

RICERCA SISTEMA ELETTRICO

Modelli Simulink per la simulazione dei moderni impianti di solar cooling: collettori e chiller

L. Pistocchini, L. Colasuonno, M. Aprile

Report RSE/2009/61

RICERCA SISTEMA ELETTRICO

Modelli Simulink per la simulazione dei moderni impianti di solar cooling: collettori e chiller

L. Pistocchini, L. Colasuonno, M. Aprile

Report RSE/2009/61

MODELLI SIMULINK PER LA SIMULAZIONE DEI MODERNI IMPIANTI DI SOLAR COOLING: COLLETTORI E CHILLER

L. Pistocchini, L. Colasuonno, M. Aprile (Dipartimento di Energia del Politecnico di Milano)

Aprile 2009

Report Ricerca Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico - ENEA Area: Usi finali Tema: Studio e dimostrazione di forme di finanza innovativa e di strumenti di programmazione e pianificazione per la promozione di tecnologie efficienti per la razionalizzazione dei consumi elettrici a scala territoriale e urbana Responsabile Tema: Ilaria Bertini, ENEA POLITECNICO DI MILANO

Modelli Simulink per la simulazione dei moderni impianti di solar cooling

Relazione tecnica sull'implementazione di modelli Simulink di collettori piani, collettori ETC e CPC.

Autori Ing. Pistocchini Lorenzo, Dipartimento di Energia - Politecnico di Milano Ing. Colasuonno Luca, Dipartimento di Energia - Politecnico di Milano Ing. Aprile Marcello, Dipartimento di Energia - Politecnico di Milano

Data 31/3/2009

Indice degli argomenti

ollettore piano 2
Descrizione
Equazioni del modello
Validazione
Input, output e parametri
ollettore ETC - CPC
Equazioni del modello
Validazione
Input, output e parametri
iferimenti bibliografici

Collettore piano

Descrizione

Il modello di collettore piano calcola le prestazioni di un campo solare costituito da stringhe di collettori in parallelo. Ciascuna stringa può essere a sua volta costituita da un certo numero di collettori in serie. Le prestazioni del campo solare sono determinate dal numero di moduli in serie e dalle caratteristiche del modulo base. L'utente deve inserire i coefficienti di prestazione del collettore base, come definito dalle norme internazionali sui test dei collettori (a riguardo si veda il sito SPF [1]). Secondo tali norme, il rendimento di un collettore può essere espresso attraverso una relazione quadratica funzione della differenza di temperatura tra fluido termovettore e aria ambiente. La temperatura del fluido in questione è la temperatura media tra ingresso e uscita dal collettore. Inoltre, è necessario inserire il fattore d'angolo, cioè il parametro che rappresenta gli effetti sul rendimento ottico del collettore derivanti da angoli di incidenza della radiazione solare diversi da zero.

Equazioni del modello

Il modello si basa sull'equazione di Hottel-Whillier [2], che definisce il rendimento di un collettore come composto dalla parte ottica e da quella dispersiva:

$$\eta = \frac{Q_u}{AI_T} = \frac{\dot{m}C_{pf}(T_o - T_i)}{AI_T} = F_R(\tau\alpha)_n - F_R U_L \frac{(T_i - T_a)}{I_T}$$

Il coefficiente di dispersione U_L non è costante ma varia con la temperatura. Assumendo che, alle basse temperature, una variazione lineare con la temperatura rappresenti un'approssimazione accettabile:

 $U_L = U_0 + U_1 (T_i - T_a)$

Si ottiene dunque una espressione del tipo:

$$\eta = a_0 - a_1 \frac{(T_i - T_a)}{I_T} - a_2 \frac{(T_i - T_a)^2}{I_T}$$

che mette in evidenza la dipendenza dai tre parametri principali che caratterizzano la curva di rendimento del collettore secondo le normative internazionali (ASHRAE, CEN): a_0 , $a_1 e a_2$. Poiché la normativa europea impone la valutazione della curva di efficienza in funzione della differenza tra la temperatura media del collettore e quella ambiente, è necessario introdurre una correzione delle equazioni precedenti come segue:

$$\begin{cases} a_0^{US} = a_0^{EU} \left(\frac{1}{1 + a_1^{EU} / (2\dot{m}_{test}C_{pf})} \right) \\ a_1^{US} = a_1^{EU} \left(\frac{1}{1 + a_1^{EU} / (2\dot{m}_{test}C_{pf})} \right) \end{cases}$$

La valutazione dell'efficienza del collettore per condizioni di portata differente da quella di test (a cui sono riferiti i parametri a_0 , $a_1 e a_2$) è introdotto il coefficiente r_1 , che interessa sia la parte ottica che dispersiva del modello.

$$r_{1} = \frac{F_{R}U_{L}}{F_{R}U_{L}|_{test}} = \frac{F_{R}(\tau\alpha)_{n}}{F_{R}(\tau\alpha)_{n}|_{test}} = \frac{\frac{\dot{m}C_{pf}}{AF'U_{L}} \left(1 - e^{\frac{-AF'U_{L}}{\dot{m}C_{pf}}}\right)}{\frac{\dot{m}C_{pf}}{AF'U_{L}} \left(1 - e^{\frac{-AF'U_{L}}{\dot{m}C_{pf}}}\right)_{test}}$$

dove $F'U_L$ è definito dalla seguente equazione:

$$F'U_{L} = -\frac{\dot{m}C_{pf}}{A} \ln\left(1 - \frac{F_{R}U'_{L}A}{\dot{m}C_{pf}}\right)$$

Il suddetto parametro, determinato alle condizioni di test, si può considerare pressoché costante alle condizioni di funzionamento.

La connessione in serie di più collettori introduce un ulteriore effetto correttivo, che è rappresentato nel coefficiente r_2 così definito:

$$r_{2} = \frac{1 - \left(1 - \frac{F_{R}U'_{L}A}{\dot{m}C_{pf}}\right)^{N_{s}}}{N_{s}\frac{F_{R}U'_{L}A}{\dot{m}C_{pf}}}$$

Il fattore d'angolo, ossia la correzione dovuta alla direzione non normale della radiazione incidente è così espresso:

$$\frac{(\tau\alpha)}{(\tau\alpha)_n} = \frac{I_{bT} \frac{(\tau\alpha)_b}{(\tau\alpha)_n} + I_d \left(\frac{1 + \cos\beta}{2}\right) \frac{(\tau\alpha)_d}{(\tau\alpha)_n} + \rho_g I \left(\frac{1 - \cos\beta}{2}\right) \frac{(\tau\alpha)_g}{(\tau\alpha)_n}}{I_T}$$

Per collettori piani, sfruttando le simmetrie ottiche, il fattore d'angolo relativo alla componente diretta può essere approssimato dalla seguente equazione empirica [3]:

$$\frac{(\tau\alpha)_b}{(\tau\alpha)_n} = 1 - b_0 \left(\frac{1}{\cos\theta} - 1\right) - b_1 \left(\frac{1}{\cos\theta} - 1\right)^2$$

I fattori d'angolo relativi alla componente diffusa (d) e riflessa dal terreno (g) si possono stimare ricorrendo alla relazione precedente utilizzando però i seguenti angoli di incidenza effettivi:

$$\theta_{d} = 59.68 - 0.1288\beta + 0.001497\beta^{2}$$

$$\theta_{g} = 90.00 - 0.5788\beta + 0.002693\beta^{2}$$

Validazione

Si riporta il grafico del rendimento di alcuni collettori piani e il confronto tra risultati del modello e la caratteristica fornita dal costruttore.

Input, output e parametri

Nome	Descrizione	Unità	Тіро
Tin	Temperatura di ingresso al collettore	°C	input
Та	Temperatura ambiente	°C	input
Nser	Numero di collettori in serie	-	input
IT	Radiazione totale sulla superficie orientata	W/m ²	input
Ι	Radiazione totale sull'orizzontale	W/m ²	input
Id	Radiazione diffusa sull'orizzontale	W/m ²	input

theta	Angolo di incidenza della radiazione diretta sulla superficie del collettore	o	input
slope	Inclinazione del collettore sull'orizzontale	o	input
Grefl	Indice di riflessione del terreno	-	input
Nome	Descrizione	Unità	Тіро
Tout	Temperature di uscita dalla serie di collettori	°C	output
Qout	Calore raccolto dal campo solare	J	output
Nome	Descrizione	Unità	Тіро
A (¹)	Superficie [di apertura] del singolo collettore	m ²	parametro
Ncoll	Numero totale di collettori	-	parametro
m_primario	Portata del circuito solare	l/h	parametro
m_test	Portata in condizioni di test	l/h	parametro
a0	Efficienza ottica	-	parametro
a1	Coefficiente di efficienza del primo ordine	W/(m ² K)	parametro
a2	Coefficiente di efficienza del secondo ordine	W/(m ² K)	parametro
glicole	Percentuale di glicole del fluido termovettore	-	parametro
theta_IAM	Angolo di cui è fornito il valore di IAM	0	parametro
Ktheta	IAM calcolato per l'angolo considerato	-	parametro

Collettore ETC - CPC

Equazioni del modello

Il modello si differenzia da precedente per il solo trattamento del fattore d'angolo (o IAM, Incidente Angle Modifier). In questo caso, é necessario fornire il fattore d'angolo nel piano longitudinale e trasversale, attraverso cui calcolare, per fattorizzazione, il fattore d'angolo per un generico angolo di incidenza.

¹ È consigliato l'utilizzo della superficie di apertura come riferimento della superficie del collettore, ma la scelta della superficie di assorbitore o di quella lorda è assolutamente indifferente. È invece fondamentale che i parametri di efficienza a_0 , $a_1 e a_2$ siano coerenti con la superficie scelta.

Figura 3 - Angolo di incidenza longitudinale e trasversale. xy è il piano di apertura del collettore, z la normale a tale piano. x è l'asse longitudinale (asse del tubo assorbitore).

I fattori d'angolo nel piano longitudinale e trasversale devono essere definiti attraverso l'inserimento di almeno 3 valori, corrispondenti a valori dell'angolo di riferimento compresi tra 0 e 90°.

Validazione

Si riporta il grafico del rendimento di alcuni collettori CPC e il confronto tra risultati del modello e la caratteristica fornita dal costruttore.

Figura 6 - Curva di rendimento di un collettore CPC - Test #1

Input, output e parametri

Nome	Descrizione	Unità	Тіро
Tin	Temperatura di ingresso al collettore	°C	input
Та	Temperatura ambiente	°C	input
Nser	Numero di collettori in serie	-	input
IT	Radiazione totale sulla superficie orientata	W/m ²	input
theta	Angolo di incidenza della radiazione diretta sulla superficie del collettore	o	input
Nome	Descrizione	Unità	Тіро
Tout	Temperature di uscita dalla serie di collettori	°C	output
Qout	Calore raccolto dal campo solare	J	output

Nome	Descrizione	Unità	Тіро
A (²)	Superficie [di apertura] del singolo collettore	m ²	parametro
Ncoll	Numero totale di collettori	-	parametro
m_primario	Portata del circuito solare	l/h	parametro
m_test	Portata in condizioni di test	l/h	parametro
a0	Efficienza ottica	-	parametro
a1	Coefficiente di efficienza del primo ordine	W/(m² K)	parametro
a2	Coefficiente di efficienza del secondo ordine	W/(m ² K)	parametro
glicole	Percentuale di glicole del fluido termovettore	-	parametro
alfa _tr	Angoli di cui è fornito il valore dello IAM trasversale	o	parametro
IAM_alfa_tr	Valore dello IAM trasversale corrispondente all'angolo alfa	-	parametro
alfa _lo	Angoli di cui è fornito il valore dello IAM longitudinale	o	parametro
IAM_alfa_lo	valore dello IAM longitudinale corrispondente all'angolo alfa	-	parametro

Riferimenti bibliografici

[1] "Istituto per la tecnologia solare SPF", http://www.solarenergy.ch/spf.php?id=spf&lang=it
[2] Duffie J.A. and Beckman W.A., 2006. Solar Engineering of Thermal Processes – Third Edition, Wiley-Interscience, New York
[3] ASHRAE, 2003 - Standard 93-2003: Methods of testing to determine the performance of solar collectors, ASHRAE, Atlanta

² È consigliato l'utilizzo della superficie di apertura come riferimento della superficie del collettore, ma la scelta della superficie di assorbitore o di quella lorda è assolutamente indifferente. È invece fondamentale che i parametri di efficienza a_0 , $a_1 e a_2$ siano coerenti con la superficie scelta.

POLITECNICO DI MILANO

Modelli Simulink per la simulazione dei moderni impianti di solar cooling

Relazione tecnica sull'implementazione di modelli Simulink di refrigeratori d'acqua ad adsorbimento acqua - gel di silice.

Autori

Ing. Pistocchini Lorenzo, Dipartimento di Energia - Politecnico di Milano Ing. Colasuonno Luca, Dipartimento di Energia - Politecnico di Milano

Data 31/3/2009

Indice degli argomenti

Principio di funzionamento	11
Modello matematico	12
Implementazione in Simulink	12
Validazione	13
File dei parametri	15

Principio di funzionamento

La macchina in questione è un refrigeratore ad adsorbimento, che sfrutta la capacità di alcuni materiali di assorbire o cedere vapore in funzione del rapporto tra la propria pressione di saturazione e quella dell'ambiente. Nello specifico, la macchina considerata è un refrigeratore a due letti, che sfrutta l'interazione di silica-gel/acqua.

E' composto da quattro elementi principali, rappresentati nella figura sottostante:

un Evaporatore, un Condensatore, e due Letti che alternativamente svolgono le stesse due funzioni. I quattro elementi sono sostanzialmente degli scambiatori di calore, nei due Letti lo scambiatore è rivestito di silica-gel. All'interno della macchina viene creato il vuoto, l'acqua evapora e la pressione interna raggiunge la tensione di vapore relativa alla temperatura presente in ciascun componente.

Figura 1: schema del refrigeratore

Durante un ciclo di lavoro della macchina, il Letto 1 rimane in comunicazione con l'Evaporatore, mentre la valvola verso il Condensatore è chiusa. La silica-gel presente sullo scambiatore adsorbe vapore, creando una depressione che permette l'evaporazione di acqua nell'Evaporatore, e il conseguente raffreddamento del fluido che scorre nei tubi (la cui temperatura in ingresso è Tch). Il fluido a temperatura Tcool serve a mantenere costante la temperatura nel Letto 1, recuperando il calore ceduto dal vapore adsorbito e cedendolo poi a un apposito heat rejection system (ad esempio una torre evaporativa).

Contemporaneamente, il Letto 2 rimane in comunicazione con il Condensatore, mentre la valvola verso l'Evaporatore è chiusa: il fluido caldo (temperatura in ingresso Th) fluisce nello scambiatore del Letto 2, scaldando la silica-gel precedentemente saturata di vapore e rigenerandola, emettendo cioè vapor acqueo che raggiunge il Condensatore, dove lo scambiatore è mantenuti a temperatura costante dal fluido di condensazione (temperatura in ingresso Tcond).

Il vapore condensa sui tubi, e per gravità raggiunge l'Evaporatore, sostituendo precedentemente evaporata. Il fluido di condensazione viene diretto all'heat rejection system.

Al termine del ciclo, quando la silica-gel del Letto 1 tende a saturarsi di vapore, e quella del Letto 2 è quasi completamente rigenerata, vengono chiuse le valvole (i Letti vengono sostanzialmente isolati dall'Evaporatore e dal Condensatore) e sono invertiti i flussi dei fluidi: il fluido caldo andrà al Letto 1, scaldandolo, il fluido freddo (Tcool) andrà al Letto 2, raffreddandolo. Quando la temperatura del Letto 1 è sufficientemente calda, e quella del Letto 2 è sufficientemente fredda, vengono riaperte le valvole, ma invertendo i ruoli dei Letti rispetto al ciclo precedente: sarà il Letto 2 ora ad essere collegato all'evaporatore e a svolgere la funzione adsorbente.

Modello matematico

Una modellazione dettagliata di un refrigeratore ad adsorbimento comporta inevitabilmente calcoli complessi, e conseguentemente tempi computazionali incompatibili con simulazioni annuali di impianti e carichi articolati, in cui il refrigeratore è solo uno dei numerosi componenti.

D'altra parte si consideri che:

- a fronte di condizioni di ingresso costanti (portate e temperature dei fluidi nei vari circuiti) i valori in uscita delle temperature, e conseguentemente della potenza termica utilizzata (Qh) e di quella frigorifera generata (Qch), non sono costanti nel tempo, ma variano ciclicamente.
- al variare delle condizioni in ingresso della temperatura del fluido da refrigerare (Tch), del fluido caldo di rigenerazione (Th), e del fluido di condensazione e raffreddamento (Tcond e Tcool), variano Qh, Qch, e conseguentemente il coefficiente di performance (COP) della macchina: COP = Qch/Qh.

Il presente modello è stato quindi sviluppato con lo scopo di preservare la ciclicità della macchina reale, e di permettere una risposta dinamica alla variazione di alcune condizioni in ingresso:

a) variazioni della temperatura del fluido caldo di rigenerazione, che in applicazioni solari, anche in presenza di un accumulo, subisce oscillazioni durante l'arco della giornata;

b) variazioni della temperatura del fluido da refrigerare, che dipende dalle variazioni del carico applicato.

Nello sviluppo del modello in Simulink si è fatto riferimento ad alcuni modelli matematici semplificati esistenti in letteratura, in cui ciascun componente del refrigeratore (Evaporatore, Condensatore e ciascun Letto) è rappresentato da equazioni di scambio termico, mentre le equazioni delle isoterme per la silica-gel e dei tassi di adsorbimento e desorbimento sono utilizzate nella rappresentazione dei Letti.

La variazione periodica nell'interazione tra tali elementi è tenuta in considerazione tramite apporsite variabili di controllo il cui valore varia ciclicamente.

Nello specifico, si è implementato il modello matematico pubblicato nell'articolo "Modeling the performance of two-bed, sillica gel-water adsorption chillers" (H.T. Chua, K.C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, B.B. Saha)

Per quanto riguarda il calcolo della pressione di vapore nei diversi componenti si è fatto uso della equazione empirica di Arden Buck.

I valori medi del calore specifico, entalpia specifica e densità per il vapore e l'acqua liquida nei vari componenti del refrigeratore sono stati calcolati sulla base delle equazioni contenute nello IAPWS-IF97 ("The International Association for the Properties of Water and Steam, Industrial Formulation 1997"). Tali valori sono stati inseriti nel modello come costanti, per ridurre i tempi di calcolo.

Implementazione in Simulink

- Il modello del refrigeratore è stato implementato tramite un blocco *embedded function*. La scelta è dovuta all'esigenza di una successiva compilazione di un eseguibile di un impianto completo che includa il presente modello, compilazione che altri tipi di "*User-Defined Function*" non permettono.
- Ciascuna equazione del modello fornisce una variazione differenziale di temperatura o concentrazione, che è stata gestita con un loop e un blocco *integratore*.
- Il meccanismo di switch tra un ciclo e il successivo è stato gestito con una *embedded function*, che inverte i valori di temperatura e saturazione della silica-gel tra un Letto e l'altro, e fornisce un reset dei relativi blocchi integratori, in modo che nella

simulazione in Simulink sia sempre il Letto 1 a interagire con l'Evaporatore, e il Letto 2 con il Condensatore. Sono infatti le caratteristiche dei Letti che vengono invertite, non i collegamenti con gli altri componenti e i circuiti.

- Il fluido di lavoro considerato è acqua in tutti i circuiti.
- La potenza frigorifera Qch e quella termica Qh, e il conseguente COP vengono calcolati come valori medi su un ciclo. I valori forniti all'inizio della simulazione non vengono considerati, in quanto il modello (esattamente come la macchina reale) deve raggiungere una condizione di regime). in questa fase i valori di output sono valori nominali.
- La temperatura di condensazione e raffrescamento (Tcond e Tcool), e le relative portate, sono gestite internamente nel modello, come se un sistema perfetto di heat rejection system sia già collegato al refrigeratore
- Le portate di fluido da refrigerare e fluido di rigenerazione sono gestite come parametri da settare all'inizio della simulazione (tramite un file .m), mentre le relative temperature in ingresso sono due input del modello.
- Il modello è in grado di rappresentare tre taglie di refrigeratori, con un COP nominale costante. Le taglie e il valore di COP sono analoghi a prodotti esistenti sul mercato
- I valori forniti come output sono le potenze assorbite e generate (Qh_av e Qch_av) mediate sul ciclo, il relativo coefficiente di performance (COP_av) e le temperature istantanee di uscita dell'acqua refrigerata e di rigenerazione (Tch_out e Th_out).

Validazione

I seguenti grafici rappresentano le potenze termiche assorbite e generate dal modello di refrigeratore da 65 kW di potenza nominale, e i relativi COP per tre diverse temperature di refrigerazione. Sono in linea con i valori di performance forniti da costruttori di refrigeratori ad adsorbimento di taglia analoga

File dei parametri

I parametri sono: M1chill = portata fluido da refrigerare [kg/s] M1heat = portata fluido di rigenerazione [kg/s] P_nominale = potenza nominale frigorifera [kW]

I valori sono contenuti in tre file.m, ciascuno relativo ad una taglia di refrigeratore. Le taglie previste sono: 65, 130 e 200 kW. Per ciascuno il COP nominale è di circa 0.52-0.53

I valori nominali di input sono uguali per le diverse taglie di macchina: Tchin = 14 °C : temperatura in ingresso del fluido da refrigerare Thin = 80 °C : tempe