Rierca Enea su celle fotovoltaiche innovative

Eterogiunzione ossido silicio amorfo/ silicio cristallino

Ricerca di Sistema elettrico

Competitività PV passa attraverso corsa verso la grid parity.

Perché l'eterogiunzione silicio amorfo / silicio cristallino ?

Eterogiunzioni in silicio amorfo/c-Si come via per riduzione dei costi:

- Basso contenuto energetico per produzione: T di processo < 300°C
- Alta efficienza : HIT Panasonic 25.6% su 143.7 cm². Record mondiale in Si.

тсо	HTJ 143.7 cm ² Panasonic	HomoJ 4 cm ² UNSW - PERL	
Passivation layer	Voc = 0.740 V	0.706 V	
	Jsc = 41.8 mA/cm ²	42.7 mA/cm ²	
i-type a-Si Monocrystalline Si (Cz. n-type, textured)	FF = 82.7%	82.8%	
Frid electrodes n-type a-Si	Eff. = 25.6%	25%	
i-type a-Si o-type a-Si Brid electrodes n-type a-Si			

Confronto celle record diversa tecnologia

Eterogiunzione ossido silicio amorfo/ silicio cristallino

+ Voc (HTJ) > Voc (HomoJ)

Jsc confrontabili a causa assorbimento
dell' emettitore in a-Si alle basse λ nelle HTJ.

 Proponiamo nuovo emettitore (n) a base di ossido di silicio amorfo a-SiOx: più trasparente alle basse λ
Assorbitore in silicio p : rappresenta il 90% del mercato in c-Si

Eterogiunzione ossido silicio amorfo/ silicio cristallino

Tutta la struttura (n)SiOx /(i)a-Si:H/c-Si (p)/(i)a-Si:H/(p)a-Si:H in PECVD a T < 200°C No trattamenti ad alte temperature per formazione giunzioni.

Proprietà elettro - ottiche n- SiOx

Architettura cella etregiunzione n-SiOx/ c-Si

Eterogiunzione ossido silicio amorfo/ silicio cristallino Problematiche legate all'ossido conduttivo trasparente TCO

Simulazioni effetto su J-V al variare di ϕ del TCO su TCO/(n)SiOx /(i)a-Si:H/c-Si (p)

campioni	R sheet Ohm/sq	thickness nm	Pot Watt	# scan	T dep °C	Wтсо eV
TCO39	40	80	250	18	220	4.1
TCO90	48	240	300	24	270	4.22
TCO89	140	140	300	16	270	4.26
TCO38	30	80	400	16	220	4.3
TCO32	18	190	500	20	270	4.49

Misure sperimentali C-V per la determinazione valore Funzione lavoro ϕ del TCO

Curva J-V sperimentale. La resistenza serie del TCO e la non idealità del contatto laser posteriore e la non ottimale testurizzazione inficiano Jsc, passivazione superficiale e Voc.

Dove arrivare.

Curva J-V da simulazione DIFFIN Assunzioni: Alta conduttività del TCO e riduzione della densità dei difetti interfaccia a-Si:H/c-Si. Valori elettro-ottici n SiOx (Eg, Ea, n, k....) da dati sperimentali

Sviluppi ed obiettivi : celle ad oltre il 20% per prodotti top sul mercato

Cella	Eff	FF	Jsc	Voc	Α	Rs	Rsh
	(%)	(%)	(mA/cm ²)	(mV)	cm ²	(Ωcm²)	(Ωcm²)
CL5	15.4	73.0	32.8	644	4	1.4	1400
CL6	7.5	35.5	29.6	714	4	38	1400
CL7	11.9	57.7	31.0	666	4	9.7	4900
CL9	13.2	72.8	29.3	621	4	1.8	8300
CL10	15.2	78.5	31.5	615	4	1.1	13000
CL11	13.7	75.7	29.6	610	4	2.1	4200
CL12	11.8	65.2	30.2	599	4	4.5	1700
CL16	9.4	53.0	28.9	613	4	8.9	13000
CL33	15.7	62.5	36.6	687	4		

Imlied Voc 750mV misurata su struttura in fugura

Tabella J-V celle più significative

- Ottimizzazioni TCO e griglia frontale per minimizzare Rs
- Ottimizzazione del processo di testurizzazione per massimizzare Jsc
- Ottimizzazione del processo di pulizia chimica della superficie testurizzata per migliorare effetto passivazione e Voc