
      

 
 

Agenzia Nazionale per le Nuove Tecnologie, 
l’Energia e lo Sviluppo Economico Sostenibile 

 
 
 
 
 
 

RICERCA DI SISTEMA ELETTRICO 
 
 

Documento CERSE-UNIBO RL 1302/2010 

 

 

FISSICU platform on CRESCO-ENEA grid for thermal-hydraulic 
nuclear engineering 

 
F. Bassenghi, G. Bornia, A. Cervone, S. Manservisi 

 
 
 
 
 
 
 
 

 
 
 
 
 

  

                                          

 

 
 
 
 
 
 
 
 

 
Report RdS/2010/138 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FISSICU PLATFORM ON CRESCO-ENEA GRID FOR THERMAL-HYDRAULIC NUCLEAR 
ENGINEERING 
 
F. Bassenghi, G. Bornia, A. Cervone, S. Manservisi 
 
Settembre 2010 
 
 
Report Ricerca di Sistema Elettrico 
Accordo di Programma Ministero dello Sviluppo Economico – ENEA 
Area: Produzione e fonti energetiche  
Tema: Nuovo Nucleare da Fissione  
 
Responsabile Tema: Stefano Monti, ENEA 



Lavoro svolto in esecuzione della linea progettuale LP5 punto B2 - AdP ENEA MSE del 21/06/07 
Tema 5.2.5.8 – “Nuovo Nucleare da Fissione”. 

 
    CIRTEN 

       CONSORZIO INTERUNIVERSITARIO 

      PER LA RICERCA TECNOLOGICA NUCLEARE 

                  

 

 

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA 
 

DIPARTIMENTO DI INGEGNERIA ENERGETICA, NUCLEARE E DEL CONTROLLO 
AMBIENTALE - LABORATORIO DI MONTECUCCOLINO 

 
 
 
 
 
 
 
 

FISSICU PLATFORM ON CRESCO-ENEA GRID FOR 
THERMAL-HYDRAULIC NUCLEAR ENGINEERING 

 
 
 
 
 
 
 
 
 
 

 
 

 
CIRTEN-UNIBO RL 1302/2010 

 
AUTORI 
 
F. Bassenghi, G. Bornia, A. Cervone, S. Manservisi 

 
 
 
 

Bologna, Settembre 2010 

 



Nuclear Engineering Laboratory of Montecuccolino

DIENCA - UNIVERSITY OF BOLOGNA
Via dei Colli 16, 40136 Bologna, Italy

FISSICU PLATFORM ON CRESCO-ENEA GRID FOR

THERMAL-HYDRAULIC NUCLEAR ENGINEERING

September 1 2010

Authors: F. Bassenghi, S. Bna, G. Bornia, A. Cervone, S. Manservisi and R. Scardovelli
sandro.manservisi@unibo.it

Abstract. The FISSICU (FISsione/SICUrezza) platform for CFD thermal-hydraulics
is set on the CRESCO-ENEA GRID cluster located in Portici. The platform contains
codes for microscale, intermediate and system scale simulations for components of nuclear
plants and facilities. For direct three-dimensional numerical simulations the platform
contains codes such as TRIO_U and SATURNE. At intermediate scale the platform
implements codes such as NEPTUNE and for system level CATHARE will be available
soon. The platform contains the SALOME application for code coupling and a large
number of mesh generators and visualization tools. All the codes run starting from mesh
input files with common formats. GMESH and SALOME MESH are open-source refer-
ence mesh generators that can be found in the platform together with conversion tools.
The output is written in common format and can be visualized through the PARAVIEW
application. A brief guide through the platform codes and tools with reference mesh and
output formats is presented.
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Introduction

CRESCO-ENEA GRID FISSICU PLATFORM
local GRID

INSTALL GUI MPI GUI MPI DNS CFD system
SALOME yes yes yes yes no
SATURNE yes yes yes no no x x
TRIO_U yes yes yes yes no x x

NEPTUNE yes yes yes no no x
CATHARE no no no no no x
PARAVIEW yes yes yes yes yes

Table 1: Implementation status on CRESCO-ENEA GRID FISSICU platform

This document reports the status of the FISSICU (FISsione/SICUrezza) software
platform for the study of the thermal-hydraulic behavior of nuclear reactors. The idea
reflects the new European policy to develop a common European tools which has lead to
fund the NURISP platform project. ENEA is a user group member of the project and
under a direct agreement has obtained the use of several codes. The University of Bologna
participates in the effort to use and install these computational tools and other in-house
developed codes on the CRESCO-ENEA GRID cluster located in Portici (near Naples).
The FISSICU platform has been constructed not only to collect a series of codes that has
been extensively used in this field but also to harmonize them with reference input and
output formats. The aim of the platform is to solve complex problems using file exchange
between different codes and large multiprocessor architecture. In this way one hopes to
investigate multi-physics and multi-scale problems arising in the study of nuclear reactor
components. Reference mesh and output formats are considered and conversion tools are
developed. The data visualization is performed with a unique application.

In Chapter 1 we give an overview of the organization of the platform. The pur-
pose of solving multi-physics and multilevel problems is discussed together with the
CRESCO-ENEA GRID. The reference mesh and output formats are introduced and the
visualization open-source application PARAVIEW is described.

In Chapter 2 the SALOME platform is introduced along with its implementation on
CRESCO-ENEA GRID. A brief explanation of the main modules KERNEL, GUI and
MESH is given. The SALOME mesh generator and the file transfer service are discussed.
The mesh generator is open-source but the main mesh format is the MED format which is
not very popular so that conversion tools are necessary. A tutorial of the MESH module
is presented.

Chapter 3 is a brief introduction to the SATURNE code. SATURNE code is an
open-source code implemented on CRESCO-ENEA GRID for use in three-dimensional
direct numerical simulations. The graphical user interface is introduced together with
dataset and mesh generation. An example is illustrated step by step.
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Chapter 4 is devoted to the presentation of TRIO_U and its implementation over
the CRESCO-ENEA GRID. The generation of mesh and data format files is discussed
together with a brief tutorial for the 2D cylindrical obstacle test. The code TRIO_U
has capabilities at microscale and intermediate scale.

Finally in Chapter 5 NEPTUNE is described with its implementation over the CRESCO-
ENEA GRID. NEPTUNE is a code that can be used in two-phase flow simulations at
the intermediate scale.
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Chapter 1

FISSICU platform organization

1.1 Multiphysics and Multilevel platform

1.1.1 Multiphysics analysis

The aim of the platform is to analyze complex nuclear systems that require the coupling
of different equations for different components. At present nuclear reactor thermal-
hydraulics consists of different physical models (heat transfer, two-phase flow, chemical
poisoning) that cannot be analyzed all at the same time. Improvements are necessary
both for the physical models (heat transfer coefficient at the interface between liquid and
vapor, instabilities of the interface, diffusion coefficients) and mostly for the numerical
schemes (accuracy, CPU time). In the absence of direct numerical simulations the im-
provement of CFD codes that rely on correlations must be based on experiments that
offer sufficient resolution in space and time compared to the CFD computations. In many
cases physical models lack of satisfactory experimental results and therefore numerical
calculations cannot be accurate. In Figure 1.1 we show an example of the multi-physics
approach where the physics of a nuclear core is coupled with the thermal-hydraulics of
the steam generator and the pressurizer. In the upper plenum we can use a model that
solves the Navier-Stokes equations while for the external loop we adopt a correlation
approach. The two approaches require the use of different codes and the coupling at the
interface between the two domains.

Even when experimental correlations are available for a single equation the com-
plexity of the problems does not allow a whole-system simulation and even a greater
computational power would be necessary to take into account the couplings. However,
each physical model requires a number of parameters that are determined by the other
state variables and the coupling between the equations is necessary to achieve an accu-
rate and satisfactory result. For all these reasons it is important to develop tools that
can manage different codes specific for a single application and perform easily a weak
coupling. At the platform level there are three different types of coupling: weak, internal
weak and strong coupling. In the first case the weak coupling is performed with the ex-
change of input and output files. In this case the file format must be compatible between
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Figure 1.1: An example of multi-physics approach for nuclear reactor (NURISP) where
different equation models can be coupled to analyze a complex system.

the applications or external conversion tools are required. In the internal weak coupling
all the equations are solved in a segregated way using memory to exchange data between
codes. A popular format for this purpose is the MED format. The strong coupling re-
quires a larger computational power but can solve all the equations at the same time
giving a more accurate result.

The platform should perform these tasks automatically together with runtime schedul-
ing of the programs. Another important feature of the platform is the ability to manipu-
late and create input and output files with compatible formats. The SALOME software
platform has been selected for these purposes and implemented on the ENEA-GRID
cluster along with a selection of codes devoted to nuclear reactor thermal-hydraulics and
safety analysis. Some key features of the SALOME platform are the following:

• interoperability between CAD modeling (input files) and computational software;

• integration of new components into heterogeneous systems;

• multi-physics weak coupling between computation software;

• a generic user friendly and efficient user interface;

• access to all functionalities via the integrated Python console.

9
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Figure 1.2: An example of multilevel approach for a nuclear reactor (NURISP).

1.1.2 Multilevel analysis

Another aspect of the complexity of nuclear reactor simulations is the different geomet-
rical scales. As shown in Figure 1.2 we need to investigate problems with characteristic
dimensions ranging from millimeters (bubbles) to several meters (nuclear plant loop).
It is not possible to solve such a complex problem in a single simulation. Therefore
we model different scales with different equations that take into account the relevant
physics for the selected geometry. We can roughly subdivide the phenomena into three
main groups.

• Micro-scale, where direct numerical simulations (DNS) are required. Usually the
Navier-Stokes system and energy equation are directly implemented without ap-
proximations. The results obtained are very accurate but can only take into account
small parts of the system and a limited number of processes.

• Meso-scale, where the Navier-Stokes equations can no longer be used directly. The
introduction of correlations and modelings is required in order to analyze systems
where thousands of microscale phenomena occur.

• Macro-scale, where the system is analyzed in its overall complexity. In this case
heavy approximations must be assumed in order to simulate the whole system in
a reasonable amount of time.

The phenomena in the DNS group can be simulated with commercial and open-source
codes. For example ANSYS-FLUENT, CFX and Comsol multiphysics are viable commer-
cial codes, while OPENFOAM and SATURNE are examples of open source software. A

10
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DNS code focused on nuclear applications is TRIO_U, released only under closed agree-
ment with CEA, that allows to perform simulations in three-dimensional domains. The
high resolution and reliability of these codes lead to high accuracy and reproducibility of
the results.

The meso-scale codes rely on correlations and averaged equations. Typical examples
are turbulence models and two-phase thermal exchange. Turbulence models are widely
available even for DNS codes while other correlations are specific of the applications. A
nuclear engineering code of this type is NEPTUNE which is released only under closed
agreement with EDF.

The system codes are very specific to the application field. In order to simulate all
the system they need heavy simplifications such as the use of a mono-dimensional fluid
equation. In the nuclear field we recall CATHARE (released by CEA) and the series of
RELAP codes.

The CRESCO-ENEA FISSICU platform implements the following software:

• DNS: TRIO_U, SATURNE, FLUENT (already available from CRESCO), OPEN-
FOAM (already available from CRESCO)

• Meso-scale: NEPTUNE, ELSY-CFD

• system level: CATHARE (coming soon)

along with SALOME which performs the input/output managing and code coupling.

1.2 CRESCO-ENEA GRID

1.2.1 CRESCO infrastructure

CRESCO (Centro Computazionale di RicErca sui Sistemi Complessi, Computational
Research Center for Complex Systems) is an ENEA Project, co-funded by the Italian
Ministry of Education, University and Research (MIUR). The CRESCO project is located
in the Portici ENEA Center near Naples and consists of a High Performance Computing
infrastructure mainly devoted to the study of Complex Systems [1]. The CRESCO
project is built around the HPC platform through the creation of a number of scientific
thematic laboratories:
a) the Computing Science Laboratory, hosting activities on hardware and software design,
GRID technology, which will also integrate the HPC platform management;
b) the Computational Systems Biology Laboratory, hosting the activities in the Life
Science domain;
c) the Complex Networks Systems Laboratory, hosting activities on complex technological
infrastructures.

1.2.2 CRESCO access

There are four ways to access ENEA-GRID:
a) SSH client, with a terminal interface which can directly access to one of the front-end

11
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ACCESS ACCESS
Cluster Node Name SSH from SSH OS
name enea domains from world

Bologna graphlab03.bologna.enea.it yes no IRIX
pace.bologna.enea.it yes yes AIX

Brindisi campus03.brindisi.enea.it yes no LINUX
ercules.brindisi.enea.it yes yes AIX

graphbri.brindisi.enea.it yes no IRIX

Casaccia feronix0.casaccia.enea.it yes no LINUX
laran.casaccia.enea.it yes yes LINUX

prometeo.casaccia.enea.it yes yes LINUX
turan.casaccia.enea.it yes yes LINUX

Frascati bw305-1.frascati.enea.it yes no LINUX
eurofel00.frascati.enea.it yes no LINUX

lin4p.frascati.enea.it yes yes LINUX
onyx2ced.frascati.enea.it yes no IRIX

sp5-1.frascati.enea.it yes no AIX

Portici campus3.portici.enea.it yes no LINUX
graphpor.portici.enea.it yes no IRIX

Portici cresco1-f1.portici.enea.it yes yes LINUX
CRESCO cresco1-f2.portici.enea.it yes no LINUX

cresco1-f3.portici.enea.it yes no LINUX
cresco2-f1.portici.enea.it yes no LINUX
cresco2-f2.portici.enea.it yes no LINUX
cresco2-f3.portici.enea.it yes no LINUX
cresco1-fg1.portici.enea.it yes no LINUX
cresco1-fg2.portici.enea.it yes no LINUX
cresco1-fg3.portici.enea.it yes no LINUX
cresco1-fg4.portici.enea.it yes no LINUX
cresco-fpga6.portici.enea.it yes no LINUX

Trisaia campus03.trisaia.enea.it yes no LINUX
cluapple.trisaia.enea.it not yet not yet MacOSX
graphtri.trisaia.enea.it yes no IRIX
triafs.trisaia.enea.it yes yes Solaris

Table 1.1: CRESCO front-end machines.

12
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machines;
b) Citrix client, that can be installed on windows machines to access ENEA servers,
including a terminal window to ENEA-GRID (INFOGRID);
c) FARO (Fast Access to Remote Objects) ENEA-GRID, that is a Java web interface
available for all operating systems;
d) NX client.

The access is limited to authorized users that are provided with ENEA-GRID user-
name and password to be used on every machine of the grid. Table 1.1 shows a list of
available nodes. There are a number of front-end nodes to access the platform from the
external world. The main ones are:
a) sp5-1.frascati.enea.it
b) lin4p.frascati.enea.it
c) cresco1-f1.portici.enea.it

In this report we consider the access to a front-end node with a ssh client from a linux
terminal

$ ssh -X username@cresco1-f1.portici.enea.it

If one uses the web interface FARO (http://www.cresco.enea.it/nx.html), from any
operating system, an xterm can be launched with a dedicated button. Further details on
the login procedure can be found on the CRESCO website (http://www.cresco.enea.
it/helpdesk.php).

1.2.3 CRESCO-ENEA FISSICU Platform

The FISSICU project is located in the directory

/afs/enea.it/project/fissicu

Inside the main directory fissicu (which stands as an abbreviation for nuclear fission
safety), we find the three sub-directories

- data, where the simulation results should be stored;

- html, where the web pages are located
(http://www.afs.enea.it/project/fissicu/);

- soft, where all the codes are installed.

At present, the following codes are available:

- SALOME (see Chapter 2, executable: salome);

- SATURNE (see Chapter 3, executable: saturne);

- NEPTUNE (see Chapter 5, executable: neptune);

13
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- TRIO_U (see Chapter 4, executable: triou);

- FEM-UNIBO (the finite element Navier-Stokes solver developed at DIENCA - Uni-
versity of Bologna).

For each code, a script (executable_env) is also available which simply sets the
proper environment variables to execute the code. This procedure can be used to run
the code directly without any graphical interface on a single node where the user is
logged. This is also the first step for production runs which use the batch queue to run
the code in parallel.

Any executable is a script in the directory /afs/enea.it/project/fissicu/soft/bin.
This directory should be added to the user environment variable PATH. With the bash

shell, the command line is

$ export PATH=/afs/enea.it/project/fissicu/soft/bin:$PATH

This command line can also be added to the configuration file .bashrc.

1.2.4 Submission to CRESCO queues

CRESCO supports the LSF (Load Sharing Facility) job scheduler, which is a suite of
several components to manage a large cluster of computers with different architectures
and operating systems. The basic commands are

$ lshosts

It displays configuration information about the available hosts, as in the following output
example

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostD SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)

hostB ALPHA DEC3000 10.0 1 94M 168M Yes (alpha cserver)

hostM RS6K IBM350 7.0 1 64M 124M Yes (cserver aix)

hostC SGI6 R10K 14.0 16 1024M 1896M Yes (irix cserver)

hostA HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)

$ lsload

It displays the current load information

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

hostD ok 0.1 0.0 0.1 2% 0.0 5 3 81M 82M 45M

hostC ok 0.7 1.2 0.5 50% 1.1 11 0 322M 337M 252M

hostM ok 0.8 2.2 1.4 60% 15.4 0 136 62M 57M 45M

hostA busy *5.2 3.6 2.6 99% *34.4 4 0 70M 34M 18M

hostB lockU 1.0 1.0 1.5 99% 0.8 5 33 12M 24M 23M

$ bhosts
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It displays information about the hosts such as their status, the number of running jobs,
etc.

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hostA ok - 2 1 1 0 0 0

hostB ok - 3 2 1 0 0 1

hostC ok - 32 10 9 0 1 0

hostD ok - 32 10 9 0 1 0

hostM unavail - 3 3 1 1 1 0

$ bqueues

It lists the available LSF batch queues and their scheduling and control status

QUEUE_NAME PRIO NICE STATUS MAX JL/U JL/P NJOBS PEND RUN SUSP

owners 49 10 Open:Active - - - 1 0 1 0

priority 43 10 Open:Active 10 - - 8 5 3 0

night 40 10 Open:Inactive - - - 44 44 0 0

short 35 20 Open:Active 20 - 2 4 0 4 0

license 33 10 Open:Active 40 - - 1 1 0 0

normal 30 20 Open:Active - 2 - 0 0 0 0

idle 20 20 Open:Active - 2 1 2 0 0 2

$ bsub < job.lsf

It submits a job to a queue. The script job.lsf contains job submission options as well
as command lines to be executed. A typical script is

#!/bin/bash

#BSUB -J JOBNAME

#BSUB -q quename

#BSUB -n nproc

#BSUB -oo stdout_file

#BSUB -eo errout_file

#BSUB -i input_file

triou_env

Trio_U datafile.data

where the options to BSUB specify respectively the name of the job, the name of the
queue, the number of processors, the file names for the standard and error output, the
input file. The last two lines set the environment variables for the code TrioU and launch
the executable with a parameter file, without the graphical interface that clearly cannot
be used when submitting a job with a batch queue.

$ bjobs
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It reports the status of LSF batch jobs of the user.

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

3926 user1 RUN priority hostF hostC verilog Oct 22 13:51

605 user1 SSUSP idle hostQ hostC Test4 Oct 17 18:07

1480 user1 PEND priority hostD generator Oct 19 18:13

7678 user1 PEND priority hostD verilog Oct 28 13:08

7679 user1 PEND priority hostA coreHunter Oct 28 13:12

7680 user1 PEND priority hostB myjob Oct 28 13:17

$ bkill JOBID

It kills the job with number JOBID. This number can be retrieved with the command
bjobs.

1.3 FISSICU platform input/output formats

Each software supports a large number of input and output formats that are not always
fully compatible. The aim of the platform is to uniform all the codes to use the same
format for input, in particular for the mesh, and for output files. Regarding the input
format we select the MED and the XDMF formats. They rely on the HDF5 library that
is responsible for the data storage in vector and matrix form. The MED and XDMF
are driver files that access to the information stored by the HDF5 files. Regarding the
output viewer we choose PARAVIEW because it is open source and can manage a large
number of output formats.

1.3.1 Input mesh format

HDF5 format

Hierarchical Data Format, commonly abbreviated HDF5, is the name of a set of file
formats and libraries designed to store and organize large amounts of numerical data [9].

The HDF format is available under a BSD license for general use and is supported by
many commercial and non-commercial software platforms, including Java, Matlab, IDL,
and Python. The freely available HDF distribution consists of the library, command-
line utilities, test source, Java interface, and the Java-based HDF Viewer (HDFView).
Further details are available at http://www.hdfgroup.org. This format supports a
variety of datatypes, and is designed to give flexibility and efficiency to the input/output
operations in the case of large data. HDF5 is portable from one operating system to
another and allows forward compatibility. In fact old versions of HDF5 are compatible
with newer versions.

The great advantage of the HDF format is that it is self-describing, allowing an appli-
cation to interpret the structure and contents of a file without any outside information.
There are structures designed to hold vector and matrix data. One HDF file can hold a
mixture of related structures which can be accessed as a group or as individual objects.
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Figure 1.3: HDF5 storage model.

Figure 1.4: HDFVIEW opens HDF5 files.

The HDF5 has a very general model which is designed to conceptually cover many spe-
cific data models. Many different kinds of data can be mapped to HDF5 objects, and
therefore stored and retrieved using HDF5. The key structures are:

• File, a contiguous string of bytes in a computer store (memory, disk, etc.).

• Group, a collection of objects.
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• Dataset, a multidimensional array of Data Elements, with Attributes and other
metadata.

• Datatype, a description of a specific class of data element, including its storage
layout as a pattern of bits.

• Dataspace, a description of the dimensions of a multidimensional array.

• Attribute, a named data value associated with a group, dataset, or named datatype

• Property list, a collection of parameters controlling options in the library.

The HDF5 project provides also a visualization tool, HDFVIEW, to access raw HDF5
data. This program can be run from terminal with

$ hdfview

and a screenshot is given in Figure 1.4. The panel on the left shows the list of available
datasets while on the right we can see the content of each of them.

XDMF format

XDMF (eXtensible Data Model and Format) is a library providing a standard way to
access data produced by HPC codes. The information is subdivided into Light data, that
are embedded directly in the XDMF file, and Heavy data that are stored in an external
file. Light data are stored using XML, Heavy data are typically stored using HDF5. A
Python interface exists for manipulating both Light and Heavy data. ParaView, VisIt
and EnSight visualization tools are able to read XDMF [8].

A brief example of a typical XDMF driver file is

<?xml version="1.0" ?>

<!DOCTYPE Xdmf SYSTEM "../config/Xdmf.dtd" [<!ENTITY HeavyData ""> ]>

<Xdmf>

<Domain>

<Grid Name="Mesh">

<Time Value ="0.1" />

<Topology Type="Hexahedron" Dimensions="71400">

<DataStructure DataType="Int" Dimensions="71400 8" Format="HDF">

meshxmf.h5:/MSH0CONN

</DataStructure>

</Topology>

<Geometry Type="X_Y_Z">

<DataStructure DataType="Float" Precision="8" Dimensions="77415 1"

Format="HDF">

../data_in/mesh.h5:/COORD/X1

</DataStructure>

<DataStructure DataType="Float" Precision="8" Dimensions="77415 1"
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Format="HDF">

../data_in/mesh.h5:/COORD/X2

</DataStructure>

<DataStructure DataType="Float" Precision="8" Dimensions="77415 1"

Format="HDF">

../data_in/mesh.h5:/COORD/X3

</DataStructure>

</Geometry>

<Attribute Name="T" AttributeType="Scalar" Center="Node">

<DataItem DataType="Float" Precision="8" Dimensions="77415 1"

Format="HDF">

sol.10.h5:T

</DataItem>

</Attribute>

</Grid>

</Domain>

</Xdmf>

Figure 1.5: XDMF format stores heavy data in HDF5 files.

In this example all data are stored in external files (meshxmf.h5, mesh.h5 and sol.10.h5),
as shown in Figure 1.5. The data structures used in this example are Domain, Grid,
Topology, Geometry and Attribute.
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The organization of XDMF begins with the Xdmf element. Any element can have a
Name or a Reference attribute. A Domain can have one or more Grid elements. Each Grid

must contain a Topology, a Geometry, and zero or more Attribute elements. Topology
specifies the connectivity of the grid while Geometry specifies the location of the grid
nodes. Attribute elements are used to specify values such as scalars and vectors that
are located at the node, edge, face, cell center, or grid center. A brief description of the
keywords follows. DataItem. All the data for connectivity, geometry and attributes are
stored in DataItem elements. A DataItem provides the actual values (for Light data) or
the physical storage position (for Heavy data). There are six different types of DataItem
:
- Uniform, that is a single array of values (default).
- Collection, that is a one dimensional array of DataItems.
- Tree, that is a hierarchical structure of DataItems.
- HyperSlab, that contains two data items. The first one selects which data must be
selected from the second DataItem;
- Coordinates, that contains two DataItems. The first contains the topology of the
second DataItem.
- Function, that is used to calculate an expression that combines different DataItems.

Grid. The data model portion of XDMF begins with the Grid element. A Grid is
a container for information related to 2D and 3D points, structured or unstructured
connectivity, and assigned values. The Grid element has a GridType attribute that can
assume the values:
- Uniform (a homogeneous single grid (i.e. a pile of triangles));
- Collection (an array of Uniform grids all with the same Attributes);
- Tree (a hierarchical group);
- SubSet (a portion of another Grid).
Geometry. The Geometry element describes the XYZ coordinates of the mesh. Possible
organizations are:
- XYZ (interlaced locations, an X,Y, and Z for each point);
- XY (Z is set to 0.0);
- X_Y_Z (X,Y, and Z are separate arrays);
- VXVYVZ (Three arrays, one for each axis);
- ORIGIN_DXDYDZ ( Six values : Ox,Oy,Oz + Dx,Dy,Dz).
The default Geometry configurations is XYZ.
Topology. The Topology element describes the general organization of the data. This
is the part of the computational grid that is invariant under rotation, translation, and
scaling. For structured grids, the connectivity is implicit. For unstructured grids, if
the connectivity differs from the standard, an Order may be specified. Currently, the
following Topology cell types are defined: Polyvertex ( a group of unconnected points),
Polyline (a group of line segments), Polygon, Triangle, Quadrilateral, Tetrahedron,
Pyramid, Wedge, Hexahedron, Edge_3 (Quadratic line with 3 nodes), Tri_6, Quad_8,
Tet_10, Pyramid_13, Wedge_15, Hex_20.
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Attribute. The Attribute element defines values associated with the mesh. Currently
the supported types of values are : Scalar, Vector, Tensor, Tensor6, Matrix. These
values can be centered on : Node, Edge, Face, Cell, Grid. A summary of all XDMF
structures and keywords is given in Table 1.2.

MED format

Figure 1.6: MED storage format.

The MED (Modèle d’Echange de Données) data exchange model is the format used
in the SALOME platform for communicating data between different components. It ma-
nipulates objects that describe the meshes underlying scientific computations and the
value fields lying on these meshes. This data exchange can be achieved either through
files using the MED-file formalism or directly through memory with the MED Memory
(MEDMEM) library. The MED libraries are organized in multiple layers:
- The MED file layer : C and Fortran API to implement mesh and field persistency.
- The MED Memory level: C++ API to create and manipulate mesh and field objects
in memory.
- Python API generated using SWIG which wraps the complete C++ API of the MED
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Attribute (XdmfAttribute)

Name (no default)
AttributeType Scalar, Vector, Tensor, Tensor6, Matrix, GlobalID

Center Node, Cell, Grid, Face, Edge
DataItem (XdmfDataItem)

Name (no default)
ItemType Uniform, Collection, tree, HyperSlab, coordinates

| Function
Dimensions (no default) in KJI Order

NumberType Float, Int, UInt, Char, UChar
Precision 1, 4, 8
Format XML, HDF

Domain (XdmfDomain)

Name (no default)
Geometry (XdmfGeometry)

GeometryType XYZ, XY, X_Y_Z, VxVyVz, Origin_DxDyDz
Grid (XdmfGrid)

Name (no default)
GridType Uniform, Collection, Tree, Subset

CollectionType Spatial, Temporal (if GridType="Collection")
Section DataItem, All ( if GridType="Subset")

Topology (XdmfTopology)

Name (no default)
TopologyType Polyvertex, Polyline, Polygon, Triangle,

Quadrilateral,Tetrahedron, Pyramid,Wedge,
Edge_3, Triangle_6, Quadrilateral_8,

Tetrahedron_10, Wedge_15, Hexahedron_20,
Hexahedron, Pyramid_13, Mixed,

2DSMesh, 2DRectMesh, 2DCoRectMesh,
3DSMesh, 3DRectMesh

NodesPerElement (no default)
NumberOfElement (no default)

OR
Dimensions (no default)

Order each cell type has its own default
BaseOffset 0, #

Time

TimeType Single, HyperSlab, List, Range
Value (no default, Only valid for TimeType="Single")

Table 1.2: XML Element (Xdmf ClassName) and Default XML Attributes
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Figure 1.7: MEDMEM memory storage format.

Memory.
- CORBA API to simplify distributed computation inside SALOME (Server Side).
- MED Client classes to simplify and optimize interaction of distant objects within the
local solver.

Two codes running on different machines can thus exchange meshes and fields. These
meshes and fields can easily be read/written in a MED file format, enabling access to
the whole SALOME suite of tools (CAD, meshing, visualization, other components) [4].

With MED Memory any component can access a mesh or field object generated
by another application. Though the MEDMEM library can recompute a descending
connectivity from a nodal connectivity, MEDMEM drivers can only read MED files con-
taining the nodal connectivities of the entities. In MEDMEM, constituent entities are
stored as MED_FACE or MED_EDGE, whereas in MED File they should be stored as
MED_MAILLE.

The field notion in MED File and MEDMEM is quite different. In MEDMEM a field
is of course defined by its name, but also by its iteration number and its order number.
In MED File a field is only flagged by its name. For instance, a temperature at times
t = 0.0 s, t = 1.0 s, t = 2.0 s will be considered as a single field in MED File terminology,
while it will be considered as three distinct fields in the MED Memory sense.

MEDMEM supports data exchange in following formats:
- GIBI, for reading and writing the mesh and the fields in ASCII format.
- VTK, for writing the mesh and the fields in ASCII and binary formats.
- EnSight, for reading and writing the mesh and the fields in ASCII and binary formats.
- PORFLOW, for reading the mesh in ASCII format.
Classes. At a basic usage level, the MEDMEM library consists of few classes which are
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located in the MEDMEM C++ namespace:
- MED the global container;
- MESH the class containing 2D or 3D mesh objects;
- SUPPORT the class containing mainly a list of mesh elements;
- FIELD the class template containing a list of values lying on a particular support.

The MEDMEM classes are sufficient for most of the component integrations in the
SALOME platform. The use of the MED Memory libraries may make the code coupling
easier in the SALOME framework. With these classes, it is possible to:
- read/write meshes and fields from MED-files;
- create fields containing scalar or vectorial values on a list of elements of the mesh;
- communicate these fields between different components;
- read/write such fields.

Advanced classes. A more advanced usage of the MED Memory is possible through
other classes. Figure 1.6 gives a complete view of the MED Memory API. It includes:
- GROUP, a class inherited from the SUPPORT class used to create supports linked to
mesh groups. It stores a restricted list of elements used to set boundary conditions and
initial values.
- FAMILY which is used to manipulate a certain kind of support which does not intersect
each other.
- MESHING which builds meshes from scratch, it can be used to transform meshes from
a specific format to the MED format or to integrate a mesher within the SALOME
platform.
- GRID which enables the user to manipulate specific functions for structured grids.

Note that in Figure 1.6 as well as in Figure 1.7 the MED container controls all the
objects it contains: its destructor destroys all the objects inside. On the other hand, the
MESH, SUPPORT and FIELD objects are independent. Destroying a SUPPORT (resp.
a FIELD) will have no effect on the MESH (resp. SUPPORT) which refers to it. But
the user has to maintain the link: a MESH aggregates a SUPPORT which aggregates
a FIELD. If the user has to delete MED Memory objects, the FIELD has to be deleted
first, then the SUPPORT and finally the MESH.

MEDMEM Lists. A few enums (C enumerations) are defined in the MEDMEM names-
pace :

• an enum which describes the way node coordinates or field values are stored:
- MED_FULL_INTERLACE for arrays such that x1, y1, z1, . . . , xn, yn, zn;
- MED_NO_INTERLACE for arrays such that x1, . . . , xn, y1, . . . , yn, z1, . . . , zn;
- MED_UNDEFINED_INTERLACE, the undefined interlacing mode,

• an enum which describes the type of connectivity:
- MED_NODAL for nodal connectivity;
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- MED_DESCENDING for descending connectivity.
The user has to be aware of the fact that the MED Memory considers only meshes
defined by their nodal connectivity. Nevertheless, the user may, after loading a file
in memory, ask to the mesh object to calculate the descending connectivity.

• an enum which contains the different mesh entities, medEntityMesh, the entries of
which being: MED_CELL, MED_FACE, MED_EDGE, MED_NODE, MED_ALL_ENTITIES. the
mesh entity MED_FACE is only for 3D and the In 3D (resp. 2D), only mesh entities
MED_NODE, MED_CELL and MED_FACE (resp. MED_EDGE) are considered. In 1D, only
mesh entities MED_NODE and MED_CELL are taken into account.

• The medGeometryElement enum which defines geometric types. The available types
are linear and quadratic elements: MED_NONE, MED_POINT1, MED_SEG2, MED_SEG3,
MED_TRIA3, MED_QUAD4, MED_TRIA6, MED_QUAD8, MED_TETRA4, MED_PYRA5, MED_PENTA6,
MED_HEXA8,MED_TETRA10, MED_PYRA13, MED_PENTA15, MED_HEXA20, MED_POLYGON,
MED_POLYHEDRA, MED_ALL_ELEMENTS.

1.3.2 Platform visualization

PARAVIEW on CRESCO-ENEA GRID

Inside the platform there are many applications for visualization. In order to uniform
the output and the visualization we use only the PARAVIEW software. The reasons for
this choice are:

• it is open-source, scalable and multi-platform;

• it supports distributed computation models to process large data sets;

• it has an open, flexible and intuitive user interface;

• it has an extensible, modular architecture based on open standards.

For all these reasons the output files must be saved in a PARAVIEW readable format.
From the practical point of view this is not a limitation since PARAVIEW reads a large
number of formats. The following is an incomplete list of currently available readers:
- ParaView Data (.pvd)
- VTK (.vtp, .vtu, .vti, .vts, .vtr, .vtm, .vtmb,.vtmg, .vthd, .vthb, .pvtu, .pvti, .pvts,
.pvtr, .vtk)
- Exodus
- XDMF and hdf5 (.xmf, .xdmf)
- LS-DYNA
- EnSight (.case, .sos)
- netCDF (.ncdf, .nc)
- PLOT3D
- Stereo Lithography (.stl)
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- Meta Image (.mhd, .mha)
- SESAME Tables
- Fluent Case Files (.cas)
- OpenFOAM Files (.foam)
- PNG, TIFF, Raw Image Files
- Comma Separated Values (.csv)
- Tecplot ASCII (.tec, .tp)

In ENEA-CRESCO cluster, PARAVIEW can run in two different ways:
a) from console;
b) as a remote application through FARO.

From console the command is :

$ paraview-3.8.0

to run the latest version of PARAVIEW (3.8.0). The other versions are available by
changing the version number in the command after the − sign. We remark that PAR-
AVIEW can be launched only from machines with graphical capability (with a letter g

in the name). For example PARAVIEW can run from cresco1-fg1.portici.enea.it.
As a remote application one must login from the FARO web page (see Section 1.2.2)

and then select the PARAVIEW button. If the program runs in this mode the rendering
is pre-processed on the remote machine, which guarantees a higher speed.

The PARAVIEW application

PARAVIEW is an open-source, multi-platform application designed to visualize data sets
of large size. It is built on an extensible architecture and runs on distributed and shared
memory parallel as well as single processor systems. PARAVIEW uses the Visualization
Toolkit (VTK) as the data processing and rendering engine and has a user interface
written using the Qt cross-platform application framework. The Visualization Toolkit
(VTK) provides the basic visualization and rendering algorithms. VTK incorporates sev-
eral other libraries to provide basic functionalities such as rendering, parallel processing,
file I/O and parallel rendering [7].

A brief explanation of the PARAVIEW GUI is given in Figure 1.8. The GUI has
many panels that control the visualization. The two main panels are the View Area and
the Pipeline Browser panel. The data are loaded in the View Area which displays visual
representations of the data in 3D View, XY Plot View, Bar Chart View or Spreadsheet
View. The visualization on the View Area is managed by the Pipeline Browser panel.
The Open and Save data buttons perform the loading and saving operations for all the
supported file formats. The Object Inspector panel contains controls and information
about the reader, source, or filter selected in the Pipeline Browser. The most important
menu is the Filters menu that is used to manipulate the data. For example one can draw
the isolines of any dataset using the Contour filter. The Sources menu is used to create
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Figure 1.8: Basic interface for PARAVIEW

new geometrical objects while the Animation toolbar navigates through the different time
steps of the simulation [6].

Documentation

More information is available on the ParaView web site:
http://www.paraview.org

A wiki is also available at
http://www.paraview.org/Wiki/ParaView

and a tutorial
http://public.kitware.com/Wiki/The_ParaView_Tutorial

A list of all sources and filters can be found at
http://www.paraview.org/New/help.html
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2.1.2 Location on CRESCO-ENEA GRID

CRESCO-ENEA GRID:

executable: salome

install directory: /afs/enea.it/project/fissicu/soft/SALOME

2.1.3 SALOME overview

SALOME is a free and open-source software that provides a generic platform for nu-
merical simulations. The SALOME application is based on an open and modular ar-
chitecture that is released under the GNU Lesser General Public License. The source
code and executables in binary form may be downloaded from its official website at
http://www.salome-platform.org. There are several version available, such as De-
bian, Mandriva and a universal package with all dependencies inside. All versions have a
32 and 64 bit version. The source code is also available to any programmer who wishes
to develop and make it available for other operative system. On the CRESCO-ENEA
GRID the Mandriva version (for 64 bits) is installed.

SALOME, which is also developed under the project NURISP, is a base software for
integration of custom modules and developing of the custom CAD applications. The
main modules are:
a) KERNEL: distributed components management, study management, general services;
b) GUI: graphical user interface
c) GEOM: CAD models creation, editing, import/export
d) MESH: standard meshing algorithm with support for any external mesher (plugin-
system)
e) MED: MED data files management
f) POST: dedicated post-processor to analyze the results of solver computations (scalar,
vectorial)
g) YACS: computational schema manager for multi-solver coupling and supervision mod-
ule.

In the FISSICU project SALOME is mainly used as mesh generator but it has many
other features: interoperability between CAD modeling and computational software,
integration of new components into heterogeneous systems, multi-physics weak coupling
between computational software. The platform may integrate different additional codes
on which perform code coupling. At the moment the integration among codes is far to be
completed but some basic functionality can be used. In the platform the ideas of weak,
internal weak and strong coupling are implemented. The weak coupling is performed with
the exchange of output and input files. In the internal weak coupling all the equations are
solved in a segregated way using memory to exchange data between codes. A popular
format for this purpose is the MED library and its MEDMEM API classes. Among
the various available SALOME modules, there are some samples that can be used by
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the developers to learn how to create and integrate custom modules in the SALOME
platform. SATURNE has a module that links to the SALOME platform, but only a beta
version is available. The integration module is in development at EDF. NEPTUNE and
CATHARE codes are also developing an integration module for the SALOME platform
[4, 5].

2.2 SALOME on CRESCO-ENEA GRID

The SALOME platform is located on CRESCO-ENEA GRID in the directory

/afs/enea.it/project/fissicu/soft/Salome

The salome platform can be run in two ways:
a) from console
b) from FARO website

From console one must first set the access to the bin directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

$ source pathbin.sh

Remark. The script pathbin.sh must be in the home directory. One must copy the
template script pathbin.sh from the directory

/afs/enea.it/project/fissicu/soft/bin

and then execute the script to add the bin directory to the PATH. If the pathbin.sh script
is not available one must enter the bin directory to run the program.

Once the bin directory is on your own PATH all the programs of the platform can be
launched. The command needed to start the SALOME application is

$ salome

Remark. The script salome consists of two commands: the environment setting and
the start command. The environment script sets the environment of shell. The start
command is a simple command that launches the runSalome command.

From FARO web application it is possible to access the SALOME platform with re-
mote accelerated graphics. Once FARO has been started (see Section 1.2.2) one must
open an xterm. In the xterm console one must follow the same procedure as before.
First, set the access to the bin directory

/afs/enea.it/project/fissicu/soft/bin
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by executing the script

$ source pathbin.sh

SALOME starts with the command

$ salome

Remark. When exiting the SALOME application we are left in a python shell. To
exit press CTRL+D.

2.3 SALOME platform modules

2.3.1 Introduction

SALOME platform has seven components:

• KERNEL, that provides component management, study management and general
services

• GUI, that provides a graphical user interface

• GEO, that provides a geometry module to create, edit, import/export CAD models

• MESH, that provides a CAD model with standard meshing algorithms

• MED, that provides the data files management

• POST-PRO, that provides a post-processor dedicated viewer to analyze the results
of solver computations

• YACS, that provides a computational schema involving multi-solver coupling

2.3.2 KERNEL

The KERNEL components is the key component of the SALOME platform. The KER-
NEL module provides communication among distributed components, servers and clients:
dynamic loading of a distributed component, execution of a component and data ex-
change between components. CORBA interfaces are defined via IDL files and are avail-
able for users in Python. CORBA interfaces for some services are encapsulated in C++
classes providing a simple interface. Python SWIG interface is also generated from
C++, to ensure a consistent behavior between C++ modules and Python modules or
user scripts.
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2.4 SALOME file transfer service

This section introduces the SALOME file feature (Salome_file) which can be used to
transfer files from one computer to another. This can be used from one program to
retrieve the output file from another application and use it as input file.

2.4.1 File transfer service inside a program

Salome_file is a CORBA object which may manage different files. First a Salome_file

must be created. It is a container with no files. Files may be added to the Salome_file

using the Salome_file_i interface. A file is represented by a name and a path. There
are two different types of files that can be added to the Salome_file:
- Local file: the file added exists or it will be created by the user with the path and the
name used in its registration.
- Distributed file: the file added exists into a distributed localization.
In order to get a distributed file, the Salome_file has to be connected with an another
Salome_file that has this file.

In the following we show a simple Salome_file with the objective to create two
Salome_files: one with a local file and the other with a distributed file. Then, these
Salome_files are connected to enable the copy of the real file between the two files.

#include "Salome_file_i.hxx"

int main (int argc, char * argv[]){

Salome_file_i myfile;

Salome_file_i filedist;

myfile.setLocalFile("localdir");

filedist.connectDistributedFile("distrdir", myfile);

filedist.setDistributedSourceFile("distrdir", "localdir");

filedist.recvFiles();

};

The include Salome_file_i.hxx is necessary to use the functions and the class. In the
first two lines two Salome_files are created with the command Salome_file_i. The file
names are myfile and filedist. The function setLocalFile sets the path localdir

of the local myfile file. The function setDistributedFile sets the path distrdir of
the distributed file with name filedist. The directories must exist. Now the files are
defined by name and path. The connect command connects the distributed filedist

file with the local myfile file. The transfer starts with the command recvFiles.

2.4.2 Python file transfer service

The file transfer can also be obtained by using python commands. If the remote hostname
is computername and we would like to copy myfile from the remote to a local computer
the following python program can be used
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import salome

salome.salome_init()

import LifeCycleCORBA

remotefile="myfile"

aFileTransfer= \

LifeCycleCORBA.SALOME_FileTransferCORBA(’computername’,remotefile)

localFile=aFileTransfer.getLocalFile()

2.4.3 Batch file transfer service

A third way to have a service access is through the SALOME batch service. The inter-
ested reader can consult the SALOME documentation.

2.5 SALOME Mesh creation

2.5.1 Import and export of mesh files in SALOME

At the moment the SALOME platform on CRESCO-ENEA GRID is not used to dis-
tribute files and the implementation of coupled codes is not fully operational. The most
important use of the SALOME platform is the mesh generation. SALOME offers a good
open source application able to generate meshes for other applications as SATURNE and
many others. For this reason it is important to use the MED format or convert such a
format in more popular formats. The mesh functionality of SALOME is performed by
the MESH module. In the SMESH module there is a functionality allowing importation
and exportation of meshes from MED, UNV (I-DEAS 10), DAT (Nastran) and STL for-
mat files. These formats are not very popular and local converters may be necessary.

Mesh import. In order to import a mesh inside the SMESH module from other formats
these steps must be followed:
- From the File menu choose the Import item, from its sub-menu select the corresponding
format (MED, UNV and DAT) of the file containing your mesh.
- In the standard Search File dialog box select the desired file. It is possible to select
multiple files.
- Click the OK button.

Mesh export. Once the mesh is generated by the SALOME MESH module the proce-
dure to export a mesh is the following
- Select the object you wish to export.
- From the File menu choose the Export item and from its sub-menu select one of the
available formats (MED, UNV, DAT and STL).
- In the standard Search File select a location for the exported file and enter its name.
- Click the OK button.
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2.5.2 Mesh tutorial from SALOME documentation

Help for mesh creation can be found at

http://www.salome-platform.org/user-section/salome-tutorials

In this web page there are ten exercises from EDF:
EDF Exercise 1: Primitives, partition and meshing example. Geometric Primitives,
tetrahedral and hexahedral 3D meshing, Partitions.
EDF Exercise 2: 2D Modeling and Meshing Example. Geometrical Primitives, triangular
2D mesh, Zone Refinement, mesh modification, sewing.
EDF Exercise 3: Complex Geometry meshed with hexahedra, quality controls. 3D Ge-
ometry, Partition, Hexahedral mesh, mesh display, quality controls.
EDF Exercise 4: Extrusion along Path and meshing example. The purpose is to produce
a prismatic meshing on a curved geometry.
EDF Exercise 5: Geometry by blocks, shape healing. Creation of a geometric object by
Blocks, Primitive, Boolean Operation, Shape healing.
EDF Exercise 6: Complex Geometry, hexahedral mesh. 3D Geometry, Partition, Hexa-
hedral Mesh.
EDF Exercise 7: Creation of mesh without geometry. Manual creation of a mesh.
EDF Exercise 8: Pattern Mapping. Creation of a Pattern mapping.
EDF Exercise 9: Joint use of TUI and GUI. Learn to use GUI dialogs with TUI com-
mands to generate a pipe with different sections.
EDF Exercise 10: Work with scripts only. This exercise is to learn working with Python
scripts in SALOME. The scripts allow to parameterize studies and to limit the disk space
for the storage.

2.5.3 Tutorial: step by step mesh on CRESCO-ENEA GRID

In this section we introduce step by step a mesh generation on CRESCO-ENEA GRID
from the MESH module of the SALOME application.
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1. Launch salome from command line.

2. The SALOME main window will appear.
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3. Click the New document button.

4. The list on the left will show all the elements added to the working study.
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5. Select the Geometry module form the dropdown menu.

6. The main window will switch to an OpenCascade scene.
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7. Click the Create a box button.

8. On the dialog, use quadpipe for the Name . The dimension of the box shall be 1,
1 and 5.
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9. Zoom to the just created object.

10. Right-click on the quadpipe object in the left column. Select the Create Group
option.
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11. We create all the boundary regions of the box in order to put boundary conditions
on them. We start from the inlet region, selecting it directly in the OCC scene.

12. Clicking the Add button, the surface should appear in the list. The number of

this region must be 31. Click the Apply button.
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13. Similarly we create the outlet region (number 33).

14. We split the lateral surface in 4 regions. We start from the front one and name it
wall1.
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15. The number of this region is 23.

16. wall2 region is numbered 13.
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17. wall3 region is numbered 27.

18. wall2 region is numbered 3. We can now click the Apply and Close button, since
this is the last region to create.
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19. To check if all the regions have been created correctly, we can use the Show Only
option in the right-click menu of each object.

20. We select the Mesh module from the drop-down menu.
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21. In order to show the quadpipe object, we select show in the right-click menu.

22. We zoom to the object in the VTK scene.
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23. We click on the create mesh button.

24. In the appearing dialog, we select Hexahedron (i,j,k) in the Algorithm drop-down
menu for the 3D tab.
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25. In the 2D tab, we select the Quadrangle (Mapping) algorithm.

26. In the 1D tab, we select the Wire discretization algorithm.
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27. Clicking on the the gear icon, we can configure the selected algorithm. We choose
Average length .

28. We set the Length to 0.1 and click OK .
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29. The mesh is now ready: we can click on Apply and Close .

30. In order to calculate the mesh, we click the Compute button in the right-click
menu of the mesh we have just created.
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31. If everything has gone well, a summary window will appear with some details on
the mesh. In particular, we have to check that there are 1D, 2D and 3D elements.

32. Now we create the sub-regions that correspond to the boundary surfaces. We select
Create groups from geometry from the right-click menu of the mesh.
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33. We select the inlet region in the left column and and click Apply .

34. We create all the six regions in the same way, selecting the mesh and the geometry
element and clicking Apply until we reach the last one (wall4).
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35. We recompute the mesh by clicking again Compute in order to update the mesh.

36. We can now save the SALOME study by clicking the Save button. we can name
the file quadpipe.hdf.

54



SALOME

37. In SATURNE we need the mesh file in MED format. We can generate it via the
File -> Export -> MED menu. The mesh must be selected to perform this action.

38. We name the file quadpipe.med.
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This is a very simple but significative example of mesh generation, since it covers all
the required steps to generate a mesh with all the features needed touse it in SATURNE
or NEPTUNE. For more complete examples one can follow the tutorial suggested in
Sections 2.5.2. This mesh can be converted into a more popular format or used directly
in many applications as, for examples, SATURNE or TRIO_U.
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3.1.2 Location on CRESCO-ENEA GRID

CRESCO-ENEA GRID:

executable: saturne

install directory: /afs/enea.it/project/fissicu/soft/Saturne

3.1.3 SATURNE overview

SATURNE is a general purpose CFD free software. Developed since 1997 at EDF R&D,
SATURNE is now distributed under the GNU GPL license. It is based on a collocated
Finite Volume approach that accepts meshes with any type of cell. The code works
with tetrahedral, hexahedral, prismatic, pyramidal and polyhedral finite volumes and
any type of grid structures such as unstructured, block structured, hybrid, conforming
or with hanging node geometries.

Its basic capabilities enable the handling of either incompressible or compressible flows
with or without heat transfer and turbulence. Many turbulence model are implemented
such as mixing length, κ-ǫ models, κ-ω models, v2f , Reynolds stress models and Large
Eddy Simulation (LES). Dedicated modules are available for additional physics such
as radiative heat transfer, combustion (gas, coal and heavy fuel oil), magneto-hydro
dynamics, compressible flows, two-phase flows (Euler-Lagrange approach with two-way
coupling), extensions to specific applications (e.g. for atmospheric environment) [2, 3].

SATURNE can be coupled to the thermal software SYRTHES for conjugate heat
transfer. It can also be used jointly with structural analysis software CODE_ASTER,
in particular in the SALOME platform. SYRTHES and CODE_ASTER are developed
by EDF and distributed under the GNU GPL license.

3.2 SATURNE dataset and mesh files

SATURNE requires a specific structure for the configuration and input files. Each sim-
ulation is denoted as case. One must therefore create a case directory and put all
SATURNE simulations inside. For details on SATURNE file structure see Section 3.3.2.

SATURNE requires a dataset file (with extension xml) and a mesh file (with extension
med) with the mesh geometry.

3.2.1 SATURNE mesh file

The mesh file must be in MED format. For MED format file one can see Section 1.3.1
and for mesh generation the SALOME section 2.5.
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SATURNE GUI opens a window which is divided into three panels: top panel, option
panel and view panel. The name of the study and the name of the dataset file with the
corresponding path must be introduced in the top panel. The option panel consists of a
tree menu with different sections. The sections are the following:

• Identity and paths where the path to the case is written;

• Calculation environment with mesh selection;

• Thermophysical models with turbulence and thermal model options;

• Additional scalars with the definition and initialization of physical properties;

• Physical properties with reference values, fluid properties, gravity and hydro-
static pressure options;

• Volume conditions with volume region definition and initialization;

• Boundary conditions with the definition of boundary regions and conditions;

• Numerical parameters with time step, equation parameters and global parame-
ters;

• Calculation control with time average option, output control, volume solution
control and output profiles;

• Calculation management with user arrays, memory management and start/restart
options.

The mesh should be opened and checked through the section Calculation environment.
In this section there are also some mesh quality tools. The mesh must be saved in MED
format and constructed in such a way that the boundary zones are marked as special
regions. These regions will appear in the Boundary conditions section where the bound-
ary conditions must be defined. The SALOME GUI defines the boundary conditions as
shown in Figure 3.3. The parameters as the time step length and the number of the time
steps can be set in Numerical parameters. A screenshot of the Numerical parameters

is shown in Figure 3.4. The computation can be started from the start/stop computation
panel in the Calculation management section. This panel appears in Figure 3.5 where
the number of processors can be set. For more details one can see the example in Sec-
tion 3.4 or the documentation of the SATURNE code. The SATURNE GUI generates a
dataset file like the following:

<?xml version="1.0" encoding="utf-8"?>

<Code_Saturne_GUI case="cyl" study="case" version="2.0">

<solution_domain>

...........

<meshes_list>

<mesh format="med" name="cyl1.med" num="1"/>
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</meshes_list>

.......

</solution_domain>

<thermophysical_models>

<velocity_pressure>

<variable label="Pressure" name="pressure">

<reference_pressure>101325</reference_pressure>

</variable>

..............

</thermophysical_models>

<numerical_parameters>

<multigrid status="on"/>

<gradient_transposed status="on"/>

<velocity_pressure_coupling status="off"/>

<pressure_relaxation>1</pressure_relaxation>

<wall_pressure_extrapolation>0</wall_pressure_extrapolation>

<gradient_reconstruction choice="0"/>

</numerical_parameters>

<physical_properties>

<fluid_properties>

<property choice="constant" label="Density" name="density">

<initial_value>1</initial_value>

<listing_printing status="off"/>

<postprocessing_recording status="off"/>

</property>

.............

</fluid_properties>

..........

</physical_properties>

<boundary_conditions>

<variable/>

<boundary label="BC_1" name="1" nature="inlet">inlet</boundary>

...........

</boundary_conditions>

<analysis_control>

<output>

<postprocessing_mesh_options choice="0"/>

.............

</output>

<time_parameters>

<time_step_ref>0.01</time_step_ref>

<iterations>100</iterations>

<time_passing>0</time_passing>
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<zero_time_step status="off"/>

</time_parameters>

<time_averages/>

<profiles/>

</analysis_control>

<calcul_management>

..............

</calcul_management>

<lagrangian model="off"/>

</Code_Saturne_GUI>

This file can also be modified without the GUI by editing a template dataset XML
file. The file is subdivided into various sections such as Calculation environment,
Thermophysical models, Additional scalars, Boundary conditions, Numerical parameters
and Calculation management. Inside each section we can see the corresponding options.

3.3 SATURNE on CRESCO-ENEA GRID

3.3.1 Graphical interface

The SATURNE code is located on CRESCO-ENEA GRID in the directory

/afs/enea.it/project/fissicu/soft/Saturne

Once the PATH is set for the directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

$ source pathbin.sh

as it is explained in Section 1.2.3, the SATURNE GUI starts with the command

$ saturne

Remark. Not all libraries are yet available at the moment for the CRESCO architecture.
We suggest to run SATURNE GUI on a personal workstation.

The GUI is used to set up the simulation creating a data.xml file. The solution of
the case must be run in command line mode or in batch mode as explained in the next
section.

3.3.2 Data structure

SATURNE requires a specific structure for the configuration and input files. Each simula-
tion is denoted as case. We can therefore create a cases directory and put all SATURNE
simulation files inside.

Inside this directory, each case will have its own directory (for example case1, case2)
and there must be a MESH directory, where all the meshes are stored.
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cases

+-- case1

+-- case2

...

+-- MESH

Inside each case directory, we have to create the four sub-directories

- DATA, where the xml configuration file is stored;

- RESU, that is used for the outputs;

- SCRIPTS, that hosts the execution scripts;

- SRC, in which we can put some additional source file.

During the execution, SATURNE will generate some temporary files that are by
default stored in the tmp_Saturne directory in the user home directory. This directory
must be periodically cleaned by hand, as there is no automatic procedure.

3.3.3 Command line execution

In order to execute the application in a shell we must first set up the environment using
the script

saturne_env

that is located in the directory

/afs/enea.it/project/fissicu/soft/bin

Remark. The saturne_env script consists of the following lines

#! /bin/bash

export cspath= \

/afs/enea.it/project/fissicu/soft/Saturne/2.0rc1/cs-2.0-beta2/bin

export CSMPI=$cspath/../../openmpi-1.4.1/bin

export PATH=$cspath:$PATH

In order to run a case one must first create a directory and put the following files in
it:

• data.xml that is the configuration file of the case

• mesh.med that is the mesh file (in MED format)

There are two ways to run the code:
a) from console
b) using the runcase script

From console there are two steps to follow:
1) preprocess the mesh with the command
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$ cs_preprocess --mesh mesh.med --case data.xml

This command generates the file

preprocessor_output

where all the informations of the mesh are stored.
2) run the application with
- serial mode

$ cs_solver --log 0 --param data.xml

- parallel model

$ $CSMPI/mpirun -np NPROC cs_solver --log 0 --param data.xml --mpi

where $CSMPI is defined in the saturne_env script. NPROC defines the number of proces-
sors used.

To use the runcase file, one starts from a template available inside the directory

/afs/enea.it/project/fissicu/soft/Saturne/data

There are two templates, one to be launched from the GUI interface (runcase) and
another for console execution (runcase_sh). The runcase for the GUI takes into account
the data structure explained in Section 3.3.2 while the runcase_sh needs only the data
and the mesh file in the current directory just like we have seen above for console running.

3.3.4 Batch running

This is the template file for queue submission using LSF on CRESCO-ENEA GRID:

#!/bin/bash

#BSUB -J JOBNAME

#BSUB -n NPROC

#BSUB -oo stdout_file

#BSUB -eo errout_file

saturne_env

cs_solver --log 0 --param data.xml

where the options -J sets the job name, -n the number of processors, -oo the file for the
standard output and -eo the error output. The last two lines set the environment vari-
ables for the code SATURNE and launch the executable with a parameter file, without
the graphical interface that clearly cannot be used when submitting a job with a batch
queue. This template is located at

/afs/enea.it/project/fissicu/soft/Saturne/data/saturne.lsf

Once the script is ready the command
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Property Value
Density [kg/m3] 10340
Viscosity [Pa · s] 0.00184
Specific heat [J/KgK] 145.75
Thermal conductivity [W/mK] 11.732
Inlet Temperature [K] 673.15
Inlet Velocity [m/s] 0.01

Table 3.1: Physical properties and operating conditions for the SATURNE tutorial.

$ bsub < saturne.lsf

starts the batch execution.
When one uses the runcase script the LSF options are already placed at the beginning

of the script. There is a space between the # and BSUB to be erased. In this case the
batch run is started with the command

$ bsub < runcase

Further informations on batch commands are available in Section 1.2.4.

3.4 SATURNE tutorial: a simple heated channel test

In this tutorial we will study a square pipe with one heated surface. The fluid is lead,
with the physical properties and operating conditions of Tab. 3.1. The mesh has been
created with SALOME in Sec. 2.5. In order to configure the simulation, we will start
from a simple template that we have already put in the DATA directory, along with the
generic runcase script in the SCRIPTS directory.
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1. Run saturne from command line

2. Click the Open button, or go to the File menu and click Open
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3. Browse to the case directory, and then inside the DATA sub-directory. In this ex-
ample, the case is named quadpipe. Select the xml file (here quadpipe.xml) and
click Open .

4. We can check that the directory structure has been created correctly. If some di-
rectory is missing, it will be displayed in red. We can adjust the directory structure
and start again.
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5. The configuration is subdivided in multiple directories. The first one is the Calcu-
lation environment, that includes the Meshes selection and Mesh quality criteria
tabs. We select the first one. In here, we will find the list of meshes selected for
the simulation. We can add a new mesh with the Add button.

6. We select the quadpipe.med mesh created in Sec. 2.5.
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7. The mesh must appear in the list with the right format.

8. In the Mesh quality criteria we can check if the mesh has been recognized correctly
with the Check Mesh button.
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9. If we are asked to save the log file, it means that the check was successful. We can
use listpre.0 as filename.

10. After the saving, we can check the log to see if all the data are correct (see the file
preprocessor_output Section 3.3.3)
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11. We go to the Thermophysical properties directory. The first tab is Calculation features .

We select in the first menu Unsteady flow .

12. We select Single phase flow in the second menu.
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13. We check that the Atmospheric flows is set to off.

14. In the Mobile mesh tab, we check that the ALE method is not checked.
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15. In the Turbulence models tab, we select the k-epsilon model .

16. In the Advanced options panel, we select the Two scale model .
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17. In the Thermal model tab, we select the Temperature (Kelvin) option.

18. In the Radiative transfers tab, we select the No radiative transfers option.
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19. We check that in the Conjugate heat transfer tab the list is empty. This tab is
used to couple SATURNE with the Syrthes code for heat transfer in solids.

20. We go to the Additional scalars directory. The first tab is Definition and initialization ,

where we set the Temperature initial value at 673.15, as in Tab. 3.1.
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21. In the Physical properties tab, the list must be empty.

22. The Reference values tab in the Physical properties directory is used to set the
reference pressure. We keep the default value (atmospheric pressure).
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23. In the Fluid properties tab, we set the values from Tab. 3.1. The constant option
means that the properties do not depend on temperature.

24. In the Gravity, hydrostatic pressure tab we set to 0 all gravity components.
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25. We go to the Volume conditions directory, Volume and regions definition tab. The
list must contain only one region labeled all_cells.

26. In the Initialization tab, we set the z-component of the velocity to 0.01. The
temperature value should be already set to the 673.15 value. For turbulence, we
select
initialization by reference velocity for all zones , with a velocity value of 0.01.
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27. In the Head losses tab, the list must be empty.

28. In the Boundary conditions directory, we first create the regions in the

Definition of boundary region tab using the pre-processing log file.
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29. We select the previously saved listpre.0 and click on Open .

30. The list should report the six sides of the domain.
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31. The default value for the Nature column is Wall . We must change it in the inlet

and outlet regions.

32. In the Boundary conditions tab we set the values in each region. In the inlet

region, the velocity must be norm to the boundary and equal to 1.0. The tur-

bulence value is set with the Calculation by hydraulic diameter option, with an

Hydraulic diameter equal to 0.01. For the temperature, we select a Prescribed value
of 673.15.
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33. In the outlet region, we set the Prescribed flux option to 0.

34. We set a flux that heats the fluid from the wall1 region. We set the value of the
Prescribed flux to −3 · 105 (the minus sign means that the heat goes from the wall
to the fluid).
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35. All other wall region are adiabatic.

36. We go to the Numerical parameters directory. In the Time step tab, we set an

Uniform and constant time step, with a reference reference value of 0.1 and 50
iterations.
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37. In the equation parameters tab we can see the Solver precision settings. We
keep the default values.

38. In the Scheme sub-tab, we can see the numerical configuration of the solver. Also
in this case we keep the default values.
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39. The Global parameters tab has some more numerical configurations. These values
must be changed only for some peculiar application.

40. We go to the Calculation control directory, Time averages tab and check that the
list is empty.
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41. In the Output control tab, we keep the default options. Be sure that Post-processing format

is set to Ensight Gold .

42. In the Monitoring Points Coordinates sub-tab the list should be empty.
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43. We keep default options also in the Volume solution control tab. In this way, all
variables will be printed in the post-processing file.

44. In Profiles we can set put an extra output over a line. An example in shown in
the screenshot.
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45. We jump to the Calculation management directory, User Arrays tab. Also in this
case, we do not need to change any option.

46. The Memory management tab is treated in the same way as the previous one.
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47. The Start/Restart tab controls if we want to start from scratch or from a previously

calculated solution. We select off .

48. We start the calculation from the Prepare batch calculation tab. For a direct cal-

culation (without submission to a queue), we select the Workstation option. A

generic batch script file named runcase is already configured. We can choose any

number of processors and start the calculation with the Batch running button.
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49. the results are stored in the RESU directory. There is a sub-directory named
CHR.ENSIGHT followed by the date/time of execution.

50. Form PARAVIEW one should select the chr.case file.
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51. The solution of the tutorial gives the temperature distribution shown in the screen-
shot.
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Chapter 4

TRIO_U

4.1 Introduction

Figure 4.1: TRIO_U graphical user interface.
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4.1.1 Code development

Developer(s) CEA
Stable release 1.61 / June, 2010;
Operating system Linux
License not free (use only under written agreement)
Website http://www-trio-u.cea.fr

4.1.2 Location on CRESCO-ENEA GRID

CRESCO-ENEA GRID:

executable: triou

install directory: /afs/enea.it/project/fissicu/soft/Triou

4.1.3 TRIO_U overview

Trio_U, developed at the Laboratory of Modeling and Software Development of the
Directorate of Nuclear Energy of the CEA, is a project that aims to develop numerical
simulation software for fluid dynamics. This project starts as an object-oriented, parallel
code dedicated to scientific and industrial applications in the nuclear field. The variety
of physical models and numerical methods implemented in this code allow to simulate
various problems ranging from the local two-phase flow simulations to turbulent flows in
industrial facilities or in components of nuclear reactors.

Inside the code two modules are available: a VDF module (finite difference volume)
and a VEF module (finite element volume not to be confused with the finite element
method). The VDF and VEF modules are designed to process the 2D or 3D flow of
Newtonian, incompressible or slightly incompressible fluids where the density is a func-
tion of a local temperature and concentration values (Boussinesq approximation). Non-
Newtonian fluid by using the Otswald law are possible [16, 17, 18].

It is planned to interface Trio_U with other simulation software supported or devel-
oped by the CEA. In particular the SALOME platform may be used for different stages
of the Trio_U calculation: creation of CAD and mesh editing of the data set [15].

4.2 TRIO_U on CRESCO-ENEA GRID

The TRIO_U platform is located on CRESCO-ENEA GRID on the directory

/afs/enea.it/project/fissicu/soft/Triou

The TRIO_U application can be run in two ways:
a) from console
b) from FARO website
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4.2.1 How to start TRIO_U from console

From console one must first set the access to the bin directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

$ source pathbin.sh

The script pathbin.sh must be in the home directory. One must copy the template
script pathbin.sh from the directory

/afs/enea.it/project/fissicu/soft/bin

and then execute the script to add the bin directory to the PATH. If the pathbin.sh script
is not available one must enter the bin directory to run the program.

Once the bin directory is on your own PATH all the programs of the platform can be
launched. The command needed to start the TRIO_U application is

$ triou

The script triou consists of two commands: the environment setting and the start
command. The environment script sets the environment of TRIO_U calling the script
bin/Init_Trio_U. The start command is a simple command that launches the TrioU

command calling the TRIO_U command Trio_U.

4.2.2 How to start TRIO_U from FARO

From FARO web application it is possible to access the TRIO_U platform with remote
accelerated graphics. Once FARO has been started (see Section 1.2.2) one must open an
xterm. In the xterm console one must follow the same procedure as before. First, set
the access to the bin directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

$ source pathbin.sh

TRIO_U starts with the command

$ triou

The graphical interface of TRIO_U is based on FIREFOX application.

4.2.3 How to interrupt TRIO_U

In order to interrupt TRIO_U one must enter the value 1 in the case.stop file whereas
case is the name of the case. When the calculation is started, Trio_U enters the value 0
in the stop file.
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4.3 Mesh, dataset and output files

4.3.1 Mesh File

A mesh file may be created for Trio_U by using one of the following software:
a) Xprepro mesh generator (inside the Trio_U directory) for Cartesian 2D/3D domain
b) Gmsh freeware mesh generator(download at http://www.geuz.org/gmsh) for VEF
2D/3D domain
c) Trio_U mesh generator for simple geometries
d) ICEM,IDEAS,SIMAIL mesh generator for VEF 3D domains
f) Use a format translator to translate the mesh from Gambit to Trio_U meshing format

Xprepro mesh format

Xprepro is a new tool for Trio_U calculation which can create very complex 2D, 3D
VDF meshes. You can run Xprepro either from a study opened with the GUI of Trio_U
through a button named Mesh, either by running the command line Xprepro.

Gmsh mesh format

Gmsh is a freeware to build 2D/3D unstructured meshes with tetrahedral or hexahedral
meshes. Meshes generated by Gmsh must be translated to Trio_U format by a converter
located in $TRIO_U_ROOT/Gmsh directory. It can also be run from the GUI of Trio_U
using the button Gmsh.

Tgrid/Gambit mesh format

An instruction in the data set is available to reread meshing issued by Gambit/Tgrid
(tools from Fluent) using Trio_U. This instruction is as follows:

Lire_Tgrid dom nom_fichier_maillage

where dom corresponds to the domain name, nom_fichier_maillage corresponds to the
file containing the mesh. 2D (triangles or quadrangles) and 3D (tetra or hexa elements)
meshes, may be read by Trio_U. The template for the Gambit/MED converter can be
found in the directory

/afs/enea.it/project/fissicu/soft/triou/data

The file is as following

dimension 3

Domaine dom

Lire_tgrid dom mesh.msh

ecrire_med dom mesh.med

Fin
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SALOME MED format

An instruction in the data set is available to read MED mesh issued for example from
SALOME. This instruction is as follows

Lire_Med [vef][fam_name_from_gr_name] mesh_name filename.med dom_name

The dom_name corresponds to the domain name, filename.med corresponds to the file
(written in format MED) containing the mesh named mesh_name. Option vef is obsolete
and is kept for backward compatibility. The option fam_names_from_gr_name uses the
group names instead of the family names to detect the boundaries into a MED mesh.

4.3.2 Dataset file

The dataset file must be labeled with the extension data and contains all the parameter
values and all the options. The options are introduced in the code through key words.
For example consider the Lire key word. The interpreter allows the keyLire object to
be read (defined) in various ways:
a) with bracket

Lire object1

{

....

}

In this case this keyword provides the object object1 defined between the braces. b)
simple line command

Lire_fichier object1 namefile

The keyword Lire_fichier is to read the object object1 contained in the file namefile.
This is notably used when the calculation domain has already been meshed and the mesh
contains the file namefile c) with bin

Lire_fichier_bin object1 namefile

for an unformatted file.
For all the keyword one can see the TRIO_U tutorial inside the doc directory which

is located in

/afs/enea.it/project/fissicu/soft/Triou/doc
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4.3.3 Output files

There are different output file formats:

- name.lml: standard storage files for post-processing. The lml format files allow the
results to be viewed with Data Visualizer or AVS Express

- name.lata: which is similar to lml format but comprises several files;
- name.ijk format which outlets the results in tables;
- name.tv format to use the file using the freeware viewing tool: VisIt. - name.son: stan-
dard storage files for physical values measured by probes integrated into the calculation
domain by the user. This file can be read by the gnuplot application.

4.4 TRIO_U tutorial for the obstacle test example

This examples is taken by the list of examples that comes with TRIO_U. The study
is called obstacle and it consists of two files: obstacle.dat and obstacle.geo. The
obstacle.dat is the dataset file while obstacle.geo is the mesh file written with the
internal format.

4.4.1 How to run the obstacle test example

Figure 4.2: The obstacle test
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1. We run triou from the command line. TRIO_U graphical interface is managed
through a web browser. The default case will open Firefox. To start a new project
we click on the Studies link.

2. In the new screen we can push the Create button to start a new study.
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3. In the appearing shell, we can insert the path for the new study. We use
Study/quad_obstacle inside the TRIO_U directory.

4. We reach the main window for the study. The name is clearly visible in the title.
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5. In order to generate our study, we click on the a data file button to copy the
configuration file from a test case.

6. We search for the Obstacle test and click it.
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7. the first file we need is the data file. We click on the Copy button besides it.

8. We use the name quad_obstacle.data in the terminal.
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9. The file is opened for editing. Details on the content are given in Section 4.3.2.

10. The only edit we need is the name of the mesh file: we insert quad_obstacle.geo
instead of Obstacle.geo.
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11. We can now copy the mesh file. We must use the name we have already put in the
data file, quad_obstacle.geo.

12. The file is opened for edit. We do not make any modification. In this case, the
internal generator is used to create the mesh.
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13. We go back to the study main page. We are ready to click on the Solve button
to start the calculations.

14. The windows on the top left will report the advance of the calculation, while in the
top right we can see if there are errors.
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15. Once the calculation are finished, we can click on the See results evolutions on the

right of the Solve button.

16. We can launch VisIt directly with the dedicated button.
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17. The main window of VisIt appears. The file browser is already configured inside
the study directory.

18. All the drawable elements can be accessed via the Plots menu. We start by

visualizing the computational domain with Plots -> Mesh -> dom .
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19. The visualization becomes effective when we click on the Draw button.

20. We can now visualize the velocity magnitude. We select it via
Plots -> Volume -> VITESSE_SOM_dom_magnitude .
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21. Clicking on the Draw button the velocity will appear in the main window.

22. The Play button can be used to visualize the successive time steps of the simula-
tion.
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Chapter 5

NEPTUNE

5.1 Introduction

Figure 5.1: Neptune graphical user interface.

5.1.1 Code development

Developer(s) EDF
Stable release June 7, 2010;
Operating system Linux and Cross-platform
License not free (use under NURISP written agreement)
Website no website
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5.1.2 Location on CRESCO-ENEA GRID

CRESCO-ENEA GRID:

executable: neptune

install directory: /afs/enea.it/project/fissicu/soft/Neptune

5.1.3 NEPTUNE overview

The NEPTUNE project is a joint research and development program between EDF and
CEA for nuclear reactor simulation tools. The project provides a two-phase flow ther-
mal hydraulics software for multiscale and multidisciplinary calculations. The code may
perform three-dimensional computations of the main components of the reactors: cores,
steam generators, condensers, and heat exchangers. NEPTUNE supports from one to
twenty fluid fields (or phases) and includes thermodynamic laws for water/steam flows.
It is based on advanced physical models (two-fluid equations combined with interfacial
area transport and two-phase turbulence) and modern numerical methods (fully unstruc-
tured finite volume solvers). The code is based on the cell-centered type finite volume
method which can use meshes with all types of cell and nonconforming connections.
NEPTUNE uses co-localized gradients with reconstruction methods to compute face val-
ues and supports distributed-memory parallelism by domain splitting. NEPTUNE is

Figure 5.2: Modules of the NEPTUNE CFD

written in Fortran and organized in modules as shown in Figures 5.2. The enveloppe
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component manages the pre-processing and the post-processing functions, while edamox

is the graphical user interface. One can introduce user functions by using the user

Fortran module. The kernel of the calculation is implemented in the Neptune_CFD mod-
ule [10, 11, 12, 13, 14].

5.2 NEPTUNE on CRESCO-ENEA GRID

5.2.1 Graphical interface

The NEPTUNE code is located on CRESCO-ENEA GRID in the directory

/afs/enea.it/project/fissicu/soft/Neptune

Once the PATH is set for the directory

/afs/enea.it/project/fissicu/soft/bin

by executing the script

$ source pathbin.sh

as it is explained in Section 1.2.3, the NEPTUNE GUI starts with the command

$ neptune

Remark. Not all libraries are yet available at the moment for the CRESCO architecture.
We suggest to run NEPTUNE GUI on a personal workstation.

The GUI is used to set up the simulation creating a param file. The solution of the
case must be run in command line mode or in batch mode as explained in the next
section.

5.2.2 Data structure

NEPTUNE requires a specific structure for the configuration and input files. Each simula-
tion is denoted as case. We can therefore create a cases directory and put all NEPTUNE
simulations inside.

Inside this directory, each case will have its own directory (for example case1, case2)
and there must be a MESH directory, where all the meshes are stored.

cases

+-- case1

+-- case2

...

+-- MESH

Inside each case directory, we have to create the four sub-directories

- DATA, where the XML configuration file is stored;
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- RESU, that is used for the outputs;

- SCRIPTS, that hosts the execution scripts;

- SRC, in which we can put some additional source file.

To create a folder tree for the study case1, it is available a script

$ buildcase_nept -study case1

This generates the correct directory structure.
During the execution, NEPTUNE will generate some temporary files that are by

default stored in the tmp_NEPTUNE directory in the user directory. This directory must
be periodically cleaned by hands, there is no automatic procedure.

5.2.3 Command line execution

In order to execute the application in a shell we must first set up the environment using
the script

neptune_env

that is located in the directory

/afs/enea.it/project/fissicu/soft/bin

Remark. The neptune_env script consists of the following lines

#! /bin/bash

export NEPTHOME=/afs/enea.it/por/arcproj/fissicu/soft/Neptune\

/package_neptcfd-1.0.8/NEPTUNE_CFD/neptcfd-1.0.8-r844/bin

source $NEPTHOME/neptcfd_profile

export NEPTMPI=/afs/enea.it/por/arcproj/fissicu/soft/Neptune\

package_neptcfd-1.0.8/opt/lam-7.1.1/arch/Linux_x86_64/bin/

The recommended way to run NEPTUNE from command line is to use the runcase

script. There is a template available inside the directory

/afs/enea.it/project/fissicu/soft/Neptune/data

One has to navigate to the SCRIPTS directory inside the case in analysis and run

$ ./runcase
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5.2.4 Batch running

On the top of the runcase template there are the configuration options for LSF. This is
the template file for queue submission using LSF on CRESCO-ENEA

...

# BSUB -J JOBNAME

# BSUB -n NPROC

# BSUB -oo stdout_file

# BSUB -eo errout_file

....

where the options -J sets the job name, -n the number of processors, -oo the files for
the standard output and -eo the error output. There is a space between the # and BSUB

to be erased in order to run in batch mode. Once the script is ready the command

$ bsub < runcase

starts the batch execution.
Further information on batch commands are available in Section 1.2.4.

5.3 NEPTUNE dataset and mesh files

NEPTUNE requires a specific structure for the configuration and input files. Each sim-
ulation is denoted as case. One must therefore create a case directory and put all
NEPTUNE simulations inside. For details on NEPTUNE file structure see Section 5.2.2.

NEPTUNE requires a dataset file (named param) and a mesh file (with extension
med) with the mesh geometry.

5.3.1 NEPTUNE mesh file

The mesh file must be in MED format. For MED format file one can see Section 1.3.1
and for mesh generation the SALOME section 2.5.

5.3.2 NEPTUNE param file

The param file is a dataset file which is in the case directory (subdirectory DATA). There
are two different ways to generate this dataset file:
a) Using the NEPTUNE GUI
b) editing the param file directly

The param file consists of several sections. As shown in Figure 5.3 the NEPTUNE GUI
opens a window which is divided into two main panels: the menu bar and the selection
panel. As we can see, the selection panel for the data structure is composed by 9 modules

• Special modules
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Figure 5.3: NEPTUNE GUI interface (Edamox).

Figure 5.4: Suggested parameter order.

• Fluid&flow properties

• Input-output control

• Generalities

• Numerical schemes

• Boundary conditions

• Scalars

• Variable output control

• Run
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In order to insert the parameters of the case it is preferable to follow the order shown in
Figure 5.4.

In the menu Options it is possible to set the level of the users. There are three
different level, User, Expert, Programmer. The User Level contains less parameters
respect to the Expert Level.

Special Modules

The module Special Modules allows to enable special features of the two-phase flow. The
options are

• the option none for the separate phases

• the option water/steam module

• the option water/non-condensable module

Fluid&flow properties

In the Fluid&flow properties one can find the number of fluids and the fluid name
options. All the physical properties and the turbulence models are defined in this module

Input-output control

In the input-output control one set memory allocation, the mesh file, the time step and
all input/output parameters

Numerical schemes

The numerical schemes module contains the options that coupled the different equations
and lead to the iterative solution of each system

Scalar

In this section one can set the scalars. In particular, there are two scalars that are
enabled automatically when the water/steam module is selected in Special modules, the
two total enthalpies for each phase, water and steam. Other scalars must be defined by
specifying total number of scalars. The possible data that define a scalar are

• Convection → selection of the convection phase of the scalar

• T-dep → time-dependent term in the scalar equation

• Effective Diffusion → diffusion term in the scalar equation

• Laminar Dynamic Coefficient → reference diffusion coefficient

• Turbulent Schmidt → turbulent Schmidt number

117





NEPTUNE

processors for a parallel run and we launch the code on line with the button Run on

line. If you decide to change the parameters of the param file it is necessary to re-save
the file before launching the run.

param file

The NEPTUNE GUI generates a param file as

......

/Headings

/SPECIAL MODULES (1)

MODULE SPECIFIQUE = 1

/FLUID&FLOW prop (1)

NPHAS = 2

/GENERALITIES (2)

NOM FLUIDE =

eau;vapeur

ETAT FLUIDE =

0;1

/THERMO (2)

MASSE VOLUMIQUE =

1000;1000

TEMPERATURE REFERENCE =

610;293.14

VISCOSITE DYN =

0.001;0.001

.......

/

/TURBULENCE (2)

/

ITURB =

2;-1

CNUTLO =

0;0

..............

/FLUID 1 (2)

/

UENT CONDL1 =

0;0;0;0;0

..............

HSTSCA =

’ ’;’ ’

/

/USER VARIABLES (2)
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/

NUMUSE =

0

This file can also be generated directly by editing the file. The file is subdivided in
various sections with characteristic key words. The same keys on the NEPTUNE GUI
interface

5.4 NEPTUNE tutorial on boiling flow with interfacial area

transport

Figure 5.7: Geometry and mesh of the channel

Now we present an example step by step. The case that we analyze is the standard
boiling flow with interfacial area transport from NEPTUNE tutorial. For the simulation,
we consider the mesh m1.unv. The geometry and the mesh chosen are show in Figure
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6. Set the wall boundary conditions

7. Set the inter-phase forces

8. and also
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10. Set memory allocation and mesh file

11. Set post-process output

12. Set the time step dt

13. Set the number of user arrays
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15. Set the gravity and domain length scale

16. Set the thermodynamics and Cathare properties

17. Set the boiling parameters
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18. Set the interfacial water-steam energy transfer for the liquid face

19. Set the interfacial water-steam energy transfer for the vapour face

20. Set the interfacial area transport
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22. Set the pressure

23. Set the restart time-step

24. Open the scalars panel and set the scalar variables. In the current case we have
three scalars, the ones settings automatically and a new scalar, that represents the
inverse of the mass of the steam bubbles and then it is referred to the steam phase
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27. Set the adiabatic and heated conditions

28. Set the inlet and outlet conditions
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30. Set global variables

31. Set phase 1 and 2 variables

32. Set user variables
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