

STRUMENTI E TECNOLOGIE PER L'EFFICIENZA ENERGETICA NEL SETTORE DEI SERVIZI

Progetto: 3.1

Area: Razionalizzazione e Risparmio nell'uso dell'energia elettrica

Tematica di Ricerca: Tecnologie di risparmio elettrico e nei settori collegati industria e servizi

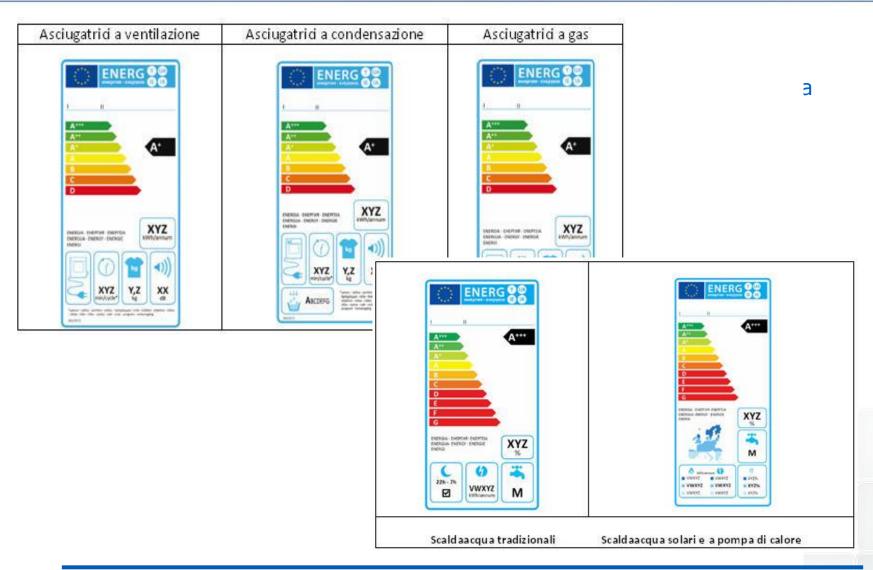
Attività del Piano Realizzazione 2011

Ilaria Bertini

Obiettivi annualità 2011

- A. Etichettatura Energetica ed Ecodesign: sviluppo di specifiche, implementazione e controllo di mercato
- B. Promozione della microcogenerazione nel settore civile
- C. Sviluppo di strategie ottimali delle reti termiche
- D. Sviluppo di modelli per il contenimento dei consumi enegetici nel sistema edificio-impianti

A.Etichettatura Energetica ed Ecodesign: sviluppo di specifiche, implementazione e controllo di mercato


 Attività di definizione della legislazione europea sull'etichettatura e i requisiti minimi per l'efficienza energetica per nuovi prodotti domestici (asciugatrici, cappe, caldaie e scaldaacqua) e commerciali (frigoriferi e apparecchi per la refrigerazione)

 Definiti i criteri per il controllo dell'etichettatura energetica (GFK ha effettuato analisi sulla presenza nel mercato nazionale delle etichette energetiche Aprile 2012, 9 regioni) e verifiche del mercato (prove di laboratorio sulle lavatrici)

A.Etichettatura Energetica ed Ecodesign: sviluppo di specifiche, implementazione e controllo di mercato

Categoria di Prodotto	Etichetta Assente	Nuova Etichetta	Vecchia Etichetta Non Conforme	Vecchia Etichetta Conforme	Totale Articoli	Etichetta Assente	Nuova Etichetta	Vecchia Etichetta Non Conforme	Vecchia Etichetta Conforme
Asciugatrici	50	17	22	588	677	7,4%	2,5%	3,2%	86,9%
Cantinette per Vini	67	2		5	74	90,5%	2,7%	0,0%	6,8%
Congelatori	47	437	14	301	799	5,9%	54,7%	1,8%	37,7%
Forni Elettrici	738	11	94	1030	1873	39,4%	0,6%	5,0%	55,0%
Frigoriferi e Frigocongelatori	171	2057	119	1250	3597	4,8%	57,2%	3,3%	34,8%
Lavastoviglie	97	862	44	441	1444	6,7%	59,7%	3,0%	30,5%
Lavatrici	249	2363	134	1413	4159	6,0%	56,8%	3,2%	34,0%
Condizionatori d'Aria	182	10	6	604	802	22,7%	1,2%	0,7%	75,3%
Televisori	3269	2965			6234	52,4%	47,6%	0.0%	0,0%
Totale complessivo	4870	8724	433	5632	19659	24,8%	44,4%	2,2%	28,6%

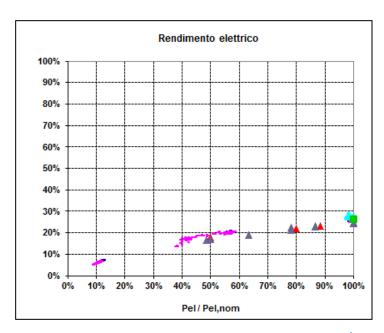
Risultati dell'analisi per categoria di prodotto

Regione Geografica	Etichetta Assente	Nuova Etichetta	Vecchia Etichetta Non Conforme	Vecchia Etichetta Conforme	Totale Articoli	Etichetta Assente	Nuova Etichetta	Vecchia Etichetta Non Conforme	Vecchia Etichetta Conforme
CAMPANIA	785	818	2	435	2040	38,5%	40,1%	0,1%	21,3%
EMILIA	419	1044	3	579	2045	20,5%	51,1%	0,1%	28,3%
LAZIO	449	1292	307	665	2713	16,5%	47,6%	11,3%	24,5%
LOMBARDIA	588	1154	91	810	2643	22,2%	43,7%	3,4%	30,6%
PIEMONTE	400	735	3	632	1770	22,6%	41,5%	0,2%	35,7%
PUGLIA	608	1058	1	805	2472	24,6%	42,8%	0,0%	32,6%
SICILIA	598	953	5	675	2231	26,8%	42,7%	0,2%	30,3%
TOSCANA	395	889	20	520	1824	21,7%	48,7%	1,1%	28,5%
VENETO	628	781	1	511	1921	32,7%	40,7%	0,1%	26,6%
Totale complessivo	4870	8724	433	5632	19659	24,8%	44,4%	2,2%	28,6%

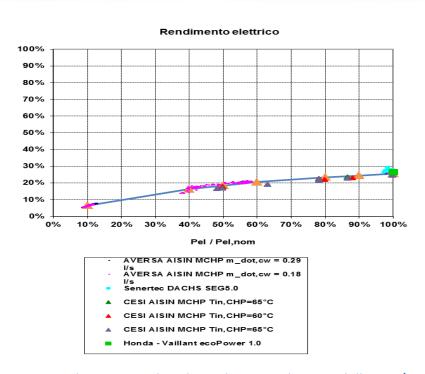
Risultati dell'analisi per regione

- Definiti, in ambito mondiale (IEC) ed europeo (CENELEC) metodi di misura per i parametri prestazionali (efficienza energetica e prestazioni funzionali) e del rumore degli apparecchi per il lavaggio (lavatrici, asciugatrici, lavasciugatrici)
- Aggiornamento del network (NETLAB) dei laboratori per la sorveglianza di mercato per tipologie di apparecchi (lavabiancheria, lavastoviglie

Laboratorio	Località				
A.E. s.r.l Appliances Engineering	Gavirate (VA)				
EQI, European Quality Institute s.r.l.	Jesi (AN)				
ENEA	Ispra (VA)				
IMQ s.p.a.	Milano (MI)				
Istituto di Ricerche e Collaudi M. Masini s.r.l	Rho (Mi)				
UL International Italia s.r.l.	Agrate Brianza (MI)				
Laboratori partecipanti al NetLAB					



Sviluppo e validazione di un modello matematico per la simulazione di motori endotermici di taglia 1-6 kWe.


- ➤acquisizione dei principali parametri energetici di sistemi di microcogenerazione con motore a combustione interna di piccolissima taglia (1-6 kW elettrici) apparecchi installati sul territorio nazionale o specifiche tecniche fornite dai costruttori (Aisin RSE, UNISANNIO; Senertec UNISANNIO lab. Univ. Monaco; Vailant Costruttore; Baltur impianto prototipale)
- right analisi delle performance energetiche di, sistemi a pompa di calore alimentati da motori endotermici a gas di piccolissima taglia (5-6 kW).
- >i dati così acquisiti sono stati impiegati per la messa a punto e l'ottimizzazione dei modelli dinamici
- ➤I modelli sviluppati sono stati impiegati per la realizzazione di un sw per simulazione e la previsione del funzionamento orario e dei principali indici di efficienza energetica validati sulla base dei dati sperimentali precedentemente acquisiti.

Analisi comparativa delle performance delle unità

Interpolazione sui dati di rendimento elettrico delle unità

- Integrazione nella piattaforma di simulazione ODESSE per valutare le prestazioni elettriche e termiche dei generatori di piccola taglia in specifiche applicazioni
- Test di validazione

Analisi del mercato

- Microcogenerazione compressa dalla cogenarazione
- Presenza industriale italiana ridotta, manca spinta allo sviluppo di un quadro regolatorio e di modelli di business adatti allo sviluppo della microcogenerazione.

Temi di ricerca e sviluppo (interviste operatori)

- •il miglioramento delle prestazioni nella conversione dell'energia del combustibile in elettricità e calore;
- •la riduzione dei costi di autorizzazioni, acquisto, installazione, esercizio e manutenzione, primo avvio ed addestramento dell'utente (progetti pilota che supportino economicamente il monitoraggio;
- •l'aumento del fattore di carico degli impianti.

Monitoraggio casi applicativi

- ottenimento di un elevato fattore di carico degli impianti richiede un forte intervento la ESCO e l'utente
- •applicazioni prototipali: per il loro inserimento nel mercato nazionale e i conseguenti aggiustamenti relativi al package, al collegamento con le utenze e alla regolazione e gestione delle macchine
- ausiliari pre-confezionati

Analisi del mercato

- Microcoge
- Presenza di modelli d

d .

torio e

Temi di ric

- •il migliorar elettricità e
- •la riduzion primo avvid il monitorad
- •l'aumento

Operatori intervistati

Associazione Italiana per la Promozione della Cogenerazione

one, nente

Monitorag

- ottenimer
 ESCO e l'ut
- •applicazionaggiustame gestione de
- ausiliari p

ENERGIE PER TE

Efficienza Energetica

la

C. Sviluppo di strategie ottimali delle reti energetiche

Analisi delle potenzialità di contenimento dei consumi energetici dei dispositivi di poligenerazione distribuita e delle reti energetiche locali.

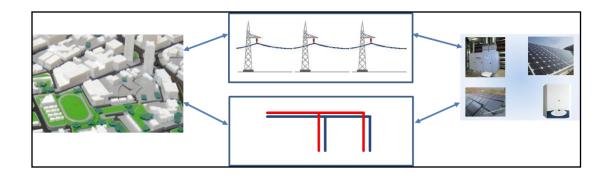
Vincoli

Direttiva 2009/28/CE, gli impianti di produzione di energia termica per edifici nuovi o per grandi ristrutturazioni devono garantire il 20% del fabbisogno termico ACS, riscaldamento e raffrescamento da fonti rinnovabili

Incremento al 50% dal 1 Gennaio 2017

Criticità

Alta densità abitativa Mancanza di spazi Difficoltà applicativa



Soluzione: rete locale

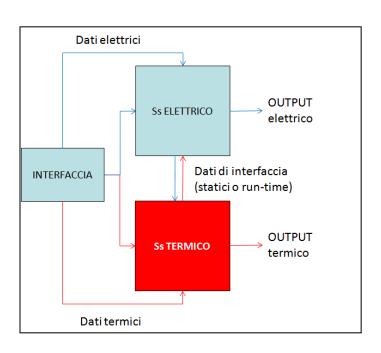
Mix di due sottosistemi elettrici e termici a servizio di un agglomerato urbano (centro commerciale, centro direzionale, piccolo quartiere) a cui sono connessi sistemi di poligenerazione distribuita di piccola taglia combinati con fonti rinnovabili elettrici (Fv, piccolo eolico) e termici (collettori solari, cogenerazione diffusa).

Gestione ICT consente di ridurre le perdite e migliorare la qualità dei servizi

IEA - Annex 54, Integration of Micro-Generation and Related Energy Technologies in Buildings (settembre 2012 – Tokio) - Investire nelle micro reti locali come strumento di sviluppo, sicurezza e salvaguardia ambientale.

Piattaforma di simulazione

- •Rete elettrica in MT e bt
- •Rete termica per la fornitura del servizio riscaldamento e ACS a un cluster di utenze (scala quartiere)
- •Sistema edificio che simula il proprio carico termico ed elettrico orario in funzione di diversi profili di utenza



Facoltà di Ingegneria Civile ed Industriale DIAEE - Area Ingegneria Elettrica Configurazione **Topologia Topologia** Configurazione **Edifici** rete elettrica poligenerazione rete termica Generatore di scenari Generatore di accensione Layer Layer di utilizzo elettrico termico Gestione di scenari diversi Gestione di scenari variando gli scheduling diversi variando profili degli impianti Output energ/econ

Piattaforma di simulazione

Load flow Principali parametri elettrici dinamici

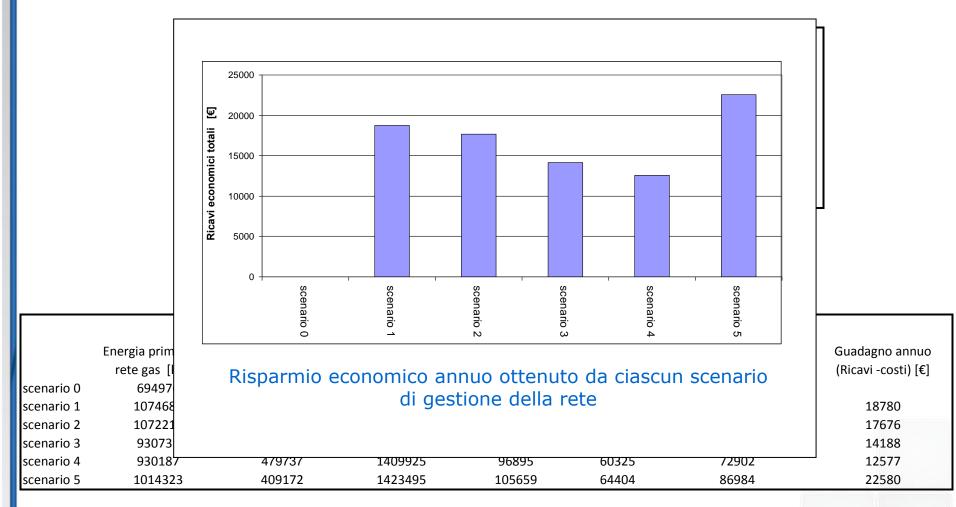
Perdite della rete termica Potenza fornita al singolo edificio

								Portata fluido - G-	
		Carico termico	ore equivalenti	tipo		potenza singolo	Potenza totale	ingesso soostazione rete-	Potenza caldaia
Tipologia edifici	volume	nominale edifico	riscaldamento *	distribuazione	n° elementi	elemento	installata-P_fan	edificio**	ausiliaria
	mc	[kW]	[h]		n°	[kW]	[kW]	kg/s	[kW]
commerciale	17705	531,15	2016	fancoil	250	2,3	575	9,15	550
<mark>u</mark> ffici	2530	75,9	912	fancoil	40	2,3	92	1,46	90
residenziale	1000	30	1680	fancoil	10	2,3	23	0,36	30

Caratteristiche dei singoli edifici simulati e dei relativi impianti centralizzati di riscaldamento

	Generatore Termico Centralizzato (cogeneratore + caldaia integrazione)	Generatore termico Ed1	Generatore termico Ed2	Generatore termico Ed3	Nota
Scenario 0	NON ATTIVO	ON	ON	ON	
Scenario 1	Attivo 24 ore su 24	OFF	OFF	OFF	
Scenario 2	Attivo 24 ore su 24	OFF	ON	ON	
Scenario 3	Attivo dalle 08 alle 20	OFF	OFF	OFF	
Scenario 4	Attivo dalle 08 alle 20	OFF	ON	ON	
					Temperatura rete 15
Scenario 5	Attivo 24 ore su 24	OFF	OFF	OFF	°C in meno rispetto
					scenario 1

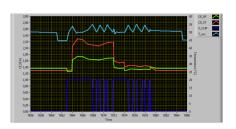
Scenari ipotizzati per la gestione del caso applicativo (scenario 5, temp. della rete a 75° invece di 90° std)

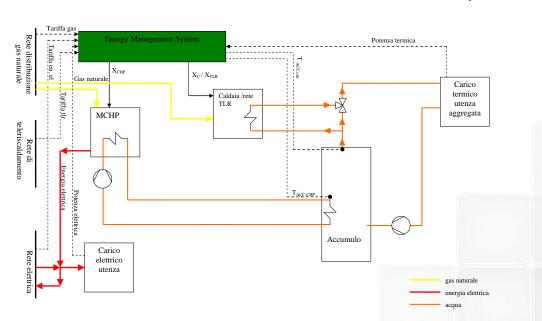

	scenario 0 scenario 1	Energia primaria da	Energia primaria da	Energia primaria	consumo gas totale	costo annuo	ricavi da vendita energia	Guadagno annuo
ı		rete gas [kWh]	rete elettrica [kWh]	Totale [kWh]	[mc]	energia [€]	elettrica e termica [€]	(Ricavi -costi) [€]
I	scenario 0	694976	797088	1492064	72393	62533	0	
I	scenario 1	1074689	391497	1466186	111947	68188	86968	18780
I	scenario 2	1072212	387063	1459275	111689	68254	85930	17676
I	scenario 3	930731	765273	1696004	96951	60048	74235	14188
ı	scenario 4	930187	479737	1409925	96895	60325	72902	12577
	scenario 5	1014323	409172	1423495	105659	64404	86984	22580

Risultati delle simulazioni sui vari scenari

Sintesi risultati

Risultati delle simulazioni sui vari scenari

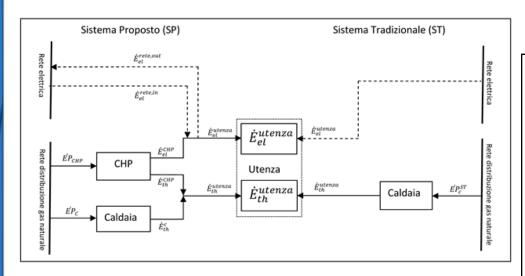

Rete di poligenerazione distribuita

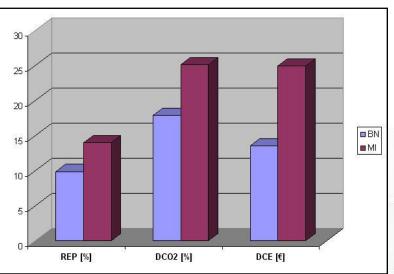

Sviluppo e validazione di algoritmi per la gestione telematica e remota di dispositivi di poligenerazione per applicazioni distribuite in utenze residenziali e del piccolo terziario (distretto energetico)

Modalità di "load sharing", per servire utenze diverse, caratterizzate da profili di carico giornalieri e stagionali differenziati, al fine di ottenere profili dei carichi frigo_termo_elettrici complessivi

- •meno variabili temporalmente
- •assicurare un congruo numero di ore di funzionamento annue dell'impianto.

Rete di poligenerazione distribuita




Analisi di sensitività

Gli algoritmi di controllo sono stati valutati in base a parametri:

- •energetici e di impatto ambientale: di massimizzazione dei risparmi di energia primaria e delle emissioni evitate di anidride carbonica equivalente;
- •tecnici: di riduzione dei cicli di ON-OFF del microcogeneratore;
- •economici: di riduzione dei costi di esercizio (strategie commerciali della ESCo)

ENEN AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, ETNERRIA E LO SNULIPPO (CONOMICO SOSTEMBRE)

Caratterizzazione energetica di un sistema ibrido rappresentativo di una micro-grid

Sviluppo dell'applicazione di software di gestione per l'ottimizzazione e il controllo della smart grid di un sistema di energia ibrido

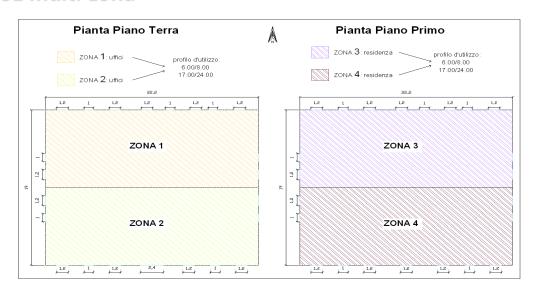
Impiega, in modo sinergico e razionale, le tecnologie della cogenerazione, del solare termico, del fotovoltaico, della produzione di idrogeno a bassa pressione mediante processo elettrolitico, dello stoccaggio di idrogeno mediante serbatoi ad idruri metallici, e delle fuel cell di piccola potenza per veicoli elettrici/ibridi.

IOC (Intelligent Operation Center) ad un sistema energetico e complesso e suscettibile di integrazioni: sviluppo dei KPI, la loro analisi di significatività

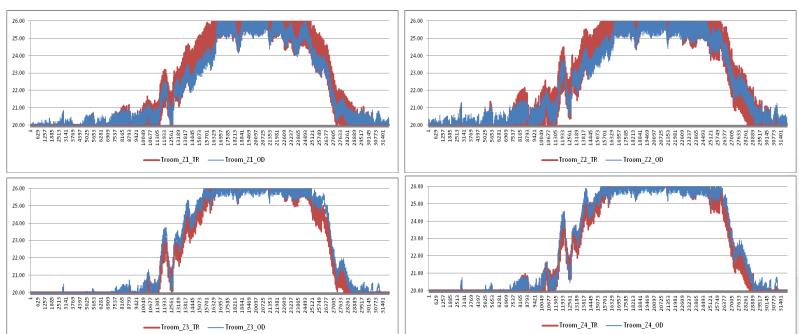
D. Sviluppo di modelli per il contenimento dei consumi energetici nel sistema edificio-impianti

Definizione del modello multi-zona

Per valutare i consumi energetici di edifici che presentano delle zone in cui i carichi termici sono notevolmente differenti fra loro o per destinazione d'uso o per orientamento


Caratteristiche

Dividere l'edificio in zone diverse Non iteragiscono termicamente Definire i profili di carico (occupanti, luci, apparecchiature elettriche, ventilazione-infiltrazione) Impostare i profili di funzionamento degli impianti.



Simulazione ODESSE multi-zona

Ciascuna zona ha tre pareti verticali esterne e una interna in comune con altra zona

Climatizzazione dei CED

Definizione modello di calcolo Validazione su caso applicativo: sala CRESCO del centro di calcolo ENEA a Portici

Tipologie modellizzate:

- •sistema di freecooling integrato all'interno dei gruppi di raffreddamento (ST-FC)
- •processo di raffreddamento evaporativo indiretto, attuando un trattamento diretto dell'aria presente nel centro di calcolo (IEC)

Il raffreddamento è attuato ricircolando una portata d'aria su un particolare scambiatore evaporativo comunemente chiamato economizzatore. Nel primario dello scambiatore fluisce l'aria di processo che viene utilizzata per raffreddare la sala, mentre sul secondario fluisce l'aria esterna nella quale viene spruzzata acqua al fine di abbassarne la temperatura. Un sistema convenzionale ausiliario interviene invece nei momenti di carico massimo.

Il tempo di ritorno dell'investimento è stato calcolato sulla base degli extracosti di installazione degli impianti innovativi rispetto a quello convenzionale preso come riferimento.

La soluzione IEC è più vantaggiosa indipendentemente dal sito scelto (1anno) La soluzione ST + FC risulta invece meno vantaggiosa (da 2 a 6 anni)

Grazie per l'attenzione

PUBBLICAZIONI/ DIVULGAZIONE

- 1. 'An integrated platform for electrical modeling of microgrids', IRED 2012 5th International Conference on Integration of Renewable and Distributed Energy Resources E. Riva Sanseverino, R. Gallea, M. L. Di Silvestre, G. Zizzo, I. Bertini, B. Di Pietra, G. Graditi.
- 2. 'A load model for EV parking lot', IRED 2012 5th International Conference on Integration of Renewable and Distributed Energy Resources, E. Riva Sanseverino, R. Gallea, M. L. Di Silvestre, G. Zizzo, G. Graditi, M. G. Ippolito.
- 3. 'Influence of losses partition criteria on power flow tracing', Antonino Augugliaro, Luigi Dusonchet, Salvatore Favuzza, Mariano G. Ippolito, Eleonora Riva Sanseverino accepted for presentation at IEEE Energycon 2012.
- 4. 'A model for reactive power tracing by addition of fictitious nodal injections' ELECTRIC POWER SYSTEMS RESEARCH, vol. 83, p. 196-202, Antonino Augugliaro, Luigi Dusonchet, Salvatore Favuzza, Mariano G. Ippolito, Eleonora Riva Sanseverino ISSN: 0378-7796.
- 5. 'Analysis of impacts on electric power systems operation of demand side management in residential and tertiary buildings', Maria Luisa Di Silvestre, Salvatore Favuzza, Mariano G. Ippolito, Fabio Massaro, Eleonora Riva Sanseverino, I. Bertini, IEEE Energycon 2012.
- 6. 'Experimental validation of constant efficiency models for the subsystems of an unconventional desiccant-based Air Handling Unit and investigation of its performance', Applied Thermal Engineering 33-34 (2012) 100-108, G. Angrisani, C. Roselli, M. Sasso.

- 7. 'Analisi sperimentale di un sistema di microcogenerazione per utenze residenziali', 66° Congresso Nazionale ATI Università della Calabria, Rende (CS), 5 9 settembre 2011, ISBN 978-88-95267-11-1, Barcello Editore, G. Angrisani, C. Roselli, M. Sasso, S. Sibilio, A. Rosato.
- 8. 'Energy and exergy-based modelling of a micro combined heat and power unit', Applied Energy, Marzo 2012, G. Angrisani, M. Gameiro da Silva, A. R. Gaspar, P. Gonçalves, C. Roselli.
- 9. 'Calibration and validation of a model for simulating thermal and electric performance of an internal combustion engine-based micro-cogeneration device', Applied Thermal Engineering 45 (2012) 79-98, A. Rosato, S. Sibilio.
- 10. 'Experimental results of a micro-trigeneration installation', Applied Thermal Engineering 38 (2012) 78-90, G. Angrisani, A. Rosato, C. Roselli, M. Sasso, S. Sibilio.
- 11.'Residential Microcogenerators for Multifamily Houses', Applied Energy,, G. Angrisani, C. Roselli, M. Sasso
- 12.M. Presutto, 15 articoli/interviste divulgativi sulle principali riviste che trattano l'efficienza e il risparmio energetici per la diffusione dei nuovi regolamenti di etichettature energetica.

Sviluppi futuri

Reti di poligenerazione distribuita

Sviluppo di strumenti per l'ottimizzazione dei consumi energetici del sistema edifici-impianti nella configurazione di distretto energetico, attraverso la modellazione dinamica dei carichi termici ed elettrici.

Studi e caratterizzazione di reti termiche distribuite, valutazione dei risparmi energetici conseguibili grazie all'integrazione di impianti basati su tecnologie non diffuse con ampi potenziali di efficientamento.

Strumenti e metodologie per l'informazione e la diffusione delle tecnologie per l'efficienza energetica verso i cittadini, le aziende e le pubbliche amministrazioni

Definizione, validazione e verifica di requisiti di ecodesign e di etichettatura Energetica

"Parco tecnologico virtuale per l'Efficienza Energetica" – EE-Park

Definizione di nuovi moduli didattici orientati alla formazione di nuove professionalità nel campo dell'efficienza energetica

Obiettivi annualità 2008-09

- A. Sviluppo delle specifiche per la progettazione eco-compatibile: promozione della nuova etichetta energetica
- B. Implementazione e controllo dell'etichettatura energetica e dei requisiti di Ecodesign
- C. Studi per la promozione delle tecnologie ad alta efficienza e delle ricadute sulle imprese della produzione e dei sevizi
- D. Sviluppo e diffusione di modelli per la simulazione e la validazione di strategie ottimali di gestione del sistema edificio-impianto in un contesto di rete complessa
- E. Comunicazione e diffusione dei risultati

Compensatore statico

Fornitura di servizi ancillari base è tanto maggiore quanto più diffusa è la presenza all'interno della micro rete di generatori non programmabili come le fonti rinnovabili (Fotovoltaico ed eolico) in quanto sono causa di problematiche come fluttuazioni di tensione e sbilanciamento della produzione rispetto al carico

Modellizzare i servizi ancillari nella piattaforma Rilevazione di ampie fluttuazioni nelle curve di carico di edifici del centro monitorati

Studio di fattibilità relativo alla progettazione e installazione di un compensatore statico di energia attiva e reattiva da installare in un nodo specifico della rete del C.R. ENEA di Casaccia

Erogazione dei servizi di rete con logiche di controllo e gestione personalizzabili in modo da ottimizzarne il funzionamento.

Il sistema hardware denominato AFE (Active Front End) sarà costituito da:
Un inverter bidirezioanle (con IGBT) da 30 kW
Un pacco batterie a litio da 10 kWh
Un sistema di barre in corrente continua a 600 V
Una predisposizione per la connessione alle barre DC di un' utenza attiva (campo FV) e una utenza passiva (carico DC, veicolo elettrico)

Le attività del presente macro-obiettivo si sono concentrate sulle problematiche inerenti la diffusione della microcogenerazione, in particolare con la FIRE (Federazione Italiana Risparmio Energetico) si è analizzata la rilevanza delle stesse nell'attuale contesto energetico italiano, sia come composizione del parco di generazione elettrica, che come operatività delle facilitazioni fiscali che infine come ruolo dall'industria manifatturiera nazionale. L'individuazione delle principali barriere alla diffusione e delle possibili linee per superarle si è basata sulle conoscenze delle specificità nazionali riguardo all'installazione, gestione e manutenzione di piccoli impianti presso utenti del settore residenziale e dei servizi. La validazione dei benefici e dei costi, diretti ed indiretti, è stata presentata come lo strumento propedeutico alla valutazione economica dell'intera operazione microcogenerazione. Il quadro è poi stato discusso con gli operatori della microcogenerazione, concentrandosi sui temi del mercato, della legislazione e delle prospettive. Grazie al dialogo con gli operatori è stato possibile anche validare le stime sull'attuale mercato in termini di macchine offerte e di volumi totali di vendita.

NOTA

I temi sviluppati riguardano l'analisi della transizione dai grossi sistemi di "produzione" energetica centralizzata a quelli decentralizzati, Distributed Generation (DG). Per raggiungere obiettivi di risparmio di energia primaria e di contenimento di emissioni climalteranti, rispetto alla tradizionale "produzione" separata, devono essere presi in esame sistemi energetici complessi, di piccola taglia e ad elevata efficienza di conversione, in grado di soddisfare "in situ" richieste frigo-termo-elettriche differenziate. Vantaggi: riduzione delle "perdite" energetiche legate al vettoriamento dell'energia ad elevata distanza ed ai frequenti funzionamenti a carichi parziali tipici degli impianti di taglia elevata, maggiore indipendenza energetica dell'utenza e utilizzo stagionale del gas naturale e dell'energia elettrica più razionale.

<u>Svantaggi</u>: riduzione delle prestazioni per effetto della riduzione della taglia, problemi di integrazione tra il dispositivo e l'utenza e complessità dei micro-cogeneratori accoppiati a macchine frigorifere per soddisfare le richieste energetiche dell'utenza e per incrementare il numero di ore di funzionamento dell'unità cogenerativa nella stagione estiva.

La molteplicità delle combinazioni tecnologicamente possibili, la difficoltà di servire utenze di piccola taglia caratterizzate da carichi energetici aleatori e fluttuanti, l'interazione dei sistemi poligeneranti con reti esterne di distribuzione elettrica, di teleriscaldamento e di teleraffrescamento, determina la necessità di un'intensa attività di ricerca sui componenti del sistema di conversione energetica, sull'ottimizzazione delle strategie di funzionamento del sistema complesso poligeneratore/utenza, nonché sulla gestione remota ottimale da parte di un unico operatore di più dispositivi distribuiti sul territorio e non necessariamente interagenti con le medesime reti elettriche, di teleriscaldamento e di teleraffrescamento