.h

and the implementation file

src/MGSolverKE3D.C .

The parameters can be set in the file

config/MGSKEconf.h .
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2.3 κ -ω turbulence models

2.3.1 Standard κ -ω turbulence model

In this section we consider the κ -ω model and describe briefly the imple-
mentation that uses the logarithmic form of the transport equation for the
variable ω.

Let κ and ω be the turbulent kinetic energy and the specific dissipation
rate. The turbulent viscosity µt is defined as µt = ρκ/ω. The standard κ -ω
system is defined by [29]

∂ρκ

∂t
+∇ · ρuκ = ∇ ·

[
(
µt
σk

+ µ)∇κ
]
− ρβkκω + ργk S

2 , (2.25)

∂ρω

∂t
+∇ · ρuω = ∇ ·

[
(
µt
σw

+ µ)∇ω
]
− ρβwω2 + ργw S

2 , (2.26)

with βk = β∗ = 9/100, γk = µt, βw = 5/9, γw = α = 3/40, σk = 2 and
σw = 2.

In these equations, the term γk S
2 represents the generation of turbulent

kinetic energy due to mean velocity gradients. The quantity γw S
2 represents

the generation of ω. The terms βkκω and βwω
2 represent the dissipation of

κ and ω due to turbulence.
The numerical solution of these equations poses some difficulties. For

instance, large variations and negative values of ω can occur. In order to
avoid such numerical difficulties, the equation (2.26) can be expressed in
logarithmic form. The logarithmic specific dissipation rate W is defined by

ω = exp(W ) (2.27)

and therefore W = ln(ω). With this change of variable we have

∂ρκ

∂t
+∇ · ρuκ = ∇ ·

[
(
µt
σk

+ µ)∇κ
]
− ρβkκ exp(W ) + ργk S

2 , (2.28)

∂ρW

∂t
+∇ · ρuW = ∇ ·

[
(
µt
σw

+ µ)∇W
]

+

(
µt
σw

+ µ)(∇W )2 − ρβw exp(W ) + ργw S
2 exp(−W ) . (2.29)

In this case the turbulent viscosity is defined as

µt = ρκ exp(−W ) . (2.30)
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In (2.30) the turbulent viscosity can be computed as a product of positive
factors and divisions by zero are avoided, thus obtaining a further advantage
from the numerical point of view. However we note that the exponential
function increases the non-linearity in (2.29). Unfortunately the standard κ -
ω model described by (2.25-2.26) is inappropriate especially for low Reynolds
numbers.

The standard κ -ω model as implemented in many commercial codes is
based on the Wilcox κ -ω model given by (2.25-2.26), but it also incorporates
modifications for low Reynolds number effects and shear flow spreading. As
the κ -ω model has been modified over the years, the production terms in
κ and ω equations have been also modified to improve the accuracy of the
model for predicting free shear flows. We have implemented this model in
our code with no compressibility corrections.

The form of the equations for the turbulent kinetic energy κ and the
specific dissipation rate ω is the same as in the standard model (2.25-2.26).
Corrections are introduced in the computation of some coefficients. The
turbulent viscosity µt is computed by combining κ and ω as [30]

µt = α∗
ρk

ω
. (2.31)

The coefficient α∗ provides the low Reynolds number correction for the tur-
bulent viscosity, given by

α∗ = α∗∞

(
α∗0 + Ret/Rk

1 + Ret/Rk

)
, (2.32)

where

Ret =
ρk

µω
Rk = 6 α∗0 =

0.072

3
α∗∞ = 1 .

At high Reynolds numbers the κ -ω model yields α∗ = α∗∞ = 1.
The quantities ( µt

σk
+µ) and ( µt

σk
+µ) represent the effective diffusivities of

κ and ω, respectively. In order to compute them, we use (2.31-2.32) for the
turbulent viscosity µt and σk = 2 and σω = 2 as turbulent Prandtl numbers
for κ and ω respectively.

The production term ργk S
2 in the κ equation is computed by setting

γk = µt where µt is again computed by (2.31-2.32).
For the computation of the dissipation term ρβkκω in the κ equation we

use
βk = β∗kfβ∗ , (2.33)
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where [6]

fβ∗ =

{
1 χk < 0
1+680χ2

k

1+400χ2
k

χk > 0
(2.34)

or [30]

fβ∗ =

{
1 χk < 0
1+680χ2

k

1+80χ2
k

χk > 0
(2.35)

where

χk ≡
1

ω3
∇k · ∇ω (2.36)

and

β∗k = β∗
(

4/15 + (Ret/Rβ)4

1 + (Ret/Rβ)4

)
(2.37)

with

Ret =
ρk

µω
Rβ = 8 β∗ = 0.09 . (2.38)

The coefficient γw in the production term for ω is given by

γw = 0.52

(
1 + Ret/Rk

α∗0 + Ret/Rk

)(
α0 + Ret/Rω

1 + Ret/Rω

)
, (2.39)

where

Ret =
ρk

µω
Rk = 6, Rω = 2.95 . (2.40)

The coefficient βw in the dissipation of ω is computed as

βw = βc fβ , (2.41)

where

βc = 0.072 fβ =
1 + 70χω
1 + 80χω

(2.42)

and

χω =

∣∣∣∣
∑

ijk ΩijΩjkSki

(β∗ω)3

∣∣∣∣ (2.43)

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.44)
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2.3.2 Shear-stress transport (SST) κ -ω model

The shear-stress transport (SST) κ -ω model was developed by Menter [11,
12] to effectively blend the robust and accurate formulation of the κ -ω model
in the near-wall region with the good behavior of the κ - ε model in the
turbulent bulk region. To achieve this, the κ - ε model is converted into a
κ -ω formulation. The standard κ -ω model and the transformed κ - ε model
are both multiplied by a blending function and added together. The blending
function is designed to be equal to 1 in the near-wall region, to reproduce the
standard κ -ω model, and equal to 0 away from the surface, to reproduce the
κ - ε model. We have implemented this model on our FEM in-house code as
described in [11]. The SST κ -ω model is similar to the standard κ -ω model
in (2.25-2.26) with some correction terms and it can be written as [11, 12]

∂ρκ

∂t
+∇ · ρuκ = ∇ ·

[
(
µt
σk

+ µ)∇κ
]
− ρβSk κω + ργSk S

2 (2.45)

∂ρω

∂t
+∇ · ρuω = ∇ ·

[
(
µt
σw

+ µ)∇ω
]
− ρβSwω2 +

ργSw S
2 + 2 (1− F1) ρσω,2∇k · ∇ω . (2.46)

If the variable W is used then (2.46) becomes

∂ρW

∂t
+∇ · ρuW = ∇ ·

[
(
µt
σw

+ µ)∇W
]

+ (
µt
σw

+ µ)(∇W )2 − (2.47)

ρβSw exp(W ) + ργSw S
2 exp(−W ) + 2 (1− F1) ρσω,2 exp(−W )∇k · ∇W .

The SST κ -ω is based on two blending functions denoted by F1 and F2
that are employed for the computation of the coefficients. They are defined
by

F1 = tanh
(
Φ4

1

)
F2 = tanh

(
Φ2

2

)
(2.48)

with

Φ1 = min

[
max

( √
k

0.09ωδ
,
500µ

ρy2ω

)
,

4ρk

σω,2D+
ω δ

2

]
(2.49)

Φ2 = max

[
2

√
k

0.09ωδ
,
500µ

ρδ2ω

]
D+ = max

[
2ρ
∇k · ∇ω
σω,2 ω

, 10−10

]
(2.50)

where δ is the distance to the closest surface and D+ is the positive portion
of the cross-diffusion term.
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The turbulent viscosity µt is computed by combining κ and ω as [11, 12]

µt =
ρk

ω
min

[
α∗,

0.31ω√
2SF2

]
(2.51)

where S is the strain rate magnitude. The quantity α∗ is given by

α∗ =

(
0.024 + Ret/Rk

1 + Ret/Rk

)
, (2.52)

where Ret =
ρk

µω
and Rk = 6. At high Reynolds numbers α∗ tends to 1 and

at low Reynolds numbers α∗ tends to 0.024. The turbulent Prandtl numbers
σk and σω are

1

σk
=

F1

σk,1
+

(1− F1)

σk,2
(2.53)

1

σω
=

F1

σω,1
+

(1− F1)

σω,2
, (2.54)

where
σk,1 = 1.176, σω,1 = 2.0, σk,2 = 1.0, σω,2 = 1.168 . (2.55)

The coefficient γSk in the production term of turbulent kinetic energy is
defined as [11, 12]

γSk = min(µt,
10ρβ∗kω

2S2
) , (2.56)

where µt is computed by using (2.51).
The quantity βk in the dissipation term of κ is given by [11]

βk = β∗k fβ∗ (2.57)

with fβ∗ = 1.
For the coefficient γSw in the production of ω we have [11]

γSw = ᾱ , (2.58)

where
ᾱ = F1α1 + (1− F1)α2 (2.59)

with α1 = 5/9 and α2 = 0.44. This term is implemented in a different way
in the Fluent code, see [6].

The coefficient βSw in the dissipation of ω is given by [11]

βSw = βS fβ , (2.60)

where fβ = 1. The quantity βS is not constant but

βS = F1β
S
1 + (1− F1)βS2 , (2.61)

where β1 = 0.075, β2 = 0.0828 and F1 is obtained from (2.48).
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2.3.3 Boundary conditions for κ -ω models

The boundary conditions for the κ -ω model can be imposed by using the wall
function or by using the so called near-wall approach and no wall functions
are taken into account. We can subdivide the boundary into inlet, outlet and
wall portions, which will be denoted by Γi, Γo and Γw respectively.

For the inlet boundary conditions we set the velocity, κ and ω fields to
their given inlet value. On the boundary Γi we set the inlet velocity uΓi = ū0

and for κ and ω or W we may enforce

κΓi = 1.5ū2I2 ωΓi =

√
κ

l
W |Γi = ln

√
1.5ūI − ln l , (2.62)

where ū is the mean flow velocity, I the turbulence intensity and l the
turbulent length scale. For an inlet fully developed flow in a channel we

have I = 0.16 Re
− 1

8
D l = 0.07 D, where ReD is the Reynolds number

based on the hydraulic diameter D. For an inlet laminar flow we may set
I = 0.01 l = 0.07 D.

The outlet boundary conditions are relatively simple and are taken on the
outlet boundary Γo as

∇u · n|Γo = 0 u× n|Γo = 0 p|Γo = 0 (2.63)

and
∇κ · n|Γo = 0 ∇ω · n|Γo = 0 (2.64)

for the velocity, pressure, turbulent kinetic energy and specific dissipation
rate respectively, where n is the normal unit vector.

For the wall, we consider a computational wall to be located inside the
channel at a distance δ from the real wall. We define the boundary conditions
by defining the wall shear stress τw = µ∂u/∂δ|δ at the boundary δ with µ is
the dynamic viscosity and u is the flow velocity parallel to the wall.

If δ is defined in the viscous laminar region then we define the velocity
boundary condition as

τn|δ = ρν
ut
δ

(2.65)

where ut is the tangential velocity and δ is the distance from the wall. The
turbulent kinetic energy κ is assumed to be

κ|δ≈0 = 0 (2.66)

and the specific dissipation rate ω takes the following value [11, 12]

ω|δ =
ε

β∗κ
≈ 6

ν

β∗δ2
. (2.67)
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For the logarithmic specific dissipation rate W we have

W |δ = ln 6ν − ln β∗δ2 . (2.68)

For δ tending to zero we have that κ tends to zero and both ω and W go to
infinity.

If δ is not in the viscous layer the wall functions are used. In the log-
arithmic layer (y+ > y+

c ) the velocity can be assessed by the logarithmic
law

u+ =
1

kv
ln(y+) +B . (2.69)

The derivative turbulent kinetic energy κ is assumed to be zero

∇κ · n|δ = 0 , (2.70)

and the specific dissipation rate ω takes the following value [11, 12]

ω|δ =

√
κ

Cµ δ
. (2.71)

For the logarithmic specific dissipation rate W we have

W |δ = 0.5 lnκ− lnCµδ (2.72)

2.3.4 FEM-LCORE implementation of the κ -ω turbu-
lence models

We consider the turbulent kinetic energy space in K(Ω) and turbulent spe-
cific dissipation rate space W (Ω). If the spaces K(Ω) and W (Ω) are finite-
dimensional then the solution (κ, ω) will be denoted by (κh, ωh) and the
corresponding spaces by Kh(Ω) and Wh(Ω). In order to solve the turbulent
kinetic energy and specific dissipation rate fields we use the finite-dimensional
space of piecewise-quadratic polynomials for Kh(Ω) and Wh(Ω). In this re-
port the domain Ω is always discretized by Lagrangian finite element families
with parameter h. The equation for the turbulent kinetic energy equation
κh and for the turbulent specific dissipation rate ωh are implemented as∫

Ω

∂ρκ

∂t
ϕh dx +

∫
Ω

∇ · ρuκϕh dx +

∫
Ω

(
µt
σk

+ µ)∇κ · ∇ϕh dx = − (2.73)∫
Ω

ρβkκω ϕh dx +

∫
Ω

ργk S
2 ϕh dx ∀ϕh ∈ Kh(Ω) .
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∫
Ω

∂ρω

∂t
ϕh dx +

∫
Ω

∇ · ρuω ϕh dx +

∫
Ω

[
(
µt
σw

+ µ)∇ω · ∇ϕh dx

= −
∫

Ω

ρβwω
2 ϕh dx +

∫
Ω

ργw S
2 ϕh dx + (2.74)∫

Ω

2ϕh (1− F1) ρσω,2∇k · ∇ω dx ∀ϕh ∈ Wh(Ω) .

If the variable W is used then (2.74) becomes∫
Ω

∂ρW

∂t
ϕh dx +

∫
Ω

∇ · ρuWϕh dx +

∫
Ω

(
µt
σw

+ µ)∇W · ∇ϕh dx =∫
Ω

(
µt
σw

+ µ)(∇W )2ϕh dx−
∫

Ω

ρβw exp(W )ϕh dx +∫
Ω

ργw S
2 exp(−W )ϕh dx + ∀ϕh ∈ Wh(Ω)∫

Ω

2ϕh (1− F1) ρσω,2 exp(−W )∇k · ∇Wdx . (2.75)

with all the constants defined as above.
The κ−ω turbulence model solver is implemented in the class MGSolverKW

which consists of the declaration file

include/MGSolverKW.h

with the implementation file

src/MGSolverKW3D.C

and the parameters can be set in the file

config/class/MGSKWconf.h.

2.3.5 A test for SST κ -ω model in single rod geometry

This test has been introduced to investigate the behaviour of the SST κ -ω
model implemented on the code. The SST κ -ω model was developed to
effectively blend the robust and accurate formulation of the κ -ω in the near-
wall region with the good behavior of the κ - ε model in the turbulent bulk
region. The blending functions are designed to be equal to 1 in the near-wall
region, to reproduce the standard κ -ω model, and equal to 0 away from the
surface, to reproduce the κ - ε model. For this reason we plan to use this
model as the main model in the rest of this work.
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Figure 2.1: SST κ -ω test. The temperature (left) and velocity (right)
profiles across the annular region at z = 2.2m for the standard κ -ω (A) and
SST κ -ω model (B).
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Figure 2.2: SST κ -ω test. The turbulent kinetic energy κ (left), the specific
dissipation rate ω (right) profiles across the annular region at z = 2.2m for
the standard κ -ω (A) and SST κ -ω model (B).

The benchmark geometry consists of an annular geometry with total
length L = 2.25m and inner and outer diameters D = 3.025 × 10−2m and
d = 4.1×10−3m respectively. The LBE liquid metal flows from the bottom to
the top of the channel in the annular region. The properties of lead-bismuth
eutectic alloy are taken at reference temperature of 573.15K. A constant
temperature Ti = 573.15K and a flat velocity profile of v0 = 0.667 m/s are
assumed on the inlet section. With these data the corresponding Prandtl
number is 0.023 and the Reynolds number is approximately 1 · 105. On the
inner cylinder we assume no slip boundary conditions and a constant surface
heat flux q = 3.1·105W/m2. On the outer cylinder we set adiabatic boundary
conditions. On the outlet boundary we use the standard outflow conditions
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Figure 2.3: SST κ -ω test. Turbulent viscosity profiles across the annular
region at z = 2.2m for the standard κ -ω (A) and SST κ -ω model (B).
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Figure 2.4: SST κ -ω test. The velocity profiles across the annular region
at z = 2.2m for the code (A) and Fluent (B).
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Figure 2.5: SST κ -ω test. The temperature profiles along the line r =
0.25 (D + d) (left) and across the annular region at z = 2.2m (right) for the
code (A) and Fluent (B).
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described in (2.15). In agreement with Section 2.3.3, the boundary condi-
tions imposed on the velocity field are imposed on a cylindrical surface at a
distance δ from the real wall. We refine the mesh until the surface defined
by δ lies in the viscous laminar region. When the distance from the wall δ
is small enough then we set the near-wall boundary conditions. We set the
boundary stress as τn|δ = ρν ut|δ

δ
and the normal velocity un|δ = 0. If δ tends

to zero then ut tends to zero, giving full no-slip boundary conditions. The
boundary conditions for κ and ω are taken in agreement with the previous
Section. For the turbulent kinetic energy and specific dissipation rate we fix
the values on the inlet as κ = 0.00105m2/s2 and ω = 16.3 s−1 respectively.
On the outlet we use the standard outflow conditions in (2.16) which set to
zero the normal derivatives of κ and ω. On the wall we set the near-wall
boundary conditions κ|δ ≈= 0 and ω|δ ≈ 6 ν

β∗δ2
as described in (2.66-2.67).

In Figure 2.1 the temperature (left) and velocity (right) profiles across
the annular region for the standard κ -ω (A) and SST κ -ω models (B) are
shown. In a similar way the turbulent kinetic energy κ (left) and the specific
dissipation rate ω (right) profiles across the annular region for the two models
can be seen in Figure 2.2. The κ and ω profiles for the two models are different
and the resulting turbulent viscosity can be seen in Figure 2.3.

A comparison between the finite element code and Fluent can be found in
Figures 2.4-2.5. In Figure 2.4 the velocity profiles across the annular region
at z = 2.2m obtained from the SST κ -ω solutions of the code (A) and
Fluent (B) are compared. In Figure 2.5 the temperature profiles along the
line r = 0.25 (D+d) (left) and across the annular region at z = 2.2m (right)
for the code (A) and Fluent (B) are shown.

2.4 Four parameter κ - ε-κθ - εθ turbulence model

2.4.1 Introduction

Practically all the effective turbulence models like κ - ε dealing with the aver-
aged fields, say velocity, pressure and temperature, contain model functions.
Usually they are the functions of a distance from the wall, so called wall-
functions. Applying these functions has the aim to take into account the
turbulence specific near the wall (the effect of the wall on the spatial turbu-
lence scale) and achieve the agreement between computed and experimental
data. But entering in the differential equations of these empirical functions
shows on incompleteness of models arising from a lack of necessary physical
ideas. As an example, consider a κ - ε model. Applying the algebraic trans-
formations and Reynolds averaging procedure to the fundamental equations
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of fluid dynamics one can obtain the exact equations for the turbulent energy
and its dissipation rate. (The last appears naturally in the equation for the
turbulent energy.) Both equations contain the correlation functions which
one needs to express via the averaged fields of the velocity, pressure, turbu-
lent energy and dissipation rate for closing the equation system. The exact
equation for the turbulent energy contains a small number of the correlation
functions. The very simple physical ideas are used for their approximation.
One of them is the Boussinesq hypothesis expressing the Reynolds stress ten-
sor via the strain velocity tensor and eddy viscosity. With high probability
the resulting model equation for the turbulent energy may be considered as
close to the exact one. But the correlation functions of the exact equation
for the dissipation rate are much more complex and manifold. For this rea-
son, very often the model equation for the dissipation rate is constructed
similarly to the equation for the turbulent energy and has the same terms:
the generation, diffusion and dissipation one. The analysis of the different
correlation functions is practically ignored. This leads to the necessity of
introducing the model functions into the equation system. It is considered
that the model functions have effect near the walls. Really, in some cases
their effect can extend far from the walls. The utilization of the model func-
tions becomes problematic in the case of complex channels. Another problem
arises with the numerical simulation of non-isothermal flows by means of the
effective turbulence models operating with the averaged fields. The similarity
hypothesis relating the turbulent heat conductivity with the eddy momen-
tum diffusion by means of the turbulent Prandtl number is usually used in
this case. But different experiments show that the turbulent Prandtl num-
ber is not a generalized parameter and depends on the spatial coordinates
and heat exchange conditions. To solve this problem a four-parametric κ - ε-
κθ - εθ turbulence model for simulating heat exchange in fluids with different
Prandtl numbers was proposed [24]. In this model, the eddy heat conductiv-
ity was determined via the four parameters: κ - ε-κθ - εθ, where κθ and εθ are
the temperature fluctuations squared and their dissipation rate respectively.
The increase of the parameters number made the model functions much more
complex and increased their number. The fundamental equations governing
a fluid motion include the all fluid properties and the resulting model equa-
tions should themselves take into account the turbulence specific near the
walls. It means that a complete turbulence model should not contain any
model functions. In the previous works [13, 14, 15, 16] the two-parametric
κ - ε turbulence model for simulating isothermal flows of incompressible fluids
was proposed. The model did not use any model functions and had shown
satisfactory agreement between calculated and experimental results for flows
in different channels. It was obtained by expanding the correlation func-
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tions of the exact equations for the turbulent energy and its dissipation rate
into the sum of ensemble-averaged velocity spatial derivatives of the first
and second order. Representing the Reynolds stress tensor via the sum of
the first and second order velocity spatial derivatives gives the new terms in
the model equations for the momentum and turbulent energy. These terms
can be called as the exchange forces. They cause the kinetic energy trans-
fer from the main flow to the secondary flows in straight channels [13]-[16].
Neglecting the second-order velocity spatial derivatives reduces the relation-
ship for the Reynolds stress tensor to the well-known Boussinesq formula.
The combination of very productive idea of the work [24], allowing avoid
the use of the turbulent Prandtl number concept, and ideas of the works
[13]-[16] was used for constructing the four-parametric turbulence model for
non-isothermal flows of compressible fluids [17]. In the present work, the
edition of the model [17] for incompressible but non-isothermal fluid flows is
presented as well as the simulation results for a turbulent natural convection
along a vertical flat plate and their comparison with the experimental data.

2.4.2 Transport equations as a result of applying the
Reynolds averaging procedure to the Navier-Stokes
and energy equations

Consider that the flow velocity is small in comparison with the speed of
sound. In this case the density is independent from the pressure and may
depend from the temperature. We can put

∇ · u =
∂uk
∂xk

= 0 . (2.76)

Everywhere the twice repeated index means the summation on the index.
The common form of the continuity equation

∂ρ

∂t
+ u · ∇ρ = 0 (2.77)

is reduced to the substantial derivative of the density :

∂ρ

∂t
+∇ · ρu = 0 (2.78)

After applying the algebraic transformations and Reynolds averaging pro-
cedure to the fundamental dynamic equations of incompressible fluids we
obtain the following transport equations expressed via the averaged fields.
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The momentum equation (Reynolds equation)

ρ
∂ui
∂t

+ ρuk
∂ui
∂xk

= −∂ρu
′
ku
′
i

∂xk
+
∂σik
∂xk

+ ρgi (2.79)

The heat conductivity equation

ρCp

(
∂T

∂t
+ uk

∂T

∂xk

)
= βT

Dp

Dt
− ∂ρCpu′kT

′

∂xk
+

1

2
µS2

ij + ρε+
∂

∂xk

(
λ
∂T

∂xk

)
(2.80)

The first term in the right-hand side of the equation (2.80) contains the sub-
stantial derivative of the pressure, Dp/Dt, which appears when the common
form of the energy equation with a variable density is formulated as a balance
of the temperature field [25].

The turbulent energy equation

∂κ

∂t
+ ui

∂κ

∂xi
= −u′iu′j

∂ui
∂xj

+
ûi
ρ

∂σik
∂xk

+
∂

∂xj

(
νt
σκ

+ ν

)
∂κ

∂xj
− ε (2.81)

The turbulent energy dissipation rate equation

∂ε

∂t
+ ui

∂ε

∂xi
=

− 2νmij
∂ui
∂xj
− νrijkRijk −

2

3
ν
∂u′iu

′
j

∂xj

∂2ui
∂x2

l

− 2ν
∂u′i
∂xj

∂u′i
∂xk

∂u′k
∂xj

+
∂

∂xj

(
νt
σε

+ ν

)
∂ε

∂xj
− Cε2

ε2

κ
(2.82)

The equation for the averaged temperature fluctuations squared

∂κθ
∂t

+ ui
∂κθ
∂xi

= −u′iT ′
∂T

∂xi
+

∂

∂xi

(
at
σκ

+ a

)
∂κθ
∂xi
− εθ (2.83)

The equation for the dissipation rate of the temperature fluctuations squared

∂εθ
∂t

+ ui
∂εθ
∂xi

= −2aφi
∂T

∂xi
− 2afij

∂ui
∂xj
− aψij

∂2T

∂xi∂xj
− 2

3
a
∂u′T ′

∂xi

∂2T

∂x2
l

− 2a
∂T ′

∂xi

∂T ′

∂xj

∂u′i
∂xj

+
∂

∂xj

(
at
σε

+ a

)
∂εθ
∂xj
−Bε2

ε2θ
κθ

(2.84)

In the equations above, the next notations are used.

κ :=
1

2
u′2i , ε := ν

(
∂u′

∂xj

)2

κθ :=
1

2
T ′2 , εθ := a

(
∂T ′

∂xi

)2
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mij :=
∂u′i
∂xk

∂u′j
∂xk

+
∂u′k
∂xi

∂u′k
∂xj
− 2

3
δij
ε

ν

rijk := u′k
∂u′i
∂xj

+ u′j
∂u′i
∂xk
− 2

3
δjk

∂u′nu
′
i

∂xn

Rijk :=
∂2ui
∂xj∂xk

− δjk
3

∂2ui
∂x2

l

φi :=
∂u′i
∂xk

∂T ′

∂xk

fij :=
∂T ′

∂xi

∂T ′

∂xj
− δij

3

εθ
a

ψij := u′i
∂T ′

∂xj
+ u′j

∂T ′

∂xi
− 2

3
δij
∂u′kT

′

∂xk

ûi :=
ρ′u′i
ρ
' −βTu′iT ′

We recall that the Reynolds stress tensor u′iu
′
j is the averaged product of

velocity fluctuations and the turbulent heat flux density u′iT
′ is the averaged

product of velocity and temperature fluctuations. We also define the stress
tensor σij := −pδij +µSij, where Sij := ∂ui

∂xj
+

∂uj
∂xi

is the velocity deformation
tensor.

2.4.3 Model transport equations

According to [13]-[16], the correlation functions above, i.e. the ensemble-
averaged products of variables, are expressed via the velocity and tempera-
ture spatial derivatives as well as via κ, ε, κθ and εθ fields.

Approximation of the correlation functions of the hydrodynamic
equations

With respect to the velocity spatial derivatives the second order approxima-
tion of the Reynolds stress tensor gives

− u′iu′j +
2

3
δijκ = νtSij − Cκ

√
νκ

ε

κ2

ε
Rmijnm , nm :=

um√
u2
k

(2.85)

The coefficients of the expansion are combinations of the turbulent quantities
satisfying the necessary asymptotic behavior and disappearing when turbu-
lence disappears. The last term in the Reynolds stress tensor equation is
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important when the effects like the secondary flows in straight channels take
place. When this term is neglected the equation comes to the well known
Boussinesq relationship with the coefficient νt interpreted as eddy viscosity,

νt := Cµ
κ2

ε
(2.86)

− 2νmij = Cε1νt
ε

κ
Sij −Cε3κ

√
νκ

ε

∂Sij
∂xm

lm , li :=
∂κ

∂xi
/

√(
∂κ

∂xj

)2

(2.87)

rijk = −Cε4νtRijk , 2
∂u′i
∂xj

∂u′i
∂xk

∂u′k
∂xj

= Cε5
ε

κ
S2
ij − Cε6νR2

ijk (2.88)

ûi :=
ρ′u′i
ρ
' −βTu′iT ′ (2.89)

The second term in the right-hand side of the equation (2.81) takes into
account the effect of the pressure gradient on the turbulent energy generation.
As the velocity is small in comparison with ui, the second term in the right-
hand side of the equation (2.81) can be approximated in the following way:

ûi
ρ

∂σik
∂xk

' − ûi
ρ

∂p

∂xi
' βTu′iT

′

ρ

∂p

∂xi
(2.90)

. In the equations above Cµ , Cκ , Cε1 , Cε2 , Cε3 , Cε4, Cε5, Cε6, σκ, σε are
the model constants, ni and li are the unit vectors collinear to the velocity
vector and turbulent energy gradient respectively. The model constant values
are: Cµ = 0.09, Cκ = 0.5, Cε1 = 1.5, Cε2 = 1.9, Cε3 = 0.02, Cε4 = 2,
Cε5 = 0.09, Cε6 = 24, σκ = σε = 1.4. The relationships cited above make
the equation system (2.76), (2.79), (2.81), (2.82) closed and applicable for
simulating isothermal fluid flows. This equation system was called as the
second-order κ - ε turbulence model [13]-[16]. The main feature of this model
is that it doesn’t contain any model functions. The results of simulating liquid
flows in different channels were in good agreement with the experimental data
[13]-[16]. When the effects similar to the secondary flows in straight channels
are not presupposed, the term in the Reynolds stress tensor enclosed the
second order velocity spatial derivatives can be omitted. In this case the
equation system can be called as the first-order κ - ε turbulence model [13]-
[16].
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Approximation of the correlation functions of the heat-exchange
equations

The first order approximation with respect to the temperature spatial deriva-
tives is used for the turbulent heat flux density:

− u′iT ′ = at
∂T

∂xi
(2.91)

Then

−2aφi = Bε1
at
τh

∂T

∂xi
−Bε3

at
τh
Lh2

∂2T

∂xi∂xj
lj

ψij = −Bε4atFij

2
∂T ′

∂xi

∂T ′

∂xj

∂u′i
∂xj

= Bε5
ε

κ

(
∂T

∂xi

)2

−Bε6
a

Pr0.25
F 2
ij

−2afij = Dε
κεθ
ε
Sij

In the equations above

Fij :=
∂2T

∂xi∂xj
− δij

3

∂2T

∂x2
l

(2.92)

In the most common way, the eddy heat diffusivity at can be determined as
the product of the velocity and length scales characteristic for turbulence:

at := Cλ
√
κLef (2.93)

The square root of κ can naturally be taken as the velocity scale. In determi-
nation of the eddy viscosity the ratio of κ2 to ε was used as the length scale
but in determination of eddy heat diffusivity at the length scale should take
into account as well the effect of the heat-exchange characteristics of turbu-
lence i.e. κθ and εθ respectively. Moreover, if the velocity fluctuations exist
together with the temperature gradient the temperature fluctuations exist
necessarily. This circumstance should be taken into account too. The length
scale entering in the eddy heat diffusivity at is determined as the effective
length scale Lef expanded via the length scales of different magnitudes:

Lef =

{
Le Le > L0

L0 Le ≤ L0

, (2.94)

Le := Lh − fPrLh1 + L0

Lh :=
√
κτh , Lh1 :=

√
νκθ
εθ

, L0 := 0.2a(νε)−0.25 , τh :=

√
κ

ε

κθ
εθ



Advances in implementation of turbulence models 67

τh is the time scale. The function entering in the determination of the length
scale depends on the Prandtl number as below

fPr =
1 + 0.7 exp(−R)− exp(−R1)

1 + exp(−R2)
(2.95)

R =

(
1.2

Pr

)2

, R1 =

√
110

Pr
, R2 =

√
25000

Pr
(2.96)

In the determinations above the additional length scale is used as well:

Lh2 =

√
aκ

ε
(2.97)

The model constant values are: Cλ = 0.09, Bε2 = 1.9, Bε3 = 0.2, Bε4 = 2,
Bε5 = 0.09, Bε6 = 24, Dε = 0.01. In the list above Bε1 is absent. It is
considered here as the coefficient dependent on the Prandtl number in the
following way:

Bε1 = 1− 1

2

Pr2

1 + Pr2
(2.98)

When the correlation functions are replaced by their approximations the
transport equations (2.79)-(2.84) read:

The momentum equation (Reynolds equation)

ρ
∂ui
∂t

+ ρuk
∂ui
∂xk

= − ∂

∂xi

(
p+

2

3
ρκ

)
+

∂

∂xj
[(µt + µ)Sij]

+ ρgi − Cκ
∂

∂xj

(√
νκ

ε

κ2

ε
Rmijnm

)
(2.99)

The heat conductivity equation

ρCp

(
∂T

∂t
+ uk

∂T

∂xk

)
= βT

Dp

Dt
+

∂

∂xk

[
(λt + λ)

∂T

∂xk

]
+

1

2
µS2

ij + ρε (2.100)

The turbulent energy equation

∂κ

∂t
+ ui

∂κ

∂xi
=

1

2
νtS

2
ij −

βTat
ρ

∂T

∂xi

∂p

∂xi
+

∂

∂xj

(
νt
σκ

+ ν

)
∂κ

∂xj

− ε− Cκ
√
νκ

ε

κ2

ε

∂ui
∂xj

∂2um
∂xi∂xj

nm (2.101)

The last term in the right-hand side of the equation (2.101) can be omitted
simultaneously with the last term in the right-hand side of the equation (2.99)
if the effects similar to the secondary flows are not important.
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The turbulent energy dissipation rate equation

∂ε

∂t
+ ui

∂ε

∂xi
=

1

2
Cε1νt

ε

κ
S2
ij − Cε3κ

√
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ε

∂ui
∂xj

∂Sij
∂xm
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2
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2

3
ν
∂u′iu
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j

∂xj

∂2ui
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κ
S2
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2R2
ijk +

∂

∂xj

(
νt
σε

+ ν

)
∂ε

∂xj
− Cε2

ε2

κ
(2.102)

The equation for the averaged temperature fluctuations squared

∂κθ
∂t

+ ui
∂κθ
∂xi

= at

(
∂T

∂xi

)2

+
∂

∂xi

(
at
σκ

+ a

)
∂κθ
∂xi
− εθ (2.103)

The equation for the dissipation rate of the temperature fluctuations squared

∂εθ
∂t
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∂εθ
∂xi
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+
∂
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(
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)
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aε
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∂T

∂xi

)2

+Bε6
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Pr0.25
F 2
ij (2.104)

2.4.4 Simulating the natural convection boundary layer
along a vertical flat plate

To study the turbulent natural convection boundary layer in air along a
vertical plate, the natural convection inside a two-dimensional rectangular
cavity inserted in air medium was really simulated by means of the proposed
model [27, 22]. The cavity was 8.2 meter in height and 2 meter wide. Starting
0.2 meter from the bottom, one side wall of the cavity was kept at the uniform
constant temperature Tw = 60oC. All the other solid walls were kept at the
ambient temperature of air T0 = 16oC. The temperature values of Tw and
T0 correspond to the conditions of the experiment [27]. At the upper liquid
boundary, the normal derivative of the temperature was equal to zero. The
following boundary conditions were imposed for other physical quantities as
well.

The Dirichlet zero boundary condition was used for the velocity, turbulent
energy and temperature fluctuations at the solid walls and for the velocity
component V , normal to the gravity acceleration vector, at the upper liquid



Advances in implementation of turbulence models 69

boundary considered as the dividing line between the cavity and infinite
volume of air medium. The Dirichlet zero boundary condition was used as
well for the dissipation rates ε and εθ at the bottom and side wall opposite
to the heating wall (no turbulence at the walls). Neumann zero boundary
condition was used: a) for all the quantities at the top liquid boundary except
the velocity component V ; b) for the dissipation rates ε and εθ at the heating
wall; c) for the pressure at all the boundaries.

For all the quantities, the zero initial conditions were imposed except
the turbulent energy k and dissipation rate ε. For the last quantities, the
following initial conditions which may be considered as an initial disturbance
were imposed:

κ = 15U2
R exp(− y

0.01
) , ε = 0.3

U4
R

ν0

exp(− y

0.01
) (2.105)

Laminar natural convection boundary layer

Figure 2.6: Wall shear stresses for laminar natural convection (‘Empirical’
– for turbulent convection)

With aim of testing the numerical analysis scheme and choosing the pa-
rameters for the presentation of the results in non-dimensional form, the sim-
ulation of the laminar natural convection boundary layer had been carried
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Figure 2.7: Heat transfer rates for laminar natural convection (‘Empirical’
– for turbulent convection)

Figure 2.8: Velocity profiles in the laminar boundary layer

out at first. Figure 2.6 shows the coincidence of calculated and theoretical re-
sults for the wall shear stress τw in relation to the Grashof number Grx. The
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Figure 2.9: Temperature profiles in the laminar boundary layer

Figure 2.10: Wall shear stresses

theoretical results for the laminar convection are described by the equation



Advances in implementation of turbulence models 72

Figure 2.11: Heat transfer rates

[27]:
τw
ρU2

R

= 0.953Gr1/12
x (2.106)

The empirical results for the turbulent natural convection are shown also for
comparison. These results are described by the formula [27]:

τw
ρU2

R

= 0.684Gr1/11.9
x (2.107)

Figure 2.7 compares the calculated and theoretical results for heat transfer
rates in the relation between Nusselt, Nux, and Rayleigh, GrxPr, numbers
for the laminar convection. The theoretical results for the laminar boundary
layer are described by the equation [27]:

Nux = 0.387(GrxPr)
1/4 (2.108)

The slope of the theoretical line representing equation (2.108) in logarithmic
coordinates is a little larger than the slope of the calculated one. For compar-
ison, the empirical heat transfer rates for the turbulent natural convection
boundary layer are shown in Figure 2.7 as well. These empirical results are
described by the formula [27]:

Nux = 0.120(GrxPr)
1/3 (2.109)
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Figure 2.12: Stream lines of the natural convection in the cavity. The left
side wall is heated

The calculated velocity and temperature profiles in the laminar boundary
layer are shown in Figs. 2.8 and 2.9 respectively and compared with the
experimental profiles indicated by dots. The calculated results generalized
in conventional variables [27] are not described by the unique curves in the
wide range of Grashof number.

Turbulent natural convection boundary layer

The results of the numerical simulation of the turbulent natural convection
boundary layer obtained by means of the four parametric turbulence model
(2.99)-(2.104) by neglecting the last terms in the right-hand side of the equa-
tions (2.99), (2.101) i.e. by neglecting the second order term in the relation-
ship for the Reynolds stress tensor, are presented below. Practically, the same
results were obtained by taking into account this second order term. The dis-
tributions of the calculated wall shear stresses and heat transfer rates for the
turbulent natural convection boundary layer are shown in Figs. 2.10 and 2.11
respectively, together with the experimental data. Both figures demonstrate
well that the turbulence model gives the same transition region between the
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Figure 2.13: Mean velocity profiles. Lines denote calculated data. Dots
denote experimental data [27]

laminar and turbulent regimes in terms of Grashof number values as it was
observed in the experiment [27]. The calculated wall shear stresses agree
satisfactorily with the experimental values measured up to Grx = 2 × 1011.
(In the experiment [27], the flat surface generating heat flux was a plate 4 m
high.) For Grx > 2× 1011 the calculated wall shear stresses deviate from the
empirical dependence (2.109). This effect can be explained by the interfer-
ence between ascending and descending flows in the upper part of the cavity
as it can be seen from the pattern of streamlines, Figure 2.12. To prevent this
interference a partition was installed at the upper part of the experimental
assembly [27]. It is necessary to emphasize that the empirical dependence
(2.109) was drawn via the four empirical values measured at high Grashof
numbers, see Figure 2.10.

The dependence on the Grashof number of the calculated heat transfer
rates in the turbulent boundary layer has the same character as the experi-
mental one but with values which are approximately 1.4 times lower than the
experimental values, see Figure 2.11. Figure 2.13 compares the calculated
and experimental mean velocity profiles in the turbulent boundary layer as
well as in the transition and laminar regions in the relation between U+

and y+. The calculated and experimental mean velocity profiles indicate the
same boundary layer thickness along the heated wall but the velocity values
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Figure 2.14: Mean temperature profiles. Lines denote calculated data. Dots
denote experimental data [27]

and profile forms are slightly different. Figure 2.14 compares the calculated
and experimental mean temperature profiles in the relation between T+ and
y+. The calculated non-dimensional temperature profiles have practically
the universal form inside the turbulent boundary layer. As a consequence
of the differences in calculated and experimental heat transfer rates, the cal-
culated temperature profiles normalized by the friction temperatures have
the maximum temperature of about 1.4 times higher than the experimen-
tal value. The calculated and experimental profiles coincide in the laminar
boundary layer. Figure 2.15 compares the calculated and experimental lon-
gitudinal velocity fluctuation profiles normalized by the friction velocity uτ .
The experimental profiles show the significant velocity fluctuations in the
wall vicinity known as viscous sub-layer in the turbulent forced convection
boundary layer bounded by y+ ≤ 5. The calculation results show the signif-
icantly larger wall neighborhood, y+ ≤ 10, with zero velocity fluctuations.
This is distinction in kind. But for the momentum transfer, the Reynolds
stress u′v′ values are more important. Figure 2.16 shows that the difference
between calculated and experimental distributions of u′v′ is not so large as
among u′u′ values.
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Figure 2.15: Profiles of velocity fluctuation intensities. Lines denote calcu-
lated data. Dots denote experimental data [27]

2.4.5 Simulating the natural convection boundary layer
by means of the two parametric turbulence model
using the turbulent Prandtl number

To understand better the distinction between the calculated and empirical
heat transfer rates of Figure 2.11, the numerical simulation of the turbulent
natural convection boundary layer was performed by means of four equations
(2.99)-(2.102). Two equations, the equation for the turbulent energy (2.101)
and dissipation rate (2.102), are necessary for the determination of the eddy
momentum diffusivity. Instead of solving the equations (2.103) and (2.104),
the eddy heat diffusivity was determined via the eddy momentum diffusivity
by using the turbulent Prandtl number Prt. This model may be called two
parametric. It is reasonable to expect that an averaged value of the turbulent
Prandtl number will work well in such a complex flow as natural convection
inside a rectangular cavity. The usually used value of Prt for air equal to 0.9
was implemented in the numerical simulation.

The distribution of the heat transfer rates calculated by means of the
two-parametric turbulence model is shown in the Figure 2.17. The differ-
ence between calculated and experimental results does not exceed 20%. Of
the same order difference appears for the calculated and experimental tem-
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Figure 2.16: Profiles of Reynolds stresses. Lines denote calculated data. Dots
denote experimental data [26]

perature distributions, Figure 2.18. These differences show on satisfactory
agreement between experimental results and results obtained by means of
the two-parametric turbulence model. Figure 2.19 compares the calculated
and experimental turbulent heat flux distributions. Being equal to zero for
y+ ≤ 5, the calculated and experimental heat fluxes practically coincide in
the layer region y+ ≥ 30 and differ in the interval 5 < y+ < 30. This
difference explains well the differences between the calculated and experi-
mental heat transfer rates of Figure 2.17 and temperature distributions of
Figure 2.18. Not shown here, the turbulent heat fluxes calculated by means
of the four-parametric turbulence model differ more from experimental val-
ues. This explains bigger differences between the calculated and experimen-
tal heat transfer rates of Figure 2.11 and temperature distributions of Figure
2.14. The wall shear stresses, velocity profiles, velocity fluctuation intensities
and profiles of Reynolds stresses calculated by means of the four-parametric
turbulence model and shown on Figs. 2.10, 2.13, 2.15 and 2.16 respectively
coincide with those calculated by means of the two-parametric turbulence
model.



Advances in implementation of turbulence models 78

Figure 2.17: Heat transfer rates calculated by using the turbulent Prandtl
number

Figure 2.18: Mean temperature profiles calculated by using the turbulent
Prandtl number. Lines denote calculated data. Dots denote experimental
data [27]
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Figure 2.19: Profiles of turbulent heat fluxes. Lines denote calculated data.
Dots denote experimental data [26]

2.4.6 Final considerations

In the previous work [17] the four-parametric κ - ε-κθ - εθ turbulence model
for simulating the turbulent flows and heat exchange in fluids with differ-
ent Prandtl numbers was proposed. The model was tested by simulating
the forced convection flows in different channels and comparing the calcula-
tion results with known experimental data. In the present work, the proposed
previously model has been edited for incompressible but non-isothermal fluid
flows. This model contains six transport equations: momentum, energy equa-
tion, the equations for turbulent energy and its dissipation rate and equations
for turbulent temperature fluctuations and dissipation of temperature fluctu-
ations as well. The last two are necessary for determination of the turbulent
heat diffusivity via the four turbulent characteristics of the flow: turbulent
energy, temperature fluctuations and their dissipation rates. But the first
four transport equations can be used for simulation of the heat exchange in
liquids with different Prandtl numbers independently from the last two. In
this case the turbulent heat diffusivity may be determined via the turbu-
lent momentum diffusivity by means of the turbulent Prandtl number and
the first four equations can be called as the two- parametric κ - ε turbulence
model. Both these models have been tested by simulating the natural convec-
tion along a vertical flat plate held at constant temperature and comparing
the simulation results with experimental data for air. In the case of two-
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parametric model the commonly used value of the turbulent Prandtl number
equal to 0.9 was employed. The natural convection along a vertical flat plate
can be considered as one of the most interesting problems from the point of
view of testing any turbulence model because it is characterized first of all
by three different regimes present simultaneously: laminar, transition and
turbulent. The transition point from laminar to turbulent regimes is obvi-
ously the most exactly measured characteristic of the flow. Both models have
shown the same transition point coinciding with the experimental one. Both
models give the same velocity and wall shear stress distributions being in a
satisfactory agreement with the experimental ones. The principle difference
is found in the velocity fluctuation distributions in the wall vicinity. While
the experimental results show on the absence of the viscous sub-layer the
calculated results fined large enough interval 0 ≤ y+ ≤ 10 where velocity
fluctuations are equal to zero. In spite of that the difference between cal-
culated and experimental distributions of Reynolds stresses responsible for
momentum transfer is not so large and this explains the satisfactory agree-
ment found for velocity and wall shear stress distributions. The difference of
40% between experimental values of the heat transfer rate and values found
by means of the four-parametric turbulence model should be considered as
large difference. It means that this model needs in further development. The
difference less than 20% between experimental values of the heat transfer
rate and values found by means of the two-parametric turbulence model can
be considered as satisfactory agreement. This model can be recommended
for simulating the natural convection flows of fluids with different Prandtl
numbers.



Chapter 3

Advances in implementation of
parallel computing features

3.1 MPI-PETSc implementation

3.1.1 Introduction

Code parallelization is nowadays very popular since it reduces CPU time
and makes the use of numerical computations more attractive. It is of fun-
damental importance for three-dimensional time-dependent simulations for
which huge computational resources and a great number of machine-hours
are required. The previous version of FEM-LCORE was running only with
one processor but a basic parallelization has been implemented in this new
version so as to take advantage of multiprocessor architectures. In the fu-
ture we plan to improve the current parallel version to take full advantage of
supercomputing architectures such as the CRESCO-ENEA grid [2, 1].

The transition of a code from a monoprocessor to a multiprocessor ar-
chitecture is a difficult and long task requiring great efforts. To make this
passage more easily attainable, the MPI libraries and various tools made
available in the scientific community have been used. However, the calls to
external libraries may lead to a slowdown in the execution of the code which
should not affect however the overall increase in performance obtained with
parallel computing.

The de facto standard protocol for parallelization is called MPI (Mes-
sage Passing Interface) [18]. We use the implementation of this protocol
known as the OpenMPI library. MPI is a programming paradigm defined
by APIs (Application Programming Interfaces) that allow different processes
to communicate with one another through the transmission and reception of
messages. Over the years, MPI has become the standard for parallel pro-
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gramming on clusters and modern supercomputers. This protocol supports
communications between two single processes (point to point) and global
(collective) communications. The MPI library contains the specific commu-
nication language defined in the documents MPI-1 (1994) and MPI-2 (1996),
with the aim of ensuring portability and ease of use.

The OpenMPI library is an open source implementation of MPI-1 and
MPI-2 released under the BSD license [19]. OpenMPI does not represent
an additional version of MPI, but corresponds to the union of three im-
plementations: FT-MPI, LA-MPI, LAM-MPI, also with the contribution of
PACX-MPI. Each implementation excels in one or more areas and the idea
behind OpenMPI is to write a library that excels in as many areas as possi-
ble. In this report we plan to test this basic implementation and therefore we
introduce some assessment parameters. The quality of a parallelization can
be assessed by three parameters: speedup (S), efficiency (E) and scalability
(s). The speed up is defined as

S =
t1
tn
, (3.1)

which is the ratio between the execution time t1 on a sequential architec-
ture and the execution time tn with n parallel architecture processors. The
efficiency is defined as

E =
S

n
· 100 [%] , (3.2)

which is given by the ratio between the speedup S and n number of proces-
sors, expressed in percent. There are two notions of scalability: strong and
weak. Strong scalability is defined as how the speedup varies with the number
of processors for a fixed total problem size. We have perfect strong scalabil-
ity if the speedup is linear. Weak scalability is defined as how the speedup
varies with the number of processors for a fixed problem size per processor.
A perfect weak scalability results in a time invariant behaviour with respect
to a varying number of processors. The objectives of the MPI and Open-MPI
libraries are high performance, high scalability and high portability.

In order to avoid writing the specific MPI commands and to facilitate the
implementation of the parallel operations we use the PETSc library, con-
taining the MPI commands embedded in matrix and vector algebraic oper-
ations. The PETSc (Portable Extension Toolkit for Scientific Computation)
library is a set of data structures and functions for scientific applications, in
particular for problems modeled by partial differential equations and solved
by parallel algorithms [21]. This library can operate on sets of indices, vec-
tors, matrices, preconditioners and linear/nonlinear solvers. It can be used to
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Figure 3.1: PETSc library

manage objects with standard C and FORTRAN languages through abstract
interfaces (see Figure 3.1).

With its flexibility, the PETSc library is designed to split the effort be-
tween the tasks of parallelization and model development. The PETSc func-
tions and variables use the MPI communication protocol among processes.
Normal operations are guaranteed if working on a sequential architecture
and their use does not prevent the explicit reference to the MPI functions for
special operations. It is important to emphasize that this library does not
operate any load balancing and does not generate grids.

The first and very important task to be carefully investigated in the paral-
lelization with PETSc is mesh generation. In fact the mesh structure defines
the degrees of freedom and therefore the structure of the discretized matri-
ces and vectors to be solved in parallel. In our code the mesh generator is
built on the LibMesh library, which is a platform for numerical simulation
of partial differential equations using the finite element method on serial or
parallel computers [9]. It is an open-source library developed to facilitate
the use of parallel computing and mesh adaptive refinement. The use of
LibMesh is particularly suited to multi-level simulations through a strategy



Advances in implementation of parallel computing features84

of adaptive refinement and coarsening of the grid discretization. LibMesh
allows the use of different formulations of the finite element method such as
Galerkin, Petrov-Galerkin and discontinuous Galerkin. In order to parallelize
the problem, it operates a domain decomposition by partitioning the mesh on
different processes. Each process can read the global mesh, but only operates
on a partition of it. The use of the LibMesh communication between differ-
ent processes allows the programmer to focus on the physics of the problem
and to promote the reuse of the code. The LibMesh library allows to import
functions from different libraries. For example one can interface with CUBIT
for mesh generation and PARMETIS and METIS for domain decomposition.
The use of derived classes can be used to interface with third party packages
of linear solvers such as LasPack, PETSc and SLEPc.

3.1.2 Mesh generation for parallel computation

As previously described the first and very important task in the use of the
PETSc library is mesh generation. In fact the definition of the degrees of
freedom depends on how the mesh has been generated. The mesh input file
is generated by the gencase program. It performs three important steps for
which it makes use of the LibMesh library. In the first step gencase generates
coarse grid mesh by reading from a file produced by an external program or
by calling a function to generate a simple rectangular or parallelepiped grid
mesh. In the second step the LibMesh library splits the domain on different
processors and generates the multigrid operators for all levels in accordance
with the specifications of the parallel requirements of the PETSC library. In
the final step of the gencase code the multigrid mesh and all the operators
are printed to various files.

The generation of the mesh starts reading a mesh input file. The LibMesh
library can read a large number of format files. The main data structures of
a mesh file are nodes and elements. Each node is defined by its position in
space. The element defines the interface for a geometrical element based on
a global numbering. Over each node LibMesh defines a degree of freedom.
The class DofObject in this library connects the corresponding degree of
freedom to a node in relation with the considered variable. The constraints
on the assignment of nodes to different processors, along with the hierarchy
levels, lead to a non-trivial implementation of the program (see Figure 3.2).
A further complexity comes from considering various kinds of finite elements
for different variables, for example linear elements for pressure and quadratic
for velocity in the case of the Navier-Stokes equations. The refinement is
done by using the standard midpoint refinement method. With this method
one gets 2d sub-elements out of one d-dimensional element. Also by refining a
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Figure 3.2: Multilevel mesh and multigrid V cycle

grid of elements of unique type one gets a mesh of the same type of elements.
By operating according to this procedure we get a natural tree where every
element has a pointer to the “father” and “an array of pointers to children”.
It is important to emphasize that in the case of refinement or coarsening the
mesh is checked to eliminate any duplicate and/or orphan nodes.

The partitioning of the domain into several sub-domains related to pro-
cessors is done by using the Parmetis library. In agreement with the PETSc
library the order of rows in the matrix must be based on the rank of the
processor. Also, in order to minimize any exchange time, all nodes belong-
ing to the same processor must remain on the same processor at all levels.
In order to obtain a correct partition it is important to start from a coarse
mesh and then refine it. A bad partitioning can generate a lack of balance
between different processors. In particular this latter problem can occur for
large mesh sizes.

In the final step of the gencase program the multi-level mesh and all the
multigrid operators are printed to various files. The multigrid operators are
the sparse matrix patterns and the sparse non-square matrix restriction and
prolongation operators at all levels. In the parallel PETSc libraries the sparse
matrix and distributed vectors are loaded in memory in order to minimize
the communication between the different processes. After the calculation
of matrix data on individual processes, the PETSc library must perform
communications together to ensure proper assembly of the global matrix.
The PETSC assembly function must perform several actions with no waste
of time. The remote data required for the local element matrix assembly
should be made available to each local process and the assembly cycle should
be only over the active elements on the local process with a smart evaluation
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of element matrices that are then inserted in the global matrix.
The first and third steps are performed automatically by the library while

the second step must be carried out through a code provided by the operator.
Some of these instructions are carried out by LibMesh using parallel function
calls, while others are performed by a single processor, like file printing. The
file input/output is not parallel at the moment and is one of the objectives
to be pursued in the future.

3.1.3 Parallel sparse matrices and vectors

PETSc currently provides two basic vector types: sequential and parallel
(MPI based). Both of them are used in the code. The old solution (in time )
of the discretized partial differential equation is stored as a sequential vector
while all the other vectors involved in the parallel solution are parallel. To
create a sequential vector V with m components, we use the command

VecCreateSeq(PETSC COMM SELF,int m,Vec *V)

A parallel vector V with a specified number of components that will be
stored on each process can be created with the command

VecCreateMPI(MPI Comm c,int m_l,int m_g,Vec *V)

which creates a vector that is distributed over all processes in the commu-
nicator c , where m l indicates the number of components to store on the
local process, and m g is the total number of vector components. Once all
the values have been inserted with VecSetValues(), one must call

VecAssemblyBegin(Vec x);

VecAssemblyEnd(Vec x);

These commands perform any needed message passing of non-local compo-
nents. In order to allow the overlap of communication and calculation, one
can perform any series of actions between these two calls while the messages
are in transition. The vector types are implemented in the directory

/contrib/matrix

in the files

numeric_vectorM

dense_vectorM, dense_vector_baseM

distributed_vectorM, dense_subvectorM

petsc_vectorM, laspack_vectorM.
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In the NumericVectorM class we have the general definition of a vector as
an interface to various vector types defined in external libraries. This is the
basic class needed to call both sequential and parallel vectors implemented in
the various libraries. Here we have implemented the Laspack and the PETSc
library vectors suited for one processor and parallel execution respectively.
These classes are implemented in the petsc vectorM and laspack vectorM

files.
PETSc provides a variety of matrix implementations. We consider mainly

the dense matrix and compressed sparse row storage matrix implementations.
The dense matrix A is the standard matrix where all the components are
memorized. This entity can be created by the commands

MatCreate(MPI Comm comm,Mat *A)

MatSetSizes(Mat A,int m_l,int n_l,int m_g,int n_g).

The global matrix dimensions, given by m g and n g, and the local dimen-
sions, given by m_l and n l, are specified so that PETSc completely controls
memory allocation.

The dense matrix is not very useful for large dimensions since it needs
too much memory. This is particularly true in the discretization of partial
differential equations where the resulting matrix is full of zeros. Therefore
the default matrix representation in the PETSc library is the general sparse
format. In the PETSc sparse AIJ matrix formats, the nonzero elements
are stored by rows, along with an array of corresponding column numbers
and an array of pointers to the beginning of each row. The sparse matrix
can be sequential or parallel.

A sequential AIJ sparse matrix A with m l rows and n l columns can
be created with the command

MatCreateSeqAIJ(PETSC COMM SELF,int m,int n,

int nz,int *row_length,Mat *A),

where nz or row length can be used to preallocate matrix memory. One can
set nz=0 and row length=PETSC NULL in order to ask PETSc to control all
matrix memory allocation. The dynamic process of allocating new memory
and copying from the old storage to the new is very expensive. Thus, to
obtain good performance when assembling an AIJ matrix, it is crucial to
preallocate the necessary memory for the sparse matrix. The user has two
choices for preallocating matrix memory. One can use the scalar nz to spec-
ify the expected number of non-zeros for each row. This is generally fine if
the number of non-zeros per row is roughly the same throughout the matrix.
If one underestimates the actual number of non-zeros in a given row, then
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during the assembly process PETSc will automatically allocate additional
needed space. However, this extra memory allocation can slow the compu-
tation. If different rows have very different numbers of non-zero entries, one
should attempt to indicate the exact number of elements intended for the
various rows with the optional array row length of length m, where m is the
number of rows. In this case, the assembly process will require no additional
memory allocations if the row length estimates are correct. If, however, the
row length estimates are incorrect, PETSc will automatically obtain the ad-
ditional needed space with loss of efficiency. Using the array row length to
preallocate memory is especially important for efficient matrix assembly if
the number of non-zeros varies considerably among the rows.

Parallel sparse matrices with the AIJ format are created with the
command

MatCreateMPIAIJ(MPI Comm comm,int m_l,int n_l,int m_g,int n_g,

int nd,int * n_diag, int nod,int *n_offdiag,Mat *A).

The variable A is the newly created matrix, while the arguments m_l, m_g, and
n_g, are the number of local rows and the number of global rows and columns,
respectively. In the PETSc partitioning scheme, all the matrix columns are
local and n_l is the number of columns corresponding to the local part of a
parallel vector. One must ensure that these numbers are chosen to be com-
patible with the vectors. One can set nd=0, nod=0, n diag=PETSC NULL, and

Figure 3.3: Diagonal and off-diagonal submatrices for 5 processors

n offdiag=PETSC NULL for PETSc to control dynamic allocation of matrix
memory space. The matrix can be divided into a local square submatrix and
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and off-diagonal part for each process. For a square global matrix, we define
each row that is in a process to be the diagonal portion of the process. As
one can see in Figure 3.3 a submatrix can be formed together with the corre-
sponding columns to form a square submatrix that we call the diagonal part
for that processor. All the rest formed by the off-diagonal portion is called
off-diagonal rectangular submatrix. The rank in the MPI communicator de-
termines the absolute ordering of the blocks. That is, the process with rank
0 in the communicator given to MatCreateMPIAIJ contains the top rows of
the matrix. The i-th process in that communicator contains the i-th block
of the matrix.

The matrices are implemented in the directory

/contrib/matrix

in the files

dense_matrix_baseM, dense_matrixM,dense_submatrixM

sparse_matrixM,sparse_MmatrixM

petsc_matrixM,petsc_MmatrixM

laspack_matrixM,laspack_MmatrixM.

The dense matrixM files contain the implementation of dense matrices. These
are used to assemble FEM elements which are in a form of a dense block,
i.e., a dense matrix. These dense matrices are then inserted inside a parallel
matrix. The sparse matrix implementation is in the class sparse matrixM

and then specialized in the PETSc and Laspack libraries.

3.2 Evaluation of computational time

The temporal analysis of the performance of a code is an efficient tool to as-
sess the parallelization of the implemented instructions. In order to calculate
the execution time of a given block of instructions one can simply set, at the
beginning and at the end of the block, a call to a function that returns the
time interval. It is clear that the numbers are characteristic of the machine.
In order to have independent-machine values, CPU times obtained must be
normalized with respect to a single processor value. In addition, in order to
mitigate as much as possible any effects of disturbance due to the operating
system, the values are averaged over ten simulations for a given number of
processors.

With the purpose of time evaluation one can consider the standard library
ctime and its functions. The ctime header refers to the library that contains
the standard functions designed to obtain and manipulate information about
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dates and times. The temporal resolution of the clock t variable belonging to
the ctime library is less than 10 ms for our machine. Therefore we decide to
use the functions declared in sys/time.h which can measure time intervals
of the order of microseconds.

3.2.1 Speedup for parallel vectors and sparse matrices
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Figure 3.4: Speedup for the vector norm l2 of a parallel vector as a function
of processor number
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Figure 3.5: Speedup for the vector norm l∞ of a matrix as a function of
processor number

The first evaluation regards the calculation of the l2-norm of a vector
and the l∞-norm of a matrix. The objectives are to verify that the obtained
values were invariant with respect to the number of processes, as well a to
show the performance as a function of the number of active processes. This
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analysis is carried out by using the following simple procedure. We create
two vectors, a serial one and a parallel one, with a fixed number of elements
(of the order of 108). The matrix is created in a similar way. If the number
of processors specified in the launch command is greater than 1 then libraries
with parallel structures are used, otherwise the computation is serial. The
norm used is l2 for the vector and l∞ for the matrix since the implementation
of the l2 matrix norm was not available.

Figure 3.4 shows the evolution of the normalized time required for eval-
uating the l2-norm of the considered vector. The speedup is also shown in
Figure 3.4. As we can see the implementation of the computation of the vec-
tor l2-norm assumes a pattern which differs very little from ideal. We then
evaluate the matrix norm. Figure 3.5 shows an improved performance as a
function of the number of processes. In this case the behavior deviates from
the ideal one, probably because of the increase in complexity of the functions
involved in the management of matrices.

3.2.2 Speedup for Navier-Stokes and turbulence equa-
tions in an annular duct
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Figure 3.6: Geometry of the speedup test for Navier-Stokes and turbulence
equations
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Figure 3.7: Annular duct test: κ [(m/s)2], ω [s−1], µT [kg ·(m−1s−1)], ux [m/s]
e uy [m/s] as a function of x[m] at 0.75m from the inlet section

The geometry of this problem is given in Figure 3.6. The simulation
corresponds to the turbulent motion of lead within an annular duct with the
inner and external radii of 0.0041 m and 0.03025 m, respectively. The main
objective of these simulations is to check the computational time between the
serial version and the parallel one. For simplicity the problem is simulated
in axisymmetric geometry. In this case we use cylindrical coordinates with
the symbolism of Cartesian coordinates, namely ur = ux and uz = uy.

As explained above, the problem is well-posed if we provide the appro-
priate boundary conditions. We divide the boundary of our domain ∂Ω into
three sub-domains: inlet, outlet and walls (∂Ω = ΓInlet ∪ ΓWall ∪ ΓOutlet).

Focusing on the velocity field in the inlet section we have

ux = 0
m

s
, uy = 0.777

m

s
.
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Figure 3.8: Speedup as a function of processor number for 3 (left) and 4 level
(right) simulation

For the turbulent kinetic energy we have

κ = 1.5ū2I2

where ū = 0.777m/s is the average velocity and I is the turbulent intensity.
For the turbulent kinetic energy dissipation rate ω we set

ω =

√
k

l

with κ the turbulent kinetic energy and l the turbulence scale. For a fully
developed flow as in this configuration we have

I = 0.16Re
− 1

8
D

where ReD is the Reynolds number, evaluated on the hydraulic diameter D,
and

l = 0.07D .

For the boundary conditions on the wall we first have to define the computa-
tional wall, placed at a distance y from the real wall. The non-dimensional
distance y+ is defined as

y+ ≡ u∗ y

ν
where u∗ is the speed friction on the wall, y is the distance from the closest
wall and ν is the local dynamic viscosity of the fluid.

Therefore, the computational domain does not correspond to the geo-
metric domain which is cut at a certain distance from the geometric walls.
Usually in the boundary layer the velocity is approximated linearly near the
wall and then with a logarithmic profile.
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In the logarithmic layer the velocity can be assessed by the logarithmic
law

u+ =
1

kv
ln(y+) +B (3.3)

for y+ > y+
c . In the viscous sublayer close to the wall (y+ < y+

c ) we assume
a linear profile u+ = y+. In (3.3) u+ is the non-dimensional velocity, y+

the non-dimensional distance from the wall, kv the Von Karman constant
(≈ 0.41) and C a constant (≈ 5.1). For these simulations y+ was placed at
15 and the normal component along the y of the shear stress is assumed in
agreement with the law defined in (3.3).

In Figure 3.7 the profiles of the variables as a function of r(= x) at
z(= y) = 0.75m are reported. In particular we can remark the typical
behavior of the velocity field uz = uy in a turbulent flow, which assumes
a flatter profile than a Poiseuille profile because of the greater amount of
redistribution of the momentum. The simulations lead to results perfectly
in agreement with the values of serial computation, further confirming the
goodness of the changes in the code.

Figure 3.8 shows the speedup results of two simulations with 3 and 4
levels on the left and the right respectively. In both cases we can see that the
behaviour detaches from the linear ideal profile as the number of processors
increases.



Chapter 4

Simulation of assembly
blockage events

4.1 Reactor computational model

Figure 4.1: Vertical section of the reactor model.

In this chapter we present some results of the code concerning a blockage
event occurring in the core. In a blockage event the coolant flow is prohibited
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Figure 4.2: Desired horizontal power generation profile

in the corresponding assembly. This may happen in a reactor core by various
reasons, like the failure of some components such as the cladding of some
fuel rods. A peak temperature in a small portion of the core may in fact
cause damage phenomena such as cladding ballooning, which may block a
substantial portion of the flow area and restrict the flow of coolant. In such
cases the heat removal process is strongly diminished and a temperature
increase of the coolant is expected. We study both the closed and the open
assembly cases. In the closed assembly situation, blockage occurring at any
vertical quote of the core results in a zero velocity in all the considered
assembly, as the LBE fluid is assumed to be nearly incompressible. In the
open assembly case, convection heat transfer is diminished but still takes
place and lower peak temperatures are expected with respect to the closed
assembly case.

Let us consider the active (upper) and non-active (lower) core sections
and the upper and lower plena, as shown in Figure 4.1. If we set the zero
vertical coordinate at the lower core inlet, the core region goes from 0 m
to 1.85 m. The active core (upper core) where heat is generated ranges
between Hin = 0.95 m and Hout = 1.85 m. Below the core we have the lower
plenum with the inlet between −0.9 m and 0 m. The lower plenum has an
approximate hemispherical form with the lowest region at −1.2 m. Above
the core for a total height of 1.2 m there is the upper plenum with the coolant
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Figure 4.3: Core, lower and upper plenum reactor coarse boundary mesh

outlet.
The horizontal quarter section of the core is shown in Figure 4.2. Each

fuel assembly consists of a 21 × 21 pin lattice. The overall number of as-
sembly positions in the core is 170. Eight of these positions are dedicated to
house special control rods (see [5]) and therefore the global number of fuel
assemblies is 162. The transversal core area is approximately circular but the
axial symmetry is not satisfied. Therefore, in order to predict the behaviour
of the reactor, a three-dimensional simulation must be performed. However,
we can argue from Figure 4.2 that two symmetry planes passing through the
reactor axis can be identified so that only a quarter domain has to be taken
into account.

The model design distributes the fuel assemblies in three radial zones:
56 fuel assemblies in the inner zone, 62 fuel assemblies in the intermediate
zone and the remaining 44 fuel assemblies in the outer one. The power
distribution factors, i.e. the power of a fuel assembly over the average fuel
assembly power, are mapped in Figure 4.2. The maximum power factor is
1.17, while the minimum is 0.74.

We label the assemblies as in Figure 4.2; the first row is labeled A1 i for
i= 1, . . . , 8, the second row A2 i for i= 1, . . . , 7 and so on. We remark that
the fuel assembly configuration is not based on a Cartesian grid but rather
on a staggered grid.
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In Figure 4.3 the boundary reactor mesh is shown. The mesh is generated
by using the GAMBIT mesh generator with geometrical dimensions taken
from Figures 4.1 and 4.2. The generation of this mesh is not trivial. In fact
care must be taken in such a way that every assembly is exactly discretized
by entire cells. In this way all the data attributes related to a given assembly
are associated to it exclusively. For details we refer to [3]. The reactor is

properties value
Density ρ (11367− 1.1944× 673.15) = 10562

Viscosity µ 0.0022
Thermal conductivity κ 15.8 + 108× 10−4 (673.15− 600.4) = 16.58

Heat capacity Cp 147.3

Table 4.1: Lead properties at T=400o C

cooled by lead that enters at the temperature of 673.15 K. In Table 4.1 we
report the lead physical properties at the inlet temperature. Since our model
describes the reactor at the assembly level the sub-assembly composition is
seen as a homogeneous medium. Data about the assembly geometry are
reported in Table 4.2. In particular we note that the coolant/assembly ratio
is 0.548. Each assembly has a square section with a side length of L = 0.294
m, as shown in Table 4.3 and this completely defines the horizontal core
structure. For the vertical geometry we refer to Figure 4.1.

area (m2)
Pin area 370.606× 10−4

Corner box area 5.717× 10−4

Central box beam 2.092× 10−4

Channel central box beam area 12.340× 10−4

Coolant area 473.605× 10−4

Assembly area 864.360× 10−4

Coolant/Assembly ratio 0.5408

Table 4.2: Coolant assembly area ratio data

The heat power generation due to fission W0(x, y, z) is assumed to be
given, where W0(x, y) is the two-dimensional distribution. At the middle
section of the upper core z = (Hout−Hin)/2 the desired cross-sectional heat
power distribution is shown in 4.2. The heat power generation due to fission
is a function of the horizontal and vertical plane as one can see in Figures 1.5
and 1.6 in Chapter 1. We remark the presence of the eight control assemblies
inside the core which are used to house special control rods (see [5]) and where
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no power is generated. In order to obtain the assembly averaged specific q̇v
and linear q̇l heat power, the total core power is to be divided over 162
assemblies instead of 170. We obtain

q̇v =
Q̇

A
=

1.482× 109

×0.294× 0.294× 162
= 1.0584× 108 W

m2

and

q̇l =
q̇v

Hout −Hin

=
1.0086× 108

0.9
= 1.176× 108W

m
.

value
Mass flow rate ṁ 124539Kg/s

Heat Power Q̇tot 1482.235MW
Number of Assemblies 170

Assembly length L 0.294m
Channel Equivalent Diameter Deq 0.0129

Table 4.3: Core characteristic values at working temperature

In this chapter some tests are proposed which examine the cases of open
and closed assemblies. We denote these two main Cases as A and B respec-
tively. For the Case A of open assemblies, we investigate some blockage events
occurring at different core heights. In particular, we consider a blockage oc-
curring in a small area at the inlet of the upper core, i.e. at the beginning
of the heated core part, and a blockage at the core outlet, i.e. at the end of
the heated core, where the LBE fluid enters the upper plenum region. The
variation of the height of the blockage area does not bring differences in the
results for the Case B of closed assemblies, as the fluid is assumed to be
nearly incompressible in our model. Thus, we will subdivide the discussion
of the results into three cases:

• Case A1: open assemblies and blockage at the inlet of the heated core;

• Case A2: open assemblies and blockage at the outlet of the heated core;

• Case B: closed assemblies.

In order to enforce numerically the blockage condition, we simply set to
zero all the velocity components in the assumed blockage volume. In all the
following cases, we consider the blockage of the assembly with cross section
centered at x = 1.323 and y = 1.176 in the simulated quarter domain. Due to
the previously discussed symmetries, the blockage of four assemblies is then
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simulated. We recall that the case of closed assemblies is enforced in the code
by imposing the velocity fields on the lateral surface of each assembly to be
parallel to the z-direction. The u and v components on those surfaces are
set to zero, so that no cross flow takes place. On the other hand, when the
assemblies are assumed to be open a flow exchange between them is allowed
with non-vanishing transversal velocities.

As we have shown before, the reactor is divided into four regions: the
lower plenum, the lower core, the upper core and the upper plenum. Let Ωc be
the core region and Ωlp, Ωup be the lower and the upper plenum respectively.
In the lower and upper plenum we solve the three-dimensional Navier-Stokes
and energy system while in the core we use the appropriate model described
in Section 1.2.1.

The reactor regions of the core and the plena must be connected with
appropriate yielding conditions which can be defined by conservation of mass
and momentum equations. Since the mass flow rate at the core inlet must
match the mass flow rate at the top of the lower plenum and the same holds
for the core outlet section, then the z-component of the velocity field cannot
be continuous due to a sudden variation of the cross section, depending on
the occupation factor ratio r. The occupation factor ratio, which is assumed
to be 0.5408, is the ratio between the coolant and the total assembly cross
section areas. Since the volume coolant rate is continuous in all the reactor
we define a new vector field

v∗ =

{
v on Ωlp ∪ Ωup

v
r

on Ωc

(4.1)

which is continuous across the reactor.

4.2 Configuration

In the parameters.in file we set the fluid properties as reported in Table
4.1 and the fission heat source as discussed above.

In Equations conf.h we activate the Navier-Stokes equations and the
energy equation with

#define NS_EQUATIONS

#define T_EQUATIONS.

Let us consider the class parameters inside the files config/MGSNSconf.h
and config/MGSTconf.h. In MGSNSconf.h we set the parameter

#define CONST 1
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in order to neglect the temperature dependence of density and viscosity. The
results do not change too much as already seen in [4]. We set the LES option
with α = 1 as

#define ALPHA 1.

This option sets a simple Smagorinsky LES turbulence model. In MGSTconf.h

we set the LES option Prt = 0.85 with

#define PRT 0.85

This sets the standard heat exchange model. Under the default settings both
the momentum and the energy system are solved by using GMRES method
with an ILU preconditioner.

The boundary conditions are rather complex due to the reactor geometry.
For pressure and velocity boundary conditions one must edit the function

void MGSolNS::bc_read(

double xp[], // xp[] node coordinates

int normal[], // normal

int bc_flag[] // boundary condition flag

)

in the file src/MGSolverNS3D.C. In this file we set Dirichlet boundary condi-
tions over the inlet boundary and symmetry conditions for the planes x = 0
and y = 0. The inlet has an assigned velocity profile in agreement with the
initial conditions. On the outlet we enforce Neumann boundary conditions.
Over the reactor walls we assume slip boundary conditions. The implemen-
tation of the boundary conditions is quite complex since the reactor surface
is not always aligned with the axes.

For boundary conditions of the energy equation one must edit the function

void MGSolT::bc_read(

double xp[], // xp[] node coordinates

int normal[], // normal

int bc_flag[] // boundary condition flag

)

in the file src/MGSolverT3D.C. We set a Dirichlet inlet condition with tem-
perature 573.15 K. Over the rest of the surface we set homogeneous Neumann
boundary conditions, namely zero heat flux.

We want to set the inlet velocity 0.82m/s to be perpendicular to the
inlet surface with zero initial pressure. We set this velocity distribution in
the function
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void MGSolNS::ic_read(

double xp[],

double u_value[]

)

inside the file src/MGSolverNS3D.C.
We initialize the inlet temperature to the value of 573.15 K inside the file

MGSolverT3D.C in the function

void MGSolT::ic_read(

double xp[],

double u_value[]

) .
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4.3 Inlet open core blockage test (A1)

We assume that the assemblies are open, so that a flow exchange between
them with transversal velocities is permitted. In order to enforce numerically
the blockage condition, we simply set to zero all the velocity components in
the assumed blockage volume. We recall that the case of closed assemblies
is enforced in the code by imposing the velocity fields on the lateral surface
of each assembly to be parallel to the z-direction. The u and v components
on those surfaces are set to zero, so that no cross flow takes place. On the
other hand, when the assemblies are assumed to be open a flow exchange
between them is allowed with non-vanishing transversal velocities. In this
case, we consider the blockage of the assembly with cross section centered at
x = 1.323 and y = 1.176 at the inlet of the heated core. In the blockage region
near the first part of the heated core the coolant cannot flow freely. The
flow cannot enter the assembly and therefore an increase of temperature is
expected. In Figure 4.4 the temperature profile along the z-line at the center
of the blocked assembly is shown in comparison with the normal condition
of non blocked assembly. The temperature of the blocked assembly case at
the top core is slightly higher than the case of absence of blockage. The
blockage case is plotted in solid line and the latter in dotted line. In Figures
4.5-4.6 there is an overview of the temperature distribution T over various
sections of the reactor. In Figure 4.5 one can see the temperature field over a
vertical section of the reactor. In Figure 4.6 the overview of the temperature
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Figure 4.4: Case A1 (open assembly). Temperature along a z-line in the
blocked assembly at x = 1.323 and y = 1.176 (solid line) and temperature
along the same line in the absence of blockage (dotted line)
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Figure 4.5: Case A1 (open assembly). Temperature field with blockage (top)
and in the absence of blockage (bottom)
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Figure 4.6: Case A1 (open assembly). Temperature field with blockage (left)
and in the absence of blockage (right)

distribution T is over the section of the reactor that includes the blocked
assembly. The temperature field with blockage is shown on the left and
the temperature field in the absence of blockage on the right. The same
temperature scale is assumed in order to see the comparison. In this case
the increase of temperature diffuses all around the blocked assembly creating
a small hot spot. One can note that the increase of temperature starts at
the inlet of the heated core where the blockage is located. Then, since this
is allowed in the open core model, heat propagates in all the directions by
convection flows that cross the neighbouring assemblies. It is very interesting
to see the temperature on different plane sections of the reactor as shown in
Figures 4.7-4.8. In Figures 4.7 we can see, from top left to right bottom,
the temperature distributions at the plane sections of the lower core, upper
core inlet, upper core outlet and upper plenum. The heights correspond to
z = 0.6, z = 1.2, z = 1.8 and z = 2.4 starting from the lower core inlet. We
can see the increase of temperature immediately close to the blockage height
up to the upper plenum inlet. In Figure 4.8 more temperature distributions
in different plane sections are shown. The figure on the top is the case
with blockage and on the bottom in the absence of blockage. In this case
the temperature scale blends the hot spot of the blockage with the global
temperature distribution.

The velocity field is shown in Figures 4.9-4.11. In Figure 4.9 one can see
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Figure 4.7: A1 (open assembly). Temperature distributions at the plane
sections z = 0.6 (lower core), z = 1.2 (upper core inlet), z = 1.8 (upper core
outlet), z = 2.4 (upper plenum)

the overall distribution of the z-component w∗ as defined in (4.1). In Fig-
ure 4.9 the z-component of the velocity field w∗ at the center of the blocked
assembly is shown in comparison with the working condition of non blocked
ones over a plane section containing the blocked assembly itself. The figure
on the left describes the blocking case and the region with zero velocity is
clearly visible. In Figure 4.30 the velocity profile along the z-line at the cen-
ter of the blocked assembly x = 1.323 and y = 1.176 is shown with solid line,
in comparison with the normal condition of non blocked assembly in dotted
line. It is clear that before the blockage region the solid and dotted lines
are very close. Then, in the blockage case, the solid line goes to zero and
finally tends to the dotted line near the core outlet. The velocity on different
plane sections of the reactor is shown in Figures 4.11-4.13. In Figures 4.11
we can see, from top left to right bottom, the velocity distributions at the
plane sections of the lower core, upper core inlet, upper core outlet and upper
plenum corresponding to z = 0.6, z = 1.2, z = 1.8 and z = 2.4 starting from
the lower core inlet. We can clearly see zero velocity only in the section for
z = 1.2 where the assembly is blocked. In Figure 4.13 more temperature



Simulation of assembly blockage events 107

Figure 4.8: Case A1 (open assembly). Temperature field with blockage (top)
and in the absence of blockage (bottom)

distributions in different plane sections in these two different situations are
shown. The figure on the top is the case with blockage and on the bottom
in the absence of blockage. In this case one can see the blockage only in the
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Figure 4.9: Case A1 (open assembly). Velocity w∗ field with blockage (left)
and in the absence of blockage (right)
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Figure 4.10: Case A1 (open assembly). z-component of the velocity field
w∗ along a z-line in the blocked assembly at x = 1.323 and y = 1.176 (solid
line) and along the same line in the absence of blockage (dotted line)

bottom plane section of the reactor on the bottom of Figure 4.13. In Figure
4.12 the pressure along the same z-line of the blocked assembly is shown. The
solid line represents the blocked case and the dotted line is for the absence
of blockage. We can clearly see that the blockage leads to a discontinuous
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Figure 4.11: Case A1 (open assembly).Cases Distributions of the z-
component of the velocity v∗ at the sections z = 0.6 (lower core), z = 1.2
(upper core inlet), z = 1.8 (upper core outlet), z = 2.4 (upper plenum)
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Figure 4.12: Case A1 (open assembly) Pressure along a z-line in the blocked
assembly at x = 1.323 and y = 1.176(solid line) and along the same line in
the absence of blockage (dotted line)

profile in the pressure along the center of the assembly where there is no
pressure drop due to zero velocity of the fluid. With the exception of the
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Figure 4.13: Case A1 (open assembly). Temperature field with blockage
(left) and in the absence of blockage (right)
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blockage region the solid and the dotted lines match closely. Large peaks
and fast oscillations of the pressure close to the boundary of the blockage
may be considered numerical errors which disappear if one uses discontin-
uous elements for the pressure. We recall that we are using Taylor-Hood
finite elements which consist of piecewise-continuous quadratic polynomials
for velocity and piecewise-continuous linear polynomials for pressure.
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4.4 Outlet open core blockage test (A2)
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Figure 4.14: Case A2 (open assembly). Temperature along a z-line in the
blocked assembly at x = 1.323 and y = 1.176(solid line) and temperature
along the same line in the absence of blockage (dotted line)

Figure 4.15: Case A2. Temperature field with blockage (left) and in the
absence of blockage (right)

In this case we assume again that the assemblies are open, so that a flow
exchange between them is permitted. The blockage is set at the end of the
assembly with center (1.323, 1.176). Differently from the previous case, in the
first part of the core the coolant can flow freely but it is blocked at the end
of the assembly. The flow cannot exit the assembly in a standard way and
therefore a temperature increase is expected. In Figure 4.14 the temperature
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Figure 4.16: Case A2 (open assembly). Temperature field with blockage
(left) and in the absence of blockage (right)

profile along the z-line at the center of the blocked assembly x = 1.323 and
y = 1.176 is shown in comparison with the normal condition of non blocked
assembly. The temperature of the blocked assembly case at the top core is
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Figure 4.17: Case A2 (open assembly). Temperature distributions at the
sections z = 0.6 (lower core), z = 1.2 (upper core inlet), z = 1.8 (upper core
outlet), z = 2.4 (upper plenum)

slightly higher than the case of absence of blockage. The blockage case is
in solid line and the latter in dotted line. In Figures 4.15-4.16 there is an
overview of the temperature distribution T over the section of the reactor.
In Figure 4.15 the overview of the temperature distribution T is over the
section of the reactor that includes the blockage assembly. The temperature
field with blockage is shown on the left and the temperature field in the
absence of blockage on the right, with the same temperature scale. In this
case the increase of temperature diffuses all around the blocked assembly
creating a hot spot. The same observation can be drawn from Figure 4.16
where the temperature field over the reactor is shown.

In Figures 4.17-4.18 the temperature distributions are shown over differ-
ent planes. In Figure 4.17 we report the temperature distributions over the
planes z = 0.6, z = 1.2, z = 1.8 and z = 2.4. These heights correspond to
the lower core, upper core inlet, upper core outlet and upper plenum region
respectively. One can see that the temperature is slightly higher in corre-
spondence of the blocked cross sections, where the convection heat exchange
is absent as a consequence of the zero velocity. In Figure 4.18 on the top and
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Figure 4.18: Case A2 (open assembly). Overall temperature field with block-
age (left) and in the absence of blockage (right)

on the bottom there is a reactor overview of various temperature sections
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Figure 4.19: Case A2 (open assembly). z-component of the velocity field w∗

along a z-line in the blocked assembly at x = 1.323 and y = 1.176 (solid line)
and along the same line in the absence of blockage (dotted line)
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Figure 4.20: Case A2 (open assembly). Pressure along a z-line in the blocked
assembly at x = 1.323 and y = 1.176 (solid line) and along the same line in
the absence of blockage (dotted line)

Figure 4.21: Case A2 (open assembly). Velocity w∗ field with blockage (left)
and in the absence of blockage (right)

with and without blockage.
In Figure 4.20 the z-component of the velocity field w∗, defined in (4.1),

along a z-line in the blocked assembly at x = 1.323 and y = 1.176 is shown.
The velocity in the the blocked assembly is defined with solid line and with
dotted line in the absence of blockage. In a similar way in Figure 4.20 pres-
sure along the same z-line in the blocked assembly is shown with solid line
and dotted line in the absence of blockage. We can clearly see that the block-
age imposes a discontinuous profile in the pressure along the center of the
assembly where there is no pressure drop due to zero velocity of the fluid.
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Figure 4.22: Case A2 (open assembly). Velocity field with blockage (top)
and in the absence of blockage (bottom)
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Figure 4.23: Case A2. Distributions of the z-component of the velocity w∗ at
the sections z = 0.6 (lower core), z = 1.2 (upper core inlet), z = 1.8 (upper
core outlet), z = 2.4 (upper plenum)

Figure 4.24: Case A2 (open assembly). Velocity field with blockage (left)
and in the absence of blockage (right)
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The velocity field is shown in Figures 4.21-4.24. In Figure 4.21 the overview
of the z-component of the extended velocity field w∗ is shown over the section
of the reactor that includes the blockage assembly. The velocity field with
blockage is shown on the left and the velocity field in the absence of blockage
on the right. In this case one can see very well the blockage area where the
coolant velocity vanishes. The velocity field is shown over the whole reactor
in Figure 4.22. The hot spot cannot be seen since it is behind a main control
assembly. In Figure 4.23 we show the distributions of the z-component of the
velocity w∗ at the sections z = 0.6 (lower core), z = 1.2 (upper core inlet),
z = 1.8 (upper core outlet), z = 2.4 (upper plenum). One can clearly see
the blockage only in the plane with z = 1.8 where it is located. The overall
velocity field over different planes at different heights with blockage can be
seen in Figure 4.24.
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4.5 Closed core blockage test (B)
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Figure 4.25: Case B (closed assembly). Temperature along a z-line in the
blocked assembly at x = 1.323 and y = 1.176(solid line) and temperature
along the same line in the absence of blockage (dotted line)

Figure 4.26: Case B (closed assembly). Temperature field with blockage
(left) and in the absence of blockage (right)

In this case we assume that the assemblies are closed, so that there is not
a flow exchange between them with no transversal velocities. The blockage
is set at the beginning of the assembly with center (1.323, 1.176). The flow
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Figure 4.27: Case B (closed assembly). Temperature field with blockage
(top) and in the absence of blockage (bottom)
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Figure 4.28: Case B (closed assembly). Temperature distributions at the
sections z = 0.6 (lower core), z = 1.2 (upper core inlet), z = 1.8 (upper core
outlet), z = 2.4 (upper plenum)

cannot go through the assembly surface and therefore an increase of temper-
ature is expected. In Figure 4.25 the temperature profile along the z-line at
the center of the blocked assembly x = 1.323 and y = 1.176 is shown with
solid line, in comparison with the normal condition of non blocked assembly
(dotted line). It is evident that the temperature peak is higher in the case
of blocked assembly.

In Figures 4.26-4.27 there is an overview of the temperature distribution T
over the section of the reactor. In Figure 4.26 the overview of the temperature
distribution T is over the section of the reactor that includes the blockage
assembly. The temperature field with blockage is shown on the left and the
temperature field in the absence of blockage on the right. A large hot spot
around the blocked assembly is created. In Figure 4.27 the overview is more
general. In these figures the temperature scale is different in order to see the
global effect. In this case one can see that the large hot spot of Figure 4.26
is a local one and the extra heat generated in the blocked assembly is cooled
quickly by the neighbouring assemblies.

In Figures 4.28-4.29 the temperature distributions are shown over differ-
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Figure 4.29: Case B (closed assembly). Overview of temperature sections
with blockage (left) and in the absence of blockage (right)
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Figure 4.30: Case B (closed assembly). z-component of the velocity field w∗

along a z-line in the blocked assembly at x = 1.323 and y = 1.176 (solid line)
and along the same line in the absence of blockage (dotted line)

ent planes. In Figure 4.28 we report the temperature distributions over the
planes z = 0.6 (lower core), z = 1.2 (upper core inlet), z = 1.8 (upper core
outlet) and z = 2.4 (upper plenum). One can easily see that the temperature

Figure 4.31: Case B (closed assembly). Distributions of the z-component
of the velocity v∗ at the sections z = 0.6 (lower core), z = 1.2 (upper core
inlet), z = 1.8 (upper core outlet), z = 2.4 (upper plenum)
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Figure 4.32: Case B (closed assembly). Overall of the velocity field with
blockage (top) and in the absence of blockage (bottom)
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is higher in correspondence of the blocked cross sections, where the convection
heat exchange is absent as a consequence of the vanishing velocity. In Figure
4.29 on the top and on the bottom there is a reactor overview of temperature
maps at various sections with and without blockage, respectively.

The velocity field is shown in Figures 4.30-4.32. In Figure 4.30 the z-
component of the velocity field w∗ along a z-line in the blocked assembly at
x = 1.323 and y = 1.176 is shown. The velocity in the blocked assembly is
defined with solid line and with dotted line in the absence of blockage. We
recall that w∗ is not the real velocity inside the core as defined in (4.1). The
distributions of the z-component of the velocity v∗ at the sections z = 0.6
(lower core), z = 1.2 (upper core inlet), z = 1.8 (upper core outlet), z = 2.4
(upper plenum) are in Figure 4.31. The overall velocity field over different
planes at different heights with blockage and in the absence of blockage can
be seen in Figure 4.32 on the top and bottom, respectively.
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4.6 Closed and open core blockage compari-

son
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Figure 4.33: Temperature along a z-line at x = 1.323 and y = 1.176 for
Cases A1 (circle sign), A2 (square sign) and B (triangle sign).

We now report some brief considerations that can be drawn from the
comparison of Cases A1, A2 and B. In Figure 4.33 we plot the temperature
profiles along a z-line parallel to the longitudinal axis at x = 1.323 and
y = 1.176 for Cases A1 (circle sign), A2 (square sign) and B (triangle sign).
One can observe that the highest temperature is attained when the blockage
occurs in the closed assembly case. This is clearly due to the fact that the
fluid running into the obstacle is not allowed to overcome it by going in
the transversal directions. Therefore no convection can contribute to heat
exchange in that case.

We also notice that in all the three cases the temperature peak is reached
approximately at the end of the core heated zone, right before the entrance
in the upper plenum. At that point in fact the LBE fluid has increased its
thermal energy by the exchange with the total length of the upper core. Nev-
ertheless, we notice different behaviours in terms of the slope of the curves.
In particular, when the blockage takes place at the inlet of the upper core, the
fluid undergoes a steeper temperature increase in that region with respect to
the other cases. After that increase, the thermal flux diminishes because of
a smaller temperature gradient from the fuel rods to the fluid. Hence, the
slope of the longitudinal temperature profile is smaller than the other cases.
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Figure 4.34: Comparison between the temperature section profiles at z =
1.94 m in the closed assembly configuration with (top left) and without (top
right) blockage and in the open assembly configuration with upper (middle
left), lower (middle right) and without (bottom) blockage



Simulation of assembly blockage events 129

Figure 4.35: Comparison between the temperature profiles in the closed
(top) and open (bottom) assembly configuration
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In Figures 4.34-4.35 a comparison between the temperature profiles in
the closed and open assembly configurations is reported with and without
blockage. In particular on the top part of Figure 4.34 one can see the tem-
perature on the section at z = 1.94 m in the closed assembly configuration
with (left) and without (right) blockage. In the second row of the figure the
temperature maps in the open assembly configuration with upper (middle
left) and lower (middle right) blockages are shown and on the bottom of the
figure the temperature without blockage for open assemblies. In Figure 4.35
a direct comparison between different temperature maps at some sections
in the closed (top) and open (bottom) assembly configurations is reported.
The temperature peak is clearly visible for the closed assembly configuration
where no convection occurs within the entire assembly due to a complete
blockage.
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