



Accordo di Programma MiSE-ENEA

"Effetti della ricarica rapida sui sistemi di accumulo"

G. Pede, F. Vellucci

ENEA, Unità di Progetto Ricerca di Sistema Elettrico Roma, 15 Luglio 2015

Ricarica rapida – Struttura della presentazione

Definizione di ricarica rapida

Esperienza ENEA

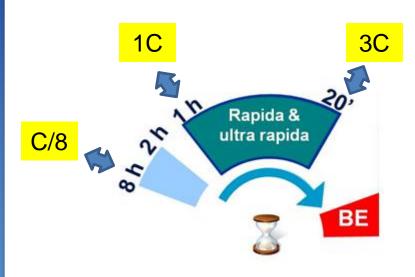
Implementazione su minibus: sistema batterie multi stringa - multi modulo

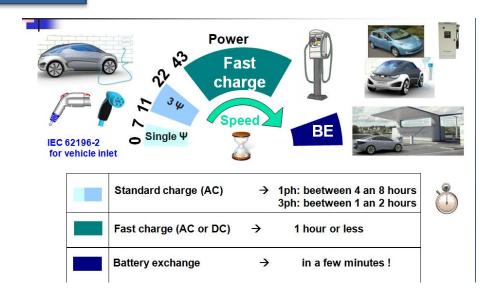
Missione richiesta da TPL

Ricarica rapida - Definizione

Veicolo elettrico

Autonomia


Ricarica


Velocità di ricarica

Infrastruttura

Scenario per la definizione di ricarica rapida

Mancanza di letteratura

Ricarica rapida – Programma attività ENEA

Esperienza ENEA

Prove vita di batterie al Li sottoposte a profili di lavoro con carica rapida

Ricarica rapida legata alla missione del veicolo

Minibus in servizio su percorso di 4 ÷ 5 km – ricarica 5' al capolinea

Prove vita a livello di cella e modulo

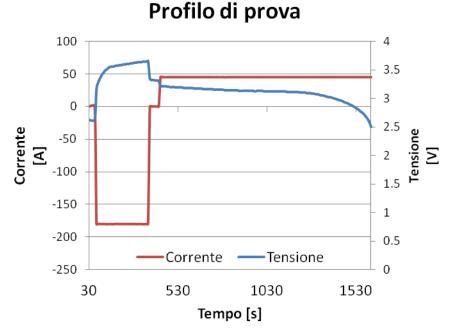
Sistema batteria multi stringa multi modulo

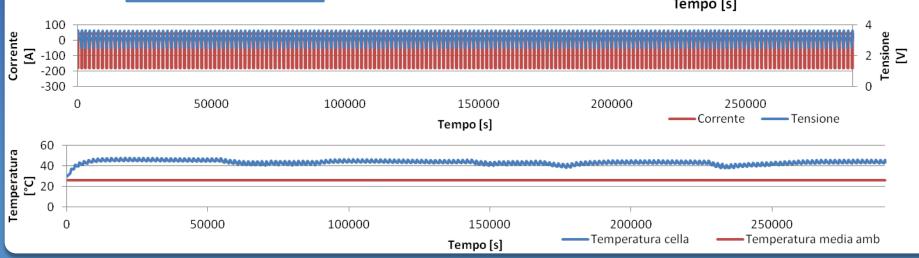
Implementazione su minibus

Ricarica rapida – Prove su cella 1°

Caratteristiche

CELLA LFP 3.2 V – 60 Ah							
Tipo	LFP						
Capacità	60 Ah						
	nominale	3.20 V					
Tensione	minima	2.50 V					
	massima	3.65 V					
Corrente massima	scarica	180 A					
continuativa	carica	60 A					
Temperatura di	scarica	-20 ÷ +60° C					
esercizio	carica	0 ÷ +45° C					

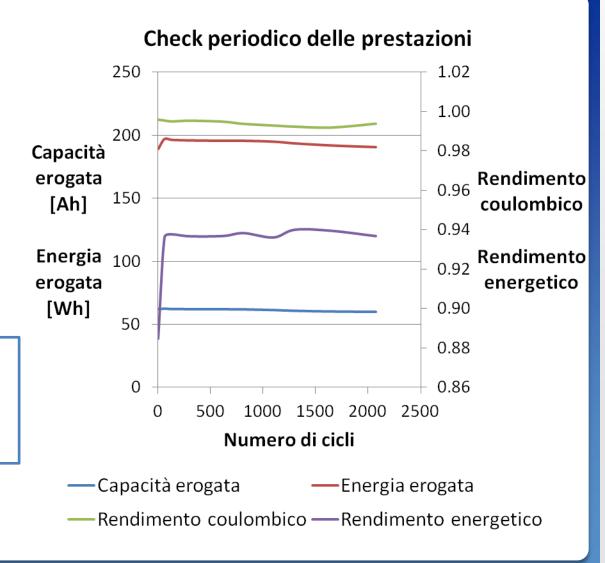

Ricarica rapida – Prove su cella 2°



Profilo di prova

- •Carica 3C per 300 s
- •Pausa 60 s
- •Scarica 2/3C per 1200 s
- •Pausa 60 s

n. 3 celle testate


Ricarica rapida – Prove su cella 3°

Risultati

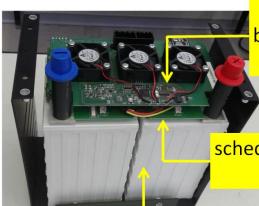
- •N. cicli eseguiti > 2000
- •No degrado prestazionale apprezzabile

I risultati ottenuti incoraggiano la ripetizione delle prove a livello di modulo

Ricarica rapida – Modulo batterie 1°

Modulo batterie 12 V – 60 Ah

- •4 celle in serie, 12.8 V 60 Ah
- 1 scheda interconnessione potenza e segnale
- 1 scheda BMS monitoraggio, protezione, bilanciamento attivo
- •3 ventole 12 V 30 Nm³/h comando BMS, soglia impostabile, azionamento parziale
- pannello base in neoprene
- elementi interni di bloccaggio orizzontale e verticale, rigidi e semirigidi
- •involucro in Al base e coperchio



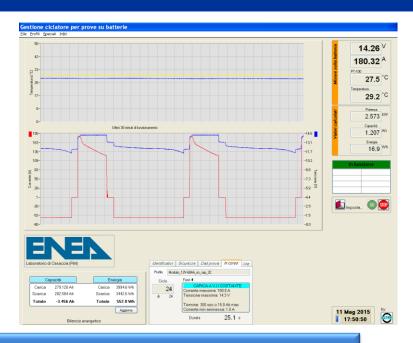
scheda BMS con bilanciamento attivo e gestione termica

scheda di connessione delle celle

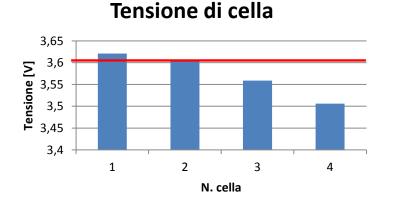
base involucro

4 celle in serie

Ricarica rapida – Modulo batterie 2°



Ricarica rapida – Prova su modulo 1°



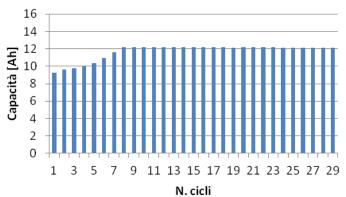
Profilo di prova

- •Start SOC 100%
- Scarica 1C per 900 s
- •Pausa 60 s
- •Carica CC/CV I_{max} = 3C per 300 s
- •Pausa 60 s
- •Ripetizione per 10 h
- •Ricarica lenta e completa

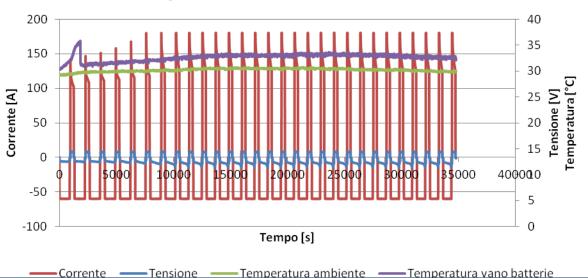
Considerazioni sul comportamento del modulo sottoposto a ricarica rapida

Il modulo non accetta carica CC @ 3C

Carica CC-CV e celle bilanciate


Ricarica rapida – Prova su modulo 2°

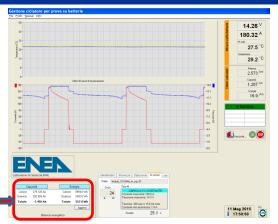
"Equilibrio" della quantità di carica (SOC ~ 33%)



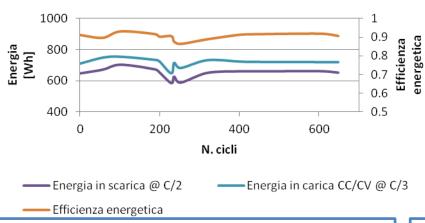
Capacità in carica

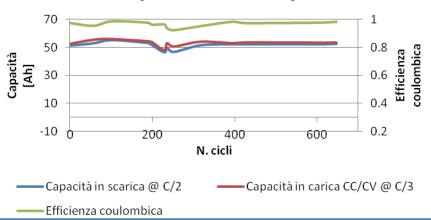
Grandezze elettriche e termiche Tipico andamento su 30 cicli

Andamento delle grandezze termiche ed elettriche


Ricarica rapida – Risultati della prova su modulo

Bilancio della quantità di carica elettrica


Carica elettrica erogata senza interruzione del servizio maggiore della capacità nominale



Check periodico delle prestazioni

Check prestazioni - Energia

Check prestazioni - capacità

•Prove in corso, n. cicli eseguiti 650

•No decadimento prestazionale apprezzabile

Ricarica rapida – Minibus 1°

Il profilo di lavoro utilizzato per la prova vita del modulo è compatibile con una tipologia di missione richiesta dal TPL

Minibus "Gulliver"	Tecnobus
Massa (1200 kg Pb)	6000 kg
Velocità media	20 km/h
Consumo specifico	700 Wh/km

		Dati di in	ngresso							
C Consumo chilometrico					kWh/km	(2 x 132 kg batter	ie + 2 x 7	0 kg casson	i)	
Р	P Potenza di ricarica			55	kW					
v	Velocità media		20	km/h						
η	Rendimento azior	namento		0.8						
	Incognite:			i risolventi						
			Tempo marcia + tempo sosta = tem			empo totale				
	tempo di sosta =	S			m + s = 1					
			2)	Energia ca	rica = energia scario	a / rendimento azionam	ento			
			2)	Energia carica = energia scarica / rendimento azionamento Potenza di ricarica x tempo di sosta = consumo chilometrico x percorrenza / rendimento azionamen						
				= consumo chilometrico x velocità x tempo di marcia / rendimento azionamento						
					P * s = C * v * m / n					
	Risolvendo per m l'equazione 1):									
					m = 1 - s					
			Sostituend	do nella 2):						
					P * s * η = C* v * m	= C * v * (1-s)				
					$P * \eta / (C * v) = (1$					
					P* \(/ (C*v) + 1 =					
					s = 1 / (P * η / (C * v					
					s =	0.213383407 0.786616593				
					m =	0.700010593				
				Verifica:	11.79924889	"="	11.79925			
				vernica.	11.73324003		11.73323			
					Risultati					
Abbiamo	quindi che in 1 ora				Tratta (A & R) in km	Marcia	Sosta	Tempo di ciclo)	
	tempo di marcia :			minuti	3.93				4 giri	
	tempo di sosta =				5.24				3 giri	
	tempo totale =				7.87				2 giri	
	percorrenza oraria		15.73233	km	15.73233185	47	13	60	1 giro	
_'energia	da caricare in 1 ora									
	E=	11.79924889						55.000.114	,	
	lo una corrente di ric		ari a 3C, la	potenza di	ricarica impostata:			55.296 kW 18.432 kW		
пспіваё	<mark>una batteria di taglia</mark>	a part a.						10.432 KV	TI .	
	Tipo modulo En	orgio modulo	N.moduli							
	12,8 V/60 Ah	ergia modulo 768								

Foglio di calcolo "Sistema batterie per minibus"

Un sistema batterie di 24 moduli consente di realizzare una missione di TPL per il minibus "Gulliver" Tecnobus secondo il profilo di lavoro utilizzato per la prova vita

Ricarica rapida – Minibus 2°

Implementazione su minibus: sistema batterie multi stringa - multi modulo

- •Sistema: 4 stringhe 72 V 60 Ah in parallelo, totale 72 V 240 Ah
- Stringa: 6 moduli 12 V 60 Ah in serie, totale di stringa 72 V – 60 Ah
- •Il sistema batterie è alloggiato in <u>due</u> <u>cassoni</u>, due stringhe in ogni cassone
- Il profilo di ricarica rapida fornisce al minibus "Gulliver" (Tecnobus)
 15' di autonomia, ovvero 4 km di marcia alla velocità media di 20 Km/h
- Questa prestazione è compatibile con una tipologia di missione richiesta dal TPL

Ricarica rapida - Conclusioni

E' stato mostrato un esempio che dimostra:

- la fattibilità tecnica della ricarica rapida
- ·l'utilità della ricarica rapida nel rendere possibile l'uso dei veicoli elettrici

Proseguimento delle attività:

- Terminare la prova vita sul modulo
- Collaudo elettrico del sistema batterie
- Collaudo vibrazionale del sistema batterie
- Installazione su minibus
- Prove del minibus al banco a rulli
- Prove del minibus su strada
- •Input per passare da versione sperimentale a versione industriale

Grazie per l'attenzione

per ulteriori informazioni:

<u>francesco.vellucci@enea.it</u> <u>giovanni.pede@enea.it</u>

M. Ceraolo, T. Huria, C. Zappacosta, "Sviluppo di moduli integrati, completi di BMS", Report RdS/2011/318

*F. Vellucci, G. Pede, "*Sviluppo di moduli batterie litio-ioni per avviamento e trazione non auto motive", Report RdS/2011/27

F. Vellucci, G. Pede, A. Mariani, F. D'Annibale, "Sviluppo e realizzazione di moduli batterie litio-ioni per avviamento e trazione non auto motive", Report RdS/2012/087 F. Baronti, G. Fantechi, R. Roncella, R. Saletti, "Sviluppo di un BMS (Battery Management System) con sistema di bilanciamento attivo per sistema batterie al LiFePO4 da 48 Vn - 100 Ah", Report RdS/2012/088

*F. Baronti, G. Fantechi, R. Roncella, R. Saletti, "*Progettazione definitiva del BMS per batterie di avviamento e trazione non auto motive", Report RdS/2012/089

F. Vellucci, G. Pede, V. Sglavo, F. D'Annibale, A. Mariani, "Moduli standard di batterie al litio: test di caratterizzazione e duty cycle per applicazioni stazionarie, con ottimizzazione del BMS", Report RdS/2013/247

F. Baronti, R. Roncella, R. Saletti, m "Ottimizzazione di sistemi di controllo BMS per moduli batterie al litio da utilizzare in applicazioni stazionarie", Report RdS/2013/246