

Produzione di energia elettrica e protezione dell'ambiente

Ricerca su celle fotovoltaiche innovative

Paola Delli Veneri Alberto Mittiga

L'ENEA E LA RICERCA DI SISTEMA ELETTRICO Roma, 23-24 novembre 2011

Produzione mondiale di celle solari

Andamento della produzione mondiale di celle FV ripartita per aree geografiche (PV News, 2011)

AGENZIA NAZIONALI

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

	Area	2006 vs 2005	2007 vs 2006	2008 vs 2007	2009 vs 2008	2010 vs 2009
	Giappone	+11,2%	-0,3%	+32,6%	+22,8%	+45,2%
	Europa	+42,3%	+58,8%	+78,4%	+0,8%	+62,7%
	USA	+16,3%	+52,2%	+52,0%	+41,7%	+91,1%
	ROW (Cina, Taiwan, Corea, ecc.)	+110,8%	+113,1%	+134,2%	+97,3%	+161,0%
	Totale	+37,9%	+51,1%	+86,9%	+54,3%	+123,1%

Mercato delle varie tecnologie FV

Costi di produzione, prezzi e margini di profitto

Il costo dei moduli costituisce circa il 50% del costo di un impianto FV installato

Competitività del fotovoltaico

Fotovoltaico avanzato a base di film sottili di silicio

Sviluppo di materiali e celle a film sottili policristallini a base di rame ed elementi II-IV e VI

Sviluppo di celle organiche a base di materiali o ibridi

Vantaggi del FV a film sottile

Utilizzo di strati molto sottili di materiale

Processi di fabbricazione meno energivori

Interconnessione monolitica per realizzare i moduli

Processi fortemente automatizzati: glass in – module out

Possibilità di depositare su larga area

Prodotti flessibili e leggeri

PowerPlastic® Konarka

Moduli FV semi-trasparenti

Kaneka

Film sottili di silicio: Le celle micromorfe

Sviluppo e realizzazione di strati assorbitori alternativi e innovativi per celle tandem di silicio

a-Si:H glass blue μc-Si:H Sun light ZnO/Ag TCO red р n p n

Film nanostrutturati di silicio (Si QDs) per la cella top

Film di silicio-germanio microcristallino per la cella bottom

80 Photo Current (%) b 09 Top Cell **Bottom Cell** 20 300 380 460 780 860 940 1020 700 nm Visible Spectrum Near IR

100

Film sottili di silicio: Sviluppo di assorbitori nanostrutturati per la cella top

Nanocristalli di Si in matrice di nitruro di Silicio

10⁶

10⁵

⁻u⁻ β

10³

10²

1.0

Film sottili di silicio: strati assorbitori a base di film di silicio germanio microcristallino

Absorption coefficient (cm⁻¹)

Normalized Raman Intensity

I film di silicio germanio consentono un più efficace assorbimento della radiazione nella regione infrarossa

PER LE NUOVE TECNOLOG

Film sottili di silicio: intrappolamento della radiazione solare

Riflettori intermedi e posteriori consentono di ridurre gli spessori degli strati assorbitori consentendo un potenziale vantaggio in termini industriali

Sviluppo di film di ossido trasparente e conduttore (TCO) con una opportuna morfologia superficiale

Film sottili di silicio: intrappolamento della radiazione solare

Sviluppo di strati di ossido di silicio di tipo n altamente trasparenti

Film sottili di silicio: intrappolamento della radiazione solare

Sviluppo di elettrodi frontali di ZnO depositati con tecnica MOCVD capaci di efficace intrappolamneto della radiazione

Il substrato con lo ZnO sviluppato in ENEA ha una risposta nell'infrarosso migliore rispetto a quello commerciale

Film sottili di silicio: Realizzazione minimoduli

Con laser di lunghezze d'onda opportune vengono rimossi strati specifici di materiale

Sviluppo di celle a film sottili policristallini a base di rame ed elementi II-IV e VI

Chalcopyrite: CuInSe₂ (I-III-VI)

Sviluppo di celle a film sottili policristallini a base di rame ed elementi II-IV e VI

- 1. Lavaggio vetro soda lime
- 2. Sputtering back contact di Mo
- 3. Evaporazione dei precursori
- 4. Solforizzazione in forno a tubo
- 5. Deposizione per CBD del CdS
- 6. Sputtering dello ZnO
- 7. Evaporazione griglia di raccolta
- 8. Scribing per definizione area attiva

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILI

Impianto di deposizione per sputtering

Sviluppo di celle a film sottili policristallini a base di rame ed elementi II-IV e VI

Messa a punto dei processi di crescita e di caratterizzazione di celle solari a film sottili policristallini Cu2 -II-IV-VI4

Voc=454 mV, Jsc=8.13 mA/cm², FF=52.9 %, **Eff=1.95 %**, Area=0.02 cm²

Sviluppo di celle organiche a base di materiali polimerici

Sviluppo di celle organiche a base di materiali polimerici

Area= 0.34 cm² Eff= 4.1 % FF= 57 % Jsc= 11.8 mA/cm² Voc= 614 mV Rs= 11 Ohm*cm² Rsh= 918 Ohm*cm²

Sviluppo di celle organiche a base di materiali polimerici

Sviluppo di PEDOT:PSS altamente conduttivo per celle solari polimeriche

Struttura del dispositivo: GLASS HC-PEDOT:PSS P3HT:PCBM Ca Al

Area= 0.20 cm² Eff= 2.5 % FF= 44 % Jsc= 9.7 mA/cm² Voc= 575 mV Rs= 25 Ohm*cm² Rsh= 606 Ohm*cm²

Collaborazioni

- •Università degli Studi "Federico II" di Napoli Dipartimento di Ingegneria dei Materiali e della Produzione
- •Università di Genova Dipartimento di Fisica
- •Università del Sannio Dipartimento di Ingegneria
- •Università della Calabria Dipartimento di elettronica informatica e sistemistica
- •Università di Modena e Reggio Emilia Dipartimento di Chimica
- •Università di Trieste Dipartimento di Scienze Chimiche e Farmaceutiche
- •Università di Salerno Dipartimento di Ingegneria elettronia e Ingegneria Informatica
- •Università di Trento Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali
- •Università "La Sapienza" di Roma Dipartimento di Fisica
- •FN SpA

Contatti

ENEA UTTP – Laboratori di Portici paola.delliveneri@enea.it lucia.mercaldo@enea.it marialuisa.addonizio@enea.it pasquale.morvillo@enea.it

ENEA UTRINN-FVC – Laboratori di Casaccia alberto.mittiga@enea.it

Ricerca su celle fotovoltaiche innovative

Paola Delli Veneri Alberto Mittiga

Si ringrazia Carlo Privato

