
      

 
 

Agenzia Nazionale per le Nuove Tecnologie, 
l’Energia e lo Sviluppo Economico Sostenibile 

 
 
 
 
 
 

RICERCA DI SISTEMA ELETTRICO 
 

 

CERSE-POLIMI RL 1137/2010 

 
 

HDRB isolating devices: criteria for FE modeling and failure 
characterization 

 
G. Bianchi, Corradi dell’Acqua, M. Domaneschi, D. Mantegazza, F. Perotti 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

  

                                          

 

 
 
 
 
 
 

 
Report RdS/2010/90 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HDRB ISOLATING DEVICES: CRITERIA FOR FE MODELLING AND FAILURE CHARACTERIZATION 
 
G. Bianchi, Corradi dell’Acqua, M. Domaneschi, D. Mantegazza, F. Perotti 
 
Settembre 2010 
 
 
Report Ricerca di Sistema Elettrico 
Accordo di Programma Ministero dello Sviluppo Economico – ENEA 
Area: Produzione e fonti energetiche  
Tema: Nuovo Nucleare da Fissione  
 
Responsabile Tema: Stefano Monti, ENEA 



Lavoro svolto in esecuzione della linea progettuale LP2 punto I3 - AdP ENEA MSE del 21/06/07 
Tema 5.2.5.8 – “Nuovo Nucleare da Fissione”. 

 
    CIRTEN 

       CONSORZIO INTERUNIVERSITARIO 

      PER LA RICERCA TECNOLOGICA NUCLEARE 

                  

 

POLITECNICO DI MILANO 

DIPARTIMENTO DI INGEGNERIA STRUTTURALE 

DIPARTIMENTO DI ENERGIA 

 
 
 
 
 
 
 

HDRB isolating devices: criteria for FE modeling and failure 
characterization 

 

 
 
 
 
 
 
 
 
 
 

AUTORI 
 
L. Corradi dell’Acqua 
F. Perotti 
G. Bianchi 
D. Mantegazza 
M. Domaneschi 
 
 

CIRTEN-POLIMI RL 1137  
 

 
 
 
 

Milano, September 2010 
 

 

 
 

 



  2

Introduction and scope 

The present report describes the research activity 
performed at Politecnico di Milano within the field of 
seismic isolation of NPP buildings, with particular 
reference to the IRIS case. In this activity the 
development of reliable and efficient FE HDRB models 
in ANSYS® has been pursued along with the and 
definition of a reasonable limit state failure domain 
under seismic excitation. 

In a first phase of the activity a complete FE HDRB 
model was set, detailed in the first sections (1, 2) of 
this report. Subsequently, extensive numerical tests 
were performed to identify the most suitable material 
model among those provided by the software. 

In the second phase it was deemed to be more 
effective to focus further analyses only on the rubber 
layer, rather than on the full isolator. This approach 
gives a desirable tighter control over constitutive law 
phenomenology, allows to neglect interaction between 
rubber ad steel and helps to reduce model size, 
accelerating the route to a robust material definition to 
be implemented in the final isolator model. 

Thus, the content of subsequent sections of the 
present report refers to a single layer of rubber, whose 
material properties and geometry are detailed in § 3 
and in § 4. 

 
Specific scopes of the document are: 
 
1. identify limit state conditions. Since new 

regulations (EN 15129) prescribe to estimate 
both “complete failure” (rupture) and “first 
damage” conditions under low and high 
occurrence probability seismic events, 
respectively (as summarized in § 0), and 
considering that rupture experiments results are 
not yet available, first damage condition is 
investigated here. Moreover, it can be 
confidently based on equivalent stress peaks 
derived from an hyperelastic FE model; 

2. evaluate reliability and validity domain of the 
analytical approach developed by (Corradi et al. 
2009) that proposes a closed formula for 
stresses in a rubber layer, subjected separately 
to vertical and horizontal loading, based on an 
hyperelastic (9 parameters Mooney-Rivlin 
constitutive law) problem solution, formulated in 

large displacement. The validity of this theory 
could significantly reduce the computational 
cost of “first damage” limit state domain 
statement; 

3. quantify the problem nonlinearity at high 
horizontal strain values (300%) by evaluating 
the error in stress values between a reference 
FE solution, where rubber layer is subjected to 
horizontal and vertical force simultaneously, 
and the superposition of two FE solutions where 
the same forces are applied separately. As 
stated for scope 2, this approach could lead to 
computational savings in domain definition; 

4. insert current work into new European Norm 
frame (EN 15129). 

 
These scopes are mainly functional to accomplish 

step 2 and step 4 of the procedure described by (De 
Grandis et al. 2009), which proposes an innovative 
approach for the evaluation of seismic isolator system 
fragility. In particular, they can be summarized as 
follows: 

 
- step 1: performance of experimental tests; 
- step 2: development a refined FE model of the 

isolator, taking into account all significant 
sources of mechanical and geometrical 
nonlinearities; the model, after having been 
validated with experimental results, will be used 
to simulate additional and more complex 
numerical tests; 

- step 3: calibration based on experimental tests; 
- step 4: statement of the limit state condition for 

the isolator, expressing the interaction between 
horizontal and vertical load at failure; 

- step 5: isolation system fragility analysis. 

1. Phase 1: material model requirements and 
ANSYS capabilities  

In order to reproduce accurately NPP (Nuclear 
Power Plant) seismic response, the material model 
shall exhibit the following features: 

 
- nonlinear stiffness; 
- displacement  dependent (hysteretic) damping; 

while other features, like: 
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- small progressive increase of hysteretic cycles 
amplitude; 

- temperature dependence; 
 

are judged to be numerically negligible, considering 
the scope of analyses. Shear stiffness dependence on 
vertical and biaxial horizontal load will be investigated. 

Other modelling strategies, such as lumped linear 
viscoelastic or bilinear models, are not investigated, 
since they could exhibit good performance just at a 
prescribed strain level. Moreover, as reported in (Grant 
et al. 2005), where an equivalent viscous damping is 
calculated for a certain peak displacement excursion, 
cycles at lower levels of displacement will typically be 
overdamped. Moreover, viscous damping has been 
recognized as negligible compared to hysteretic (Forni 
2009). 

The so called “Mullins’s effect”, or “scragging”, is still 
being investigated in order to evaluate if it is relevant in 
design phase and/or safety analysis, but is believed to 
be negligible so far. It is mainly related to stiffness 
degradation that makes possible to distinguish 
between virgin and preconditioned specimens and 
suggests bidirectional coupling (deformation in one 
direction degrades stiffness in the orthogonal direction 
as well), but in literature (Thompson et al. 2000, Clark 
et al. 1997) the phenomenon is believed to be 
recoverable and maybe due to the compound. 

In order to reproduce the hysteretic damping 
behaviour, various authors proposed different models 
in the last thirty years. As reported in (Forni et al. 
2009), the damping force may be considered as a 
hysteretic, rate-independent effect (Kikuchi and Aiken 
1997), or as a viscoelastic dissipation that depends on 
the strain rate (Hwang, 2002). Tsai [2003] recently 
proposed a model based on a Bouc-Wen (Bouc 1967) 
approach, coupled with a linear viscious term. All these 
models require the identification of a large number of 
material parameters. The large strain constitutive 
response of filled elastomers has been extensively 
studied, including hyperelastic, viscoelastic and 
viscoplastic models. Recent models my (Miehe and 
Keck 2000) and (Haupt and Sedlan 2001) consider all 
three of these aspects of elastomer behaviour, 
represented rheologically by a number of appropriately 
defined springs in parallel. 

(Abe et al. 2004) extended an elastoplastic model 
by adding a displacement-dependent isotropic 
hardening rule and the parallel nonlinear elastic spring 

Several phenomenological models are summarized 
in (Grant et al. 2005): 

- Unidirectional models: classical linear and 
bilinear models (Hwang 2002, Kikuchi and 
Aiken 1997, Tsai et al. 2003): 

- Plasticity-based models (accounting for 
bidirectional behavior): classical plasticity with 
kinematic hardening, bounding surface model, 
bounding and stiffening surfaces model (Grant  
et al. 2005). 

 
Among reported materials models, ANSYS® 

isotropic hyperelastic models are listed, commonly 
adopted to reproduce a static loading path (command: 
TBDATA with TB, HYPER): 

 
- Neo-hookean, with 2 parameters; 
- Mooney-Rivlin, with 2, 3, 5 or 9 

parameters; 
- Polynomial form, with N2+N parameters; 
- Ogden, with 3N parameters (3N-2 

independent); 
- Arruda-Boyce, with 3 parameters; 
- Gent, with 3 parameters; 
- Yeoh, with 2N parameters; 
- Ogden compressive foam, with 2N 

parameters; 
- Blatz-Ko, with 1 parameter; 
- User-defined subroutine; 

All output stresses are computed from the second 
Piola-Kirchoff stresses. 

Since the superposition of hydrostatic pressure in 
incompressible materials makes the following stress 
states equivalent: 

- uniaxial tension and equibiaxial 
compression; 

- uniaxial compression and equibiaxial 
tension; 

- planar tension (plain strain) and planar 
compression; 

three independent stress states should be performed 
to define material parameter. 



  4

 
 

2. Phase 1: criteria for FE modelling 

After having considered and studied experimental 
results, phenomenological aspects, constitutive 
HDRB laws and having examined ANSYS® 
capabilities, the following modelling strategy has 
been chosen to start HDRB 3D analysis: 

 
- parametric geometry and mesh generation: 

solid discs simulating high-damping rubber 
(three elements layers) + interposed shell 
elements for middle steel plates; model 
generation has been implemented via 
parametric macro; 

- constraint: shell nodes have translational 
DOF  tied to aligned solid elements nodes 
by means of rigid links. 

- finite elements: SOLID186 for solid 
elements (higher order 3D 20-node element 
with quadratic displacement behaviour, 
suitable to model curved boundaries; it 
supports plasticity, hyperelasticity, creep, 
stress stiffening, large deflection, large 
strain; its formulation can simulate nearly 
incompressible elastoplastic and fully 
incompressible hyperelastic materials); 
SHELL281 for shell steel elements (4+4  

- node elements with 3+3 DOF at each node, 
allowing for finite membrane strains); 

- material: TBD 
 

3. Phase 2: rubber properties for FE analysis 

In order to evaluate the static and dynamic 
behaviour of HDRB and their ultimate capacity for 
vertical and horizontal loading, a series of tests were 
performed at ISMES - CESI laboratories (Bergamo, 
June 2010) and at FIP Industries laboratories 
(Padova, June 2010) on scaled isolators specimens. 
Since experimental data are not completely available 
at the moment, analyses results reported here are 
based on hard rubber properties derived from the 
same source Errore. L'origine riferimento non è 
stata trovata. that was adopted by Corradi et al. in 
[1] for analytical rubber model tuning. 

Reference rubber parameters are as follows: 
 
- E = 2.40 MPa 
- G = 0.80 MPa 

- ν = 0.50 
 
The experimental curve underwent a least square 

fitting procedure in order to estimate Mooney - Rivlin 
hyperelastic constitutive law parameters, resulting in: 
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- c10 = 0.08455 MPa 
- c20 = 0.03170 MPa 
- c30 = -6.710E-4 MPa 
 
with  reference to the following classical Mooney – 

Rivlin elastic potential energy formula: 
 
W = c10(I1 – 3) + c01(I2 – 3) + c20(I1 – 3)2 + 

+ c11(I1 – 3)(I2 – 3) + c02(I2 – 3)2 + c30(I1 – 3)3 

+ + c21(I1 – 3)2(I2 – 3) + c12(I1 – 3)(I2 – 3)2 + 
+ c03(I2 – 3)3 

 
where all other six non-zero parameters were 

forced at zero, following the approach in [3]. 

4. Phase 2: ANSYS® FE model and analysis 
parameters  

 
To investigate the behaviour of a single HD rubber 

layer, the following modelling strategy has been 
chosen, considering literature experimental results, 
phenomenological aspects, HD rubber constitutive 
laws and ANSYS® capabilities: 

 
- parametric geometry and mesh generation: 

the high-damping rubber single layer model 
generation has been implemented via 
parametric macro with variable geometry 
and mesh density. At the top and at the 
bottom face, a rigid steel plate has been 
modeled as a node with a rigid link with the 
rubber disc upper and lower face. 

 

 
VARIABLE 

PARAMETER 
ADOPTED 

GEOMETRY 

Diameter (D) 250 mm 

Rubber layer 

th. (sr) 
2.5 mm 

MESH 

N. of element 

in each rubber 

layer th. (e) 

6 

Typical 

dimensions of 

brick 

elements (es) 

3.33, 3.33, 0.42 

[mm] 

(x, y, z) 

N. of DOF 

(half isolator) 
70000 

 

 
- constraints: the connection between the 

upper and lower nodes and the rubber 
surfaces is provided by means of rigid links. 
Just half isolator has been modeled and 
symmetry constraint were set at DOF laying 
on XZ plane; 

- finite elements: SOLID185 element for 
bricks (linear 3D 8-node element with 3 
DOF at each node, with plasticity, 
hyperelasticity, stress stiffening, creep, 
large deflection, and large strain 
capabilities. It also has mixed formulation 
capability for simulating deformations of 
nearly incompressible elastoplastic 
materials, and fully incompressible 
hyperelastic materials). The chosen 
integration method is the Uniform Reduced 
Integration with hourglass control (ANSYS 
Theoretical Manual); 

- material: (see  § 3); 
- boundary conditions and loads: top and 

bottom nodes are used to impose all loads 
and boundary conditions to the model. 
Vertical and horizontal actions are always 
applied by means of vertical force in Z 
direction and horizontal displacement in X 
direction, respectively. Bottom node is 
always fixed (Ux = Uy = Uz = Rx = Ry = Rz 
= 0), while upper node BCs depend on the 
analysis case and scope (see § 1), as 
follows 

 
Analysis cases are listed in the following table, as 

referenced in results figures (§ 4.1, § 4.2 and § 4.3): 
 

ANALYSIS 

CASE 

RESTRAINED 

DOF AT 

UPPER 

NODE 

APPLIED 

LOAD 

Fz [N] 

APPLIED 

DISP. 

Ux [mm] 

1.a 
Ux, Uy, 

Rx, Ry, Rz 
80000 0 

1.b 
Uy, 

Rx, Ry, Rz 
- 7.5 

2.a 
Uy, Uz, 

Rx, Ry, Rz 
- 7.5 

3.a 
Uy, 

Rx, Ry, Rz 
80000 7.5 
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Target final displacement applied in this highly 
geometric and mechanical nonlinear analysis 
(horizontal displacement to rubber layer height ratio is 
up to 300%) needed special cautions and required 
extensive work to choose the most suitable finite 
element formulation, mesh definition, step increment 
and nonlinear analysis parameters to obtain 
convergence, which was found to be highly affected 
by vertical to horizontal loads ratio. 

4.1 Results – scope 1 (stress analysis) 

Stress analysis results are reported here in the 
form of contour lines draw on isolator vertical and 
horizontal sections and stress graph along loading 
paths, with reference to analysis ID listed in § 4:  

 
Vertical loading (analysis case 1.a): 
 
- Sigma_z (horizontal  section 1 @100% Vmax) 
- Sigma_z (vertical section 2 @100% Vmax) 
- Sigma_t (horizontal section @100% Vmax) 
- Sigma_t (vertical section 2 @100% Vmax) 
- Sigma_r (horizontal section 11@100% Vmax) 
- Sigma_r (vertical section 2 @100% Vmax) 
- Tau_zr (horizontal section 1 @100% Vmax) 
- Tau_zr (vertical section 2 @100% Vmax) 
- sigma Von Mises (horizontal section 1 @100% 

Vmax) 
- sigma Von Mises (vertical section 2 @100% 

Vmax) 
 
Horizontal loading (analysis case 1.b): 
 
- sigma_x (2x horizontal section 1 

@150%,300% Hmax) 
- sigma_x (2x vertical section 2 @150%,300% 

Hmax) 
- tau_zx (2x horizontal section 1 @150%,300% 

Hmax) 
- tau_zx (2x vertical section 2 @150%,300% 

Hmax) 
- sigma Von Mises (2x horizontal section 1 

@150%,300% Hmax) 
- sigma Von Mises (2x vertical section 2 

@150%,300% Hmax) 
 
- 3 x 2 stress graphs, along loading path (sigma 

x  at TA and MA points, tau_xz at TA and MA 

points, sigma Von Mises at TB and MB 
points). 

 
- Fx and My reaction force and moment at top 

node. 

4.2 Results – scope 2 (validation of (Corradi et 
al. 2009) model)  

 Stress analysis results are reported here in the 
form of stress graph, with reference to analysis ID 
listed in § 4: 

 
Vertical loading (analysis case 1.a and analytical 

solution): 
 
- 2 x 2 stress graphs (FE and analytical), along 

radial path (sigma_z along path M, tau_zr  
along path T). 

 
Horizontal loading (analysis case 2.a and 

analytical solution): 
 
- 3 x 2 stress graphs, along loading path (FE 

and analytical, sigma x at MA point, sigma_z 
at MA point, tau_zr at MA point). 

 
- Fx, Fz and My reaction forces and moment at 

top node. 

4.3 Results – scope 3 (superposition)  

Stress analysis results are reported here in the 
form of stress graph, with reference to analysis ID 
listed in §4: 

 
Horizontal and vertical loading (analysis cases 3.a, 
1.a+1.b): 

 
- 3 figures containing 2 + 2 + 2 stress graph 

gathered at 300% horizontal displacement and 
Vmax, along radial path T (combination and 
superposition for sigma_z, tau_xz, sigma Von 
Mises)  

 
- 3 figures containing 2 + 2 + 2 stress graph 

gathered at 300% horizontal displacement and 
Vmax, along radial path M (combination and 
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superposition for sigma_z, tau_xz, sigma Von 
Mises)  

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. European Norm 15129:2009 

In order to insert current analyses into a modern 
regulation frame, some general prescription for anti-
seismic devices, contained in chapter 4 “General 
design rules” of (UNI EN 15129), are summarized 
here: 

 
- 4.1.1 “Fundamental requirements”: some “non 

failure” and “damage limitation”, for severe and 
serviceability seismic events respectively, are 
stated. “Damage limitation” has to be intended 
as the definition of a damage that does not 
require replacement, 

- 4.1.4 “Structural and mechanical 
requirements”: The device and its connections 
to the structure should be designed so that, for 
a seismic action beyond the design seismic 
action (ultimate limit state), there is no 
immediate catastrophic failure or immediate 
change in the properties sufficient to be 
detrimental to the dynamic behaviour of the 
structure. 

They shall retain a residual capacity at least 
equal to the permanent actions to which they 
are directly subjected or to such combinations 
of actions corresponding to design situations 
(including eventually a seismic situation) that 
may occur after the earthquake. 
Furthermore, isolation devices shall be 
designed with higher reliability then the whole 
structure, by introducing a magnification factor 
on design actions (1.20 or 1.50, as 
recommended in EUROCODE 8, EN1998-1 for 
elastomeric isolators in and in EN1998-2 
respectively). It has to be noted that §4.3.1 
clarifies that this increment is functional to 
reduce seismic analysis uncertainties. 

6. Future activities 

Further analyses are being developed in order to 
accomplish final objectives described in §1 for the 
evaluation of isolator system fragility. In particular, 
future work will include: 

 
- analysis of experimental results (see § 3) to tune 

Mooney – Rivlin parameters; 
- analysis of experimental results (see § 3) to 

investigate first damage and ultimate capacity of the 
isolator, for horizontal and vertical loads separately; 

- proceed in HDRB FE full model development with 
Mooney Rivlin hyperelastic constitutive law; 

- limit state domain definitions, based on 
comparison between FE analyses and experimental 
failure modes. 
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4.1 - sigma z (h. sections @100% Vmax) 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
4.1 - sigma z (v. sections @100% Vmax) 
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4.1 - sigma t (h. sections @100% Vmax) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 - sigma t (v. sections @100% Vmax) 
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4.1 - sigma r (h. sections @100% Vmax) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 - sigma r (v. sections @100% Vmax) 
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4.1 - tau zr (h. sections @100% Vmax) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 - tau zr (v. sections @100% Vmax) 
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4.1 - sigma Von Mises (h. sections @100% Vmax) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 -sigma Von Mises (v. sections @100% Vmax) 
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4.1 - deformad 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 - ANALYSIS CASE 1.B - 100% VERTICAL LOAD = 80 KN
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4.1 - ANALYSIS CASE 1.B - 100% VERTICAL LOAD = 80 KN
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4.1 - ANALYSIS CASE 1.B - 100% VERTICAL LOAD = 80 KN
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4.1 - ANALYSIS CASE 1.B - 100% HORIZONTAL DISP. = 300% h  (7.5 mm)
FX reaction force (top node)
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4.1 - ANALYSIS CASE 1.B - 100% HORIZONTAL DISP. = 300% h  (7.5 mm)
MY reaction moment (top node)
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4.2 - sigma x (2x h. top sections @150%,300% Hmax) 
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4.2 - sigma x(2x v. sections @150%,300% Hmax) 
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4.2 - tau zx (2x h. top sections @150%,300% Hmax) 
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4.2 - tau zx (2x v. sections @150%,300% Hmax) 
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4.2 - sigma Von Mises (2x h. top sections @150%,300% Hmax) 
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4.2 - sigma Von Mises (2x v. sections @150%,300% Hmax) 
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4.2 - ANALYSIS CASE 1.A - 100% VERTICAL LOAD = 80 KN
sigma Z - path M
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4.2 - ANALYSIS CASE 1.A - 100% VERTICAL LOAD = 80 KN
tau XZ - path M
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4.2 - ANALYSIS CASE 2.A - 100% HORIZONTAL DISP. = 300% h  (7.5 mm)
sigma X - point MA
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4.2 - ANALYSIS CASE 2.A - 100% HORIZONTAL DISP. = 300% h  (7.5 mm)
sigma Z - point MA
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4.2 - ANALYSIS CASE 2.A - 100% HORIZONTAL DISP. = 300% h  (7.5 mm)
tau ZX - point MA
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4.2 - ANALYSIS CASE 2.A - 100% HORIZONTAL DISP. = 300% h  (7.5 mm)
FX reaction force (top node)
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4.2 - ANALYSIS CASE 2.A - 100% HORIZONTAL DISP. = 300% h  (7.5 mm)
FZ reaction moment (top node)
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4.2 - ANALYSIS CASE 2.A - 100% HORIZONTAL DISP. = 300% h  (7.5 mm)
MY reaction moment (top node)
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4.3 - ANALYSIS CASE 3.A, 1.A+1.B - H+V EXACT SOLUTION AND LINEAR SUPERPOSITION 
sigma Z at the top face
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4.3 - ANALYSIS CASE 3.A, 1.A+1.B - H+V EXACT SOLUTION AND LINEAR SUPERPOSITION 
tau XZ at the top face
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4.3 - ANALYSIS CASE 3.A, 1.A+1.B - H+V EXACT SOLUTION LINEAR SUPERPOSITION
sigma MISES at the top face
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4.3 - ANALYSIS CASE 3.A, 1.A+1.B - H+V EXACT SOLUTION AND LINEAR SUPERPOSITION 
sigma Z at the mid face
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4.3 - ANALYSIS CASE 3.A, 1.A+1.B - H+V EXACT SOLUTION AND LINEAR SUPERPOSITION
tau XZ at the mid face
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4.3 - ANALYSIS CASE 3.A, 1.A+1.B - H+V EXACT SOLUTION AND LINEAR 
SUPERPOSITION

sigma MISES at the mid face
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