

Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile

RICERCA DI SISTEMA ELETTRICO

Documento CERSE-UNIBO RL 1302/2010

FISSICU platform on CRESCO-ENEA grid for thermal-hydraulic nuclear engineering

F. Bassenghi, G. Bornia, A. Cervone, S. Manservisi

FISSICU PLATFORM ON CRESCO-ENEA GRID FOR THERMAL-HYDRAULIC NUCLEAR ENGINEERING

F. Bassenghi, G. Bornia, A. Cervone, S. Manservisi

Settembre 2010

Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico – ENEA Area: Produzione e fonti energetiche Tema: Nuovo Nucleare da Fissione

Responsabile Tema: Stefano Monti, ENEA

CIRTEN

CONSORZIO INTERUNIVERSITARIO PER LA RICERCA TECNOLOGICA NUCLEARE

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DIPARTIMENTO DI INGEGNERIA ENERGETICA, NUCLEARE E DEL CONTROLLO AMBIENTALE - LABORATORIO DI MONTECUCCOLINO

FISSICU PLATFORM ON CRESCO-ENEA GRID FOR THERMAL-HYDRAULIC NUCLEAR ENGINEERING

CIRTEN-UNIBO RL 1302/2010

AUTORI

F. Bassenghi, G. Bornia, A. Cervone, S. Manservisi

Bologna, Settembre 2010

Lavoro svolto in esecuzione della linea progettuale LP5 punto B2 - AdP ENEA MSE del 21/06/07 Tema 5.2.5.8 – "Nuovo Nucleare da Fissione".

Nuclear Engineering Laboratory of Montecuccolino DIENCA - UNIVERSITY OF BOLOGNA Via dei Colli 16, 40136 Bologna, Italy

FISSICU PLATFORM ON CRESCO-ENEA GRID FOR THERMAL-HYDRAULIC NUCLEAR ENGINEERING

September 1 2010

Authors: F. Bassenghi, S. Bna, G. Bornia, A. Cervone, S. Manservisi and R. Scardovelli sandro.manservisi@unibo.it

Abstract. The FISSICU (FISsione/SICUrezza) platform for CFD thermal-hydraulics is set on the CRESCO-ENEA GRID cluster located in Portici. The platform contains codes for microscale, intermediate and system scale simulations for components of nuclear plants and facilities. For direct three-dimensional numerical simulations the platform contains codes such as TRIO_U and SATURNE. At intermediate scale the platform implements codes such as NEPTUNE and for system level CATHARE will be available soon. The platform contains the SALOME application for code coupling and a large number of mesh generators and visualization tools. All the codes run starting from mesh input files with common formats. GMESH and SALOME MESH are open-source reference mesh generators that can be found in the platform together with conversion tools. The output is written in common format and can be visualized through the PARAVIEW application. A brief guide through the platform codes and tools with reference mesh and output formats is presented.

Contents

1	FIS	SICU :	platform organization	8
	1.1	Multip	bhysics and Multilevel platform	8
		1.1.1	Multiphysics analysis	8
		1.1.2	Multilevel analysis	10
	1.2	CRES	CO-ENEA GRID	11
		1.2.1	CRESCO infrastructure	11
		1.2.2	CRESCO access	11
		1.2.3	CRESCO-ENEA FISSICU Platform	13
		1.2.4	Submission to CRESCO queues	14
	1.3	FISSI	CU platform input/output formats $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	16
		1.3.1	Input mesh format	16
			HDF5 format	16
			XDMF format	18
			MED format	21
		1.3.2	Platform visualization	25
			PARAVIEW on CRESCO-ENEA GRID	25
			The PARAVIEW application	26
			Documentation	27
2	SAI	LOME		28
	2.1	Introd	uction	28
		2.1.1	Code development	28
		2.1.2	Location on CRESCO-ENEA GRID	29
		2.1.3	SALOME overview	29
	2.2	SALO	ME on CRESCO-ENEA GRID	30
	2.3	SALO	ME platform modules	31
		2.3.1	Introduction	31
		2.3.2	KERNEL	31
		2.3.3	GUI	32
		2.3.4	GEOM	32
		2.3.5	MED	32
		2.3.6	MESH	33
		2.3.7	POST-PRO	33

		2.3.8	YACS
	2.4	SALO	ME file transfer service
		2.4.1	File transfer service inside a program
		2.4.2	Python file transfer service
		2.4.3	Batch file transfer service
	2.5	SALO	ME Mesh creation
		2.5.1	Import and export of mesh files in SALOME
		2.5.2	Mesh tutorial from SALOME documentation
		2.5.3	Tutorial: step by step mesh on CRESCO-ENEA GRID
3	SAT	FURNI	57
	3.1	Introd	$pction \dots 57$
		3.1.1	Code development
		3.1.2	Location on CRESCO-ENEA GRID
		3.1.3	SATURNE overview 58
	3.2	SATU	RNE dataset and mesh files
	0.2	321	SATURNE mesh file 58
		322	SATURNE dataset file 59
	33	SATU	RNE on CRESCO-ENEA GRID 63
	0.0	331	Graphical interface 63
		332	Data structure 63
		333	Command line execution 64
		334	Batch running 65
	3.4	SATU	RNE tutorial: a simple heated channel test
4	TR	o u	93
-	4.1	Introd	nction
		4.1.1	Code development
		4.1.2	Location on CRESCO-ENEA GRID
		4.1.3	TRIO U overview
	4.2	TRIO	U on CRESCO-ENEA GRID
		4.2.1	How to start TRIO U from console
		4.2.2	How to start TRIO_U from FABO
		4.2.3	How to interrupt TRIO U
	4.3	Mesh.	dataset and output files
		4.3.1	Mesh File
			Xprepro mesh format
			Gmsh mesh format
			Tgrid/Gambit mesh format
			SALOME MED format
		4.3.2	Dataset file
		4.3.3	Output files
	4.4	TRIO	U tutorial for the obstacle test example
		4.4.1	How to run the obstacle test example
			*

5	NE	PTUN	1E	110
	5.1	Introd	luction	. 110
		5.1.1	Code development	. 110
		5.1.2	Location on CRESCO-ENEA GRID	. 111
		5.1.3	NEPTUNE overview	. 111
	5.2	NEPT	FUNE on CRESCO-ENEA GRID	. 112
		5.2.1	Graphical interface	. 112
		5.2.2	Data structure	. 112
		5.2.3	Command line execution	. 113
		5.2.4	Batch running	. 114
	5.3	NEPT	fUNE dataset and mesh files	. 114
		5.3.1	NEPTUNE mesh file	. 114
		5.3.2	NEPTUNE param file	. 114
			Special Modules	. 117
			Fluid&flow properties	. 117
			Input-output control	. 117
			Numerical schemes	. 117
			Scalar	. 117
			Boundary Conditions	. 118
			Variable output control	. 118
			Subroutines	. 118
			Run	. 118
			param file	. 119
	5.4	NEPT	UNE tutorial on boiling flow with interfacial area transport	. 120

	CRESCO-ENEA GRID FISSICU PLATFORM							
		lo	cal	GF	RID			
	INSTALL	GUI	MPI	GUI	MPI	DNS	CFD	system
SALOME	yes	yes	yes	yes	no			
SATURNE	yes	yes	yes	no	no	x	х	
TRIO_U	yes	yes	yes	yes	no	x	х	
NEPTUNE	yes	yes	yes	no	no		х	
CATHARE	no	no	no	no	no			x
PARAVIEW	yes	yes	yes	yes	yes			

Introduction

Table 1: Implementation status on CRESCO-ENEA GRID FISSICU platform

This document reports the status of the FISSICU (FISsione/SICUrezza) software platform for the study of the thermal-hydraulic behavior of nuclear reactors. The idea reflects the new European policy to develop a common European tools which has lead to fund the NURISP platform project. ENEA is a user group member of the project and under a direct agreement has obtained the use of several codes. The University of Bologna participates in the effort to use and install these computational tools and other in-house developed codes on the CRESCO-ENEA GRID cluster located in Portici (near Naples). The FISSICU platform has been constructed not only to collect a series of codes that has been extensively used in this field but also to harmonize them with reference input and output formats. The aim of the platform is to solve complex problems using file exchange between different codes and large multiprocessor architecture. In this way one hopes to investigate multi-physics and multi-scale problems arising in the study of nuclear reactor components. Reference mesh and output formats are considered and conversion tools are developed. The data visualization is performed with a unique application.

In Chapter 1 we give an overview of the organization of the platform. The purpose of solving multi-physics and multilevel problems is discussed together with the CRESCO-ENEA GRID. The reference mesh and output formats are introduced and the visualization open-source application PARAVIEW is described.

In Chapter 2 the SALOME platform is introduced along with its implementation on CRESCO-ENEA GRID. A brief explanation of the main modules KERNEL, GUI and MESH is given. The SALOME mesh generator and the file transfer service are discussed. The mesh generator is open-source but the main mesh format is the MED format which is not very popular so that conversion tools are necessary. A tutorial of the MESH module is presented.

Chapter 3 is a brief introduction to the SATURNE code. SATURNE code is an open-source code implemented on CRESCO-ENEA GRID for use in three-dimensional direct numerical simulations. The graphical user interface is introduced together with dataset and mesh generation. An example is illustrated step by step.

Chapter 4 is devoted to the presentation of TRIO_U and its implementation over the CRESCO-ENEA GRID. The generation of mesh and data format files is discussed together with a brief tutorial for the 2D cylindrical obstacle test. The code TRIO_U has capabilities at microscale and intermediate scale.

Finally in Chapter 5 NEPTUNE is described with its implementation over the CRESCO-ENEA GRID. NEPTUNE is a code that can be used in two-phase flow simulations at the intermediate scale.

Chapter 1

FISSICU platform organization

1.1 Multiphysics and Multilevel platform

1.1.1 Multiphysics analysis

The aim of the platform is to analyze complex nuclear systems that require the coupling of different equations for different components. At present nuclear reactor thermalhydraulics consists of different physical models (heat transfer, two-phase flow, chemical poisoning) that cannot be analyzed all at the same time. Improvements are necessary both for the physical models (heat transfer coefficient at the interface between liquid and vapor, instabilities of the interface, diffusion coefficients) and mostly for the numerical schemes (accuracy, CPU time). In the absence of direct numerical simulations the improvement of CFD codes that rely on correlations must be based on experiments that offer sufficient resolution in space and time compared to the CFD computations. In many cases physical models lack of satisfactory experimental results and therefore numerical calculations cannot be accurate. In Figure 1.1 we show an example of the multi-physics approach where the physics of a nuclear core is coupled with the thermal-hydraulics of the steam generator and the pressurizer. In the upper plenum we can use a model that solves the Navier-Stokes equations while for the external loop we adopt a correlation approach. The two approaches require the use of different codes and the coupling at the interface between the two domains.

Even when experimental correlations are available for a single equation the complexity of the problems does not allow a whole-system simulation and even a greater computational power would be necessary to take into account the couplings. However, each physical model requires a number of parameters that are determined by the other state variables and the coupling between the equations is necessary to achieve an accurate and satisfactory result. For all these reasons it is important to develop tools that can manage different codes specific for a single application and perform easily a weak coupling. At the platform level there are three different types of coupling: weak, internal weak and strong coupling. In the first case the weak coupling is performed with the exchange of input and output files. In this case the file format must be compatible between

Figure 1.1: An example of multi-physics approach for nuclear reactor (NURISP) where different equation models can be coupled to analyze a complex system.

the applications or external conversion tools are required. In the internal weak coupling all the equations are solved in a segregated way using memory to exchange data between codes. A popular format for this purpose is the MED format. The strong coupling requires a larger computational power but can solve all the equations at the same time giving a more accurate result.

The platform should perform these tasks automatically together with runtime scheduling of the programs. Another important feature of the platform is the ability to manipulate and create input and output files with compatible formats. The SALOME software platform has been selected for these purposes and implemented on the ENEA-GRID cluster along with a selection of codes devoted to nuclear reactor thermal-hydraulics and safety analysis. Some key features of the SALOME platform are the following:

- interoperability between CAD modeling (input files) and computational software;
- integration of new components into heterogeneous systems;
- multi-physics weak coupling between computation software;
- a generic user friendly and efficient user interface;
- access to all functionalities via the integrated Python console.

Figure 1.2: An example of multilevel approach for a nuclear reactor (NURISP).

1.1.2 Multilevel analysis

Another aspect of the complexity of nuclear reactor simulations is the different geometrical scales. As shown in Figure 1.2 we need to investigate problems with characteristic dimensions ranging from millimeters (bubbles) to several meters (nuclear plant loop). It is not possible to solve such a complex problem in a single simulation. Therefore we model different scales with different equations that take into account the relevant physics for the selected geometry. We can roughly subdivide the phenomena into three main groups.

- Micro-scale, where direct numerical simulations (DNS) are required. Usually the Navier-Stokes system and energy equation are directly implemented without approximations. The results obtained are very accurate but can only take into account small parts of the system and a limited number of processes.
- Meso-scale, where the Navier-Stokes equations can no longer be used directly. The introduction of correlations and modelings is required in order to analyze systems where thousands of microscale phenomena occur.
- Macro-scale, where the system is analyzed in its overall complexity. In this case heavy approximations must be assumed in order to simulate the whole system in a reasonable amount of time.

The phenomena in the DNS group can be simulated with commercial and open-source codes. For example ANSYS-FLUENT, CFX and Comsol multiphysics are viable commercial codes, while OPENFOAM and SATURNE are examples of open source software. A

DNS code focused on nuclear applications is TRIO_U, released only under closed agreement with CEA, that allows to perform simulations in three-dimensional domains. The high resolution and reliability of these codes lead to high accuracy and reproducibility of the results.

The meso-scale codes rely on correlations and averaged equations. Typical examples are turbulence models and two-phase thermal exchange. Turbulence models are widely available even for DNS codes while other correlations are specific of the applications. A nuclear engineering code of this type is NEPTUNE which is released only under closed agreement with EDF.

The system codes are very specific to the application field. In order to simulate all the system they need heavy simplifications such as the use of a mono-dimensional fluid equation. In the nuclear field we recall CATHARE (released by CEA) and the series of RELAP codes.

The CRESCO-ENEA FISSICU platform implements the following software:

- DNS: TRIO_U, SATURNE, FLUENT (already available from CRESCO), OPEN-FOAM (already available from CRESCO)
- Meso-scale: NEPTUNE, ELSY-CFD
- system level: CATHARE (coming soon)

along with SALOME which performs the input/output managing and code coupling.

1.2 CRESCO-ENEA GRID

1.2.1 CRESCO infrastructure

CRESCO (Centro Computazionale di RicErca sui Sistemi Complessi, Computational Research Center for Complex Systems) is an ENEA Project, co-funded by the Italian Ministry of Education, University and Research (MIUR). The CRESCO project is located in the Portici ENEA Center near Naples and consists of a High Performance Computing infrastructure mainly devoted to the study of Complex Systems [1]. The CRESCO project is built around the HPC platform through the creation of a number of scientific thematic laboratories:

a) the Computing Science Laboratory, hosting activities on hardware and software design, GRID technology, which will also integrate the HPC platform management;

b) the Computational Systems Biology Laboratory, hosting the activities in the Life Science domain;

c) the Complex Networks Systems Laboratory, hosting activities on complex technological infrastructures.

1.2.2 CRESCO access

There are four ways to access ENEA-GRID:

a) SSH client, with a terminal interface which can directly access to one of the front-end

Cluster name	Node Name	ACCESS SSH from enea domains	ACCESS SSH from world	OS
Bologna	graphlab03.bologna.enea.it	yes	no	IRIX
	pace.bologna.enea.it	yes	yes	AIX
Brindisi	campus03.brindisi.enea.it	yes	no	LINUX
	ercules.brindisi.enea.it	yes	yes	AIX
	graphbri.brindisi.enea.it	yes	no	IRIX
Casaccia	feronix0.casaccia.enea.it	yes	no	LINUX
	laran.casaccia.enea.it	yes	yes	LINUX
	prometeo.casaccia.enea.it	yes	yes	LINUX
	turan.casaccia.enea.it	yes	yes	LINUX
Frascati	bw305-1.frascati.enea.it	yes	no	LINUX
	eurofel00.frascati.enea.it	yes	no	LINUX
	lin4p.frascati.enea.it	yes	yes	LINUX
	onyx2ced.frascati.enea.it	yes	no	IRIX
	sp5-1.frascati.enea.it	yes	no	AIX
Portici	campus3.portici.enea.it	yes	no	LINUX
	graphpor.portici.enea.it	yes	no	IRIX
Portici	cresco1-f1.portici.enea.it	yes	yes	LINUX
CRESCO	cresco1-f2.portici.enea.it	yes	no	LINUX
	cresco1-f3.portici.enea.it	yes	no	LINUX
	cresco2-f1.portici.enea.it	yes	no	LINUX
	cresco2-f2.portici.enea.it	yes	no	LINUX
	cresco2-f3.portici.enea.it	yes	no	LINUX
	cresco1-fg1.portici.enea.it	yes	no	LINUX
	cresco1-fg2.portici.enea.it	yes	no	LINUX
	cresco1-fg3.portici.enea.it	yes	no	LINUX
	cresco1-fg4.portici.enea.it	yes	no	LINUX
	cresco-fpga6.portici.enea.it	yes	no	LINUX
Trisaia	campus03.trisaia.enea.it	yes	no	LINUX
	cluapple.trisaia.enea.it	not yet	not yet	MacOSX
	graphtri.trisaia.enea.it	yes	no	IRIX
	triafs.trisaia.enea.it	yes	yes	Solaris

Table 1.1: CRESCO	front-end	machines.
-------------------	-----------	-----------

machines;

b) Citrix client, that can be installed on windows machines to access ENEA servers, including a terminal window to ENEA-GRID (INFOGRID);

c) FARO (Fast Access to Remote Objects) ENEA-GRID, that is a Java web interface available for all operating systems;

d) NX client.

The access is limited to authorized users that are provided with ENEA-GRID username and password to be used on every machine of the grid. Table 1.1 shows a list of available nodes. There are a number of front-end nodes to access the platform from the external world. The main ones are:

```
a) sp5-1.frascati.enea.it
```

```
b) lin4p.frascati.enea.it
```

c) cresco1-f1.portici.enea.it

In this report we consider the access to a front-end node with a ssh client from a linux terminal

```
$ ssh -X username@cresco1-f1.portici.enea.it
```

If one uses the web interface FARO (http://www.cresco.enea.it/nx.html), from any operating system, an xterm can be launched with a dedicated button. Further details on the login procedure can be found on the CRESCO website (http://www.cresco.enea.it/helpdesk.php).

1.2.3 CRESCO-ENEA FISSICU Platform

The FISSICU project is located in the directory

```
/afs/enea.it/project/fissicu
```

Inside the main directory **fissicu** (which stands as an abbreviation for nuclear fission safety), we find the three sub-directories

- data, where the simulation results should be stored;
- html, where the web pages are located
 (http://www.afs.enea.it/project/fissicu/);
- soft, where all the codes are installed.

At present, the following codes are available:

- SALOME (see Chapter 2, executable: salome);
- SATURNE (see Chapter 3, executable: saturne);
- NEPTUNE (see Chapter 5, executable: neptune);

- TRIO_U (see Chapter 4, executable: triou);
- FEM-UNIBO (the finite element Navier-Stokes solver developed at DIENCA University of Bologna).

For each code, a script (executable_env) is also available which simply sets the proper environment variables to execute the code. This procedure can be used to run the code directly without any graphical interface on a single node where the user is logged. This is also the first step for production runs which use the batch queue to run the code in parallel.

Any executable is a script in the directory /afs/enea.it/project/fissicu/soft/bin. This directory should be added to the user environment variable PATH. With the bash shell, the command line is

\$ export PATH=/afs/enea.it/project/fissicu/soft/bin:\$PATH

This command line can also be added to the configuration file .bashrc.

1.2.4 Submission to CRESCO queues

CRESCO supports the LSF (Load Sharing Facility) job scheduler, which is a suite of several components to manage a large cluster of computers with different architectures and operating systems. The basic commands are

\$ lshosts

It displays configuration information about the available hosts, as in the following output example

HOST_NAME	type	model	cpuf	ncpus	maxmem	maxswp	server	RESOURCES
hostD	SUNSOL	SunSparo	6.0	1	64M	112M	Yes	(solaris cserver)
hostB	ALPHA	DEC3000	10.0	1	94M	168M	Yes	(alpha cserver)
hostM	RS6K	IBM350	7.0	1	64M	124M	Yes	(cserver aix)
hostC	SGI6	R10K	14.0	16	1024M	1896M	Yes	(irix cserver)
hostA	HPPA	HP715	6.0	1	98M	200M	Yes	(hpux fserver)

\$ lsload

It displays the current load information

HOST_NAME	status	r15s	r1m	r15m	ut	pg	ls	it	\mathtt{tmp}	swp	mem
hostD	ok	0.1	0.0	0.1	2%	0.0	5	3	81M	82M	45M
hostC	ok	0.7	1.2	0.5	50%	1.1	11	0	322M	337M	252M
hostM	ok	0.8	2.2	1.4	60%	15.4	0	136	62M	57M	45M
hostA	busy	*5.2	3.6	2.6	99%	*34.4	4	0	70M	34M	18M
hostB	lockU	1.0	1.0	1.5	99%	0.8	5	33	12M	24M	23M

\$ bhosts

It displays information about the hosts such as their status, the number of running jobs, etc.

HOST_NAME	STATUS	JL/U	MAX	NJOBS	RUN	SSUSI	P USUSP	RSV
hostA	ok	-	2	1	1	0	0	0
hostB	ok	-	3	2	1	0	0	1
hostC	ok	-	32	10	9	0	1	0
hostD	ok	-	32	10	9	0	1	0
hostM	unavail	-	3	3	1	1	1	0

\$ bqueues

It lists the available LSF batch queues and their scheduling and control status

QUEUE_NAME	PRIO	NICE	STATUS	MAX	JL/U	JL/P	NJOBS	PEND	RUN	SUSP
owners	49	10	Open:Active	-	-	-	1	0	1	0
priority	43	10	Open:Active	10	-	-	8	5	3	0
night	40	10	Open:Inactive	-	-	-	44	44	0	0
short	35	20	Open:Active	20	-	2	4	0	4	0
license	33	10	Open:Active	40	-	-	1	1	0	0
normal	30	20	Open:Active	-	2	-	0	0	0	0
idle	20	20	Open:Active	-	2	1	2	0	0	2

^{\$} bsub < job.lsf</pre>

It submits a job to a queue. The script job.lsf contains job submission options as well as command lines to be executed. A typical script is

#!/bin/bash
#BSUB -J JOBNAME
#BSUB -q quename
#BSUB -n nproc
#BSUB -oo stdout_file
#BSUB -eo errout_file
#BSUB -i input_file
triou_env
Trio_U datafile.data

where the options to BSUB specify respectively the name of the job, the name of the queue, the number of processors, the file names for the standard and error output, the input file. The last two lines set the environment variables for the code TrioU and launch the executable with a parameter file, without the graphical interface that clearly cannot be used when submitting a job with a batch queue.

\$ bjobs

It reports the status of LSF batch jobs of the user.

JOBID	USER	STAT	QUEUE	FROM_HOST	EXEC_HOST	JOB_NAME	SUBN	1IT_	TIME
3926	user1	RUN	priority	hostF	hostC	verilog	Oct	22	13:51
605	user1	SSUSP	idle	hostQ	hostC	Test4	Oct	17	18:07
1480	user1	PEND	priority	hostD		generator	Oct	19	18:13
7678	user1	PEND	priority	hostD		verilog	Oct	28	13:08
7679	user1	PEND	priority	hostA		coreHunter	Oct	28	13:12
7680	user1	PEND	priority	hostB		myjob	Oct	28	13:17

\$ bkill JOBID

It kills the job with number JOBID. This number can be retrieved with the command bjobs.

1.3 FISSICU platform input/output formats

Each software supports a large number of input and output formats that are not always fully compatible. The aim of the platform is to uniform all the codes to use the same format for input, in particular for the mesh, and for output files. Regarding the input format we select the MED and the XDMF formats. They rely on the HDF5 library that is responsible for the data storage in vector and matrix form. The MED and XDMF are driver files that access to the information stored by the HDF5 files. Regarding the output viewer we choose PARAVIEW because it is open source and can manage a large number of output formats.

1.3.1 Input mesh format

HDF5 format

Hierarchical Data Format, commonly abbreviated HDF5, is the name of a set of file formats and libraries designed to store and organize large amounts of numerical data [9].

The HDF format is available under a BSD license for general use and is supported by many commercial and non-commercial software platforms, including Java, Matlab, IDL, and Python. The freely available HDF distribution consists of the library, commandline utilities, test source, Java interface, and the Java-based HDF Viewer (HDFView). Further details are available at http://www.hdfgroup.org. This format supports a variety of datatypes, and is designed to give flexibility and efficiency to the input/output operations in the case of large data. HDF5 is portable from one operating system to another and allows forward compatibility. In fact old versions of HDF5 are compatible with newer versions.

The great advantage of the HDF format is that it is self-describing, allowing an application to interpret the structure and contents of a file without any outside information. There are structures designed to hold vector and matrix data. One HDF file can hold a mixture of related structures which can be accessed as a group or as individual objects.

Figure 1.3: HDF5 storage model.

RL /home2/msandro	o/par/llbmesh-0.6.4/llbmesh/ex	amples/ansccv1/autput/sol	10.h5	
0.h5	TableView - T - / -	 /home2/msandro/par/lib 	mesh-0.6.4/libmesh/example	les/anscov 🗗 🔯
	Table m	Tableview - p - /	- /home2/msandro/par/libm	nesh-0.6.4/ilbmesh/examples/ansccv 🗗 🗵
		Lable M	TableView - u - / -	/home2/msandro/par/libmesh-0.6.4/libmesh/examples/arsccv1/output/sel.10.h5
	0		Table M	TobleView - v - 1 - Doma? Inconstructors /Jonesh -0 E d //ikonach /accomplat /
	0 259 5999. 1 259 5999. 2 259 5999. 3 259 5999. 5 259 5999. 6 359 5999. 7 359 5999. 8 400 0000. 13 400 0000. 14 400 0000. 15 400 0000. 16 400 0000. 17 400 0000. 18 400 0000. 17 400 0000. 18 400 0000. 19 400 0000.	0 2 1 2.970298 2 5.05963 2 5.05963 3 5.109002 4 4.779358 4 2.970788 5 4.744192 6 5.514977 7 4.722.448 8 2.709538 9 5.4741.92 10 5.614977 12 4.742.448 13 4.307419 14 5.787518 15 4.980637 16 4.74177 17 5.119588	0 0 0.0 1 0.0 2 0.0 3 0.0 4 0.07000 5 0.0 7 -0.07101 9 0.0 10 0.0 11 0.0 12 -0.01578 13 0.0 14 0.0 15 -0.03753	Lable Image: TableView w - / - /home2/msandro/par/libmes 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 3 0

Figure 1.4: HDFVIEW opens HDF5 files.

The HDF5 has a very general model which is designed to conceptually cover many specific data models. Many different kinds of data can be mapped to HDF5 objects, and therefore stored and retrieved using HDF5. The key structures are:

- File, a contiguous string of bytes in a computer store (memory, disk, etc.).
- Group, a collection of objects.

- Dataset, a multidimensional array of Data Elements, with Attributes and other metadata.
- Datatype, a description of a specific class of data element, including its storage layout as a pattern of bits.
- Dataspace, a description of the dimensions of a multidimensional array.
- Attribute, a named data value associated with a group, dataset, or named datatype
- Property list, a collection of parameters controlling options in the library.

The HDF5 project provides also a visualization tool, HDFVIEW, to access raw HDF5 data. This program can be run from terminal with

\$ hdfview

and a screenshot is given in Figure 1.4. The panel on the left shows the list of available datasets while on the right we can see the content of each of them.

XDMF format

XDMF (eXtensible Data Model and Format) is a library providing a standard way to access data produced by HPC codes. The information is subdivided into Light data, that are embedded directly in the XDMF file, and Heavy data that are stored in an external file. Light data are stored using XML, Heavy data are typically stored using HDF5. A Python interface exists for manipulating both Light and Heavy data. ParaView, VisIt and EnSight visualization tools are able to read XDMF [8].

A brief example of a typical XDMF driver file is

```
<?xml version="1.0" ?>
<!DOCTYPE Xdmf SYSTEM "../config/Xdmf.dtd" [<!ENTITY HeavyData ""> ]>
<Xdmf>
  <Domain>
   <Grid Name="Mesh">
     <Time Value ="0.1" />
      <Topology Type="Hexahedron" Dimensions="71400">
        <DataStructure DataType="Int" Dimensions="71400 8" Format="HDF">
meshxmf.h5:/MSHOCONN
        </DataStructure>
       </Topology>
      <Geometry Type="X_Y_Z">
        <DataStructure DataType="Float" Precision="8" Dimensions="77415 1"</pre>
         Format="HDF">
../data_in/mesh.h5:/COORD/X1
        </DataStructure>
        <DataStructure DataType="Float" Precision="8" Dimensions="77415 1"</pre>
```

```
Format="HDF">
../data_in/mesh.h5:/COORD/X2
        </DataStructure>
        <DataStructure DataType="Float" Precision="8" Dimensions="77415 1"</pre>
         Format="HDF">
../data_in/mesh.h5:/COORD/X3
        </DataStructure>
      </Geometry>
      <Attribute Name="T" AttributeType="Scalar" Center="Node">
        <DataItem DataType="Float" Precision="8" Dimensions="77415 1"</pre>
         Format="HDF">
sol.10.h5:T
        </DataItem>
      </Attribute>
    </Grid>
  </Domain>
</Xdmf>
```


Figure 1.5: XDMF format stores heavy data in HDF5 files.

In this example all data are stored in external files (meshxmf.h5, mesh.h5 and sol.10.h5), as shown in Figure 1.5. The data structures used in this example are Domain, Grid, Topology, Geometry and Attribute.

The organization of XDMF begins with the Xdmf element. Any element can have a Name or a Reference attribute. A Domain can have one or more Grid elements. Each Grid must contain a Topology, a Geometry, and zero or more Attribute elements. Topology specifies the connectivity of the grid while Geometry specifies the location of the grid nodes. Attribute elements are used to specify values such as scalars and vectors that are located at the node, edge, face, cell center, or grid center. A brief description of the keywords follows. DataItem. All the data for connectivity, geometry and attributes are stored in DataItem elements. A DataItem provides the actual values (for Light data) or the physical storage position (for Heavy data). There are six different types of DataItem :

- Uniform, that is a single array of values (default).

- Collection, that is a one dimensional array of DataItems.

- Tree, that is a hierarchical structure of DataItems.

- HyperSlab, that contains two data items. The first one selects which data must be selected from the second DataItem;

- Coordinates, that contains two DataItems. The first contains the topology of the second DataItem.

- Function, that is used to calculate an expression that combines different DataItems.

Grid. The data model portion of XDMF begins with the **Grid** element. A **Grid** is a container for information related to 2D and 3D points, structured or unstructured connectivity, and assigned values. The **Grid** element has a **GridType** attribute that can assume the values:

- Uniform (a homogeneous single grid (i.e. a pile of triangles));

- Collection (an array of Uniform grids all with the same Attributes);

- Tree (a hierarchical group);

- SubSet (a portion of another Grid).

Geometry. The **Geometry** element describes the XYZ coordinates of the mesh. Possible organizations are:

- XYZ (interlaced locations, an X,Y, and Z for each point);

- XY (Z is set to 0.0);

- X_Y_Z (X,Y, and Z are separate arrays);

- VXVYVZ (Three arrays, one for each axis);

- <code>ORIGIN_DXDYDZ</code> (Six values : <code>Ox,Oy,Oz</code> + <code>Dx,Dy,Dz</code>).

The default Geometry configurations is XYZ.

Topology. The Topology element describes the general organization of the data. This is the part of the computational grid that is invariant under rotation, translation, and scaling. For structured grids, the connectivity is implicit. For unstructured grids, if the connectivity differs from the standard, an Order may be specified. Currently, the following Topology cell types are defined: Polyvertex (a group of unconnected points), Polyline (a group of line segments), Polygon, Triangle, Quadrilateral, Tetrahedron, Pyramid, Wedge, Hexahedron, Edge_3 (Quadratic line with 3 nodes), Tri_6, Quad_8, Tet_10, Pyramid_13, Wedge_15, Hex_20.

Attribute. The Attribute element defines values associated with the mesh. Currently the supported types of values are : Scalar, Vector, Tensor, Tensor6, Matrix. These values can be centered on : Node, Edge, Face, Cell, Grid. A summary of all XDMF structures and keywords is given in Table 1.2.

MED format

Figure 1.6: MED storage format.

The MED (Modèle d'Echange de Données) data exchange model is the format used in the SALOME platform for communicating data between different components. It manipulates objects that describe the meshes underlying scientific computations and the value fields lying on these meshes. This data exchange can be achieved either through files using the MED-file formalism or directly through memory with the MED Memory (MEDMEM) library. The MED libraries are organized in multiple layers:

- The MED file layer : C and Fortran API to implement mesh and field persistency.

- The MED Memory level: C++ API to create and manipulate mesh and field objects in memory.

- Python API generated using SWIG which wraps the complete C++ API of the MED

Attribute (XdmfAttribute)	
Name	(no default)
AttributeType	Scalar, Vector, Tensor, Tensor6, Matrix, GlobalID
Center	Node, Cell, Grid, Face, Edge
DataItem (XdmfDataItem)	
Name	(no default)
ItemType	Uniform, Collection, tree, HyperSlab, coordinates
	Function
Dimensions	(no default) in KJI Order
NumberType	Float, Int, UInt, Char, UChar
Precision	1, 4, 8
Format	XML, HDF
Domain (XdmfDomain)	
Name	(no default)
Geometry (XdmfGeometry)	
GeometryType	XYZ, XY, X_Y_Z, VxVyVz, Origin_DxDyDz
Grid (XdmfGrid)	
Name	(no default)
GridType	Uniform, Collection, Tree, Subset
CollectionType	Spatial, Temporal (if GridType="Collection")
Section	DataItem, All (if GridType="Subset")
Topology (XdmfTopology)	
Name	(no default)
TopologyType	Polyvertex, Polyline, Polygon, Triangle,
	Quadrilateral, Tetrahedron, Pyramid, Wedge,
	Edge_3, Triangle_6, Quadrilateral_8,
	Tetrahedron_10, Wedge_15, Hexahedron_20,
	Hexahedron, Pyramid_13, Mixed,
	2DSMesh, 2DRectMesh, 2DCoRectMesh,
	3DSMesh, 3DRectMesh
NodesPerElement	(no default)
NumberOfElement	(no default)
OR	
Dimensions	(no default)
Order	each cell type has its own default
BaseOffset	0, #
Time	
TimeType	Single, HyperSlab, List, Range
Value	(no default, Only valid for TimeType="Single")

Table 1.2: XML Element (Xdmf ClassName) and Default XML Attributes

Figure 1.7: MEDMEM memory storage format.

Memory.

- CORBA API to simplify distributed computation inside SALOME (Server Side).

- MED Client classes to simplify and optimize interaction of distant objects within the local solver.

Two codes running on different machines can thus exchange meshes and fields. These meshes and fields can easily be read/written in a MED file format, enabling access to the whole SALOME suite of tools (CAD, meshing, visualization, other components) [4].

With MED Memory any component can access a mesh or field object generated by another application. Though the MEDMEM library can recompute a descending connectivity from a nodal connectivity, MEDMEM drivers can only read MED files containing the nodal connectivities of the entities. In MEDMEM, constituent entities are stored as MED_FACE or MED_EDGE, whereas in MED File they should be stored as MED_MAILLE.

The field notion in MED File and MEDMEM is quite different. In MEDMEM a field is of course defined by its name, but also by its iteration number and its order number. In MED File a field is only flagged by its name. For instance, a temperature at times t = 0.0 s, t = 1.0 s, t = 2.0 s will be considered as a single field in MED File terminology, while it will be considered as three distinct fields in the MED Memory sense.

MEDMEM supports data exchange in following formats:

- GIBI, for reading and writing the mesh and the fields in ASCII format.

- VTK, for writing the mesh and the fields in ASCII and binary formats.

- EnSight, for reading and writing the mesh and the fields in ASCII and binary formats.

- PORFLOW, for reading the mesh in ASCII format.

Classes. At a basic usage level, the MEDMEM library consists of few classes which are

located in the MEDMEM C++ namespace:

- MED the global container;
- MESH the class containing 2D or 3D mesh objects;
- SUPPORT the class containing mainly a list of mesh elements;
- FIELD the class template containing a list of values lying on a particular support.

The MEDMEM classes are sufficient for most of the component integrations in the SALOME platform. The use of the MED Memory libraries may make the code coupling easier in the SALOME framework. With these classes, it is possible to:

- read/write meshes and fields from MED-files;

- create fields containing scalar or vectorial values on a list of elements of the mesh;
- communicate these fields between different components;
- read/write such fields.

Advanced classes. A more advanced usage of the MED Memory is possible through other classes. Figure 1.6 gives a complete view of the MED Memory API. It includes:

- GROUP, a class inherited from the SUPPORT class used to create supports linked to mesh groups. It stores a restricted list of elements used to set boundary conditions and initial values.

- FAMILY which is used to manipulate a certain kind of support which does not intersect each other.

- MESHING which builds meshes from scratch, it can be used to transform meshes from a specific format to the MED format or to integrate a mesher within the SALOME platform.

- GRID which enables the user to manipulate specific functions for structured grids.

Note that in Figure 1.6 as well as in Figure 1.7 the MED container controls all the objects it contains: its destructor destroys all the objects inside. On the other hand, the MESH, SUPPORT and FIELD objects are independent. Destroying a SUPPORT (resp. a FIELD) will have no effect on the MESH (resp. SUPPORT) which refers to it. But the user has to maintain the link: a MESH aggregates a SUPPORT which aggregates a FIELD. If the user has to delete MED Memory objects, the FIELD has to be deleted first, then the SUPPORT and finally the MESH.

MEDMEM Lists. A few enums (C enumerations) are defined in the MEDMEM namespace :

- an enum which describes the way node coordinates or field values are stored:
 - MED_FULL_INTERLACE for arrays such that $x_1, y_1, z_1, \ldots, x_n, y_n, z_n$;
 - MED_NO_INTERLACE for arrays such that $x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_n$;
 - MED_UNDEFINED_INTERLACE, the undefined interlacing mode,
- an enum which describes the type of connectivity:
 - MED_NODAL for nodal connectivity;

- MED_DESCENDING for descending connectivity.

The user has to be aware of the fact that the MED Memory considers only meshes defined by their nodal connectivity. Nevertheless, the user may, after loading a file in memory, ask to the mesh object to calculate the descending connectivity.

- an enum which contains the different mesh entities, medEntityMesh, the entries of which being: MED_CELL, MED_FACE, MED_EDGE, MED_NODE, MED_ALL_ENTITIES. the mesh entity MED_FACE is only for 3D and the In 3D (resp. 2D), only mesh entities MED_NODE, MED_CELL and MED_FACE (resp. MED_EDGE) are considered. In 1D, only mesh entities MED_NODE and MED_CELL are taken into account.
- The medGeometryElement enum which defines geometric types. The available types are linear and quadratic elements: MED_NONE, MED_POINT1, MED_SEG2, MED_SEG3, MED_TRIA3, MED_QUAD4, MED_TRIA6, MED_QUAD8, MED_TETRA4, MED_PYRA5, MED_PENTA6, MED_HEXA8, MED_TETRA10, MED_PYRA13, MED_PENTA15, MED_HEXA20, MED_POLYGON, MED_POLYHEDRA, MED_ALL_ELEMENTS.

1.3.2 Platform visualization

PARAVIEW on CRESCO-ENEA GRID

Inside the platform there are many applications for visualization. In order to uniform the output and the visualization we use only the PARAVIEW software. The reasons for this choice are:

- it is open-source, scalable and multi-platform;
- it supports distributed computation models to process large data sets;
- it has an open, flexible and intuitive user interface;
- it has an extensible, modular architecture based on open standards.

For all these reasons the output files must be saved in a PARAVIEW readable format. From the practical point of view this is not a limitation since PARAVIEW reads a large number of formats. The following is an incomplete list of currently available readers:

```
- ParaView Data (.pvd)
```

- VTK (.vtp, .vtu, .vti, .vts, .vtr, .vtm, .vtmb,.vtmg, .vthd, .vthb, .pvtu, .pvti, .pvts, .pvtr, .vtk)

- XDMF and hdf5 (.xmf, .xdmf)
- LS-DYNA
- EnSight (.case, .sos)
- netCDF (.ncdf, .nc)
- PLOT3D
- Stereo Lithography (.stl)

⁻ Exodus

- Meta Image (.mhd, .mha)
- SESAME Tables
- Fluent Case Files (.cas)
- OpenFOAM Files (.foam)
- PNG, TIFF, Raw Image Files
- Comma Separated Values (.csv)
- Tecplot ASCII (.tec, .tp)

In ENEA-CRESCO cluster, PARAVIEW can run in two different ways:

a) from console;

b) as a remote application through FARO.

From console the command is :

\$ paraview-3.8.0

to run the latest version of PARAVIEW (3.8.0). The other versions are available by changing the version number in the command after the - sign. We remark that PAR-AVIEW can be launched only from machines with graphical capability (with a letter g in the name). For example PARAVIEW can run from crescol-fgl.portici.enea.it.

As a remote application one must login from the FARO web page (see Section 1.2.2) and then select the PARAVIEW button. If the program runs in this mode the rendering is pre-processed on the remote machine, which guarantees a higher speed.

The PARAVIEW application

PARAVIEW is an open-source, multi-platform application designed to visualize data sets of large size. It is built on an extensible architecture and runs on distributed and shared memory parallel as well as single processor systems. PARAVIEW uses the Visualization Toolkit (VTK) as the data processing and rendering engine and has a user interface written using the Qt cross-platform application framework. The Visualization Toolkit (VTK) provides the basic visualization and rendering algorithms. VTK incorporates several other libraries to provide basic functionalities such as rendering, parallel processing, file I/O and parallel rendering [7].

A brief explanation of the PARAVIEW GUI is given in Figure 1.8. The GUI has many panels that control the visualization. The two main panels are the View Area and the Pipeline Browser panel. The data are loaded in the View Area which displays visual representations of the data in 3D View, XY Plot View, Bar Chart View or Spreadsheet View. The visualization on the View Area is managed by the Pipeline Browser panel. The **Open** and **Save data** buttons perform the loading and saving operations for all the supported file formats. The Object Inspector panel contains controls and information about the reader, source, or filter selected in the Pipeline Browser. The most important menu is the Filters menu that is used to manipulate the data. For example one can draw the isolines of any dataset using the Contour filter. The Sources menu is used to create

FISSICU PLATFORM ORGANIZATION

Figure 1.8: Basic interface for PARAVIEW

new geometrical objects while the Animation toolbar navigates through the different time steps of the simulation [6].

Documentation

More information is available on the ParaView web site: http://www.paraview.org A wiki is also available at http://www.paraview.org/Wiki/ParaView and a tutorial http://public.kitware.com/Wiki/The_ParaView_Tutorial A list of all sources and filters can be found at http://www.paraview.org/New/help.html

Chapter 2

SALOME

2.1 Introduction

Figure 2.1: SALOME graphical user interface

2.1.1 Code development

Developer(s)	Open CASCADE, NURISP, EDF
Stable release	5.1.4 / June 2010
Operating system	Unix/Linux
License	GNU Lesser General Public License
Website	www.salome-platform.org

2.1.2 Location on CRESCO-ENEA GRID

CRESCO-ENEA GRID:

executable:	salome
install directory:	/afs/enea.it/project/fissicu/soft/SALOME

2.1.3 SALOME overview

SALOME is a free and open-source software that provides a generic platform for numerical simulations. The SALOME application is based on an open and modular architecture that is released under the GNU Lesser General Public License. The source code and executables in binary form may be downloaded from its official website at http://www.salome-platform.org. There are several version available, such as Debian, Mandriva and a universal package with all dependencies inside. All versions have a 32 and 64 bit version. The source code is also available to any programmer who wishes to develop and make it available for other operative system. On the CRESCO-ENEA GRID the Mandriva version (for 64 bits) is installed.

SALOME, which is also developed under the project NURISP, is a base software for integration of custom modules and developing of the custom CAD applications. The main modules are:

a) KERNEL: distributed components management, study management, general services;

b) GUI: graphical user interface

c) GEOM: CAD models creation, editing, import/export

d) MESH: standard meshing algorithm with support for any external mesher (pluginsystem)

e) MED: MED data files management

f) POST: dedicated post-processor to analyze the results of solver computations (scalar, vectorial)

g) YACS: computational schema manager for multi-solver coupling and supervision module.

In the FISSICU project SALOME is mainly used as mesh generator but it has many other features: interoperability between CAD modeling and computational software, integration of new components into heterogeneous systems, multi-physics weak coupling between computational software. The platform may integrate different additional codes on which perform code coupling. At the moment the integration among codes is far to be completed but some basic functionality can be used. In the platform the ideas of weak, internal weak and strong coupling are implemented. The weak coupling is performed with the exchange of output and input files. In the internal weak coupling all the equations are solved in a segregated way using memory to exchange data between codes. A popular format for this purpose is the MED library and its MEDMEM API classes. Among the various available SALOME modules, there are some samples that can be used by the developers to learn how to create and integrate custom modules in the SALOME platform. SATURNE has a module that links to the SALOME platform, but only a beta version is available. The integration module is in development at EDF. NEPTUNE and CATHARE codes are also developing an integration module for the SALOME platform [4, 5].

2.2 SALOME on CRESCO-ENEA GRID

The SALOME platform is located on CRESCO-ENEA GRID in the directory

/afs/enea.it/project/fissicu/soft/Salome

The salome platform can be run in two ways: a) from console

b) from FARO website

From console one must first set the access to the bin directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

\$ source pathbin.sh

Remark. The script **pathbin.sh** must be in the home directory. One must copy the template script **pathbin.sh** from the directory

/afs/enea.it/project/fissicu/soft/bin

and then execute the script to add the bin directory to the PATH. If the pathbin.sh script is not available one must enter the bin directory to run the program.

Once the bin directory is on your own PATH all the programs of the platform can be launched. The command needed to start the SALOME application is

\$ salome

Remark. The script **salome** consists of two commands: the environment setting and the start command. The environment script sets the environment of shell. The start command is a simple command that launches the **runSalome** command.

From FARO web application it is possible to access the SALOME platform with remote accelerated graphics. Once FARO has been started (see Section 1.2.2) one must open an xterm. In the xterm console one must follow the same procedure as before. First, set the access to the bin directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

\$ source pathbin.sh

SALOME starts with the command

\$ salome

Remark. When exiting the SALOME application we are left in a python shell. To exit press CTRL+D.

2.3 SALOME platform modules

2.3.1 Introduction

SALOME platform has seven components:

- KERNEL, that provides component management, study management and general services
- GUI, that provides a graphical user interface
- GEO, that provides a geometry module to create, edit, import/export CAD models
- MESH, that provides a CAD model with standard meshing algorithms
- MED, that provides the data files management
- POST-PRO, that provides a post-processor dedicated viewer to analyze the results of solver computations
- YACS, that provides a computational schema involving multi-solver coupling

2.3.2 KERNEL

The KERNEL components is the key component of the SALOME platform. The KER-NEL module provides communication among distributed components, servers and clients: dynamic loading of a distributed component, execution of a component and data exchange between components. CORBA interfaces are defined via IDL files and are available for users in Python. CORBA interfaces for some services are encapsulated in C++classes providing a simple interface. Python SWIG interface is also generated from C++, to ensure a consistent behavior between C++ modules and Python modules or user scripts.

Figure 2.2: GUI for the GEOM module.

2.3.3 GUI

GUI (Graphical User Interface) provides a common shell for all components, which can be integrated into the SALOME platform. GUI component in SALOME platform provides a common desktop environment (SALOME desktop) for all components and component integration and management by uploading, switching and menus/toolbars handling of the different components. The GUI provides also standard viewers for data visualization as VTK 3D viewer, OCC 3D viewer, Plot 2D viewer and supervision viewer.

2.3.4 GEOM

This component provides functionalities for creation, visualization and modification of geometric CAD models. Also the GEOM module provides visualization of models in 3D viewers in shading and wireframe modes. SALOME imports and exports CAD models in formats as IGES 5.3, STEP AP203/214 schemas and BREP (Open CASCADE internal format). One can create basic geometrical objects and 3D primitives together with modeling operations such as extrusion, revolution and pipe creation. Inside the GEOM component we can get topological information and dimensions such as center of gravity, axis of inertia and minimal distance.

2.3.5 MED

The purpose of the MED module is to provide a standard for storing and recovering computer data associated to numerical meshes and fields, and to facilitate the exchange between codes and solvers. For details one can see Section 1.3.1.

Figure 2.3: GUI for the YACS module

2.3.6 MESH

The goal of the MESH module is to create a mesh on the basis of the geometrical models created or imported into the GEOM module. A set of meshing algorithms and their corresponding conditions (hypotheses) to compute meshes are available to the user. For details see Section 2.5.3.

2.3.7 POST-PRO

The purpose of this module is to supply visualization tools to help the end-user analyze the results issued from a solver after a numerical computation. It proposes standard functionalities to display information through a wide range of functions. In the CRESCO-ENEA GRID we do not use this module since the PARAVIEW application will be used for post-processing.

2.3.8 YACS

YACS module allows to build, edit and execute calculation schemes. A calculation scheme defines a chain or a coupling of computer codes. Some common general operations are the activation of the YACS module, the import/export schema, the modification of a schema (create, edit, delete an object). All these operations can be performed graphically, as shown in a typical screen of this module in Figure 2.3.

2.4 SALOME file transfer service

This section introduces the SALOME file feature (Salome_file) which can be used to transfer files from one computer to another. This can be used from one program to retrieve the output file from another application and use it as input file.

2.4.1 File transfer service inside a program

Salome_file is a CORBA object which may manage different files. First a Salome_file must be created. It is a container with no files. Files may be added to the Salome_file using the Salome_file_i interface. A file is represented by a name and a path. There are two different types of files that can be added to the Salome_file:

- Local file: the file added exists or it will be created by the user with the path and the name used in its registration.

- Distributed file: the file added exists into a distributed localization.

In order to get a distributed file, the Salome_file has to be connected with an another Salome_file that has this file.

In the following we show a simple Salome_file with the objective to create two Salome_files: one with a local file and the other with a distributed file. Then, these Salome_files are connected to enable the copy of the real file between the two files.

```
#include "Salome_file_i.hxx"
int main (int argc, char * argv[]){
   Salome_file_i myfile;
   Salome_file_i filedist;
   myfile.setLocalFile("localdir");
   filedist.connectDistributedFile("distrdir", myfile);
   filedist.setDistributedSourceFile("distrdir", "localdir");
   filedist.recvFiles();
};
```

The include Salome_file_i.hxx is necessary to use the functions and the class. In the first two lines two Salome_files are created with the command Salome_file_i. The file names are myfile and filedist. The function setLocalFile sets the path localdir of the local myfile file. The function setDistributedFile sets the path distrdir of the distributed file with name filedist. The directories must exist. Now the files are defined by name and path. The connect command connects the distributed filedist file with the local myfile file. The transfer starts with the command recvFiles.

2.4.2 Python file transfer service

The file transfer can also be obtained by using python commands. If the remote hostname is **computername** and we would like to copy **myfile** from the remote to a local computer the following python program can be used
```
import salome
salome.salome_init()
import LifeCycleCORBA
remotefile="myfile"
```

aFileTransfer= \

```
LifeCycleCORBA.SALOME_FileTransferCORBA('computername',remotefile)
localFile=aFileTransfer.getLocalFile()
```

2.4.3 Batch file transfer service

A third way to have a service access is through the SALOME batch service. The interested reader can consult the SALOME documentation.

2.5 SALOME Mesh creation

2.5.1 Import and export of mesh files in SALOME

At the moment the SALOME platform on CRESCO-ENEA GRID is not used to distribute files and the implementation of coupled codes is not fully operational. The most important use of the SALOME platform is the mesh generation. SALOME offers a good open source application able to generate meshes for other applications as SATURNE and many others. For this reason it is important to use the MED format or convert such a format in more popular formats. The mesh functionality of SALOME is performed by the MESH module. In the SMESH module there is a functionality allowing importation and exportation of meshes from MED, UNV (I-DEAS 10), DAT (Nastran) and STL format files. These formats are not very popular and local converters may be necessary.

Mesh import. In order to import a mesh inside the SMESH module from other formats these steps must be followed:

- From the File menu choose the Import item, from its sub-menu select the corresponding format (MED, UNV and DAT) of the file containing your mesh.

- In the standard Search File dialog box select the desired file. It is possible to select multiple files.

- Click the OK button.

Mesh export. Once the mesh is generated by the SALOME MESH module the procedure to export a mesh is the following

- Select the object you wish to export.

- From the File menu choose the Export item and from its sub-menu select one of the available formats (MED, UNV, DAT and STL).

- In the standard Search File select a location for the exported file and enter its name.

- Click the OK button.

2.5.2 Mesh tutorial from SALOME documentation

Help for mesh creation can be found at

http://www.salome-platform.org/user-section/salome-tutorials

In this web page there are ten exercises from EDF:

EDF Exercise 1: Primitives, partition and meshing example. Geometric Primitives, tetrahedral and hexahedral 3D meshing, Partitions.

EDF Exercise 2: 2D Modeling and Meshing Example. Geometrical Primitives, triangular 2D mesh, Zone Refinement, mesh modification, sewing.

EDF Exercise 3: Complex Geometry meshed with hexahedra, quality controls. 3D Geometry, Partition, Hexahedral mesh, mesh display, quality controls.

EDF Exercise 4: Extrusion along Path and meshing example. The purpose is to produce a prismatic meshing on a curved geometry.

EDF Exercise 5: Geometry by blocks, shape healing. Creation of a geometric object by Blocks, Primitive, Boolean Operation, Shape healing.

EDF Exercise 6: Complex Geometry, hexahedral mesh. 3D Geometry, Partition, Hexahedral Mesh.

EDF Exercise 7: Creation of mesh without geometry. Manual creation of a mesh.

EDF Exercise 8: Pattern Mapping. Creation of a Pattern mapping.

EDF Exercise 9: Joint use of TUI and GUI. Learn to use GUI dialogs with TUI commands to generate a pipe with different sections.

EDF Exercise 10: Work with scripts only. This exercise is to learn working with Python scripts in SALOME. The scripts allow to parameterize studies and to limit the disk space for the storage.

2.5.3 Tutorial: step by step mesh on CRESCO-ENEA GRID

In this section we introduce step by step a mesh generation on CRESCO-ENEA GRID from the MESH module of the SALOME application.

1. Launch salome from command line.

2. The SALOME main window will appear.

3. Click the **New document** button.

4. The list on the left will show all the elements added to the working study.

5. Select the **Geometry** module form the dropdown menu.

6. The main window will switch to an OpenCascade scene.

7. Click the **Create a box** button.

8. On the dialog, use quadpipe for the Name. The dimension of the box shall be 1, 1 and 5.

se SkLOMI 5.1.4 - [Soudy1] Ble Edit View New Entity Or work	erations Repair Measures Jools Window Help Geometry 🔶 🙀 🛎 🍋 者 р s s x 🎒 x 🍓 x 💕 x 🖓 x	Second Second La · · · · ·
b Object Browser	DEC scene:)-weweni	8
ile Ede V	TO CALES OF STREET	
Trace /		XK (1-
++ found Wearching ** found turt SAL ddiiiann ab **** Warn Oscol		
1. 13868 Warn Modu	Name Quadope	3974)
n. 13958) Warni Modul	Dy: 1 0 Dz: 5 0 Apply and Close Apply Close	i074)
Puthon Console		A
N 13068 Python 2,44 (#1, Nov 13 Warn, [GCC 4.12 20051115 (pr Nodul type help to get general in	2009, 17:32:46) release) (Deblan 4.1,1-21)] on linux2 formation on environment	49.前 (1974)
-		

9. Zoom to the just created object.

10. Right-click on the quadpipe object in the left column. Select the Create Group option.

11. We create all the boundary regions of the box in order to put boundary conditions on them. We start from the inlet region, selecting it directly in the OCC scene.

12. Clicking the Add button, the surface should appear in the list. The number of this region must be 31. Click the Apply button.

13. Similarly we create the outlet region (number 33).

14. We split the lateral surface in 4 regions. We start from the front one and name it wall1.

15. The number of this region is **23**.

16. wall2 region is numbered 13.

	Group Name			EXM (1
an z	Main Shape And Sub Shapes			
dar d	Main Shape 🧳 quadpipe			
22	Main Shape Selection restriction	Show only selected		
	No restriction Genmetrical parts of the Second Shape	Hide selected.	JH HL	
2	O Only Sub-Shapes of the Second Shape	Show all sub-shapes		38741
	Second Shape 👌			
	13	Select All		
2		Add		3874)
		Remove		and the second
	Apply and Close Apply	Close Help		創局 39741
Max		reserver mark any on linux	2	
	type help to get general information	on an enviranment		

17. wall3 region is numbered 27.

18. wall2 region is numbered 3. We can now click the Apply and Close button, since this is the last region to create.

R Croup Name Name wald	e n 0 1	2 3 400 471 2 3 3 1 (2 9) 1 1 1 1 1 1 1 2 (2	× ×
Main Shape And Sub Shapes Main Shape @ Quadope Main Shape Selection restric > No restriction > Geometrical parts of the 5 > Only Sub-Shape of the Si Second Shape @	Show only selected Hide selected Show all sub-shapes		8974)
	5elect All Add Remove		8674)
Apply and Close Apply Hosu Cyce help to get gen >>>	Close Help	n inux2	의 퍼 1974)

19. To check if all the regions have been created correctly, we can use the Show Only option in the right-click menu of each object.

20. We select the Mesh module from the drop-down menu.

21. In order to show the quadpipe object, we select show in the right-click menu.

22. We zoom to the object in the VTK scene.

23. We click on the **create mesh** button.

24. In the appearing dialog, we select Hexahedron (i,j,k) in the Algorithm drop-down menu for the 3D tab.

2009 File Edit View Mesh Controls Mod Dipect Browser Name	fication Jools Window Help sh I III IIII IIIIIIIIIIIIIIIIIIIIIIIII	2010 00 2010 00 2000 00 200000000
The fac of Generality Trans 1. Second and the second sec	Create mesh Kame Merby,1 Calometry Merby,1 Calometry Merby,1 Calometry Merby,1 Calometry Second Sec	2 € 2)×s [141 8074) ; 3074) ;
h, 13960 Python 2,44 (#1, Nov 13 2009 Visit (Core 2, 12 2006) Store hep to get general informations	.17:32:46) 9(Deblan 4.1.1-21)] on linux2 tion on environment	-052 3074) : 1074 : 1074 :

25. In the 2D tab, we select the Quadrangle (Mapping) algorithm.

26. In the 1D tab, we select the Wire discretization algorithm.

27. Clicking on the the gear icon, we can configure the selected algorithm. We choose Average length.

28. We set the Length to 0.1 and click OK.

29. The mesh is now ready: we can click on Apply and Close.

30. In order to calculate the mesh, we click the **Compute** button in the right-click menu of the mesh we have just created.

	Compute Preview			
09 SALON File Edit V Object Brown	Evaluate Change submesh priority OUpdate Advanced Mesh infos Standard Mesh infos		dow Hob E The A THE A A A A A A A A A A A A A A A A A A A	
Edit: V El Ga Geom	Vesh Element Info			
ace / e a larnir e a found e a	Create Group	netry	A	- 7%
found in Br	Réname	F2	<i>√ ∥ ∥ </i>	
iona S Ant	Clear Mesh Data			
Warns S Alo DSCCC S C	Convert to/from quadratic			
306B0 B-2	4 m Delete	Del	THEFT	3874
Warns	Auto Color		• # # # # #	
Modul	Refresh	FS		
139680	Expand All Collapse All			3874
Warns Minch (1	Find	CtrleF		
Pathon Cons Python 2. Karni (GCC 4.1 Modul type help.	ole 4.4 (#1, Nov 13 2009, 11 20061115 (prerélesse) to get general informatio	7:32:46) (Deblan 4.1. n on environ	的田 I-21)] on linux2 ment	3974
Compute	-	-		

31. If everything has gone well, a summary window will appear with some details on the mesh. In particular, we have to check that there are 1D, 2D and 3D elements.

Eds VD B0 Genometry VD Memory and opperation succeed VD Memory and	сжя (14
1000000000000000000000000000000000000	2), KK
Found B: all the second s	
CALLED ⊕ @ walls Healt If SALL ⊕ Mash Healt If SALL ⊕ Mash Math Holes If SALL ⊕ Mash Math Holes If SALL # SAlporthese Body Holes If SALL # SAlporthese Total	
Tr SAL () () (Mesh) () () () () () () () () () () () () ()	
B 2 Hopotheses B 2 Hopotheses B 2 Hopotheses B 2 Hopotheses Total Linese Quadratic Vern Ver	
Waltra = Mushi Nodes: 935	
Applied hypotheses OD Elements: 0	78741
Edges: 140 140 0	
Monte Faces: 550 550 0	
Triangles: 0 0 0	
139560 Polycens 0	3874)
Volumes: 625 625 0	
Modul Tetrahedrons: 0. 0 0	
Hesahedrens / 625 625 0	-5
Priori Software Primes u u u Die	88741
Warn [GCC 4.1.2 20061115 (prerelease) Polyfedrons: 0	
Norm (GCC 4.1.2 20061115 (prerelesse) Potestere: 0 Coop Syce help to get general information Coop Coop	
Python 2.4.4 (#1, Nov 13.2009, 17) Prisms: 0 0 0 0	90

32. Now we create the sub-regions that correspond to the boundary surfaces. We select Create groups from geometry from the right-click menu of the mesh.

33. We select the inlet region in the left column and and click Apply.

erk Ele	SALONE 5.1.4 - [Soudy1] Edit View Mesh Controls Modificati	on Jools Window Help	0 4 4 4 4 B	2 2 × 7 × 1 ×	8 0 8 8 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8
GR Harri	t Browser 2125	OCC scene:1 - Vewen1	VTK scene 1 - viewen 1		н
py Drue Drue	Geometry guadpipe	and the literates			
INE SHI DATA SHI MRUSIC	(a) (b) (c) (c) <td>Elements Geometry / Inlet</td> <td></td> <td></td> <td>274 (I</td>	Elements Geometry / Inlet			274 (I
Stopped Wchalles Wate con	touadpipe touadpipe				80741
nochalles	- Groups of Faces	Nodes			
ngchallen ngchallen ngchallen ngchallen		Seometry 🥐			3874)
Modul				-	
Warn [GC Nodu]	n Console Ion 2,4.4 (#1, Nov 13 2009, 17 C 4.1.2 20061115 (prerelease) help to get general information				自用 86741
>>>		Apply and Close Apply	Close Help		
	to Groups from Geometry				_

34. We create all the six regions in the same way, selecting the mesh and the geometry element and clicking Apply until we reach the last one (wall4).

es v v SALONG 5.14- (Seudy)] File Edit View Mesh Controls	Modification Jools Window Help		2 0 8 Balloitte 6 1 + 10, + 3
Tenh Depet Linowier Todate Heng Norge Drine Biener Galchieth Mittel Galchieth M	Off Scenet J. Wasker.1 Image: State Scenet Scene Scenet Scenet Scenet Scenet Scene Scenet Scenet Scenet	Vit scene i -vezen i	1 5 m (141
mei Exception Excep	erostes Geometry e		8074) i 3074) ;
Hobil Hobil Python Console Python 2.4.4 (#1, Nov 13 Warn, [GCC 4.1.2 20061115 (pr Mobil type help to get general in >>>	2009, 17 release) Apply and Close Apply	C(pie Lielp	신 희 :0751 :
Create Groups from Geometry	Anna anna anna anna anna anna anna anna		Trah

35. We recompute the mesh by clicking again Compute in order to update the mesh.

36. We can now save the SALOME study by clicking the **Save** button. we can name the file quadpipe.hdf.

37. In SATURNE we need the mesh file in MED format. We can generate it via the File -> Export -> MED menu. The mesh must be selected to perform this action.

38. We name the file quadpipe.med.

This is a very simple but significative example of mesh generation, since it covers all the required steps to generate a mesh with all the features needed touse it in SATURNE or NEPTUNE. For more complete examples one can follow the tutorial suggested in Sections 2.5.2. This mesh can be converted into a more popular format or used directly in many applications as, for examples, SATURNE or TRIO_U.

Chapter 3

SATURNE

3.1 Introduction

Figure 3.1: SATURNE graphical user interface.

3.1.1 Code development

Developer(s)	EDF
Stable release	2.0.0 RC2 / July 7, 2010;
Operating system	Linux and Cross-platform
License	GNU General Public License
Website	http://www.code-saturne.org

3.1.2 Location on CRESCO-ENEA GRID

CRESCO-ENEA GRID:

executable:	saturne
install directory:	/afs/enea.it/project/fissicu/soft/Saturne

3.1.3 SATURNE overview

SATURNE is a general purpose CFD free software. Developed since 1997 at EDF R&D, SATURNE is now distributed under the GNU GPL license. It is based on a collocated Finite Volume approach that accepts meshes with any type of cell. The code works with tetrahedral, hexahedral, prismatic, pyramidal and polyhedral finite volumes and any type of grid structures such as unstructured, block structured, hybrid, conforming or with hanging node geometries.

Its basic capabilities enable the handling of either incompressible or compressible flows with or without heat transfer and turbulence. Many turbulence model are implemented such as mixing length, κ - ϵ models, κ - ω models, v2f, Reynolds stress models and Large Eddy Simulation (LES). Dedicated modules are available for additional physics such as radiative heat transfer, combustion (gas, coal and heavy fuel oil), magneto-hydro dynamics, compressible flows, two-phase flows (Euler-Lagrange approach with two-way coupling), extensions to specific applications (e.g. for atmospheric environment) [2, 3].

SATURNE can be coupled to the thermal software SYRTHES for conjugate heat transfer. It can also be used jointly with structural analysis software CODE_ASTER, in particular in the SALOME platform. SYRTHES and CODE_ASTER are developed by EDF and distributed under the GNU GPL license.

3.2 SATURNE dataset and mesh files

SATURNE requires a specific structure for the configuration and input files. Each simulation is denoted as *case*. One must therefore create a **case** directory and put all SATURNE simulations inside. For details on SATURNE file structure see Section 3.3.2.

SATURNE requires a dataset file (with extension xml) and a mesh file (with extension med) with the mesh geometry.

3.2.1 SATURNE mesh file

The mesh file must be in MED format. For MED format file one can see Section 1.3.1 and for mesh generation the SALOME section 2.5.

en Touta Window Help				
lody. Care				
are (is)				
WE Nee //www.l/satume/cask/text/DATA/cyl.xml				
**				
Identity and paths.		Devictory of this case.		
Calculation encomment Mexical selection	 /home1/saluma/sa 	seitesi	b	
Mash quality criteria				
Calculation features	Asterios	ed sub-directorian of the cas		
Mobie mesh	Data	DATA	_	
Turbulence models Thermal model	Results	RESU		
Additional scalars	Des entresident	1 Birth P		
Definition and initialization Physicals procerties	Coden a prosperateliste	ionu-		
Physical properties	Running scripts	SCRIPTS		
Fluid projection	Directory of mushe	s MESH		
Gravity, hydrostitic piessu/e				
Witime centitions				
Initialization				
Head losses				
Definition of boundary regions				
Boundary conditions				
Time step				
Equation parameters				
Global parameters				
Calculation control				
Gutput control				
Vistume solution control				
Profiles				
Concurrence on internegations.				
52				

Figure 3.2: SATURNE graphical user interface.

Figure 3.3: SATURNE GUI for boundary condition options.

3.2.2 SATURNE dataset file

The dataset file for the definition of the parameters is a XML file which is in the case directory (subdirectory DATA). There are two different ways to generate the dataset file:

Figure 3.4: SATURNE GUI for numerical parameter option.

• • • • • • • • • • • • • • • • • • •			
ie Joda Wedow Help			
tudy case			
ege test			
L file ///cmisi/satume/case/tett/DATA/cyl.xml			
• *	Commutee salart	See.	
- En Themophysical models			
Mobile mash	Workstation	~	
Tuthilance models	Subart the bench second for	-	
Thermal model	Senso me parce append	- Chrone	
Definition and initialization	Delease belief enter	Interes	
Physicals properties	Frebare sateri caler	areary m	
Reference religies	Number of processive	3.01	
Fluid properties	linetfile	100	
Gravity, hydrostatic pressure	Contrast.		
Volume regions defraition	Advanced options		
Initialization			
Head Massa	Lode Strume		
Definition of boundary regions	Turning		
Boundary conditions			
Time step			
Equation parameters			
Global parameters			
Calculation control			
Output control			
Volume solution control			
Profiles			
User arrays			
Mamory management			
Starl/Restart			
Carlepana batch calculation			
0			

Figure 3.5: SATURNE GUI start/stop computation panel.

a) Using the SATURNE GUI

b) editing the dataset template XML file directly The application control file consists of several sections. As shown in Figure 3.2 the SATURNE GUI opens a window which is divided into three panels: top panel, option panel and view panel. The name of the study and the name of the dataset file with the corresponding path must be introduced in the top panel. The option panel consists of a tree menu with different sections. The sections are the following:

- Identity and paths where the path to the case is written;
- Calculation environment with mesh selection;
- Thermophysical models with turbulence and thermal model options;
- Additional scalars with the definition and initialization of physical properties;
- Physical properties with reference values, fluid properties, gravity and hydrostatic pressure options;
- Volume conditions with volume region definition and initialization;
- Boundary conditions with the definition of boundary regions and conditions;
- Numerical parameters with time step, equation parameters and global parameters;
- Calculation control with time average option, output control, volume solution control and output profiles;
- Calculation management with user arrays, memory management and start/restart options.

The mesh should be opened and checked through the section Calculation environment. In this section there are also some mesh quality tools. The mesh must be saved in MED format and constructed in such a way that the boundary zones are marked as special regions. These regions will appear in the Boundary conditions section where the boundary conditions must be defined. The SALOME GUI defines the boundary conditions as shown in Figure 3.3. The parameters as the time step length and the number of the time steps can be set in Numerical parameters. A screenshot of the Numerical parameters is shown in Figure 3.4. The computation can be started from the start/stop computation panel in the Calculation management section. This panel appears in Figure 3.5 where the number of processors can be set. For more details one can see the example in Section 3.4 or the documentation of the SATURNE code. The SATURNE GUI generates a dataset file like the following:

```
</meshes_list>
     . . . . . . .
</solution_domain>
<thermophysical_models>
<velocity_pressure>
<variable label="Pressure" name="pressure">
<reference_pressure>101325</reference_pressure>
</variable>
         . . . . . . . . . . . . .
</thermophysical_models>
<numerical_parameters>
<multigrid status="on"/>
<gradient_transposed status="on"/>
<velocity_pressure_coupling status="off"/>
<pressure_relaxation>1</pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation></pressure_relaxation>
<wall_pressure_extrapolation>0</wall_pressure_extrapolation>
<gradient_reconstruction choice="0"/>
</numerical_parameters>
<physical_properties>
<fluid_properties>
<property choice="constant" label="Density" name="density">
<initial_value>1</initial_value>
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
</property>
                   . . . . . . . . . . . . .
</fluid_properties>
                  . . . . . . . . . .
</physical_properties>
<boundary_conditions>
<variable/>
<boundary label="BC_1" name="1" nature="inlet">inlet</boundary>
                  . . . . . . . . . . .
</boundary_conditions>
<analysis_control>
<output>
<postprocessing_mesh_options choice="0"/>
                . . . . . . . . . . . . .
</output>
<time_parameters>
<time_step_ref>0.01</time_step_ref>
<iterations>100</iterations>
<time_passing>0</time_passing>
```

</Code_Saturne_GUI>

This file can also be modified without the GUI by editing a template dataset XML file. The file is subdivided into various sections such as Calculation environment, Thermophysical models, Additional scalars, Boundary conditions, Numerical parameters and Calculation management. Inside each section we can see the corresponding options.

3.3 SATURNE on CRESCO-ENEA GRID

3.3.1 Graphical interface

The SATURNE code is located on CRESCO-ENEA GRID in the directory

/afs/enea.it/project/fissicu/soft/Saturne

Once the PATH is set for the directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

\$ source pathbin.sh

as it is explained in Section 1.2.3, the SATURNE GUI starts with the command

\$ saturne

Remark. Not all libraries are yet available at the moment for the CRESCO architecture. We suggest to run SATURNE GUI on a personal workstation.

The GUI is used to set up the simulation creating a data.xml file. The solution of the case must be run in command line mode or in batch mode as explained in the next section.

3.3.2 Data structure

SATURNE requires a specific structure for the configuration and input files. Each simulation is denoted as *case*. We can therefore create a **cases** directory and put all SATURNE simulation files inside.

Inside this directory, each case will have its own directory (for example case1, case2) and there must be a MESH directory, where all the meshes are stored.

cases +-- case1 +-- case2 ... +-- MESH

Inside each case directory, we have to create the four sub-directories

- DATA, where the xml configuration file is stored;
- RESU, that is used for the outputs;
- SCRIPTS, that hosts the execution scripts;
- SRC, in which we can put some additional source file.

During the execution, SATURNE will generate some temporary files that are by default stored in the tmp_Saturne directory in the user home directory. This directory must be periodically cleaned by hand, as there is no automatic procedure.

3.3.3 Command line execution

In order to execute the application in a shell we must first set up the environment using the script

saturne_env

that is located in the directory

/afs/enea.it/project/fissicu/soft/bin

Remark. The saturne_env script consists of the following lines

```
#! /bin/bash
export cspath= \
    /afs/enea.it/project/fissicu/soft/Saturne/2.0rc1/cs-2.0-beta2/bin
export CSMPI=$cspath/../../openmpi-1.4.1/bin
export PATH=$cspath:$PATH
```

In order to run a case one must first create a directory and put the following files in it:

- data.xml that is the configuration file of the case
- mesh.med that is the mesh file (in MED format)

There are two ways to run the code:

- a) from console
- b) using the **runcase** script

From console there are two steps to follow: 1) preprocess the mesh with the command

\$ cs_preprocess --mesh mesh.med --case data.xml

This command generates the file

preprocessor_output

where all the informations of the mesh are stored. 2) run the application with - serial mode

\$ cs_solver --log 0 --param data.xml

- parallel model

\$ \$CSMPI/mpirun -np NPROC cs_solver --log 0 --param data.xml --mpi

where **\$CSMPI** is defined in the **saturne_env** script. **NPROC** defines the number of processors used.

To use the **runcase** file, one starts from a template available inside the directory

/afs/enea.it/project/fissicu/soft/Saturne/data

There are two templates, one to be launched from the GUI interface (runcase) and another for console execution (runcase_sh). The runcase for the GUI takes into account the data structure explained in Section 3.3.2 while the runcase_sh needs only the data and the mesh file in the current directory just like we have seen above for console running.

3.3.4 Batch running

This is the template file for queue submission using LSF on CRESCO-ENEA GRID:

```
#!/bin/bash
#BSUB -J JOBNAME
#BSUB -n NPROC
#BSUB -oo stdout_file
#BSUB -eo errout_file
saturne_env
cs_solver --log 0 --param data.xml
```

where the options -J sets the job name, -n the number of processors, -oo the file for the standard output and -eo the error output. The last two lines set the environment variables for the code SATURNE and launch the executable with a parameter file, without the graphical interface that clearly cannot be used when submitting a job with a batch queue. This template is located at

/afs/enea.it/project/fissicu/soft/Saturne/data/saturne.lsf

Once the script is ready the command

Property	Value
Density $[kg/m^3]$	10340
Viscosity $[Pa \cdot s]$	0.00184
Specific heat [J/KgK]	145.75
Thermal conductivity [W/mK]	11.732
Inlet Temperature [K]	673.15
Inlet Velocity [m/s]	0.01

Table 3.1: Physical properties and operating conditions for the SATURNE tutorial.

\$ bsub < saturne.lsf</pre>

starts the batch execution.

When one uses the **runcase** script the LSF options are already placed at the beginning of the script. There is a space between the **#** and **BSUB** to be erased. In this case the batch run is started with the command

\$ bsub < runcase</pre>

Further informations on batch commands are available in Section 1.2.4.

3.4 SATURNE tutorial: a simple heated channel test

In this tutorial we will study a square pipe with one heated surface. The fluid is lead, with the physical properties and operating conditions of Tab. 3.1. The mesh has been created with SALOME in Sec. 2.5. In order to configure the simulation, we will start from a simple template that we have already put in the DATA directory, along with the generic runcase script in the SCRIPTS directory.

1. Run saturne from command line

2. Click the Open button, or go to the File menu and click Open

3. Browse to the case directory, and then inside the DATA sub-directory. In this example, the case is named quadpipe. Select the xml file (here quadpipe.xml) and click Open.

4. We can check that the directory structure has been created correctly. If some directory is missing, it will be displayed in red. We can adjust the directory structure and start again.

5. The configuration is subdivided in multiple directories. The first one is the Calculation environment, that includes the Meshes selection and Mesh quality criteria tabs. We select the first one. In here, we will find the list of meshes selected for the simulation. We can add a new mesh with the Add button.

6. We select the quadpipe.med mesh created in Sec. 2.5.

- Ele foren Go Plages Settings Help P per Hone P per H
- 7. The mesh must appear in the list with the right format.

8. In the Mesh quality criteria we can check if the mesh has been recognized correctly with the Check Mesh button.

9. If we are asked to save the log file, it means that the check was successful. We can use listpre.0 as filename.

10. After the saving, we can check the log to see if all the data are correct (see the file preprocessor_output Section 3.3.3)

We go to the Thermophysical properties directory. The first tab is Calculation features.
 We select in the first menu Unsteady flow.

		Home		Ele Juola Whedew Balp	
-			-	Stude case	
Barkun	hin	Desiton	Documents	Color constants	
Concernity.		Deniatop.		Care proppe	
				XML Met //mit/dsk/saturne/case/quadpipe/DAD/quadpipe.imi	
100	-	-	-		Strand Strength Store allowships
				Identity and paths	Analy contract and adjuster
Downloa File	Edit View B	ookmarks Settin	igs Help	Calculation environment Unsteady flow Meshes selection	
astas	ingenationger1/		ies saturne	Mesh quality criteria Uniterady flow	
-				Calculation features single Phase Ro	~ ~
				Nobile mesh Turbulence models	Atmospheric Bows
Sandado				Radiative transfers of	
				Conjugate heat trainsfer	the second se
				> 📑 Physical properties	bas combustion
				Volume conditions off	*
				Numerical parameters	Pulvenzed coal combustion
				Calculation control Calculation management	
					Electrical models
1000					
	5.80.	ATTR: SHEATTR		<[](s)	
ALC: NO		mundates and r	ada Caturna Citi	Second Lines Midnutesh to Birth and Lines	10:53 ar

12. We select Single phase flow in the second menu.

13. We check that the **Atmospheric flows** is set to off.

14. In the Mobile mesh tab, we check that the ALE method is not checked.

15. In the Turbulence models tab, we select the k-epsilon model.

16. In the Advanced options panel, we select the Two scale model.

17. In the Thermal model tab, we select the Temperature (Kelvin) option.

18. In the Radiative transfers tab, we select the No radiative transfers option.

19. We check that in the **Conjugate heat transfer** tab the list is empty. This tab is used to couple SATURNE with the Syrthes code for heat transfer in solids.

20. We go to the Additional scalars directory. The first tab is Definition and initialization, where we set the Temperature initial value at 673.15, as in Tab. 3.1.

21. In the Physical properties tab, the list must be empty.

22. The **Reference values** tab in the **Physical properties** directory is used to set the reference pressure. We keep the default value (atmospheric pressure).

23. In the Fluid properties tab, we set the values from Tab. 3.1. The constant option means that the properties do not depend on temperature.

24. In the Gravity, hydrostatic pressure tab we set to 0 all gravity components.

25. We go to the Volume conditions directory, Volume and regions definition tab. The list must contain only one region labeled all_cells.

26. In the Initialization tab, we set the z-component of the velocity to 0.01. The temperature value should be already set to the 673.15 value. For turbulence, we select

initialization by reference velocity for all zones , with a velocity value of 0.01.

27. In the **Head losses** tab, the list must be empty.

28. In the Boundary conditions directory, we first create the regions in the Definition of boundary region tab using the pre-processing log file.

29. We select the previously saved listpre.0 and click on Open.

30. The list should report the six sides of the domain.

31. The default value for the Nature column is Wall. We must change it in the inlet and outlet regions.

32. In the Boundary conditions tab we set the values in each region. In the inlet region, the velocity must be norm to the boundary and equal to 1.0. The turbulence value is set with the Calculation by hydraulic diameter option, with an Hydraulic diameter equal to 0.01. For the temperature, we select a Prescribed value of 673.15.

- Home
 Image: Sector Sector
- 33. In the outlet region, we set the **Prescribed flux** option to 0.

34. We set a flux that heats the fluid from the wall1 region. We set the value of the Prescribed flux to $-3 \cdot 10^5$ (the minus sign means that the heat goes from the wall to the fluid).

		Home		Be 3	anda Managana Barla						
-	-		-	Study	case						
backup	bin	Desktop	Documents	Case:	quadpipe						
				XML Net	/mnt/disk/saturne/case/quadp	pe/DADAgu	idpipe.xml				
-	-	-	-					En	mdary cond	literes	
Downloa File	Edit View B	ookmarks Settin	gs Help	-	Identity and paths Calculation environment	5	abel 3	one I	Varune	Selection crit	eria i
451.45	h@challengers/	wit/disk/sature	os saturne	1.00	Meshes selection Mesh quality criteria	-	C1 1 C2 2		nlet	in/et outlet	
				*#	Thermophysical models Calculation features		C1 4		Nall Nall	wall1 wall2	
				1.1	Mobile mesh		CS 5		itev Itev	wall3	
				-	Deceman model Radiative insiders Canugate heat tiantler Adabates scalar Definition and insideration Physical properties Physical properties Reference solves Phat properties Grady, tydy progenies Grady, tydy programs United conducts Valuer expanse definition Installation Head losses in the		Sideg wat	Sm • smo	orth or roug ch wall	ft wall rough wall	
					Definition of boundary region		Contro Marin	Ter		Mahar	Escharge
					Nomenral parameters		Terrok	Prescribed f		0000	Coefficient
	sátu	rne : saturne			Calculation management	<>					

35. All other wall region are adiabatic.

36. We go to the Numerical parameters directory. In the Time step tab, we set an Uniform and constant time step, with a reference reference value of 0.1 and 50 iterations.

37. In the equation parameters tab we can see the Solver precision settings. We keep the default values.

38. In the Scheme sub-tab, we can see the numerical configuration of the solver. Also in this case we keep the default values.

39. The Global parameters tab has some more numerical configurations. These values must be changed only for some peculiar application.

40. We go to the Calculation control directory, Time averages tab and check that the list is empty.

41. In the Output control tab, we keep the default options. Be sure that Post-processing format is set to Ensight Gold.

			Ele Jools Window Help	000
	Home			
-		-		
-			Study: case	
backup	bin Desktop	Documents	Case: quadpipe	
			XML Ne: /mint/disk/saturne/case/quadpipe/DATA/guadpipe.xml	
			Output Control Monitoring Points Constituates	
Downloa File Edit	View Bookmarks Settin	rs Helo	Dentity and paths Dutputs listings	
astashicha	Langers/mtt/dtsk/saturn	05-0050/06	Meshes selection Quant even 'n' ame stees	* 10
1			Mesh quanty criteria Wesh quanty criteria Wesh quanty criteria	
-			Calculation features Post-processing	
			Mobile mesh Turbulence models Only as the end of calculation	w -1
Sandbox			Themsel model	
			Radiative transfers Fixed domain post processing	×
			🛩 🥅 Additional scalars Domain beindary post processing	
			Definition and initialization Type of post-processing for mesh fixed	
			- Physical properties Post-processing format EnSight Gold	~
			Reference values Build opportunity	
			Gravity, hydrostatic pressure	
			When a series defection	<u> </u>
			Distinization polygons display	<u>k</u>
			Head losses polyhedra display	6
			Definition of boundary regions big-endiant	
			Boundary conditions	
			Time step	
			Equation parameters	
			v Calculation control	
			Time averages	
			Velume solution centrol	
			Profiles	
			· · · · · · · · · · · · · · · · · · ·	
	saturne :	saturne	4 33	
Contraction of the local division of the loc	in the second			11:07

42. In the Monitoring Points Coordinates sub-tab the list should be empty.

43. We keep default options also in the Volume solution control tab. In this way, all variables will be printed in the post-processing file.

		Home						
-	-	E COL	-					
				Study: case				
backup	bin	Desktop	Documents	Case: quadpipe				
				XML Ne: /mit/disk/saturne/case/quadpipe/DA	Wguedpipe.xml			
				**		Solu	tion control	
Downloa File	Edit View B	lookmarks Settin	es Help	Gentity and paths Galculation environment	1	Print In	Fost-	
43143	hischollengers	mut/disk/sature	MS B450/04	Meshes selection	fuerte	listing	processing	Propes
				- Im Thermoofistical models	Pressure	2	8	
-				Calculation features	VelocityX	8	No.	
				Turbulence models	Velocity	8	<u>s</u>	
Sandbol				Thermal model	Velocity2			
1				Radiative transfers Consugate heat transfer	Turbfoar	-	2	
				- 🛤 Additional scalars	Dissin	i v	~	
				Definition and initialization Physicals properties	TurbVisc	1	1	
				- Physical properties	TempK.	1	~	
				Reference values.	CourantNb	1	×	
				Gravity, hydrostatic pressure	FourierNb	2	*	
				Volume regions definition				
				Britialization Head losses				
				- 🖶 Roundary conditions				
				Definition of boundary regions Boundary conditions				
				- Mumerical parameters				
				Time step				
				Global payameters				
				Calculation control				
				Output centrel				
-				Profiles				
				> # Calculation management				
		Citizense 1	saturne					
		Saturnet	Parties inte	4()43	1			

44. In **Profiles** we can set put an extra output over a line. An example in shown in the screenshot.

45. We jump to the Calculation management directory, User Arrays tab. Also in this case, we do not need to change any option.

46. The Memory management tab is treated in the same way as the previous one.

47. The Start/Restart tab controls if we want to start from scratch or from a previously calculated solution. We select off.

Home Backup bin Desitop Documents	Keine guadpipe.xml - Cede Saturne GUI Cre Tunin Window Bring Study Case Case Case Study Case Study Case Study Case Study Case Study Case	**
Dominer Free Edit View Bookmarks Sattings Help Sandbo	Services Services	•
🚳 📰 👘 💽 🌉 🖹 Quadpipe.xml - Code_Saturne GUI 🖉	Psaturne48.png - 1660x1050 - 78 · · · · saturne : saturne · · · · · · · · · · · · · · · · · · ·	11:09 am

48. We start the calculation from the **Prepare batch calculation** tab. For a direct calculation (without submission to a queue), we select the **Workstation** option. A generic **batch script file** named **runcase** is already configured. We can choose any number of processors and start the calculation with the **Batch running** button.

49. the results are stored in the **RESU** directory. There is a sub-directory named CHR.ENSIGHT followed by the date/time of execution.

	Elle Edit View	Go Tools Settings Help	Charch		
	Places • *	/ > mnt > disk > saturne > case > quadpipe >	RESU > CHR.ENSIGHT.08251129		
Sandbox	Home Download Torret ToSerles Root Network Network Trah 14.6 GIB Ha ASLASH DATA ASLASH JI	Name CKIR2.com chr. covarantb.0001 chr.dissip.0001 chr.glob.0001 chr.glob.0001 chr.glob.0001 chr.glob.0001 chr.glob.0001 chr.step.Kc001 chr.step.Kc001 chr.nuthorsc.0001 chr.nuthorsc.0001 chr.nuthorsc.0001 chr.nuthorsc.0001 chr.nuthorsc.0001	V Size 791 8 13.8 KB 13.8 KB 22.3 XB 13.8 KB 13.8 KB 13.8 KB 13.8 KB 55.8 KB	Date 04/29/10 11:29 04/29/10 11:29 04/29/10 11:29 04/29/10 11:29 04/29/10 11:28 04/29/10 11:28 04/29/10 11:29 04/29/10 11:29 04/29/10 11:29 04/29/10 11:29	•
		Filter: THE.case' selected (791 B)	¢	eand of 1 free	

50. Form PARAVIEW one should select the chr.case file.

51. The solution of the tutorial gives the temperature distribution shown in the screenshot.

Chapter 4

TRIO_U

4.1 Introduction

Figure 4.1: TRIO_U graphical user interface.

4.1.1 Code development

Developer(s)	CEA
Stable release	1.61 / June, 2010;
Operating system	Linux
License	not free (use only under written agreement)
Website	http://www-trio-u.cea.fr

4.1.2 Location on CRESCO-ENEA GRID

CRESCO-ENEA GRID:

executable:	triou
install directory:	/afs/enea.it/project/fissicu/soft/Triou

4.1.3 TRIO U overview

Trio_U, developed at the Laboratory of Modeling and Software Development of the Directorate of Nuclear Energy of the CEA, is a project that aims to develop numerical simulation software for fluid dynamics. This project starts as an object-oriented, parallel code dedicated to scientific and industrial applications in the nuclear field. The variety of physical models and numerical methods implemented in this code allow to simulate various problems ranging from the local two-phase flow simulations to turbulent flows in industrial facilities or in components of nuclear reactors.

Inside the code two modules are available: a VDF module (finite difference volume) and a VEF module (finite element volume not to be confused with the finite element method). The VDF and VEF modules are designed to process the 2D or 3D flow of Newtonian, incompressible or slightly incompressible fluids where the density is a function of a local temperature and concentration values (Boussinesq approximation). Non-Newtonian fluid by using the Otswald law are possible [16, 17, 18].

It is planned to interface Trio_U with other simulation software supported or developed by the CEA. In particular the SALOME platform may be used for different stages of the Trio_U calculation: creation of CAD and mesh editing of the data set [15].

4.2 TRIO U on CRESCO-ENEA GRID

The TRIO_U platform is located on CRESCO-ENEA GRID on the directory

/afs/enea.it/project/fissicu/soft/Triou

The TRIO_U application can be run in two ways: a) from console b) from FARO website

4.2.1 How to start TRIO U from console

From console one must first set the access to the bin directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

\$ source pathbin.sh

The script pathbin.sh must be in the home directory. One must copy the template script pathbin.sh from the directory

/afs/enea.it/project/fissicu/soft/bin

and then execute the script to add the bin directory to the PATH. If the pathbin.sh script is not available one must enter the bin directory to run the program.

Once the bin directory is on your own PATH all the programs of the platform can be launched. The command needed to start the TRIO U application is

\$ triou

The script triou consists of two commands: the environment setting and the start command. The environment script sets the environment of TRIO_U calling the script bin/Init_Trio_U. The start command is a simple command that launches the TrioU command calling the TRIO_U command Trio_U.

4.2.2 How to start TRIO U from FARO

From FARO web application it is possible to access the TRIO_U platform with remote accelerated graphics. Once FARO has been started (see Section 1.2.2) one must open an xterm. In the xterm console one must follow the same procedure as before. First, set the access to the bin directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

\$ source pathbin.sh

TRIO U starts with the command

\$ triou

The graphical interface of TRIO_U is based on FIREFOX application.

4.2.3 How to interrupt TRIO U

In order to interrupt TRIO_U one must enter the value 1 in the case.stop file whereas case is the name of the case. When the calculation is started, Trio_U enters the value 0 in the stop file.

4.3 Mesh, dataset and output files

4.3.1 Mesh File

A mesh file may be created for Trio_U by using one of the following software:

a) Xprepro mesh generator (inside the Trio_U directory) for Cartesian 2D/3D domain

b) Gmsh freeware mesh generator(download at http://www.geuz.org/gmsh) for VEF 2D/3D domain

- c) Trio_U mesh generator for simple geometries
- d) ICEM, IDEAS, SIMAIL mesh generator for VEF 3D domains

f) Use a format translator to translate the mesh from Gambit to Trio_U meshing format

Xprepro mesh format

Xprepro is a new tool for Trio_U calculation which can create very complex 2D, 3D VDF meshes. You can run Xprepro either from a study opened with the GUI of Trio_U through a button named Mesh, either by running the command line Xprepro.

Gmsh mesh format

Gmsh is a freeware to build 2D/3D unstructured meshes with tetrahedral or hexahedral meshes. Meshes generated by Gmsh must be translated to Trio_U format by a converter located in **\$TRIO_U_ROOT/Gmsh** directory. It can also be run from the GUI of Trio_U using the button Gmsh.

Tgrid/Gambit mesh format

An instruction in the data set is available to reread meshing issued by Gambit/Tgrid (tools from Fluent) using Trio_U. This instruction is as follows:

Lire_Tgrid dom nom_fichier_maillage

where dom corresponds to the domain name, nom_fichier_maillage corresponds to the file containing the mesh. 2D (triangles or quadrangles) and 3D (tetra or hexa elements) meshes, may be read by Trio_U. The template for the Gambit/MED converter can be found in the directory

/afs/enea.it/project/fissicu/soft/triou/data

The file is as following

```
dimension 3
Domaine dom
Lire_tgrid dom mesh.msh
ecrire_med dom mesh.med
Fin
```

SALOME MED format

An instruction in the data set is available to read MED mesh issued for example from SALOME. This instruction is as follows

Lire_Med [vef][fam_name_from_gr_name] mesh_name filename.med dom_name

The dom_name corresponds to the domain name, filename.med corresponds to the file (written in format MED) containing the mesh named mesh_name. Option vef is obsolete and is kept for backward compatibility. The option fam_names_from_gr_name uses the group names instead of the family names to detect the boundaries into a MED mesh.

4.3.2 Dataset file

The dataset file must be labeled with the extension data and contains all the parameter values and all the options. The options are introduced in the code through key words. For example consider the Lire key word. The interpreter allows the keyLire object to be read (defined) in various ways:

a) with bracket

```
Lire object1 {
....}
```

In this case this keyword provides the object object1 defined between the braces. b) simple line command

Lire_fichier object1 namefile

The keyword Lire_fichier is to read the object object1 contained in the file namefile. This is notably used when the calculation domain has already been meshed and the mesh contains the file namefile c) with bin

Lire_fichier_bin object1 namefile

for an unformatted file.

For all the keyword one can see the TRIO_U tutorial inside the doc directory which is located in

/afs/enea.it/project/fissicu/soft/Triou/doc

4.3.3 Output files

There are different output file formats:

- name.lml: standard storage files for post-processing. The lml format files allow the results to be viewed with Data Visualizer or AVS Express

- name.lata: which is similar to lml format but comprises several files;

- name.ijk format which outlets the results in tables;

- name.tv format to use the file using the freeware viewing tool: VisIt. - name.son: standard storage files for physical values measured by probes integrated into the calculation domain by the user. This file can be read by the gnuplot application.

4.4 TRIO U tutorial for the obstacle test example

This examples is taken by the list of examples that comes with TRIO_U. The study is called obstacle and it consists of two files: obstacle.dat and obstacle.geo. The obstacle.dat is the dataset file while obstacle.geo is the mesh file written with the internal format.

4.4.1 How to run the obstacle test example

Figure 4.2: The obstacle test

1. We run triou from the command line. TRIO_U graphical interface is managed through a web browser. The default case will open Firefox. To start a new project we click on the Studies link.

2. In the new screen we can push the **Create** button to start a new study.

3. In the appearing shell, we can insert the path for the new study. We use Study/quad_obstacle inside the TRIO_U directory.

Create	ru neet for the new shirler				0.0-0
/hose/aslash/Projects/Tr	10_0/Study/auxi_obstacle			•	4
MyStudy	The second s				
Xterm	To open a study				
Html classes					
User's manual	To delete a study				
Validation note	Delete				
Helps&Tips&Links	1000				
	To test Tria_U :				
	Test Inn Innellit				
Find: bulle					
			1 acres		04:45 pm
	Unua Dalghin W Tro_U 1.6.1	Memile F	A Livale		Sint 21 Aug

4. We reach the main window for the study. The name is clearly visible in the title.

File Edit Mean History B	Frefax Iaakmadas Taala Hela	
00-C0	(e) tiest//home/aslash/HTML/Etude./tml	· 21.
Most Visited * @ Get	ing Started States: Neadlines *	
@ Triu_U 1.6.1	0 @ Tme_U1.4.1 0 +	
TrioU	User's manual Beyeard index Suprat	
	STUDY guad obstacle	
Main	STODT quad_obstacte	
What's new	To copy in your study a lote rile from referenced tests or look at finds approximating	
Downloads	To copy in your study a Castem format file 😂 mod	
MyTrioU	Change Change default data file and antipite stal and antipite inte	
MyStudy	Edx Edit e file	
Xterm	EdiDaca EdiT the default data file with Xdata	
Html classes	Mesh Stuctured mesh generation with Xprepro	
User's manual	Men instructored ask generation with Castas	
Validation note	Oreck Visualize the mesh	
Helpe & Tipe & Linky	Prenny Define view factors for thermal radiation	
Tidipox Tipox Links	Solve Run solve process	
	Stop Stop solve process	
	Resume Reside solve process	
	Termnal Open a vindov into the study	
	Change Dhange executable file	
	Update Update Trio_U binary since ftp.ces.fr	
6 Find: bulle Done	¢≵pressus ∲Best →Highlight gil Match case	
	This II I & L. Martin Early The II and	04:45 pm

5. In order to generate our study, we click on the **a data file** button to copy the configuration file from a test case.

0 0 - C 0	G files//home/aslash/HTML/Etude./itml	· · · · · · · · · · · · · · · · · · ·	0
Most Visited * @ Get	ung Started 🔂 Latest Headlines 🛩		
0 Tria_U 1.6.1	0 @ Tre_U 1.6.1 0 +		-
TrioU	User's manual Seymont index Separat		
Main	STUDY quad_obstacle		
What's new	To copy in your study a data tile free referenced tests or look at 1100		
Downloads	To copy in your study a Castem format file and and		
MyTrioU	Change Change default data file and animite star and animite star		
MyStudy	Ide Edit a file		
Xterm	EdiDana Edit the default data file with Xdata		
Html classes	Mean Stuctures each generation with Aprepro		
User's manual	Meah Unstructured mash generation with Castes an interfer model more things		
Validation note	Oheck Visualize the mash		
Helps&Tips&Links	Prenny Define view factors for thermal radiation		
	Solve Run solve process accusting manuale		
	Step Step solve process		
	Resume Resume police process		
	Terminal Open a window into the study		
	Charge Change executable file		
	Update Update Trio_U binary since Ttp.ces.Tr		
3 Find: bulle	Develous Dest Highlight all Match case		

6. We search for the **Obstacle** test and click it.

7. the first file we need is the data file. We click on the **Copy** button besides it.

4 - · C 0 4	S G Blez//home/aslash/HTML/Etude.html		• N• 100	9
Most Visited * in Genne S	tarted Elatest Headlines *			
0 Tria_U 1.6.1	0 10 Tro_U 1.4.1	0 +		
TrioU		e Hydraulique 20 lasinal	cle r with Quick scheme e	
Main				
What's new		CALL CORE OF ST	tacle.data	
Downloads		EIL! Copy Obs	tačle.geo	
MyTrioU		Obstac	e#2	
MyStudy		# Thermohydraulique 2D ave	c modele K-Epsilon V2 #	
Xterm				
Html classes			Sec. 1	
Usor's manual		Sug (Deg.) Obstu	acleV2.dwta	
Validation note		Sbstacle_	reprise	
Helps&Tips&Links		* TheeoHydrauligue 20 avec Chang Forc Re	riise depuis un probleee hydraulique a	
-		End () Obstac(L'reprise cata	
		OpDiffPlB_mixte_scal	aire_explicite_20	
		a conduction of	AREAD &	
		Littlings OpDiffPID_sixts_sc	alaire_explicite_30.data	
-		OpDiffP1B_mixte_scal	aire_implicite_20	
		 Conduction 20 	VEFFrePIB #	
10				

8. We use the name quad_obstacle.data in the terminal.

9. The file is opened for editing. Details on the content are given in Section 4.3.2.

10. The only edit we need is the name of the mesh file: we insert quad_obstacle.geo instead of Obstacle.geo.

Use Control-S and Control-R to Smarch,	
b tags file found. Run "ctags -R" to build a tags file.	
/home/anlash/Projects/Tris_U/Study/quad_obstacle/quad_obstacle.data	· · ·
# Hydraulique 20 Ianinar with Quick scheme # # PHRMLLEL ROBS # # Iance_test 2 exarts #	ubstacle .
dimension 2	The same as the set of the set of the set of the set
hJudraulique pb Ionaine don	
t DEBUT MAILLAGE € ire_fichter quad_obstacle.geo∰: FIN MAILLAGE €	Cang Obviatis data
A DEBUT DECOUPAGE Decouper don	Obitaclesz
Partitioneur tranche 1 tranches 2 1 1 Larg_joint 2 Non-Zones BON	skydraeliąwe 20 avec oodele K-ipsilan V2 e
3 Fin Fin DECOUPHE +	
ser's manual	But (ugg) Obstactvig, data
alidation note	sbstacle_reprise
elpe&Tips&Links	radizer 20 sec Cham <u>p</u> ront_Herits depuix an problem hydrauliger e
	Destable_reprise.dete
	OpDitTPIN_mixte_scalaire_explicite_00
	# Conduction 20 VEPProPIE #
	CONTINUE XEDI (0930_minte_scalative_explicite_20.data
	OpDiffP10_mixtg_scalaire_implicite_70
	* Conduction 2D VEFFT#PIB #
4	

11. We can now copy the mesh file. We must use the name we have already put in the data file, quad_obstacle.geo.

12. The file is opened for edit. We do not make any modification. In this case, the internal generator is used to create the mesh.

13. We go back to the study main page. We are ready to click on the Solve button to start the calculations.

4 + · C 0		• M•
Most Visited * 6 Gett	ing Started 🔝 Latest Headlines 🛩	
0 Tria_U 1.6.1	0 @ Tre_U1A1 0 +	~
TrioU	User's manual 5-event index Septer:	
Main	STUDY quad_obstacle	
What's new	To copy in your study a neta file from referenced tests or look at find accounting	
Downloads	To copy in your study a Castem format file 😥 📷	
MyTrioU	Change Change default data file and anticitie and anticities	
MyStudy	Edx Edit a file	
Xterm	EdiDaca Edit the default data file with Xdata	
Html classes	Mesh Stuctures mesh generation with Aprepro	
User's manual	Mesh Unstructured wesh generation with Castes an unstructured and an and	
Validation note	Check Visualize the mesh	
Helps&Tips&Links	Prenay Define view factors for thermal radiation	
	Solve Run solve process an analise column	
	Step Stop solve process	
	Resume Resume solve process	
	Terminal Open a vindow into the study	
	Change Change executable file	
	Update Update Trio_U binary since ftp.cea.fr	

14. The windows on the top left will report the advance of the calculation, while in the top right we can see if there are errors.

* Initialization *	
Press return.	
11100	Lucius Capacity
Main	STUDY quad_obstacle
What's new	To copy in your study a data file free referenced tests or look at finds more than
Downloads	To copy in your study a Castem format file 200 mm
MyTrioU	Change Change default data fale sole desurf a stat sole anti-
MyStudy	lde Hdit e file
Xterm	fotben Edit the default data file with xdata
Html classes	Mean Stuctured werk generation with Xprepro
User's manual	Mess Unitructored sets generation with Casta
Validation note	Oeck Visualize the seuh
Valuation note	Permy Define view factors for thermal radiation
	Sele Aun palve process <u>ana province duran</u> See Stop alle process Recue Selve process
	Terminal Open a window into the study
	Change Change executable file

15. Once the calculation are finished, we can click on the See results evolutions on the right of the Solve button.

The For Term refresh Fo	okmarks Iools Help				
0 0 - C 0	Se Mes///home/aslash/HTML/Etuc	le.html		· · · · · · · · · · · · · · · · · · ·	0,
Most Visited * 6 Gettin	og Started 🔂 Latest Headlines 👻				
O THU_U 1.6.1	O Trie_U).6.1	O Tno_U J.6.1	0 +		~
TrioU	User's manual 6 eyeard u	iden Studiot			
Main	1	STUDY quad_obstac	le		
What's new	To copy in your study a data fil	e from referenced tests or look at	The more that		
Downloads	To copy in your study a Casten f	ormat file est mont			
MyTrioU	Change Change default data fo	to and details and programming	<u> 1 3 1 1 1</u>		
MyStudy	Ide Edit a file				
Xterm	EditData Edit the default data	file with Adata			
Html classes	Mesh Stuctured mesh genera	tion with Xprepro			
User's manual	Mesh instructured sesh pen	eration with Caster			
Validation note	Oheck Visualize the mesh				
Helne&Tine&Linke	Preray Define view factors for	thermal radiation			
1150prox riproxizining	Solve Run solve process	maile column			
	Stop Stop solve process				
	Resume Resume solve process				
	Terminal Open a window into th	e study			
	Ohange Change executable file				
	Update Update Trio_U binary	since ftp.cea.fr			

16. We can launch $\boxed{\text{Vislt}}$ directly with the dedicated button.

🍖 🔶 😴 🖸	Ifest//home/aslash/BTML/Etude.html		* 4	9
Most Visited + @ Ges	ing Started 📓 Latest Neadlines *			
0 Tnu_U 1.6.1	0 • Tre_U1.6.1 0 • Tre_U1.6.1	0 +		~
TrioU	User's manual 6 event index Stoner			
Main	Study quad_obstacle: results ev	olution		
What's new	Stop Stop selve process			
Downloads	Visk Post-processing display with Visit accounting the	Sector Action		
MyTrioU	Close the process windows			
MyStudy				
term				
itml classes	1-PRESSURE Probe at (s,y)=(0,13,0,105)			
Jser's manual				
alidation note	2-PESSUE Probe at (x,y)=(0,13,0,115)			
Helps&Tips&Link	2			
	3-VELOCITY X Probe at (x, y)+(0.14.0.105)			
	4-VELOCITY Y Probe at (x, y)=(0.14.0.105)			
	6-VELOCITY Y Probe at (s.y)=(0.14,0.115)			
	7-VELOCITY X Profile line between (s.y)=(0.14,0) and (s.y)=(0.1	4.0.22)		
lane				
17. The main window of VisIt appears. The file browser is already configured inside the study directory.

18. All the drawable elements can be accessed via the Plots menu. We start by visualizing the computational domain with Plots -> Mesh -> dom.

19. The visualization becomes effective when we click on the Draw button.

20. We can now visualize the velocity magnitude. We select it via Plots -> Volume -> VITESSE SOM dom magnitude.

21. Clicking on the Draw button the velocity will appear in the main window.

22. The Play button can be used to visualize the successive time steps of the simulation.

K an Interface and a face	X Window 1 2 2
Elle Controls Options Windows He	▖▁▁ੑਗ਼ੑਲ਼ੑਗ਼ੑੑੑੑੑੑੑਗ਼ੑੑੑੑੑੑੑੑੑੑੑਗ਼ੑੑੑੑੑੑੑੑੑੑੑ
elected files	
- cycle 0002	
-cycle 0004	Dis Costade, time, 000amenty
Cycle 0005	Mesh
	Var.dom
BeOpen Replace Gvening	Volume Var VIII (28) SCM, asm_magnitude
0006	
41 4 1 1 1	- 0/332
atta alle tall. Maintain limite - 1 Danlines ale	-0.0224
View date Auto update	e = 0.3112
ctive plots Hide/Show Delete Draw	-0.000 Max: 1240
0 22:Mesh - dom	Ame 0.000
22:Volume - VITESSE_SOM_dom_magnitud	
Flots Operators Flotatts Oparts Variable	8
ppy - operators/- selection/ to an prote-	
1	0.20-
	0.15-
	V Avis
	0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
	11-00-212
	uter: aslash
	Sun Aug 22 11:41:56 2010
	n (s,y)=(0,14,0) ann (s,y)=(0,14,0,22)
	ā ————————————————————————————————————
aniash - Orighin	Mine U. L.A Montare Web 13.1 The Utiline U

Chapter 5

NEPTUNE

5.1 Introduction

Pile Petinge He	-Barris	edamox		W-la
Tite options ne	aarings	WPTU)e	neip
	<u>国</u> 田 🖬	πJ		
NEPTUNE OFD V1.0.0		No use	r file	
Headings	Winners .	1	1	1
Special modules	Input-output-control	Numerical schemes	Scalars	Run
		1		
Chrid& flow prop	Canaralities	Boundary conditions	Variable output control	

Figure 5.1: Neptune graphical user interface.

5.1.1 Code development

Developer(s)	EDF
Stable release	June 7, 2010;
Operating system	Linux and Cross-platform
License	not free (use under NURISP written agreement)
Website	no website

5.1.2 Location on CRESCO-ENEA GRID

CRESCO-ENEA GRID:

executable:	neptune
install directory:	/afs/enea.it/project/fissicu/soft/Neptune

5.1.3 NEPTUNE overview

The NEPTUNE project is a joint research and development program between EDF and CEA for nuclear reactor simulation tools. The project provides a two-phase flow thermal hydraulics software for multiscale and multidisciplinary calculations. The code may perform three-dimensional computations of the main components of the reactors: cores, steam generators, condensers, and heat exchangers. NEPTUNE supports from one to twenty fluid fields (or phases) and includes thermodynamic laws for water/steam flows. It is based on advanced physical models (two-fluid equations combined with interfacial area transport and two-phase turbulence) and modern numerical methods (fully unstructured finite volume solvers). The code is based on the cell-centered type finite volume method which can use meshes with all types of cell and nonconforming connections. NEPTUNE uses co-localized gradients with reconstruction methods to compute face values and supports distributed-memory parallelism by domain splitting. NEPTUNE is

Figure 5.2: Modules of the NEPTUNE CFD

written in Fortran and organized in modules as shown in Figures 5.2. The enveloppe

component manages the pre-processing and the post-processing functions, while edamox is the graphical user interface. One can introduce user functions by using the user Fortran module. The kernel of the calculation is implemented in the Neptune_CFD module [10, 11, 12, 13, 14].

5.2 NEPTUNE on CRESCO-ENEA GRID

5.2.1 Graphical interface

The NEPTUNE code is located on CRESCO-ENEA GRID in the directory

/afs/enea.it/project/fissicu/soft/Neptune

Once the PATH is set for the directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

\$ source pathbin.sh

as it is explained in Section 1.2.3, the NEPTUNE GUI starts with the command

\$ neptune

Remark. Not all libraries are yet available at the moment for the CRESCO architecture. We suggest to run NEPTUNE GUI on a personal workstation.

The GUI is used to set up the simulation creating a **param** file. The solution of the case must be run in command line mode or in batch mode as explained in the next section.

5.2.2 Data structure

NEPTUNE requires a specific structure for the configuration and input files. Each simulation is denoted as *case*. We can therefore create a **cases** directory and put all NEPTUNE simulations inside.

Inside this directory, each case will have its own directory (for example case1, case2) and there must be a MESH directory, where all the meshes are stored.

cases +-- case1 +-- case2 ... +-- MESH

Inside each case directory, we have to create the four sub-directories

- DATA, where the XML configuration file is stored;

- RESU, that is used for the outputs;
- SCRIPTS, that hosts the execution scripts;
- SRC, in which we can put some additional source file.

To create a folder tree for the study case1, it is available a script

\$ buildcase_nept -study case1

This generates the correct directory structure.

During the execution, NEPTUNE will generate some temporary files that are by default stored in the tmp_NEPTUNE directory in the user directory. This directory must be periodically cleaned by hands, there is no automatic procedure.

5.2.3 Command line execution

In order to execute the application in a shell we must first set up the environment using the script

neptune_env

that is located in the directory

```
/afs/enea.it/project/fissicu/soft/bin
```

Remark. The neptune_env script consists of the following lines

```
#! /bin/bash
export NEPTHOME=/afs/enea.it/por/arcproj/fissicu/soft/Neptune\
/package_neptcfd-1.0.8/NEPTUNE_CFD/neptcfd-1.0.8-r844/bin
source $NEPTHOME/neptcfd_profile
export NEPTMPI=/afs/enea.it/por/arcproj/fissicu/soft/Neptune\
package_neptcfd-1.0.8/opt/lam-7.1.1/arch/Linux_x86_64/bin/
```

The recommended way to run NEPTUNE from command line is to use the **runcase** script. There is a template available inside the directory

/afs/enea.it/project/fissicu/soft/Neptune/data

One has to navigate to the SCRIPTS directory inside the case in analysis and run

\$./runcase

5.2.4 Batch running

On the top of the **runcase** template there are the configuration options for LSF. This is the template file for queue submission using LSF on CRESCO-ENEA

```
...
# BSUB -J JOBNAME
# BSUB -n NPROC
# BSUB -oo stdout_file
# BSUB -eo errout_file
....
```

where the options -J sets the job name, -n the number of processors, -oo the files for the standard output and -eo the error output. There is a space between the # and BSUB to be erased in order to run in batch mode. Once the script is ready the command

\$ bsub < runcase</pre>

starts the batch execution.

Further information on batch commands are available in Section 1.2.4.

5.3 NEPTUNE dataset and mesh files

NEPTUNE requires a specific structure for the configuration and input files. Each simulation is denoted as *case*. One must therefore create a **case** directory and put all NEPTUNE simulations inside. For details on NEPTUNE file structure see Section 5.2.2.

NEPTUNE requires a dataset file (named param) and a mesh file (with extension med) with the mesh geometry.

5.3.1 NEPTUNE mesh file

The mesh file must be in MED format. For MED format file one can see Section 1.3.1 and for mesh generation the SALOME section 2.5.

5.3.2 NEPTUNE param file

The param file is a dataset file which is in the case directory (subdirectory DATA). There are two different ways to generate this dataset file:

- a) Using the NEPTUNE GUI
- b) editing the param file directly

The param file consists of several sections. As shown in Figure 5.3 the NEPTUNE GUI opens a window which is divided into two main panels: the menu bar and the selection panel. As we can see, the selection panel for the data structure is composed by 9 modules

• Special modules

Tile Debine H	-B	edamiox		Fals
The operans ne	arruda 📂			nerp
		WPTOL	JE	
		mi		
NEPTUNE OFD V1.0.0		No use	ar file	
Headings			1	
Special modules	Input-output-control	Numerical schemes	Scalars	Run
Chrid& flow mean	Concellition	Boundary conditions	Variable output control	

Figure 5.3: NEPTUNE GUI interface (Edamox).

File Options Head	lings			Help
	D	WPTUF)E	
		πi	Se	t up order
NEPTUNE CFD V1.0.8		No user	r file	
Headings				
-		**	📸 🍌 🌷	
Special modules	Input-output-control	Numorical schomes	Sealors	Run
****	•			
Fluid&flow prop	Generalities	Boundary conditions	Variable output control	

Figure 5.4: Suggested parameter order.

- Fluid&flow properties
- Input-output control
- Generalities
- Numerical schemes
- Boundary conditions
- $\bullet~{\rm Scalars}$
- Variable output control
- Run

NEPTUNE CFD V1.0	FLUID&F	LOW prop <@pool> param	
Number of phases	2		
GENERAL ITIES			
fluid name	eau	vapeur	
fluid state	liquid -	gas =	
THERMO			
density	1000	1000	A
Temp Tref	610	293.14	
Dyn. visc.	0.001	0.001	
Diameter	0.003	0.001	
Heat cap. (Cp)	1400	1400	
alpha init	0	0	
elast. coef.	0.9	0.9	
rad. transf.	10	-	
nuinn nnaf	I.n.	In.	- 7
TURBUL ENCE			
model	Rij-eps 🚽	none 🖃	
mix. length	0	0	
TURBULENT REVERS	E COUPLING (on phas	e 1)	
influence -> 1	none	_ Large inc.	
PARTICLE-PARTICU	LE INTERACTIONS (ph	ases > 1)	
frict, model	none	none	-1
man wodel	none	none	
gran, model	none		
kine, model	none -	none	-
maximum particle	compaction 0.64		
WALL BC			
Wall BC	friction	- dVR/da	= 0
INTER-PHASE FORC	ES		
drag<->1	none		Ishii
Added mass	none		Zuber -
lift			Tomiyama SMD
turb, disp.	none	-1	GTD model
wall force	none	-1	none
	LIGHT		- WALL

Figure 5.5: Fluid and flow properties

In order to insert the parameters of the case it is preferable to follow the order shown in Figure 5.4.

In the menu Options it is possible to set the level of the users. There are three different level, User, Expert, Programmer. The User Level contains less parameters respect to the Expert Level.

Special Modules

The module Special Modules allows to enable special features of the two-phase flow. The options are

- the option none for the separate phases
- the option water/steam module
- the option water/non-condensable module

Fluid&flow properties

In the Fluid&flow properties one can find the number of fluids and the fluid name options. All the physical properties and the turbulence models are defined in this module

Input-output control

In the input-output control one set memory allocation, the mesh file, the time step and all input/output parameters

Numerical schemes

The numerical schemes module contains the options that coupled the different equations and lead to the iterative solution of each system

Scalar

In this section one can set the scalars. In particular, there are two scalars that are enabled automatically when the water/steam module is selected in Special modules, the two total enthalpies for each phase, water and steam. Other scalars must be defined by specifying total number of scalars. The possible data that define a scalar are

- Convection \rightarrow selection of the convection phase of the scalar
- T-dep \rightarrow time-dependent term in the scalar equation
- Effective Diffusion \rightarrow diffusion term in the scalar equation
- Laminar Dynamic Coefficient \rightarrow reference diffusion coefficient
- Turbulent Schmidt \rightarrow turbulent Schmidt number

- Initialization Choice \rightarrow scalar initialization choice
- Type \rightarrow passive scalar or total enthalpy
- Initialization value and limit values

Boundary Conditions

In general, the Boundary Conditions module consists of several options to define Dirichlet or Neumann boundary conditions over the different boundary regions. For a more complete explanation see Section 5.4.

Variable output control

The chrono buttons select the output of variables in the chronological post-processing files. The listing buttons enable the variables to be tracked in the listing (i.e. textual output). The probes number fields are used to track the values of variables at the probes. The values given for this case mean that results are wanted at all the probes.

Subroutines

In this module one can set the use of user subroutine. To compile this subroutine it is necessary to copy it from the USERS directory in the SRC directory.

Run

		_				
File Options Hea	adings		uu)			Help
		? NEPTUNE CFD	V1.0.8 leptune/FORM	ATION-NEPTUNE/BOILING	_CHANNEL/C	
		Before running Running script	y the code, save t t : ./runcase	be PARAM file		
NEPTUNE CFD V1.0.8	/extra/	Nbr of proces	ssors (if >1, para	llel run): 1	-	aram.orig
3000		Run ON LINE	with the PARAM fil	e : param		
		nohup and batt Batch : adjust	th mode run : must	be made in the SCRIP	IS dir,	
Special modules	Input-or	el and en al l	1		-	
		GIUSE Gancel	nerp			
Fhuid&flow prop	Generali	ies Bo	nundary conditions	Variable output contro	01	

Figure 5.6: Run file

In the run module one can run the code and save the results. Before running the code, it is necessary to save the param file. In the module Run we set the number of

processors for a parallel run and we launch the code on line with the button Run on line. If you decide to change the parameters of the param file it is necessary to re-save the file before launching the run.

param file

The NEPTUNE GUI generates a param file as

```
. . . . . .
/Headings
/SPECIAL MODULES (1)
MODULE SPECIFIQUE = 1
/FLUID&FLOW prop (1)
NPHAS = 2
/GENERALITIES (2)
NOM FLUIDE =
eau;vapeur
ETAT FLUIDE =
0;1
/THERMO (2)
MASSE VOLUMIQUE =
1000;1000
TEMPERATURE REFERENCE =
610;293.14
VISCOSITE DYN =
0.001;0.001
 . . . . . . .
/
/TURBULENCE (2)
/
ITURB =
2;-1
CNUTLO =
0;0
  . . . . . . . . . . . . . .
/FLUID 1 (2)
/
UENT CONDL1 =
0;0;0;0;0
 . . . . . . . . . . . . . .
HSTSCA =
, , , , ,
/
/USER VARIABLES (2)
```

/ NUMUSE = 0

This file can also be generated directly by editing the file. The file is subdivided in various sections with characteristic key words. The same keys on the NEPTUNE GUI interface

5.4 NEPTUNE tutorial on boiling flow with interfacial area transport

Figure 5.7: Geometry and mesh of the channel

Now we present an example step by step. The case that we analyze is the standard boiling flow with interfacial area transport from NEPTUNE tutorial. For the simulation, we consider the mesh m1.unv. The geometry and the mesh chosen are show in Figure

5.7. As described in the previous section, we create the tree structure of the current case. Then, we copy the file mesh m1.unv of our geometry in the MESH folder and we open the GUI, by launching the command ./edam from the bin folder.

1. The GUI Edamox is open

File Options He	adings			Help
EPTUNE CFD V1.0.8	/extra/extra_extra/N	ieptune/FORMATION-NEPT	TUNE/BOILING_CHANNEL/CA	SE1/DATA/param.orig
adin				
Special modules	Input-output-control	Numerical schemes	Scalars	Run

2. We must set the expert level in the menu Options, that allows to access to additional numerical options and activate the water/steam option

🔊 🕂 📉 edam	x			
File Options H	eadings			Help
Level Display/Sar Notes Directives Search	ve Key-wors Classes Ctrl A DAMOCLES Ctrl D Ctrl F	User Expert Programmer		
NEPTUNE CFD V1.0.4 adin	<pre>3 /extra/extra_extra/!</pre>	veptune/FORMATION-NEP1	TUNE/BOILING_CHANNEL/CA	SE1/DATA/param.orig
Special modules	Input-output-control	Numerical schemes	Scalars	Run
Fluid&flow prop	Generalities	Boundary conditions	Variable output control	

MEDTIME OFD MI O	PLUIDE	FLOW prop <@pool>	Q.
NEPTUNE CED VI.0	.0	param	
Number of phases	2		
GENERALITIES			-
fluid name	eau	vapeur	
fluid state	liquid 🖃	gas =	
THERMO			
density	1000	1000	
Temp Tref	610	293.14	
Dyn. visc.	0.001	0.001	
Diameter	0.003	0.001	
Heat cap. (Cp)	1400	1400	
alpha init	0	0	
elast. coef.	0.9	0.9	
rad. transf.	Ш.	21	
amian anaf	л о .	1 n	
TURBULENCE			12
model	Rij-eps	none -	1
mix. length	0	0	
TURBULENT REVERS	E COUPLING (on phas	se 1)	
TURBULENT REVERS	E COUPLING (on phas	se 1) Large inc.	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU	E COUPLING (on phas none LE INTERACTIONS (ph	Large inc.	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model	E COUPLING (on phas none LE INTERACTIONS (ph none	Large inc.	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model	E COUPLING (on phas none LE INTERACTIONS (ph none	se 1) Large inc. hases > 1) none none	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model	E COUPLING (on phas none LE INTERACTIONS (ph none none	se 1) Large inc. Dases > 1) none none none	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model	E COUPLING (on phas none LE INTERACTIONS (ph none	Large inc.	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model maximum particle	E COUPLING (on phase none LE INTERACTIONS (ph none none none	Large inc.	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model maximum particle WALL BC	E COUPLING (on phas none LE INTERACTIONS (ph none none compaction 0.64	Large inc.	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model maximum particle WALL BC Wall BC	E COUPLING (on phase none LE INTERACTIONS (ph none none compaction 0.64	se 1) Large inc. nases > 1) none none none dvR/dn	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model kine. model wall BC WALL BC WALL BC WALL BC	E COUPLING (on phas none LE INTERACTIONS (ph none none compaction 0.64 friction ES	se 1) Large inc. hases > 1) none none none dWR/dn	
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model maximum particle WALL BC WALL BC WALL BC INTER-PHASE FORC drag<->1	E COUPLING (on phase none LE INTERACTIONS (ph none none compaction 0.64 friction ES	e 1) Large inc. Large inc. Dases > 1) none dvR/dn	= 0
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model wall BC WALL BC WALL BC WALL BC INTER-PHASE FORC drag<->1 Added mass	E COUPLING (on phase none LE INTERACTIONS (ph none none compaction 0.64 friction ES none	se 1) Large inc. hases > 1) none none dVB/dn	= 0 Ishii
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model maximum particle WALL BC WALL BC WALL BC INTER-PHASE FORC drag<->1 Added mass lift	E COUPLING (on phase none LE INTERACTIONS (ph none none compaction 0.64 friction ES none	se 1) Large inc. hases > 1) nome nome dVR/dn e 	= 0 Ishii Zuber Tomiyama SMD
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model kine. model wall BC WALL BC WALL BC WALL BC UNTER-PHASE FORC drag<->1 Added mass lift turb. disp.	E COUPLING (on phase none LE INTERACTIONS (ph none none none compaction 0.64 friction ES none none none	se 1) Large inc. hases > 1) none none dvR/dn e none	= 0 Ishii Zuber Tomiyama SMD 6TD model
TURBULENT REVERS influence -> 1 PARTICLE-PARTICU frict. model gran. model kine. model maximum particle WALL BC WALL BC WALL BC INTER-PHASE FORC drag<->1 Added mass lift turb. disp. wall force	E COUPLING (on phase none LE INTERACTIONS (ph none none compaction 0.64 friction ES none none friction	se 1) Large inc. bases > 1) none none none dVR/dn	= 0 Ishii Zuber Tomiyama SMD 6TD model none

3. Open the fluid and flow properties panel

4. In this case, we have two phases, liquid and gas. Default bubble diameter is 1mm

umber of phases GENERALITIES	2		
fluid name	eau	vapeur	
fluid state	Trăng	gas _	
THERMO			100
density	1000	1000	
Terp Tref	610	293.14	
Dyn. visc.	0.001	0.001	
Diameter	0.003	0.001	
Heat cap. (Cp)	1400	1400	
alpha init	0	0	
elast. coef.	0.9	0.9	
rad. transf.	4	4	
min mot	0	In	

5. Specify the models chosen for the turbulence, both for the water and the steam

123

6. Set the wall boundary conditions

7. Set the inter-phase forces

INTER-PHASE	FORCES	none cst. coef.		
drag<->1		sep. phases	-11	
		WensYu		
	Ishii model: derived from the CATHAF	RE Ishii		
	code, valid for bubbly flows	Large Interlace Mo	del	
	Zuber model: derived from code, valid for bub	n the CATHARE by flows	nune cst. coef. scp. ph.	

8. and also

9. Open the Input output control panel

6	INPUT-OUTPUT-CONTROL (@pool>	00
NEPTUNE CFD V1.0.8	param	
CONTROLED MEMORY ALLOCATION		
Number of Integers 1000000		
Number of Reals 10000000		
GEOMETRY FILE		
Use of ENVELOPPE module YES		
_ Face joining		
Other options		
Mesh file name(s) prisme.do	5	
TIME CONTROL		
Nbr of time-steps 1000	Restart from previous run	
Absolute max time -1		
Pof Time stan dt0 0 001		
Kei line-step, dto 0.001	Saving frequency of restart file sulava 0	
Dt mode time-dep	Syrthes time step Neptune dt _	
VARIABLE DI		
dt/dtU min 1e-06	dt/dt0 max 1000000	
max dt variation (increase)	0.1	
max dt variation (decrease)	0,5	
CFL-FOURIER LIDITS		
USER		
Number of user arrays 1		
POST-PROCESS		
chrono	Thursday Free of June seture 10	
output type each n t-step	Iteration ired. or chrono outputs 10	
_ Chrono outputs at the MED	I format	
_ chrono output of nucleate	boiling model	
histo		
output type each n t-step	_ iteration freq. of histo output 1	
saving frequency 1000		
definition of probes define	ed in Edanox —	
number of probes 2		
x_prob y_prob	z prob	

10. Set memory allocation and mesh file

CONTROLED MEMORY ALLOCATION	
Number of Integers 10000000	
Number of Reals 100000000	
CEONETRY FILE	
Ise of ENVELOPPE module YES -	
_ Face joining	
Dther options 🧵	
Mesh file name(s) Maschek_3345.unv	

11. Set post-process output

	Outputs every 10 time-steps
POST-PROCESS chrono output type each n t-step _	Iteration freq. of chrono outputs 10
Ghromo outputs at the MED	format

12. Set the time step dt

max dt variati	-06 dt/dt0 max 1000000 on (increase) 0.1 on (decrease) 0.5		
CFL-FOURIER LD	These parameters allow the c	ontrol of the time step	
CEL phase 1	Max Fourier phase 1 10000	Fas CFL alphal 1000	Kax CFL gamal

13. Set the number of user arrays

One u	array is introduced for the post-processing of the steam bubbles diameter
	Design

14. Open the Generalities panel

X	GENERALITIES @pool>	66
? NEPTUNE CFD V1.0.8	param	
GRAVITY		
X axis component 0		
Y axis component -9.81		
Z axis component 0		
DOMAIN LENGTH SCALE		
maximum eddy length scale -	-domain length scale- (m) 0.1	
SEPARATE PHASES		
gradP correction (separat	te phases)	
Interface locating methods	No interface locating	
] Turbulence effect on wave	es height	
(Interfacial friction for	ation of warm wardware	
	CLIMI UI wave LOUGHIESS	
Definition of sections	No section	
TUTTION OF SCOLUMS		
Reference and initial press	suce 15000000	
neierence and inicial press		
Default Surface tension: U	1.059	
_ call THETIS tables cal	11 CATHARE functions	
CATHARE	and a second	
Fluid: WATER Std (revb e	extended) _	-
Enthalpy-pressure clippi	ng / physical values	
🔟 Non-condensable gas		
Number of non-condensable	gases 0	
SPECIAL PHYSICS - USER DES	IGN	
U Variable physical propert	ties (call usphyv)	
🔲 Mass transfer (call ustr	mv)	
🚽 User defined head losses	(call uskpdc)	
☐ Porosity (call uspors)		
I Isolated cells (call used	tan)	
Momentum sources (call un	stans)	
WALL TRANSFER MODEL		
Wall transfer model:	Nucleate boiling	
		1 A A
Close Cancel Help	n innærtinsis Standard (sinæle mhase sall fim	CT1001

15. Set the gravity and domain length scale

16. Set the thermodynamics and Cathare properties

17. Set the boiling parameters

fluid/wall heat transfer nodel : 4-flux nodel	
ax radius of cavities (m): 0.0001	
ax detachment bubble diameter (n): 0.003	tended Kurul-Podovski mode
ax oversaturation control (Ű): 1	
Finid properties at Y+ = 250	
	/
Y+ is defined as Y+ = Y _p *0* / nu Usually, Y+ takes values between 0 and Kurul-Podovski model uses U1 & T1 estimated at Y+ f	300 rom the heated wall
Y+ is defined as Y+ = Y _p *U* / nu Usually, Y+ takes values between 0 and Kurul-Podovski model uses U1 & T1 estimated at Y+ f Y _p is the distance to the wall. This length is such as he first node of the mesh is set in the boundary layer.	300 om the heated wall
$Y + is defined as Y + = Y_p * 0^* / nuUsually, Y + takes values between 0 andKurul-Podovski model uses U1 & T1 estimated at Y + fY_p is the distance to the wall. This length is such ashe first node of the mesh is set in the boundary layer.v^* designs the friction velocity.$	300 om the heated wall

18. Set the interfacial water-steam energy transfer for the liquid face

19. Set the interfacial water-steam energy transfer for the vapour face

20. Set the interfacial area transport

INTERFACIAL AREA TRANSPORT	-		
Kin diameter(m): 1e-06	Kax diameter(m)	: 0.01	
IA models Nr 1 IAl model	r		1
•	•	t i	+
coalescence	and fragmentation wodel	s no coalescence	, no fragmentation -
		Vei Yao	2 · · · · ·

21. Open the numerical schemes panel

K 😡 NUMERICAL SCHEMES «@pool» 🛛 🕲 💿
PNEPTUNE CFD V1.0.8
VELOCITY
Velocity update (end of time-step) by the pressure gradient increment
Velocity update (alpha-P cycle) by the pressure gradient increment
Boundary faces color for RTO update all
Velocity predictor algorithm standard (difvit) -
<pre>velocity / mass flux filter coefficient (>1.001) : 2</pre>
🗇 transposed gradient & second viscosity
isotropic coupling of velocities
ENERGY-ALPHA-PRESSURE COUPLING
Nbr of navsto sub-cycles 1
Max Nbr of alpha-pressure cycles 50
Max [1 - Sum alpha] 1e-06
Printing of Max [1 - Sum alpha]
🗇 restart time-step if not converged
J stop if no convergence (after last rstart)
Nbr of P sub-iter. (reconstr.+implicit.) 2
Implicitation coef. for fraction convection 1
pressure solver gradco symetrisation of pressure matrix
🖵 gradco multigrid solver
fraction solver jacobi -
pressure relaxation (=p0) during n iterations, n = 0
Min pressure -1e+15 Max pressure 1e+15
computation of potential state at first time-step
cell gradient of P mass ponderation
density update (compressible) thermo laws (usphyv) =
Implicitation coef. of thermo derivatives 1
upwinding of density (inimas)
implicitation coef. of water-steam source terms 1
Diffusion fluxes set to zero for inlet conditions
ALGORITHMS
Close Cancel Help

22. Set the pressure

23. Set the restart time-step

restart time-step if not converged
restart time-step
Max Nbr of restart
Pressure increment relaxation 0.6
F Upwind scheme for alpha and Energy

24. Open the scalars panel and set the scalar variables. In the current case we have three scalars, the ones settings automatically and a new scalar, that represents the inverse of the mass of the steam bubbles and then it is referred to the steam phase

	Number of scalars 3				
Check the convection	convection t dep. effective	diffusion	lam. dyn. co	cf. (kg/n/s)	turbulent Schmid
field of Xd_2	phan I - 📕 🖷		10-05		10.9
	phan S _ =		1e-05		Ju.9
	phase 2 _		Je-05	-] <u>3</u> 0.9
initial value of Vd. r	init. chuice ses. init.	alu nin	val	nax val	
initial value of Ad2 :	at (10,00) _ 0	-1e	+20	1e+20	
the steam hubbles	at Heat(P0) - 0	1 1e	120	1e:20	
1	to be def	1 LC	120	16+20	
$Xd_2 = \frac{1}{(\pi d^3)}$	type A-P-B	Cycle Dame	D.		
- 14 W 2	a second s	Dura	1. T. I.	-	

ENTRAL					
urber of zones	5				
tone name	adia vall	heated vall	inlet	outlet.	2syrin
cone ref(s)	5	6	3	4	12
SC type	wall	wall _	inlet _	outlet -	symetry -
ref BC	0	0	0	15000000	0
aum 1			12	1	-
1 in	0	0	l n	n	0
1 30	0	10	11	0	0
1 in	0	0	0	0	0
lut in	0	0		14	0
los im	10	10	1	1.	10
loud in		10	11 102	10	10
LOWI IN	0	C. OF	0.02	0	5
10	50-05	50-05	50-05	50-05	50-05
2 10	5e-05	5e-05	5e-05	5e-05	Se-05
13 10	5e-05	5e-05	5e-05	5e-05	Se-05
12 in	5e-05	5e-05	5e-05	5e-05	5e-05
23 in	5e-05	5e-05	5e-05	5e-05	5e-05
1010 2	1.0 000				1
2 in	0	0	0	0	0
2 in	0	0	0	0	0
2 in	0	0	0	0	0
lu2 in	0	0	0	0	0
low imp			-0.2		1
land in	0	10	10	10	0
AUPE IN	19	1.	18	12	1.0
CALARI					
C type	flux	flux	Timp (K)	flux	- flux
ntHall	0	1000000	610	0	0
CALAR2					
C type	flux	flux	Hsat(P)	flux	flux
ntBal2	0	In	In	10	10

25. Open the boundary conditions panel

26. In this case, we set the following boundary conditions: symmetry for 1 and 2, adiabatic wall for 5, heated wall for 6, inlet for 3 and outlet for 4.

132

- hot wall adia wall wall wall n 10 1 0 0 No sliding conditions are applied on the adiabatic wall 50 A flux of 106 W/m² is applied on this wall tim flue A condition of Neuman is 1000000 imposed on the two enthalpies (J/kg) flw
- 27. Set the adiabatic and heated conditions

28. Set the inlet and outlet conditions

29. Open the variable output control panel

👻 🕂 🤍 👯 VARIABL	E OUTPUT	CONTROL		
? NEPTUNE CFD V1.0.8	eptune/F	ORMATION-	NEPTUNE/BOIL ING	_CHANNEL/C
GLOBAL VARIABLES				
Name :	chrono	listing	probes number	
pressure		*	1	
local t-step				
temperatures	π.		-1	
thermo deriv.	Ú.	a.		
satur. prop.	×		4	
mass transf.]	
PHASE 1 VARIABLES				
phase 1 momentum				
Name :	chrono	listing	probes number	-
velocityUl	×			
velocityV1				
velocityWl		x		
density 1				
lam.visc.1	-		<u></u>	
vol.frac.1	*	*	1	
phase 1 turbulenc	e			
Name :	chrono	listing	probes number	
contr Rxx_1	u -			
contr Rxy_1	1	x		
contr Rxz_1	a i	#		
contr Ryy_1	1			
contr Ryz_1				
contr Rzz_1	9			
Dissip eps_1	9		J	
PHASE 2 VARIABLES	•			
phase 2 momentum				- 7
N				
Close Cancel Help.	•••			

30. Set global variables

pressure	chrono	listing	probes number	Check th	ne probes numbers
local t-step	4		1		
tesperatures	- x		14		
thereo deriv.	4	4	[]		
satur. prop.			1		
hass transf.			12		
					11
	checki its writ	ng a bi ting in	utton implies the listing		

31. Set phase 1 and 2 variables

	1							
base 1 momentum	-							
ane c	chrono	listing	probes norber					
elocity01			1,					
elocityvi			14					
elocityvi			1	-				
lensity 1		a	1					
an.visc.1	4	2	1					
ol.frac.1			I	-				
					-	1		
					PHASE 2 VARIABLES]		
List o	f the va	ariables	s of the two		PHASE 2 VARIABLES phase 2 mononlum Name :	chrono	listing	probes norbe
List o	f the va	ariable	s of the two t to visualize	7	PHASE 2 VARIABLES phase 2 rementur Nano : velocity02	chrono	listing	probes number
List o phases in th	f the va	ariable: e want	s of the two t to visualize]	- DHASE 2 VARIARIES phase 2 moneatur Name : velocity02 velocity02	chrono	listing	probes number
List o phases in th	f the va that w ie post-	ariable: e want -proces	s of the two t to visualize ssing step		DHASE 2 VARIABLES phase 2 monotum Nano : velocity02 velocity02 velocity02 velocity02	chrono	listing	probes nombo
List o phases in th	f the va that w ie post-	ariable: re want -proces	s of the two t to visualize ssing step		- DHASE 2 VARIABLES - phase 2 momentum Name : velocity02 velocity02 idensity 2	chrono	listing	probes number
List o phases in th	f the va that w ie post-	ariables e want -proces	s of the two t to visualize ssing step]	- PHASE 2 VARIABLES - phase 2 momentum Name : velocity02 velocity02 velocity02 density 2 las.visc.2	chrono	listing	probes morber

32. Set user variables

		~
USER VARIABL	ES	
Name	chrono listing probes number	wer multer
diam		J.

- 33. Enter the subroutine panel and use the subroutine uscase.F. To compile this subroutine it is necessary to copy it from the USERS directory in the SRC directory
- 34. Before running the code, it is necessary to save the param file

Save as guit Ctri g Sherina circle circ	File Options He Open Ctrl 0 Save Ctrl S	ading s		Files f	ilter UNE/BOILING_CHO	NNEL/DR	5E1/D070/*p	acrant.		Help
guit terr g terr g terr g NEFTINE CFD V1.0.8 /extra/extra_extra/Neptune/ terr g sdin sdin terr g Special modules Input output constrol Numeric: Selection carried out selection carried out	Save as		-1	Directo		-11	Files	-		
Selection carried out	sdin	/extra/extra_extra	a/Neptune/	GRANNE	L/GASEL/DATA/		param, or param	ng 17	can.orīg	
Fhild&flow prop Generalities Boundary	Fhild&flow prop	Generalities	Boundary	Selecti ATION-ME	on carried ou PTINE/BOILING_C	HANNEL /	CRSE1/TRTR/	'parati		

35. Set the number of processors and launch the code on line with the button Run on line

File Options He	adungs	• + (× 1011)	Hel Hel
		? NEPTUNE CFD V1.0.8/eptune/FORMATION-NEPTUNE/BOILD	NB_CHANNEL/CI
		Refore running the code, save the PARAN file Running script : //runcase	
EPTUNE CED V1.0.8	/extra/	Nbr of processors (if >1. parallel run): 1	aran, orig
adin	31	Rom ON LINE with the PARAM file : param	_
Snacial modules	Input-or	nohup and batch mode run : must be made in the SCRN Batch : adjust the queue directives in the cutl fil	IPTS dir. le
	-	Close Cancel Help	
Flaid 9. flaw was	Concernit	Boundary conditions Variable output cont	tral

36. We can see the results for the steam bubbles diameter

Bibliography

- [1] CRESCO-ENEA GRID Project: http://www.cresco.enea.it. 11
- [2] SATURNE CFD software: http://www.code-saturne.org. 58
- [3] F. Archambeau, N. Mehitoua and M. Sakiz, Code SATURNE: A Finite Volume Code for Turbulent flows, Int. J. Finite Volumes (2004) 58
- [4] SALOME platform: http://www.salome-platform.org. 23, 30
- [5] G. David, T.Chevalier and G. Meunier, Unification of Physical Data Models. Application in a Platform for Numerical Simulation: SALOME Magnetics IEEE Transactions, Volume: 43 (4), pp. 1661-1664 2007 30
- [6] PARAVIEW visualization software: http://www.paraview.org. 27
- [7] VTK visualization software: http://www.vtk.org. 26
- [8] XDMF library: http://www.xdmf.org. 18
- [9] HDF5 library: http://www.hdfgroup.org/HDF5/. 16
- [10] R. F. Kulak and C. Fiala, NEPTUNE: A System of Finite Element Programs for Three-Dimensional Nonlinear Analysis, Nuclear Engineering and Design, 106, pp. 47-68 (1988) 112
- [11] R.F. Kulak and C Fiala, NEPTUNE: A system of finite element programs for threedimensional nonlinear analysis, Nuclear Engineering and Design, Vol. 106 (1), pp.47-68 (1988) 112
- [12] D. Bestion and A. Guelfi, Status and perspective of two-phase flow modelling in the NEPTUNE multi-scale thermal hydraulic platform for nuclear reactor simulation, Nuclear Engineering and Technology, vol. 37 (6), (2005). 112
- [13] J. Lavieville, E. Quemerais, S. Mimouni, and N. Mechitoua, NEPTUNE CFD V1.0 theory manual, EDF, 2006. 112
- [14] Botjan Konar and Borut Mavko, Simulation of Boiling Flow Experiments Close to CHF with the NEPTUNE CFD Code, Hindawi Publishing Corporation Science and Technology of Nuclear Installations Volume 2008, Article ID 732158, 8 pages 112

- [15] TRIO_U CFD software: http://www-trio-u.cea.fr. 94
- [16] T. Hohnea, S. Kliema and U. Bieder, Modeling of a buoyancy-driven flow experiment at the ROCOM test facility using the CFD codes CFX-5 and TRIO_U, Nuclear Engineering and Design Volume 236, Issue 12, June 2006, Pages 1309-1325 94
- [17] U. Biedera, and E. Graffardb, Benchmarking of CFD Codes for Application to Nuclear Reactor Safety Qualification of the CFD code TRIO_U for full scale reactor applications, Nuclear Engineering and Design Volume 238, Issue 3, March 2008, Pages 671-679 94
- [18] U. Biedera, G. Faucheta, S. Betinb, N. Kolevc, and D. Popovd, Simulation of mixing effects in a VVER-1000 reactor, Nuclear Engineering and Design Volume 237, Issues 15-17, September 2007, Pages 1718-1728 94