

Produzione di energia elettrica e protezione dell'ambiente

Ricerca su celle fotovoltaiche innovative

Paola Delli Veneri Alberto Mittiga

L'ENEA E LA RICERCA DI SISTEMA ELETTRICO Roma, 28-29 novembre 2012

Evoluzione del FV

100 GW installati nel mondo

Italia: 5.5 % Elettricità

	TWh	%
Termoelettrica	208.8	63.9
Idroelettrica	41.8	12.7
Fotovoltaica	18.1	5.5
Eolica	12.2	3.7
Geotermoelettrica	5.3	1.6
Import/Export	40.7	13.3
Totale	326.9	100.0

Italia Produzione energia elettrica negli ultimi 12 mesi (1 Nov 2011-30 Ott 2012)

Evoluzione del costo di produzione dei moduli fotovoltaici

I moduli a film sottile stanno conquistando quote di mercato?

Evoluzione del mercato fotovoltaico per tecnologia

Nonostante il lieve vantaggio di costo, i moduli a film sottile non stanno conquistando quote di mercato: devono migliorare come efficienza

Produzione mondiale di moduli FV nel 2011

Produzione totale nel 2011: 37 GW

Source:Photon Int.

Top 10 Produttori di celle FV nel 2011

Il predominio cinese può essere combattuto solo con tecnologie innovative

Vantaggi del FV a film sottile

Risparmio di materiale- Processi di fabbricazione meno energivori

Processi fortemente automatizzati: glass in – module out

Moduli monolitici

In Italia: 3Sun (accordo tra Sharp, ENEL Green Power e STMicroelectronics). Produzione di moduli fotovoltaici tandem micromorph a-Si/µc-Si con una efficienza iniziale >10% ed efficienza stabilizzata del 9.6%. La capacità produttiva è attualmente di 160 MW/anno ma in futuro potrebbe essere aumentata fino a 480 MW/anno.

Linee di attività nell' Accordo di Programma MSE/ENEA

- A. Sviluppo e realizzazione di strati assorbitori e drogati innovativi per celle a film sottile di silicio micromorfe
- B. Sviluppo di materiali e architetture di dispositivo per migliorare l'intrappolamento della radiazione solare all'interno dei dispositivi a film sottile di silicio
- C. Sviluppo di celle a film sottile di silicio cristallino
- D. Sviluppo di materiali e celle a film sottili policristallini a base di rame ed elementi II-IV e VI
- E. Sviluppo di celle organiche a base di materiali polimerici o ibridi

Film sottili di silicio: Le celle micromorfe

Film sottili di silicio: Le celle micromorfe

Linea A: Sviluppo e realizzazione di strati assorbitori e drogati innovativi per celle a film sottile di silicio micromorfe

Film nanostrutturati di silicio (Si QDs) per la cella top Film di silicio-germanio microcristallino per la cella bottom

Film di ossido di silicio a fase mista drogati n

Substrati nanostrutturati per migliorare il confinamento ottico

Sviluppo di elettrodi frontali trasparenti a base di ZnO

Riflettori posteriori in cristalli fotonici

Linea B: materiali e architetture di dispositivo per migliorare l'intrappolamento della radiazione solare all'interno del dispositivo a film sottile di silicio

Film nanostrutturati di silicio in matrice di ossido di silicio e loro utilizzo come strati assorbitori innovativi

Diametro medio dei dot: ~2.8nm (A), 2.5nm (B)

Film di ossido di silicio a fase mista depositati per PECVD a T=150°C

Spettri di fotoluminescenza

Emissione dovuta a ricombinazione elettrone-lacuna nei nanocristalli di Si

Costanti ottiche dei nanocristalli di Si

Eg dei nanocristalli >2eV

Film nanostrutturati di silicio in matrice di ossido di silicio e loro utilizzo come strati assorbitori innovativi

Proprietà ottiche ed elettriche non adeguate per l'utilizzo dei materiali nei dispositivi

Strati assorbitori alternativi a base di film microcristallini di silicio germanio μ c-Si_{1-x}Ge_x:H

I film di silicio germanio assorbono maggiormente la radiazione nella regione infrarossa e potrebbero consentire una riduzione di spessore dei dispositivi

L'alta concentrazione di difetti determina una riduzione del campo elettrico nella regione intrinseca tale da causare rilevanti fenomeni di ricombinazione.

Sviluppo di strati drogati n in ossido di silicio

Sviluppo di strati di ossido di silicio (n-SiOx:H) di tipo n altamente trasparenti, con basso indice di rifrazione e con buona conduttività da utilizzare come strati riflettori $(CO_2/SiH_4=3 \text{ porta a film con: } \sigma^{\sim} 10^{-4} (\Omega \text{cm})^{-1}, n = 2.5, E_{04} \sim 2.4 \text{ eV})$

Cella tandem micromorfa semplificata (senza riflettore intermedio e ZnO posteriore). Lo spessore degli strati assorbitori è di circa 1.7 µm

Sviluppo di celle tandem micromorfe sottili (<1µm)

Cella	J _{SCtop} (mA/cm²)	J _{SCbottom} (mA/cm ²	V _{oc} (V)	FF (%)	η (%)
Con Ag	,	,			
n-μcSi:H	9.8	8.9	1.32	70.2	8.2
n-SiOx (1.9 Torr)	9.9	10.5	1.28	72.2	9.2
n-SiOx (2.5 Torr)	10.1	10.7	1.30	71.4	9.4
Con ZnO/Ag					
n-μcSi:H	10.0	9.7	1.32	70.0	9.0
n-SiOx (1.9 Torr)	10.1	9.9	1.27	71.5	9.0
n-SiOx (2.5 Torr)	10.0	9.7	1.29	70.4	8.8

Le prestazioni delle celle sottili potranno essere ulteriormente migliorate ottimizzando gli spessori delle celle componenti

Materiali e architetture di dispositivo per l'intrappolamento della radiazione solare nei dispositivi a film sottile di silicio

- Sviluppo di elettrodi frontali trasparenti per MOCVD;
- Sviluppo di elettrodi frontali trasparenti con tecnica sol-gel (in collaborazione l'Università di Napoli)
- Progettazione di riflettori posteriori innovativi costituiti da cristalli fotonici ibridi metallici e dielettrici (in collaborazione con l'Università del Sannio);
- Sviluppo di substrati nanostrutturati per migliorare il confinamento ottico (in collaborazione l'Università di Genova).

Sviluppo di elettrodi frontali trasparenti a base di ZnO

Elettrodi frontali di ZnO depositati per LP-MOCVD per un efficace intrappolamento della luce

Ottima omogeneità della Rsh

Precursori:

Dietilzinco;

Vapor d'acqua;

Diborano (B₂H₃);

Sviluppo di elettrodi frontali trasparenti a base di ZnO

Elettrodi frontali di ZnO depositati per LP-MOCVD per un efficace intrappolamento della luce

Il substrato con lo ZnO sviluppato in ENEA ha una risposta nell'infrarosso migliore rispetto a quello commerciale

Sviluppo di elettrodi frontali trasparenti a base di ZnO

Sintesi via sol-gel di ossidi trasparenti e conduttivi a base di ZnO.

Soluzione in etanolo:

zinco acetato di-idrato (ZAD) = 1 M; trietanolammina (TEA); l'acido borico (H₃BO₃); rapporti molari: TEA/Zn =1, B/Zn = 0,8 %

Sono stati eseguiti i primi test di fabbricazione di dispositivi sui substrati sviluppati $(\rho_{sh}=1 \ k\Omega/\Box)$

Materiali e architetture di dispositivo per l'intrappolamento della radiazione solare nei dispositivi a film sottile di silicio

Progettazione (COMSOL) di un riflettore posteriore con cristalli fotonici monodimensionali aperiodici basati sulla serie di Fibonacci:

Struttura migliore: +17% rispetto a specchio Periodo=400 nm, FF=50%, b/a=1.62, h=50 nm

Substrati nanostrutturati per migliorare il confinamento ottico della radiazione nelle celle a film sottile

La testurizzazione del vetro è ottenuta tramite processi di erosione ionica auto-organizzata Ion Beam Sputtering - Ion Projection Lithography (IBS-IP).

Film sottili di silicio: realizzazione minimoduli

Con laser di lunghezze d'onda opportune vengono rimossi strati specifici di materiale

Celle ad eterogiunzione su wafer sottili di c-Si

- Realizzazione di dispositivi ad eterogiunzione su wafer sottili di silicio cristallino (50-100 μm)
- Sviluppo di film riflettenti a base di multistrato di silicio poroso (Bragg reflector) con profilo spettrale della riflessione ottimizzato in termini di lunghezza d'onda centrale e larghezza di banda.

Realizzazione di dispositivi in silicio cristallino

Sviluppo di film riflettenti a base di multistrato di silicio poroso

Riflettore di Bragg: sequenza di coppie di strati di silicio poroso a bassa ed alta porosità (rispettivamente alto e basso indice di rifrazione).

Realizzati tramite attacchi elettrochimici in HF/etanolo.

Misura e simulazione della riflettanza all'interfaccia aria/riflettore di Bragg (multistrato a 20 coppie).

Si/(Si-low porosity ellips 190 nm / Si-high porosity ellips 10 nm) x20 / Al 1μm

Simulazione della riflettanza all'interfaccia c-Si/riflettore di Bragg (multistrato a 20 coppie).

Chalcopyrite: CuInSe₂ (I-III-VI)

Le calcopiriti Cu(In,Ga)Se₂ danno i moduli a film sottili più efficienti (≈13%) ma l'intera produzione mondiale di Indio può dare un massimo di 10 GW/anno di moduli

La ricerca si propone di superare i problemi legati all'utilizzo dell'indio

Possibilità di sostituire l'indio con coppie di elementi dei gruppi II e IV.

- 1. Lavaggio vetro soda lime
- 2. Sputtering back contact di Mo
- 3. Evaporazione dei precursori
- 4. Solforizzazione in forno a tubo
- 5. Deposizione per CBD del CdS
- 6. Sputtering dello ZnO
- 7. Evaporazione griglia di raccolta
- 8. Scribing per definizione area attiva

Varianti di processo investigate:

- Solforizzazione in un forno Rapid Thermal Processing (RTP);
- Sviluppo di un processo di deposizione del CZTS da soluzione;

Stage at X = 37.858 mm

WD = 8.4 mm

Sviluppo di celle a film sottili policristallini a base di rame ed elementi II-IV e VI

Aperture Size = 30.00 µm

Dispositivo migliore ottenuto finora: Eff=3.2%

ENEA UTTMAT-CHI
File Name = KC106_04.tif

Studio dell'allineamento di banda CdS/CZTS tramite XPS

XPS analysis of the CdS/CZTS interface

Studio delle proprietà del CZTS al variare della composizione dei precursori e delle condizioni di solforizzazione, tramite spettrofotometria e Photothermal Deflection Spectroscopy (PDS)

Altro studio in corso: processi di decomposizione ed evaporazione del materiale tramite calorimetria differenziale a scansione e analisi termogravimetrica (DSC/TGA).

Studio dei profili di composizione del materiale lungo lo spessore tramite X-ray Photoemission Spectroscopy (XPS) e Glow Discharge Optical Emission Spectroscopy (GDOES)

La scarsa efficienza è probabilmente dovuta a problemi di disomogeneità del materiale e di scarsa crescita dei grani

E' necessario passare ad una tecnica di deposizione diversa: il co-sputtering

Implementazione dei sistemi di deposizione dei materiali

Sistema installato nel dicembre 2010. Attualmente usato per lo sputtering in RF di Mo, ZnO e ZnO:Al.

Upgrade per il cosputtering dei precursori terminato a giugno 2012.

Nuovo impianto di sputtering per la deposizione di Mo e ZnO e ZnO:Al. Consegnato il 9 novembre 2012.

Solar Cells

Functional

Ink

Materiale attivo: blend di un copolimero benzoditiofene-tienotiofene e un derivato del fullerene C70

Messa a punto di processi per la deposizione del materiale attivo tramite tecnica inkjet

3D- image of the printed P3HT:PCBM

Materiali polimerici nanostrutturati per il controllo della morfologia su scala nanometrica (in collaborazione con L'Università di Napoli

copolimero a blocchi nanostrutturato: domini di PS e PMMA orientati perpendicolarmente rispetto al substrato, con spessori medi di 13 nm e 19 nm rispettivamente.

I domini di PS sono stati anche selettivamente caricato con nanoparticelle di oro.

Principali soggetti esterni coinvolti

- •Università di Napoli "Federico II" Dipartimento di Ingegneria dei Materiali e della Produzione
- Università di Genova Dipartimento di Fisica
- Università del Sannio Dipartimento di Ingegneria
- •Università di Napoli "Federico II" Dipartimento di Chimica
- Università di Modena e Reggio Emilia Dipartimento di Chimica
- •Università di Napoli "Federico II" Dipartimento di Fisica
- •Università di Trento Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali
- •Università "La Sapienza" di Roma Dipartimento di Fisica
- •FN SpA

Diffusione dei risultati del terzo anno

- **❖** Ventuno pubblicazioni su proceedings di conferenze o riviste scientifiche internazionali
- ❖ Sette rapporti tecnici
- **❖** Alcuni interventi a convegni/conferenze nazionali o internazionali

Contatti

ENEA UTTP – Laboratori di Portici

paola.delliveneri@enea.it lucia.mercaldo@enea.it marialuisa.addonizio@enea.it pasquale.morvillo@enea.it marco.dellanoce@enea.it

ENEA UTRINN-FVC – Laboratori di Casaccia alberto.mittiga@enea.it mario.tucci@enea.it

Ricerca su celle fotovoltaiche innovative

