

Sezioni d'urto a Due Gruppi del Primo Ciclo di Funzionamento di un PWR da 1600 MWe Finalizzate a Calcoli di Safety di Nocciolo

Roberto Pergreffi, Federico Rocchi

Report RdS/PAR2013/080

Sezioni d'urto a Due Gruppi del Primo Ciclo di Funzionamento di un PWR da 1600 MWe Finalizzate a Calcoli di Safety di Nocciolo

Roberto Pergreffi, Federico Rocchi - ENEA

Settembre 2014

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA Piano Annuale di Realizzazione 2013 Area: Produzione di energia elettrica e protezione dell'ambiente Progetto: Sviluppo competenze scientifiche nel campo della sicurezza nucleare e collaborazione ai programmi internazionali per il nucleare di IV Generazione Obiettivo: Sviluppo competenze scientifiche nel campo della sicurezza nucleare Responsabile del Progetto: Felice De Rosa, ENEA

				Quala all tales (10	lana	Distril	Dee	
E	Ricerca Sis	stema Elettrio	co	ADPFISS – LP1 -	- 033	Listrib.	Pag.	26
Titolo Sezioni d'urto a due gruppi del primo ciclo di funzionamento di un PWR da 1600 MWe finalizzate a calcoli di safety di nocciolo								
Des Ti C	Descrittori Tipologia del documento: Rapporto tecnico Collocazione contrattuale: Accordo di programma ENEA-MSE su sicurezza nucleare e reattori di IV generazione Argomenti trattati: PWR, Librerie per calcolo di nocciolo, sicurezza di nocciolo							
Sommario In questo Rapporto vengono dettagliati i calcoli eseguiti con il codice di trasporto neutronico deterministico Apollo 2 finalizzati alla realizzazione di librerie multiparametro Saphyb destinate ad un successivo utilizzo nella prossima Annualità per calcoli di sicurezza di nocciolo per un reattore PWR con il codice Cronos 2. I risultati ottenuti sono altresi descritti e commentati.								
Note: AUTORI: Roberto Pergreffi, Federico Rocchi								
Сорі	Copia n. In carico a:							
2		N	OME					
4		FI N	OME					
		FI	RMA					
0	EMISSIONE	05/09/2014 N	OME	Roberto Pergreffi	Franca Pa	doani I	Felice De	Rosa
DEV	DESCRIZIONE	FI	RMA	Robo type	000	to I	mell	TIONE
REV.	DESCRIZIONE	DATA		REDAZIONE	CONVAL		AFFRUVA	LIONE

Sommario

1. Introduzione	3
2. Descrizione del nocciolo PWR da 1600 MWe	3
3. Descrizione della metodologia di calcolo delle librerie	8
4. Risultati	12
Nota sui codici utilizzati	26
Bibliografia	26
Indice delle figure	26
Ringraziamenti	26

1. Introduzione

Nel presente lavoro sono state calcolate con il codice di cella APOLLO2 versione 2.8-3.E le sezioni d'urto efficaci a due gruppi energetici dei quattro tipi di elementi di combustibile 17x17 del primo ciclo di funzionamento di un reattore ad acqua pressurizzata da 1600 MWe. I dati geometrici e materiali della configurazione di riferimento sono tratti dal Final Safety Analysis Report della sezione EPR Application Documents della U.S. NRC e dalle specifiche contenute nel benchmark UAM della NEA. Le sezioni d'urto sono state calcolate al variare di quattro parametri: temperatura del combustibile, concentrazione di boro, densità del moderatore e bruciamento. Il metodo di risoluzione adottato per l'equazione del trasporto è stato quello delle Probabilità di Collisione Pij. I calcoli sono stati eseguiti con una libreria a 281 gruppi energetici di tipo SHEM basata su dati valutati JEFF-3.1.

Le sezioni d'urto così calcolate verranno utilizzate per calcoli di safety di nocciolo eseguiti la prossima annualità con il codice CRONOS2.

2. Descrizione del nocciolo PWR da 1600 MWe

Il nocciolo di un reattore da 1600 MWe è costituito da 241 elementi di combustile attivi. La zona del riflettore è modellizzata tramite 288 elementi. La Figura 1 riporta la mappa delle composizioni nella configurazione di startup con tutte le barre di controllo estratte.

Figura 1. Schema del nocciolo di un PWR da 1600 MWe

Come mostrato in Figura 1 il nocciolo del primo ciclo di funzionamento di un PWR da 1600 MWe contiene 4 diversi tipi di elementi di combustibile. Per ciascuno di essi si riporta in Tabella 1 l'arricchimento, il numero, la disposizione nel nocciolo, il numero di barrette

contenute e l'eventuale presenza di barre di controllo (CR). Per i due elementi gadoliniati, il tenore dell'ossido di gadolinio è di circa l'8% in massa.

Tipo di elemento di combustibile	Numero	Disposizione	Numero di barrette	CR
Arricchimento in ²³⁵ U al 2,1%	109	A scacchiera	265*109=28885	Si
Arricchimento in ²³⁵ U al 4,2%	16	In periferia	265*16=4240	No
Arricchimento in 235 U al 3,2% con 20 barre UO ₂ -Gd ₂ O ₃ arricchite in 235 U all'1,9%	84	A scacchiera	UO ₂ : 245*84=20580 UO ₂ -Gd ₂ O ₃ : 20*84=1680	Si
Arricchimento in 235 U al 4,2% con 12 barre UO ₂ -Gd ₂ O ₃ arricchite in 235 U al 2,2%	32	In periferia	UO ₂ : 253*32=8096 UO ₂ -Gd ₂ O ₃ : 12*32=384	Si

Tabella 1.Nocciolo di start-up

Di seguito si riporta la descrizione dei quattro tipi di elementi di combustibile. Diversamente dai PWR da 900 MWe, in ogni elemento di combustibile la posizione centrale non è occupata da un tubo guida ma da una barretta di combustibile.

Figura 2. Descrizione dei 4 tipi di elementi di combustibile (il primo con due arricchimenti diversi)

Dei 288 elementi di riflettore 72, adiacenti alla parte attiva, sono modellizzati con acciaio inossidabile e i restanti 216 con acqua borata (Tabella 2).

Materiale	Numero	Localizzazione
Acciaio inossidabile	72	Adiacente alla parte attiva
Acqua borata	216	Nella parte più esterna

Tabella 2. Materiali degli elementi di riflettore

Come mostrato in Figura 3, il nocciolo contiene 7 diversi gruppi di barre di controllo. Quattro di questi, A B C e D, assolvono a funzioni di controllo, mentre i restanti tre, SA SB e SC, sono utilizzati per la safety di nocciolo o durante lo spegnimento dell'impianto.

Figura 3. Disposizione delle barre di controllo nel nocciolo

In Tabella 3 si riporta, per gruppo di barre, il tipo, la funzione, il numero di barre e, per barra, il numero di barrette e la loro composizione. Le barre di controllo, tutte di tipo nero, sono composte da argento, indio e cadmio (AIC) rispettivamente all'80%, al 15% e al 5% in massa.

Nome	Тіро	Funzione	n barre per gruppo	n pin per barra, composizione pin
А	nero	Controllo	8	24, AIC
В	nero	Controllo	12	24, AIC
С	nero	Controllo	12	24, AIC
D	nero	Controllo	9	24, AIC
SA	nero	Sicurezza/Spegnimento	20	24 <i>,</i> AIC
SB	nero	Sicurezza/Spegnimento	12	24 <i>,</i> AIC
SC	nero	Sicurezza/Spegnimento	16	24, AIC

Tabella 3. Descrizione dei 7 gruppi di barre di controllo

Le caratteristiche dimensionali delle barrette di combustibile in varie condizioni operative sono riportate in Tabella 4, mentre in Tabella 5 sono dettagliate le composizioni dei cinque tipi di combustibile (con e senza gadolinio), della guaina e dell'acqua borata in condizioni di Hot Full Power (HFP).

Elemento di combustibile (in condizio	oni HFP)	Condizioni HFP per barrette di combustibile GEN-III		
Parametro	Valore	Parametro	Valore	
Dimensioni elemento di combustibile	17 X 17	Temperatura del combustibile [K]	900	
n. barrette per elemento di combustibile	265	Temperatura della guaina [K]	610	
n. tubi guida per elemento di	24	Temperatura del refrigerante [K]	584	
Passo tra barrette di combustibile [mm]	12,62	Pressione del refrigerante [bars]	155	
Diametro esterno della barretta [mm]	9,487	Potenza del reattore [MW _t]	4250	
Diametro pastiglia di combustibile [mm]	8,253	Concentrazione di boro [ppm]	1300	
Spessore della guaina [mm]	0,587	Cella unitaria GEN-III (in condizioni HFP)		
Diametro esterno del tubo guida [mm]	12,07	Parametro	Valore	
Diametro interno del tubo guida [mm]	11,27	Passo della cella unitaria	12,62	
Passo tra elementi di combustibile [mm]	216,1	Diametro esterno della barretta [mm]	8,253	
Gap tra elementi di combustibile [mm]	1,560	Diametro esterno della guaina [mm]	9,487	
Composizione dei materiali di un elemer	nto GEN-III	Spessore della guaina	0,578	
Griglie spaziatrici	Zircalloy-4	Materiale della guaina	Zircalloy-4	
Tubo centrale	Zircalloy-4	Materiale del gap	He	
Tubi guida	Zircalloy-4	Materiale del moderatore	H ₂ O	
Barretta	di combustib	ile in condizioni di HZP		
Temperatura del combustibile [K]	570	Pressione del refrigerante [bars]	155	
Temperatura della guaina [K]	570	Potenza del reattore [MW _t]	4250	
Temperatura del refrigerante [K]	570	Concentrazione di boro [ppm]	1400	

Tabella 4. Caratteristiche dimensionali delle barrette di combustibile in varie condizioni operative

UO_x con arricchimento in ²³⁵ U al 4,2%					
Isotopo	10^{24} at/cm ³				
U235	9,551 E-04				
U238	2,151 E-02				
016	4,493 E-02				
UO _x con arri	cchimento in ²³⁵ U al 3,2%				
Isotopo	10^{24} at/cm ³				
U235	7,277 E-04				
U238	2,173 E-02				
016	4,492 E-02				
UO _x con arricchimento in ²³⁵ U al 2,1%					
Isotopo	10^{24} at/cm ³				
U235	4,775 E-04				
U238	2,198 E -02				
016	4,492 E-02				
UO ₂ -Gd ₂ O ₃	arricchito in ²³⁵ U al 2,2%				
Isotopo	10^{24} at/cm ³				
U235	4,585 E-04				
U238	2,012 E-02				
016	4,517 E-02				
GD154	5,808 E-05				
GD155	3,952 E-04				
GD156	5,625 E-04				

GD157	4,179 E-04					
Gd158	6,484 E-04					
GD160	5,834 E-04					
UO ₂ -Gd ₂ O ₃ arricchito in ²³⁵ U al 1,9%						
lsotopo 10 ²⁴ at/cm ³						
U235	3,969 E-04					
U238	2,019 E-02					
016	4,517 E-02					
GD154	5,808 E-05					
GD155	3,952 E-04					
GD156	5,625 E-04					
GD157	4,179 E-04					
Gd158	6,484 E-04					
GD160	5,834 E-04					
Lega di zirconi	io - 4 (impurità trascurate)					
Isotopo	10^{24} at/cm ³					
SN116	6,556 E-05					
SN117	3,433 E-05					
SN118	1,074 E-04					
SN119	3,771 E-05					
SN120	1,420 E-04					
SN122	1,985 E-05					
SN124	2,442 E-05					
FE56	1,333 E-04					
CR52	6,245 E-05					
016	3,025 E-04					
ZR90	2,176 E-02					
ZR91	4,692 E-03					
ZR92	7,094 E-03					
ZR94	7,036 E-03					
ZR96	1,110 E-03					
Acqua borata (mo	deratore in condizione di HFP)					
Isotopo	10^{24} at/cm ³					
H2O	2,340 E-02					
B10	1,016 E-05					
B11	4,090 E-05					

Tabella 5. Composizione di combustibile, guaina e acqua borata

3. Descrizione della metodologia di calcolo delle librerie

Le sezioni d'urto per cui si forniscono dati nelle librerie Saphyb sono:

- sezione d'urto totale
- sezione d'urto di assorbimento
- sezione d'urto di eccesso neutronico (n, xn) _
- sezione d'urto di fissione
- spettro di fissione _
- numero di neutroni emessi per fissione x sezione d'urto di fissione _
- energia rilasciata dalla reazione d'urto totale _
- energia rilasciata dalla reazione di fissione _
- energia rilasciata dalla reazione di cattura radiativa _
- coefficiente di fuga DB2 _
- sezione d'urto di auto-scattering _
- sezione d'urto di diffusione _
- sezioni d'urto di scattering _
- matrice di scattering

La produzione di una libreria Saphyb prevede che si distingua tra due gruppi di isotopi: quelli necessari a descrivere correttamente la cinetica e la dinamica del reattore, che sono chiamati isotopi particolarizzati, di cui si tiene traccia in termini di sezione d'urto e quelli non particolarizzati che vengono fatto confluire in un unico oggetto equivalente di nome MACRO. Nel caso del presente lavoro si è scelto di considerare come particolarizzati i seguenti dieci isotopi: ¹⁰B, ¹¹B, ¹³⁵Xe, ¹³⁵I, ¹⁴⁷Nd, ¹⁴⁷Pm, ¹⁴⁸Pm, ^{148m}Pm, ¹⁴⁹Pm, ¹⁴⁹Sm.

Le librerie Saphyb sono state create a due gruppi energetici definiti a partire dalla libreria di riferimento a 281 gruppi (struttura SHEM), come in Tabella 6.

Indice del gruppo	Nome del gruppo	Intervallo energetico [MeV]	Gruppi energetici corrispondenti nella struttura SHEM
1	Gruppo veloce	1,9640 E+01 - 6,2500 E-07	1 - 248
2	Gruppo termico	6,2500 E-07 - 1,1000 E-10	248 - 281

Tabella 6. Struttura a due gruppi

Le librerie Saphyb sono state create al variare di 4 parametri:

- bruciamento (BURN)
- temperatura del combustibile (TCOM)
- densità del moderatore (DMOD)
- concentrazione di boro (CBOR)

Il calcolo delle librerie Saphyb è stato suddiviso in 2 fasi. Questa scelta è stata dovuta ad un compromesso tra tempi di calcolo e accuratezza dei risultati. Per ciascuna fase è stato compilato uno specifico file di input. La prima fase ha comportato la creazione, per ciascun

tipo di elemento di combustibile, di una libreria contenente le concentrazioni dei vari mezzi al variare del bruciamento mantenendo gli altri parametri ai loro rispettivi valori nominali (in condizioni di HFP). I valori degli step di bruciamento considerati in questa prima fase sono riportati in Tabella 7. Data la presenza di barrette di combustibile gadoliniate si è reso necessario aumentare in maniera significativa il numero degli step di bruciamento. Il massimo valore di bruciamento raggiunto è pari a 30000 MWd/MTU.

Valori progressivi dei 329 step di bruciamento [MWd/MTU]									
1 - 33	34 - 66	67 - 99	100 - 132	133 – 165	166 - 198	199 - 231	232 - 264	265 - 297	298 - 329
0	79,6875	562,5	2187,5	5500	9625	13750	17875	22000	26125
1,171875	84,375	593,75	2250	5625	9750	13875	18000	22125	26250
2,34375	89,0625	625	2312,5	5750	9875	14000	18125	22250	26375
3,515625	93,75	656,25	2375	5875	10000	14125	18250	22375	26500
4,6875	98,4375	687,5	2437,5	6000	10125	14250	18375	22500	26625
5,859375	103,125	718,75	2500	6125	10250	14375	18500	22625	26750
7,03125	107,8125	750	2562,5	6250	10375	14500	18625	22750	26875
8,203125	112,5	781,25	2625	6375	10500	14625	18750	22875	27000
9,375	117,1875	812,5	2687,5	6500	10625	14750	18875	23000	27125
10,54688	121,875	843,75	2750	6625	10750	14875	19000	23125	27250
11,71875	126,5625	875	2812,5	6750	10875	15000	19125	23250	27375
12,89063	131,25	906,25	2875	6875	11000	15125	19250	23375	27500
14,0625	135,9375	937,5	2937,5	7000	11125	15250	19375	23500	27625
15,23438	140,625	968,75	3000	7125	11250	15375	19500	23625	27750
16,40625	145,3125	1000	3125	7250	11375	15500	19625	23750	27875
17,57813	150	1062,5	3250	7375	11500	15625	19750	23875	28000
18,75	171,875	1125	3375	7500	11625	15750	19875	24000	28125
21,09375	193,75	1187,5	3500	7625	11750	15875	20000	24125	28250
23,4375	215,625	1250	3625	7750	11875	16000	20125	24250	28375
25,78125	237,5	1312,5	3750	7875	12000	16125	20250	24375	28500
28,125	259,375	1375	3875	8000	12125	16250	20375	24500	28625
30,46875	281,25	1437,5	4000	8375	12250	16375	20500	24625	28750
32,8125	303,125	1500	4125	8250	12375	16500	20625	24750	28875
35,15625	325	1562,5	4250	8375	12500	16625	20750	24875	29000
37,5	346,875	1625	4375	8500	12625	16750	20875	25000	29125
42,1875	368,75	1687,5	4500	8625	12750	16875	21000	25125	29250
46,875	390,625	1750	4625	8750	12875	17000	21125	25250	29375
51,5625	412,5	1812,5	4750	8875	13000	17125	21250	25375	29500
56,25	434,375	1875	4875	9000	13125	17250	21375	25500	29625
70,3125	456,25	1937,5	5000	9125	13250	17375	21500	25625	29750
65,625	478,125	2000	5125	9250	13375	17500	21625	25750	29875
70,3125	500	2062,5	5250	9375	13500	17625	21750	25875	30000
75	593,75	2125	5375	9500	13625	17750	21875	26000	

Tabella 7. Step di bruciamento utilizzati nella prima fase della creazione delle librerie Saphyb

Nella seconda fase sono state create, per ciascun tipo di elemento di combustibile, 22 librerie di sezione d'urto efficaci al variare della temperatura del combustibile, della densità del moderatore e della concentrazione di boro ovvero di quei parametri che nella fase precedente erano stati tenuti costanti (Tabella 8). Ciascuna di queste librerie recupera la composizione materiale corrispondente ad un dato step di bruciamento come riportato in Tabella 9.

CBOR [ppm]	TCOM [°C]	DMOD [g/cm ³]
0	10	0,54
600	130	0,62
1300	250	0,66
1800	330	0,710303
2400	500	0,74
	626,85	0,78
	1100	0,82
	1800	0,86

Tabella 8. Valori dei parametri

n. step	Bruciamento corrispondente [MWd/MTU]
1	0
2	9,375
3	18,75
4	75
5	150
6	500
7	1000
8	2000
9	3000
10	4000
11	6000
12	8000
13	10000
14	12000
15	14000
16	16000
17	18000
18	20000
19	22000
20	24000
21	26000
22	28000

Tabella 9. Step di bruciamento utilizzati nella seconda fase della creazione delle librerie Saphyb

Per ognuno dei 3 elementi di combustibile che ospitano barre di controllo questa seconda fase è stata opportunamente ripetuta. Come mostrato in Tabella 10 le librerie complessivamente prodotte sono state 154 a cui corrispondono in APOLLO2 un numero di calcoli elementari pari a 49280 (cioè 22x5x8x8x4+22x5x8x8x3=28160+21120). Ciascuna libreria ha una dimensione superiore ai 3 MB e richiede, per essere creata, circa 2 h di tempo.

Barre di controllo	Elemento di combustibile	Numero di librerie Saphyb
	Arricchito in ²³⁵ U al 2,1%	22
No	Arricchito in ²³⁵ U al 4,2%	22
	Arricchito in 235 U al 3,2% con 20 barre UO ₂ -Gd ₂ O ₃	22
	Arricchito in 235 U al 4,2% con 12 barre UO ₂ -Gd ₂ O ₃	22
	Arricchito in ²³⁵ U al 2,1%	22
Si: AICN	Arricchito in 235 U al 3,2% con 20 barre UO ₂ -Gd ₂ O ₃	22
	Arricchito in 235 U al 4,2% con 12 barre UO ₂ -Gd ₂ O ₃	22
Tot		154

Tabella 10. Numero di librerie Saphyb per tipo di elemento di combustibile con e senza barre di controllo

4. Risultati

Si riportano di seguito i principali risultati ottenuti dalla lettura delle librerie Saphyb. Se non diversamente evidenziato, i risultati fanno riferimento ad elementi di combustibile in condizione di HFP dove i tre parametri - temperatura del combustibile, densità del moderatore e concentrazione di boro - sono mantenuti ai loro rispettivi valori nominali:

- TCOM = 626,85 °C;
- DMOD = 0,710303 g/cm³;
- CBOR = 1300 ppm.

Per comodità i quattro tipi di elementi di combustibile saranno abbreviati come in Tabella 11.

Tipo di elemento di combustibile	Abbreviazione
Elemento arricchito in ²³⁵ U al 2,1%	U21
Elemento arricchito in ²³⁵ U al 4,2%	U42
Elemento arricchito in 235 U al 3,2% con 20 barre UO ₂ -Gd ₂ O ₃ arricchite in 235 U all'1,9%	U32-20GD
Elemento arricchito in 235 U al 4,2% con 12 barre UO ₂ -Gd ₂ O ₃ arricchite in 235 U al 2,2%	U42-12GD

Tabella 11. Abbreviazione per i 4 tipi di elementi di combustibile

In Figura 4 è stato graficato, per ciascun tipo di elemento di combustibile in configurazione All Rods Out (ARO), l'andamento del keff al variare del bruciamento. Come si vede, per i due elementi – U21 e U42 – che non ospitano barrette gadoliniate, il keff decresce linearmente dopo una brusca riduzione dovuta al build up di Xe e Sm. Viceversa nei due elementi gadoliniati l'andamento del keff non è lineare. Nella fattispecie l'elemento U32-20Gd ha una andamento più pronunciato rispetto a quello dell'elemento U42-12Gd a causa del più alto numero di barrette gadoliniate quindi della maggior quantità di gadolinio in esso contenuta. E' interessante osservare l'effetto del gadolinio sulla reattività dell'elemento di combustibile U42-12Gd. Per far questo in Figura 5 è stata graficata, al variare del bruciamento, la reattività residua cioè la differenza tra la reattività dell'elemento di combustibile U42 e quella dell'elemento gadoliniato U42-12GD. Come si vede il gadolinio determina una penalità residua di reattività (residual reactivity penalty) a End of Cycle (EoC), cioè dopo 30000 MWd/MTU, di poco inferiore ai 1000 pcm.

Figura 4. Kinf al variare del bruciamento per i 4 tipi di elementi di combustibile

Figura 5. Reattività residua dell'elemento di combustibile al 4,2% e dello stesso con 12 barre gadoliniate

In Figura 6 è stata graficata, al variare del bruciamento, la concentrazione di ²³⁵U per i 4 tipi di elementi di combustibile. Il calcolo della riduzione, per effetto del bruciamento, del ²³⁵U tra inizio e fine ciclo riportato in Tabella 12, mostra il diverso contributo del ²³⁵U alla potenza complessivamente generata che, per tutti gli elementi, è pari a 1600/241=6,64 MWe. Il contributo del ²³⁵U è tanto più alto quanto più alto è l'arricchimento iniziale in ²³⁵U.

Figura 6. Concentrazione di ²³⁵U al variare del bruciamento per i 4 tipi di elementi di combustibile

	U21	U42	U32-20GD	U42-12D
Δ^{235} U [at/cm ³]	-1,12E-04	-1,66E-04	-1,4E-04	-1,63E-04
Tabella 12. Riduzione della concentrazione di ²³⁵ U tra BoC e EoC.				

In Figura 7 è stata graficata, al variare del bruciamento, la concentrazione di ²³⁹Pu per i 4 tipi di elementi di combustibile. Tale concentrazione altro non è che il bilancio, ad un dato valore di bruciamento, tra produzione e rimozione di ²³⁹Pu. Se al di sotto dei 15000 MWd/MTU i due elementi di combustibile più plutonigeni sono quelli arricchiti al 2,1% e al 3,2%, al di sopra dei 15000 MWd/MTU la produzione di ²³⁹Pu è più alta per i due elementi arricchiti al 4,2%. Dalla fisica del reattore sappiamo che la produzione di plutonio è direttamante proporzionale al flusso veloce e alla concentrazione di ²³⁸U e che, nonostante lo spettro neutronico sia più termalizzato a bassi arricchimenti, per produrre la stessa potenza il flusso totale deve essere più alto. Pertanto al di sotto dei 15000 MWd/MTU i due elementi di combustibile maggiormente interessati sono proprio quelli con minore arricchimento in ²³⁵U. L'inversione al di sopra dei 15000 MWd/MTU è invece dovuta al fatto che nei due elementi meno arricchiti il ²³⁹Pu, dato il suo maggior contributo alla potenza totale, arriva prima all'equilibrio. E' bene sottolineare che l'ordine dei valori di concentrazione del ²³⁹Pu a fine ciclo dei quattro tipi di elementi di combustibile di Figura 7 non è dovuto alla maggiore quantità di plutonio prodotta negli elementi più arricchiti ma alla minore quantità di plutonio bruciata in quegli stessi elementi proprio perché più arricchiti.

Figura 7. Concentrazione di ²³⁹Pu al variare del bruciamento per i 4 tipi di elementi di combustibile

Nei due grafici successivi è interessante osservare, limitatamente al solo gruppo termico (G2), la variazione, dovuta al bruciamento, delle sezioni d'urto macroscopiche di assorbimento e di fissione. Per le quattro curve di Figura 8 è possibile dare la seguente interpretazione:

- U21 → trattandosi di zone termiche, il basso arricchimento in ²³⁵U determina a BoC il più basso valore di sezione d'urto di assorbimento (e a maggior ragione di fissione);
- U42 \rightarrow la sezione d'urto macroscopica di assorbimento aumenta al crescere del bruciamento fino a circa 15000 MWd/MTU, superati i quali si raggiunge un equilibrio tra l'effetto positivo dovuto all'aumento del ²³⁹Pu e dei prodotti di fissione e quello negativo imputabile al bruciamento di ²³⁵U;
- U32-20GD \rightarrow la curva della sezione d'urto macroscopica di assorbimento presenta tre andamenti nettamente distinti: fino a circa 4000 MWd/MTU la curva cresce per effetto dell'aumento complessivo degli assorbitori (quindi di ²³⁹Pu e dei prodotti di fissione) al netto della riduzione di ²³⁵U e gadolinio, tra 4000 e 12000 MWd/MTU la curva decresce per effetto della riduzione degli assorbitori (e in modo particolare del minore aumento di ²³⁹Pu), infine oltre i 12000 MWd/MTU si raggiunge un sostanzale equilibrio tra ²³⁹Pu e prodotti di fissione da una parte e ²³⁵U e gadolinio dall'altra;
- U42-12GD \rightarrow anche in questo caso la curva presenta tre andamenti nettamente distinti: fino a circa 8000 MWd/MTU la curva cresce per effetto dell'aumento complessivo degli assorbitori (quindi di ²³⁹Pu e dei prodotti di fissione) al netto della riduzione di ²³⁵U e gadolinio (la minor quantità di gadolinio giustifica il fatto che, rispetto al caso precedente, si arrivi fino a 8000 MWd/MTU), tra 8000 e 16000 MWd/MTU la curva decresce per effetto della riduzione degli assorbitori (e in modo particolare del minore aumento di ²³⁹Pu), infine oltre i 12000 MWd/MTU si raggiunge

un sostanzale equilibrio tra ²³⁹Pu e prodotti di fissione da una parte e ²³⁵U e gadolinio dall'altra.

Figura 8. Sezione d'urto macroscopica di assorbimento per il solo gruppo termico

Le quattro curve di Figura 9 mostrano un andamento della sezione d'urto di fissione alle zone termiche sostanzialmente omogeneo: questa infatti cresce fintantoché il bruciamento di ²³⁵U è più che compensato dalla produzione di ²³⁹Pu; poi, raggiunto un valore di equilibrio, comincia a decrescere. Le differenze in termini assoluti possono essere spiegate ricordando che le sezioni d'urto macroscopiche di fissione dipendono dalla concentrazione di isotopi fissili (quindi a BoC del solo ²³⁵U) e dalla sezione d'urto microscopica che a sua volta dipende dalla flusso termico. E il flusso termico, indipendentemente dal bruciamento e coerentemente con quanto mostrato in Figura 9, è più alto nell'elemento arricchito al 2,1%, più contenuto in quello al 3,2% e più basso nei restanti due (Figura 10).

Figura 9. Sezione d'urto macroscopica di fissione per il solo gruppo termico

Figura 10. Flusso termico al variare del bruciamento per i quattro tipi di elementi di combustibile

Di seguito si è scelto di graficare separatamente i flussi termici dei quattro tipi di elementi di combustibile di Figura 10. Che il flusso termico, al variare del bruciamento, cresca è cosa nota dalla fisica del reattore. Serve infatti per compensare la riduzione della sezione d'urto macroscopica di fissione alle zone termiche in modo che l'elemento di combustibile mantenga la stessa potenza al variare del bruciamento. E' del resto quello che vediamo nella

seconda parte dei grafici di Figura 11, Figura 12 e Figura 13. Più curioso è il fatto che nella prima parte il flusso termico diminuisca. In realtà se si considera il grafico di Figura 11 relativo all'elemento U21 (ma lo stesso vale anche per gli altri elementi), si vede bene come il punto di minimo del flusso termico, corrispondente a 10000 MWd/MTU, coincide con il punto di massimo della sezione d'urto macroscopica di fissione di Figura 9. Si può quindi dedurre che la diminuzione del flusso termico nella prima parte del grafico è imputabile all'aumento della sezione d'urto macroscopica di fissione.

Figura 11. Flusso termico al variare del bruciamento per l'elemento di combustibile al 2,1%

Figura 12. Flusso termico al variare del bruciamento per i due elementi di combustibile al 4,2%

Sigla di identificazione	Rev.	Distrib.	Pag.	di
ADPFISS – LP1 – 033	0	L	19	26

Figura 13. Flusso termico al variare del bruciamento per l'elemento di combustibile al 3,2%

E' interessante osservare, al variare del bruciamento, l'andamento dell'indice spettrale che è definito, ricordiamolo, come il rapporto tra flusso veloce e flusso termico. Tale andamento, che dipende dal mutuo rapporto tra le sezioni d'urto di assorbimento e quelle di fissione, può essere spiegato combinando i grafici di Figura 8 con quelli di Figura 9. Analizzando i grafici di Figura 14 si può dedurre che:

- per i due elementi di combustibile non gadoliniati U21 e U42, l'indice spettrale, in • accordo con la fisica del reattore, aumenta all'aumentare del bruciamento e questo perché aumentando gli assorbitori alle zone termiche, il flusso, chiamato a crescere per compensare la riduzione della sigma macroscopica di fissione, si trova sbilanciato sulla parte veloce;
- per i due elementi gadoliniati l'indice spettrale prima aumenta, poi cala, per stabilizzarsi infine, quando di fatto si esurisce il contributo del gadolinio, su un valore poco più alto di guello di partenza. Nel caso dell'elemento di combustibile U32-20GD (ma lo stesso vale per l'altro elemento gadoliniato U42-12GD) si possono distinguere quattro andamenti:
 - tra 0 e 4000 MWd/MTU l'indice spettrale aumenta perché aumenta la sezione d'urto macroscopica di assorbimento e con questa anche quella di fissione;
 - tra 4000 e 8000 MWd/MTU l'indice spettrale aumenta a causa della diminuzione del flusso termico dovuto all'aumento della sezione d'urto macroscopica di fissione. E' interessante sottolineare che in questo intervallo l'aumento dell'indice spettrale è in contrasto con l'andamento della sezione d'urto macroscopica di assorbimento che complessivamente decresce per effetto della riduzione della sezione d'urto di cattura (riduzione che non compensa l'aumento di guella di fissione);
 - tra 8000 e 12000 MWd/MTU l'indice spettrale decresce perché, pur decrescendo entrambe, la sezione d'urto macroscopica di assorbimento decresce più di quella di fissione;
 - > dai 12000 e 28000 MWd/MTU l'indice spettrale si stabilizza in ragione del fatto che il worth degli assorbitori è costante.

Figura 14. Indice spettrale al variare del bruciamento per i 4 tipi di elementi di combustibile

Nei grafici di Figura 15 e di Figura 16 sono state riportate, al variare del bruciamento, le concentrazioni di quattro isotopi del gadolinio per i due elementi arricchiti, rispettivamente, al 3,2% e al 4,2%. In entrambi i casi l'andamento riprende perfettamente quello previsto dalla fisica del reattore. Nell'elemento di combustibile U32-20GD il bruciamento quasi totale, a 13000 MWd/MTU, del ¹³⁵Gd e del ¹³⁷Gd, cioè dei due isotopi con più alta sezione d'urto di assorbimento alle energie termiche, coincide con il cambio di pendenza della curva del kinf in Figura 4. Lo stesso dicasi per l'elemento U42-12GD, ma in questo caso il valore di bruciamento corrispondente è 16000 MWd/MTU. Oltre tali valori di bruciamento la concentrazione di ¹³⁵Gd e ¹³⁷Gd è nell'ordine di 10⁻⁸ at/cm³. Parallelamente aumenta la concentrazione degli isotopi pari, ¹³⁶Gd e ¹³⁸Gd, che però hanno un'importanza neutronica assai modesta.

Figura 15. Concentrazione di 4 isotopi del gadolinio al variare del bruciamento nell'elemento al 3,2%

Figura 16. Concentrazione di 4 isotopi del gadolinio al variare del bruciamento nell'elemento al 4,2%

In Figura 17 è stato riportato, al variare del bruciamento, il kinf in configurazione All Rods In (ARI) per i tre tipi di elementi di combustibile, U21, U32-20GD e U42-12GD che ospitano barre di controllo. Come si vede le curve del kinf mostrano lo stesso andamento di quelle di Figura 4 ma, diversamente da quelle, sono traslate verso il basso per effetto dell'inserimento delle barre rendendo i tre elementi pesantemente sottocritici. In realtà rispetto ai grafici di

Figura 4, quelli di Figura 17 non mantengono lo stesso ordine. Questo fatto equivale a dire che il valore di antireattività (o worth) delle barre di controllo nei tre elementi di combustibile è diverso. Se infatti calcoliamo il Δkinf a inizio ciclo nelle due configurazioni con e senza barre di controllo troviamo variazioni differenti per i tre elementi di combustibile (Tabella 13). Che l'elemento arricchito al 2,1% sia quello con il Δkinf più marcato lo si deve al fatto che, essendo la sua sezione d'urto macroscopica di assorbimento più bassa (Figura 8), il worth delle barre di controllo risulta più alto.

Figura 17. Kinf al variare del bruciamento per i 3 tipi di elementi di combustibile con barre inserite

Come si vede in Tabella 13 la variazione di kinf dell'elemento U32-20GD è inferiore a quella dell'elemento U42-12GD.

	U21	U32-20GD	U42-12GD
∆kinf [pcm]	33452	23904	27820
k ₁ *k ₂	0.75	0.69	0.95

Tabella 13. Δ kinf a BU = 0 dovuto all'inserimento delle barre di controllo in tre elementi di combustibile

In Figura 18 si è scelto di graficare, al variare del bruciamento, il valore di antireattività delle barre di controllo nei diversi elementi di combustibile. Com'è ragionevole, gli elementi gadoliniati U32-20GD e U42-12GD sono quelli nei quali il valore di antireattività delle barre è minore (mentre è massimo nell'elemento U21). Infatti il worth delle barre segue la sezione d'urto macroscopica di assorbimento dell'elemento di Figura 8: laddove questa è più alta, più basso sarà il worth. Questo fatto è coerente con l'ordine di importanza (worth) tra i due tipi di elementi gadoliniati oltre che con l'andamento delle curve di Figura 18. Ai fini della safety di nocciolo è interessante osservare che per tutti e tre gli elementi di combustibile il worth

delle barre di controllo, oltre ad un certo valore di bruciamento pari a 3000 MWd/MTU per i due elementi U21 e U32-20GD e a 6000 MWd/MTU per l'elemento U42-12GD, continua a crescere.

Figura 18. Worth delle barre al variare del bruciamento per i 3 tipi di elementi di combustibile

L'inserimento delle barre di controllo determina due effetti sulla neutronica dell'elemento: un aumento degli assorbitori alle zone termiche (Figura 19) e conseguentemente un indurimento dello spettro (Figura 20). L'aumento degli assorbitori si traduce nell'aumento delle sezioni d'urto macroscopiche di assorbimento ed in una diminuzione di quelle di fissione.

Figura 19. Sezione d'urto macroscopica di assorbimento per il solo gruppo termico con barre inserite

Figura 20. Indice spettrale al variare del bruciamento per 3 tipi di elementi di combustibile con barre inserite

In Tabella 14 è stata calcolata la variazione dell'indice spettrale tra inizio e fine ciclo per i tre tipi di elementi di combustibile nelle due configurazioni con e senza barre di controllo. In entrambi i casi l'indice spettrale aumenta cioè lo spettro si indurisce, ma, come si vede, l'aumento maggiore si ha nella configurazione con barre di controllo inserite.

Δ Indice Spettrale tra inizio e fine ciclo	U21	U32-20GD	U42-12GD
Barre di controllo estratte (Figura 14)	1,7	0,4	0,6
Barre di controllo inserite (Figura 20)	2,5	0,9	1,1

Tabella 14. Variazione dell'indice spettrale tra inizio e fine ciclo nei tre elementi con e senza barre

Nota sui codici utilizzati

Il codice APOLLO2 è sviluppato da CEA ed è di proprietà di CEA, EDF ed AREVA NP. The APOLLO2 code is developed by CEA and co-owned by CEA, EDF and AREVA NP.

Bibliografia

[1] U.S. NRC, Final Safety Analysis Report – AREVA Design Control Document Rev.5 – Tier 2 Chapter 04 – Reactor, 2013.

[2] K. Ivanov et al., Benchmarks for uncertainty analysis in modelling (UAM) for the design, operation and sefety analysis of LWRs, vol. 1, NEA/NSCDOC(2013)7.

[3] R. Pergreffi, F. Rocchi, M. Sumini, A. Guglielmelli, Calcoli per la determinazione della composizione isotopica del combustibile di un PWR da 900 MWe al variare del bruciamento, Rapporto Tecnico ENEA NNFISS-LP2-082, 2012.

[4] G. Glinatsis, G. Grasso, R. Pergreffi, F. Rocchi, Problemi di fisica del reattore ad acqua leggera e metodi di calcolo neutronici avanzati, Rapporto Tecnico ENEA NNFISS-LP5-022, 2011.

Indice delle figure

Figura 1. Schema del nocciolo di un PWR da 1600 MWe 3
Figura 2. Descrizione dei 4 tipi di elementi di combustibile (il primo con due arricchimenti diversi) 4
Figura 3. Disposizione delle barre di controllo nel nocciolo 5
Figura 4. Kinf al variare del bruciamento per i 4 tipi di elementi di combustibile 13
Figura 5. Reattività residua dell'elemento di combustibile al 4,2% e dello stesso con 12 barre gadoliniate 13
Figura 6. Concentrazione di ²³⁵ U al variare del bruciamento per i 4 tipi di elementi di combustibile 14
Figura 7. Concentrazione di ²³⁹ Pu al variare del bruciamento per i 4 tipi di elementi di combustibile 15
Figura 8. Sezione d'urto macroscopica di assorbimento per il solo gruppo termico 16
Figura 9. Sezione d'urto macroscopica di fissione per il solo gruppo termico17
Figura 10. Flusso termico al variare del bruciamento per i quattro tipi di elementi di combustibile 17
Figura 11. Flusso termico al variare del bruciamento per l'elemento di combustibile al 2,1% 18
Figura 12. Flusso termico al variare del bruciamento per i due elementi di combustibile al 4,2% 18
Figura 13. Flusso termico al variare del bruciamento per l'elemento di combustibile al 3,2% 19
Figura 14. Indice spettrale al variare del bruciamento per i 4 tipi di elementi di combustibile 20
Figura 15. Concentrazione di 4 isotopi del gadolinio al variare del bruciamento nell'elemento al 3,2% 21
Figura 16. Concentrazione di 4 isotopi del gadolinio al variare del bruciamento nell'elemento al 4,2% 21
Figura 17. Kinf al variare del bruciamento per i 3 tipi di elementi di combustibile con barre inserite 22
Figura 18. Worth delle barre al variare del bruciamento per i 3 tipi di elementi di combustibile 23
Figura 19. Sezione d'urto macroscopica di assorbimento per il solo gruppo termico con barre inserite
Figura 20. Indice spettrale al variare del bruciamento per 3 tipi di elementi di combustibile con barre inserite 24

Ringraziamenti

Gli autori desiderano ringraziare, per il prezioso aiuto informatico, i colleghi Ing. Giacomo Grasso e Ing. Antonio Cervone.